
Drawing Graphs by Eigenvectors: Theory and Practice�

Yehuda Koren

AT&T Labs – Research

Florham Park, NJ 07932

yehuda@research.att.com

Abstract. The spectral approach for graph visualization computes the layout of a

graph using certain eigenvectors of related matrices. Some important advantages

of this approach are an ability to compute optimal layouts (according to specific

requirements) and a very rapid computation time. In this paper we explore spec-

tral visualization techniques and study their properties from different points of

view. We also suggest a novel algorithm for calculating spectral layouts resulting

in an extremely fast computation by optimizing the layout within a small vector

space.

Keywords: graph drawing, Laplacian, eigenvectors, Fiedler vector, force-directed

layout, spectral graph theory

1 Introduction

A graph G(V,E) is an abstract structure that is used to model a relation E over a set

V of entities. Graph drawing is a standard means for visualizing relational informa-

tion, and its ultimate usefulness depends on the readability of the resulting layout, that

is, the drawing algorithm’s ability to convey the meaning of the diagram quickly and

clearly. To date, many approaches to graph drawing have been developed [2, 3]. There

are many kinds of graph-drawing problems, such as drawing di-graphs, drawing planar

graphs and others. Here we investigate the problem of drawing undirected graphs with

straight-line edges. In fact, the methods that we utilize are not limited to traditional

graph drawing and are also intended for general low dimensional visualization of a set

of objects according to their pairwise similarities (see, e.g., Fig. 2).

We have focused on spectral graph drawing methods, which construct the layout us-

ing eigenvectors of certain matrices associated with the graph. To get some feeling, we

provide results for three graphs in Fig. 1. This spectral approach is quite old, originating

with the work of Hall [4] in 1970. However, since then it has not been used much. In

� An early and short version of this work appeared in [1].

fact, spectral graph drawing algorithms are almost absent in the graph-drawing litera-

ture (e.g., they are not mentioned in the two books [2, 3] that deal with graph drawing).

It seems that in most visualization research the spectral approach is difficult to grasp in

terms of aesthetics. Moreover, the numerical algorithms for computing the eigenvectors

do not possess an intuitive aesthetic interpretation.

We believe that the spectral approach has two distinct advantages that make it very

attractive. First, it provides us with a mathematically-sound formulation leading into

an exact solution to the layout problem, whereas almost all other formulations result

in an NP-hard problem, which can only be approximated. The second advantage is

computation speed. Spectral drawings can be computed extremely fast as we show in

Sec. 7. This is very important because the amount of information to be visualized is

constantly growing rapidly.

Spectral methods have become standard techniques in algebraic graph theory; see,

e.g., [5]. The most widely used techniques utilize eigenvalues and eigenvectors of the

adjacency matrix of the graph. More recently, the interest has shifted somewhat to the

spectrum of the closely related Laplacian. In fact, Mohar [6] claims that the Laplacian

spectrum is more fundamental than this of the adjacency matrix.

Related areas where the spectral approach has been popularized include clustering

[7], partitioning [8], and ordering [9]. However, these areas use discrete quantizations

of the eigenvectors, unlike graph drawing, which employs the eigenvectors without any

modification. Regarding this aspect, it is more fundamental to explore properties of

graph-related eigenvectors in the framework of graph drawing.

In this paper we explore the properties of spectral visualization techniques, and pro-

vide different explanations for their ability to draw graphs nicely. Moreover, we con-

sider a modified approach that uses what we will call degree-normalized eigenvectors,

which have aesthetic advantages in certain cases. We provide an aesthetically-motivated

algorithm for computing the degree-normalized eigenvectors. We also introduce a novel

algorithm for computing spectral layouts that facilitates a significant reduction of run-

ning time by optimizing the layout within a small vector space. In addition to accel-

erating running time, we might also gain some aesthetical advantages compared to the

more traditional spectral algorithms.

2 Basic Notions

A graph is usually written G(V,E), where V = {1 . . . n} is the set of n nodes, and

E is the set of edges (we assume no self loops or parallel edges). Each edge 〈i, j〉 is

associated with a non-negative weight wij that reflects the similarity of nodes i and j.

2

(a) (b)

(c) (d)

Fig. 1. Drawings obtained from the Laplacian eigenvectors. (a) The 4970 graph. |V | = 4, 970,

|E| = 7, 400. (b) The 4elt graph [10]. |V | = 15, 606, |E| = 45, 878. (c) The Crack graph

[10]. |V | = 10, 240, |E| = 30, 380. (d) A 100 × 100 folded grid with central horizontal edge

removed. |V | = 10, 000, |E| = 18, 713.

Thus, more similar nodes are connected with “heavier” edges. For unweighted graphs,

one usually takes uniform weights. Let us denote the neighborhood of i by N(i) = {j |
〈i, j〉 ∈ E}. The degree of node i is deg(i) def=

∑
j∈N(i) wij. Throughout the paper we

have assumed, without loss of generality, that G is connected, otherwise the problem

we deal with can be solved independently for each connected component.

A p-dimensional layout of the graph is defined by p vectors x1, . . . , xp ∈ R
n, where

x1(i), . . . , xp(i) are the coordinates of node i. In most applications p � 3, but here we

will not specify p so as to keep the theory general (however, always p < n). Let us

3

denote by dij the Euclidean distance between nodes i and j (in the p-D layout), so

dij =
√∑p

k=1(xk(i)− xk(j))2.

The adjacency-matrix of the graph G is the symmetric n× n matrix AG, where

AG
ij =

{
0 〈i, j〉 /∈ E

wij 〈i, j〉 ∈ E
i, j = 1, . . . , n.

We will often omit the G in AG.

The Laplacian is another symmetric n×n matrix associated with the graph, denoted

by LG, where

LG
ij =

⎧⎪⎪⎨
⎪⎪⎩

deg(i) i = j

0 i �= j, 〈i, j〉 /∈ E

−wij 〈i, j〉 ∈ E

i, j = 1, . . . , n.

Again, we will often omit the G in LG.

The Laplacian has many interesting properties (see, e.g., [6]). Here we state some

useful features:

– L is a real symmetric and hence its n eigenvalues are real and its eigenvectors are

orthogonal.

– L is positive semi-definite and hence all eigenvalues of L are non-negative.

– 1n
def= (1, 1, . . . , 1)T ∈ R

n is an eigenvector of L, with the associated eigenvalue

0.

– The multiplicity of the zero eigenvalue is equal to the number of connected com-

ponents of G. In particular, if G is connected, then 1n is the only eigenvector asso-

ciated with eigenvalue 0.

The usefulness of the Laplacian stems from the fact that the quadratic form associ-

ated with it is just a weighted sum of all pairwise squared edge-lengths:

Lemma 1. Let L be an n× n Laplacian, and let x ∈ R
n. Then

xT Lx =
∑

〈i,j〉∈E

wij(x(i)− x(j))2.

More generally, for p vectors x1, . . . , xp ∈ R
n we have:

p∑
k=1

(
xk
)T

Lxk =
∑

〈i,j〉∈E

wijd
2
ij .

The proof of this lemma is direct.

4

Throughout the paper we will use the convention 0 = λ1 < λ2 ≤ . . . ≤ λn for

the eigenvalues of L, and denote the corresponding real orthonormal eigenvectors by

v1 = (1/
√

n) · 1n, v2, . . . , vn.

Let us define the degrees matrix as the n×n diagonal matrix D that satisfies Dii =

deg(i). Given a degrees matrix, D, and a Laplacian, L, then a vector u and a scalar µ are

termed generalized eigen-pairs of (L,D) if Lu = µDu. Our convention is to denote

the generalized eigenvectors of (L,D) by u1 = α · 1n, u2, . . . , un, with corresponding

generalized eigenvalues 0 = µ1 < µ2 � · · · � µn. (Thus, Luk = µiDuk, k =

1, . . . , n.) To uniquely define u1, u2, . . . , un, we require them to be D-normalized: so(
uk
)T

Duk = 1, k = 1, . . . n. We term these generalized eigenvectors the degree

normalized eigenvectors.

In general, for a symmetric (positive-semidefinite) matrix A and a positive-definite

matrix B, it can be shown that all the generalized eigenvalues of (A,B) are real (non-

negative), and that all the generalized eigenvectors are B-orthogonal. Consequently,(
uk
)T

Dul = 0, ∀k �= l.

2.1 Mathematical preliminaries

Now, we develop some essential mathematical background that is needed for subse-

quent derivations. Different parts of this material can be found in standard linear algebra

textbooks. The casual reader can make do with understanding the Theorems and Corol-

laries, and does not have to delve into the proofs. In the following, δij is the Kronecker

delta (defined as 1 for i = j and as 0 otherwise), and Ak is the kth column of matrix A.

Theorem 1. Given a symmetric matrix An×n , denote by v1, . . . , vn its eigenvectors,

with corresponding eigenvalues λ1 � · · · � λn. Then, v1, . . . , vp are an optimal solu-

tion of the constrained minimization problem:

min
x1,...,xp

p∑
k=1

(xk)T Axk

subject to: (xk)T xl = δkl, k, l = 1, . . . p.

(1)

Throughout this section, we assume p < n. Before providing the proof of Theorem 1,

we prove the following lemma.

Lemma 2. Let v1, . . . , vp−1 ∈ R
n be some vectors, and let X be an n× p matrix with

orthogonal columns (i.e., XT X = I), then there is an n × p matrix with orthogonal

columns Y that satisfies:

1. For every 2 � k � p: Y k is orthogonal to v1, . . . , vk−1.

5

2. For every n× n matrix A, trace(XT AX) = trace(Y T AY).

Proof. Let us denote the projection of v1 into Range(X) (i.e., span(X1, . . . , Xp))

by ṽ1. If ṽ1 = 0 then we set Y 1 = X1 and Ŷ 2, . . . , Ŷ p = X2, . . . , Xp. Certainly

Ŷ 2, . . . , Ŷ p are orthogonal to v1. Otherwise (when ṽ1 �= 0), we rotate X1,X2 . . . , Xp

withinRange(X) obtaining Y 1, Ŷ 2, . . . , Ŷ p, such that Y 1 = ṽ1/‖ṽ1‖. Since rotations

do not alter orthogonality relations, we still have that Ŷ 2 . . . , Ŷ p are orthogonal to v1.

We continue recursively with the vectors v2, . . . , vp−1 and the matrix (Ŷ 2, . . . , Ŷ p).

Note that the recursion performs rotations only within span(Ŷ 2, . . . , Ŷ p) so all result-

ing vectors are orthogonal to v1 and to Y 1. At the end of the process we obtain p

orthogonal vectors Y 1, . . . , Y p that satisfy the first requirement from Y in the Lemma.

Since all rotations are performed within Range(X), there is some p × p matrix

R such that Y = XR. Moreover, since X and Y have orthogonal columns we obtain

I = Y T Y = RT XT XR = RT R. Hence, R is an orthogonal matrix implying that also

RRT = I . We use the fact that the trace is cyclically-commutative to obtain:

trace(Y T AY) = trace(RT XT AXR) = trace(RRT XT AX) = trace(XT AX) .

	

Now we can prove Theorem 1.

Proof. Let x1, . . . , xp be arranged column-wise in the n × p matrix X . Now, we can

rewrite (1) in a simpler notation:

min
X

trace(XT AX)

subject to: XT X = I .
(2)

Let V0 = (v1
0 , . . . , vp

0) be the minimizer of (2). Since the eigenvectors v1, . . . , vn

form a basis of R
n, we can decompose every vk

0 as a linear combination where vk
0 =∑n

l=1 αk
l vl. Lemma 2 allows us to assume without loss of generality that for every

2 � k � p: vk
0 is orthogonal to the eigenvectors v1, . . . , vk−1. We may therefore take

αk
l = 0 for l < k, and write vk

0 =
∑n

l=k αk
l vl. Next, we use the constraint (vk

0)T vk
0 = 1

to obtain an equation for the coefficients αk
l ,

1 =
(
vk
0

)T
vk
0 =

(
n∑

l=k

αk
l vl

)T (n∑
l=k

αk
l vl

)
=

n∑
l=k

(
αk

l

)2
,

where the last equation stems from the orthonormality of v1, v2, . . . , vn.

6

Hence,
∑n

l=k

(
αk

l

)2 = 1 (a generalization of Pythagoras’ Law). Using this result,

we can expand the quadratic form
(
xk
)T

Axk

(vk
0)T Avk

0 =

(
n∑

l=k

αk
l vl

)T

A

(
n∑

l=k

αk
l vl

)
=

(
n∑

l=k

αk
l vl

)T (n∑
l=k

αk
l Avl

)
=

=

(
n∑

l=k

αk
l vl

)T (n∑
l=k

αk
l λlv

l

)
=

n∑
l=k

(
αk

l

)2
λl �

n∑
l=k

(
αk

l

)2
λk = λk.

(3)

Thus, the target function satisfies:

trace(XT AX) =
p∑

k=1

(xk)T Axk �
p∑

k=1

λk .

Since
∑p

k=1(v
k)T Avk =

∑p
k=1 λk, we deduce that the low eigenvectors v1, . . . , vp

solve (1). 	

Now we state a more general form of Theorem 1.

Theorem 2. Given a symmetric matrix An×n and a positive definite matrix B, denote

by v1, . . . , vn the generalized eigenvectors of (A,B), with corresponding eigenvalues

λ1 � · · · � λn. Then, v1, . . . , vp are an optimal solution of the constrained minimiza-

tion problem:

min
x1,...,xp

p∑
k=1

(xk)T Axk

subject to: (xk)T Bxl = δkl, k, l = 1, . . . p.

(4)

Proof. Since B is positive definite it can be decomposed into: B = CT C, where C is

an n×n invertible matrix. Let us substitute in (4) xk = C−1yk, so now we reformulate

the problem as:

min
y1,...,yp

p∑
k=1

(yk)T C−T AC−1yk

subject to: (yk)T yl = δkl, k, l = 1, . . . p.

(5)

Let y1
0 , . . . , yp

0 be the minimizer of (5). By Theorem 1 these are simply the p lowest

eigenvectors of C−T AC−1, obeying thereforeC−T AC−1yk
0 = λkyk

0 . Using this equa-

tion and transforming back into xk
0 = C−1yk

0 , we get C−T Axk
0 = λkCxk

0 . This implies

Axk
0 = λkBxk

0 , so the solvers of (4) are nothing but the lowest generalized eigenvectors

of (A,B). 	

Frequently, the following version of Theorem 2 will be the most suitable:

7

Corollary 1. Given a symmetric matrix An×n and a positive definite matrix Bn×n, de-

note by v1, . . . , vn the generalized eigenvectors of (A,B), with corresponding eigen-

values λ1 � · · · � λn. Then, v1, . . . , vp are an optimal solution of the constrained

minimization problem:

min
x1,...,xp

∑p
k=1(x

k)T Axk∑p
k=1(xk)T Bxk

(6)

subject to: (x1)T Bx1 = (x2)T Bx2 = · · · = (xp)T Bxp (7)

(xk)T Bxl = 0, 1 � k �= l � p. (8)

Proof. Note that the value of (6) is invariant under scaling since for any constant c �= 0:∑p
k=1(x

k)T Axk∑p
k=1(xk)T Bxk

=
∑p

k=1(cx
k)T A(cxk)∑p

k=1(cxk)T B(cxk)

Thus, we can always scale the optimal solution so that (x1)T Bx1 = (x2)T Bx2 =

· · · = (xp)T Bxp = 1. This reduces the problem to the form of (4). 	

It is straightforward to prove the following corollary that deals with a case in which

the solution must be B-orthogonal to the lowest generalized eigenvectors. In this case

we just take the next low generalized eigenvectors.

Corollary 2. Given a symmetric matrix An×n and a positive definite matrix Bn×n, de-

note by v1, . . . , vn the generalized eigenvectors of (A,B), with corresponding eigen-

values λ1 � · · · � λn. Then, vk+1, . . . , vk+p are an optimal solution of the constrained

minimization problem:

min
x1,...,xp

∑p
i=1(x

i)T Axi∑p
i=1(xi)T Bxi

subject to: (x1)T Bx1 = (x2)T Bx2 = · · · = (xp)T Bxp (9)

(xi)T Bxj = 0, 1 � i �= j � p

(xi)T Bvj = 0, i = 1, . . . , p, j = 1, . . . , k .

3 Spectral Graph Drawing

The earliest spectral graph-drawing algorithm was that of Hall [4]; it uses the low

eigenvectors of the Laplacian. Henceforth, we will refer to this method as the eigen-

projection method. Later, a similar idea was suggested in [11], where the results are

shown to satisfy several desired aesthetic properties. A few other researchers utilize the

top eigenvectors of the adjacency matrix instead of those of the Laplacian. For exam-

ple, consider the work of [12], which uses the adjacency matrix eigenvectors to draw

8

molecular graphs. Recently, eigenvectors of a modified Laplacian were used in [13] for

the visualization of bibliographic networks.

In fact, for regular graphs of uniform degree deg, the eigenvectors of the Laplacian

equal those of the adjacency matrix, but in a reversed order, because L = deg · I − A,

and adding the identity matrix does not change eigenvectors. However, for non-regular

graphs, use of the Laplacian is based on a more solid theoretical basis, and in practice

also gives nicer results than those obtained by the adjacency matrix. Hence, we will

focus on visualization using eigenvectors of the Laplacian.

3.1 Energy-based Derivation of the Eigen-projection Method

One of the most popular approaches to graph-drawing is the force-directed strategy [2,

3] that defines an energy function (or a force model), whose minimization determines

the optimal drawing. Consequently, we will introduce the eigen-projection method as

the solution of the following constrained minimization problem:

min
x1,...,xp

E(x1, . . . , xp) def=

∑
〈i,j〉∈E wijd

2
ij∑

i<j d2
ij

(10)

subject to: Var(x1) = Var(x2) = · · · = Var(xp) (11)

Cov(xk, xl) = 0, 1 � k �= l � p. (12)

Here, Var(x) is the variance of x, defined as usual by Var(x) = 1
n

∑n
i=1 (x(i)− x̄)2,

where x̄ is the mean of x. Also, Cov(xk, xl) is the covariance of xk and xl defined as
1
n

∑n
i=1

(
xk(i)− x̄k

) (
xl(i)− x̄l

)
. Recall that d2

ij =
∑p

k=1

(
xk(i)− xk(j)

)2
.

The energy to be minimized, E(x1, . . . , xp), strives to make edge lengths short

(to minimize the numerator) while scattering the nodes in the drawing area preventing

an overcrowding of the nodes (to maximize the denominator). This way, we adopt a

common strategy to graph drawing stating that adjacent nodes should be drawn closely,

while, generally, nodes should not be drawn too close to each other; see, e.g., [14, 15].

Since the sum is weighted by edge-weights, “heavy” edges have a stronger impact and

hence will be typically shorter. The first constraint (11) forces the nodes to be equally

scattered along each of the axes. In this sense, the drawing has a perfectly balanced

aspect ratio. The second constraint (12) ensures that there is no correlation between the

axes so that each additional dimension will provide us with as much new information

as possible1.

The energy and the constraints are invariant under translation. We eliminate this

degree of freedom by requiring that for each 1 � k � p the mean of xk is 0, i.e.
1 The strategy to require no correlation between the axes is used in other visualization techniques

like Principal Components Analysis [16] and Classical Multidimensional Scaling [16].

9

∑n
i=1 xk(i) =

(
xk
)T · 1n = 0. This is very convenient since now the no-correlation

constraint, Cov(xk, xl) = 0, is equivalent to requiring the vectors to be pairwise or-

thogonal
(
xk
)T

xl = 0. Also, now Var(xk) = 1
n

(
xk
)T

xk so the uniform variance

constraint can be written in a simple form:
(
x1
)T

x1 =
(
x2
)T

x2 = · · · = (xp)T
xp.

Using Lemma 1, we can write
∑

〈i,j〉∈E wijd
2
ij in a matrix form:

∑p
k=1

(
xk
)T

Lxk.

Now, the desired layout can be described as the solution of the following equivalent

minimization problem:

min
x1,...,xp

∑p
k=1

(
xk
)T

Lxk∑
i<j d2

ij

(13)

subject to:
(
xk
)T (

xl
)

= δkl, k, l = 1, . . . , p(
xk
)T · 1n = 0, k = 1, . . . , p.

We can simplify the denominator
∑

i<j d2
ij using the following lemma:

Lemma 3. Let x ∈ R
n such that xT 1n = 0, then:

∑
i<j

(x(i)− x(j))2 = n ·
n∑

i=1

x(i)2 (= n · xT x) .

Proof.

∑
i<j

(x(i)− x(j))2 =
1
2

n∑
i,j=1

(x(i)− x(j))2 =
1
2

⎛
⎝2n

n∑
i=1

x(i)2 − 2
n∑

i,j=1

x(i)x(j)

⎞
⎠ =

= n ·
n∑

i=1

x(i)2 −
n∑

i=1

x(i)
n∑

j=1

x(j) = n ·
n∑

i=1

x(i)2

The last step stems from the fact that x is centered, so that
∑n

j=1 x(j) = 0. 	

As a consequence we get

∑
i<j

d2
ij =

∑
i<j

p∑
k=1

(
xk(i)− xk(j)

)2
=

p∑
k=1

∑
i<j

(
xk(i)− xk(j)

)2
=

p∑
k=1

n · (xk
)T

xk

Therefore, we rewrite again the minimization problem in an equivalent form:

min
x1,...,xp

∑p
k=1

(
xk
)T

Lxk∑p
k=1 (xk)T

xk
(14)

subject to:
(
xk
)T

xl = δkl, k, l = 1, . . . , p(
xk
)T · 1n = 0, k = 1, . . . , p.

Let us substitute A = L,B = I in Corollary 2. Using the fact that the lowest eigenvec-

tor of L is 1n we obtain that the optimal layout is given by the lowest positive Laplacian

10

eigenvectors v2, . . . , vp+1. The resulting value of the energy is
∑p+1

k=2 λk, the sum of

the corresponding eigenvalues.

Note that an interesting property of the eigen-projection is that the first p − 1 axes

of the optimal p-dimensional layout are nothing but the optimal (p − 1)-dimensional

layout.

4 Drawing using Degree-Normalized Eigenvectors

In this section we introduce a new, related spectral graph drawing method that associates

the coordinates with some generalized eigenvectors of the Laplacian.

Suppose that we weight nodes by their degrees, so the mass of node i is its degree —

deg(i). Now if we take the original constrained minimization problem (14) and weight

sums according to node masses, we get the following degree-weighted constrained min-

imization problem (where D is the degrees matrix):

min
x1,...,xp

∑p
k=1

(
xk
)T

Lxk∑p
k=1 (xk)T

Dxk
(15)

subject to:
(
xk
)T

D
(
xl
)

= δij , k, l = 1, . . . , p(
xk
)T

D1n = 0, k = 1, . . . , p.

Substitute A = L,B = D in Corollary 2 to obtain the optimal solution u2, . . . , up+1,

the generalized eigenvectors of (L,D). We will show that in several aspects using

these degree-normalized eigenvectors is more natural than using the eigenvectors of

the Laplacian. In fact Shi and Malik [7] have already shown that the degree-normalized

eigenvectors are more suitable for the problem of image segmentation. For the visual-

ization task, the motivation and explanation are very different.

In problem (15) the denominator moderates the behavior of the numerator: The

numerator strives to place those nodes with high degrees at the center of the drawing,

so that they are in proximity to the other nodes. On the other hand, the denominator

also emphasizes those nodes with high degrees, but in the reversed way: it strives to

enlarge their scatter. The combination of these two opposing goals, helps in making the

drawing more balanced, preventing a situation in which nodes with lower degrees are

overly separated from the rest nodes.

Another observation is that degree-normalized eigenvectors unify the two common

spectral techniques: the approach that uses the Laplacian and the approach that uses the

adjacency matrix.

Claim. The generalized eigenvectors of (L,D) are also the generalized eigenvectors of

(A,D), with a reversed order.

11

Proof. Utilize the fact that L = D − A. Take u, a generalized eigenvector of (L,D).

The vector u satisfies (D − A)u = µDu, or equivalently, by changing sides, Au =

Du− µDu. This implies that

Au = (1− µ)Du

and the claim follows. The proof in the other direction is performed similarly.

Thus, A and L have the same D-normalized eigenvectors, although the order of eigen-

values is reversed. 	

In this way, when drawing with degree normalized eigenvectors, we can take either

the low generalized eigenvectors of the Laplacian, or the top generalized eigenvectors of

the adjacency matrix, without affecting the result. (Remark: In this paper when referring

to “top” or ”low” eigenvectors, we often neglect the topmost (or lowest) degenerate

eigenvector α · 1n.)

The degree-normalized eigenvectors are also the (non-generalized) eigenvectors of

the matrix D−1A. This can be obtained by left-multiplying the generalized eigen-

equation Ax = µDx by D−1, obtaining the eigen-equation

D−1Ax = µx. (16)

Note that D−1A is known as the transition matrix of a random walk on the graph G.

Hence, the degree-normalized eigen-projection uses the top eigenvectors of the transi-

tion matrix to draw the graph.

Regarding drawing quality, for most unweighted graphs with which we experi-

mented (that are probably close to being regular), we have observed not much difference

between drawing using eigenvectors and drawing using degree-normalized eigenvec-

tors. However, when there are marked deviations in node degrees (as is often the case

when working with weighted graphs), the results are quite different. This can be directly

seen by posing the problem as in (15). Here, we provide an alternative explanation based

on (16). Consider the two edges e1 and e2. Edge e1 is of weight 1, connecting two nodes,

each of which is of degree 10. Edge e2 is of weight 10, connecting two nodes, each of

which is of degree 100. In the Laplacian matrix, the entries corresponding to e2 are 10

times larger than those corresponding to e1. Hence we expect the drawing obtained by

the eigenvectors of the Laplacian, to make the edge e2 much shorter than e1 (here, we

do not consider the effect of other nodes that may change the lengths of both edges).

However, for the transition matrix in (16), the entries corresponding to these two edges

are the same, hence we treat them similarly and expect to get the same length for both

edges. This reflects the fact that the relative importance of these two edges is the same,

i.e. 1
10 .

12

In many kinds of graphs numerous scales are embedded, which indicates the exis-

tence of dense clusters and sparse clusters. In a traditional eigen-projection drawing,

dense clusters are drawn extremely densely, while the whole area of the drawing is

used to represent sparse clusters or outliers. This might be the best way to minimize the

weighted sum of square edge lengths, while scattering the nodes as demanded. A better

drawing would allocate each cluster an adequate area. Frequently, this is the case with

the degree normalized eigenvectors that adjust the edge weights in order to reflect their

relative importance in the related local scale.

For example, consider Fig. 2, where we visualize 300 odors as measured by an

electronic nose. Computation of the similarities between the odors is given in [17]. The

odors are known to be classified into 30 groups, which determine the grayscale of each

odor in the figure. Figure 2(a) shows the visualization of the odors by the eigenvectors

of the Laplacian. As can be seen, each of the axes shows one outlying odor, and places

all the other odors about at the same location. However, the odors are nicely visualized

using the degree normalized eigenvectors, as shown in Fig. 2(b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) (b)

Fig. 2. Visualization of 300 odor patterns as measured by an electronic nose. (a) A drawing using

the eigenvectors of the Laplacian. (b) A drawing using the degree-normalized eigenvectors.

5 A Direct Characterization of Spectral Layouts

So far, we have derived spectral methods as solutions of optimization problems. In this

section we characterize the eigenvectors themselves, in a rather direct manner, to clarify

the aesthetic properties of the spectral layout. The new derivation will show a very

simple relation between layout aesthetics and the Laplacian (generalized) eigenvectors.

13

Here, the degree-normalized eigenvectors will appear as a more natural way for spectral

graph drawing.

The quadratic form associated with the Laplacian xT Lx =
∑

〈i,j〉∈E wij(x(i) −
x(j))2, is tightly related to the aesthetic criterion that calls for placing each node at the

weighted centroid of its neighbors. To conceive this note that for each node i differen-

tiating xT Lx with respect to x(i) gives

∂xT Lx

∂x(i)
= 2

∑
j∈N(i)

wij(x(i)− x(j)).

Equating this to zero and isolating x(i) we get

x(i) =

∑
j∈N(i) wijx(j)

deg(i)
.

Hence, when allowing only node i to move, the location of i that minimizes xT Lx is

the weighted centroid of i’s neighbors.

When the graph is connected, placing each node at the weighted centroid of its

neighbors can be strictly achieved only by the degenerate solution that puts all nodes

at the same location. Hence, to incorporate this aesthetic criterion into a graph drawing

algorithm, it should be modified appropriately.

Presumably the earliest graph drawing algorithm, formulated by Tutte [18], is based

on placing each node on the weighted centroid of its neighbors. To avoid the degenerate

solution, Tutte arbitrarily chose a certain number of nodes to be anchors, i.e. he fixed

their coordinates in advance. Those nodes are typically drawn on the boundary. This,

of course, prevents the collapse; however it raises new problems, such as which nodes

should be the anchors, how to determine their coordinates, and why after all such an

anchoring mechanism should generate nice drawings. An advantage of Tutte’s method

is that in certain cases, it can guarantee achieving a planar drawing (i.e., without edge

crossings).

Tutte treats in different ways the anchored nodes and the remaining nodes. Whereas

the remaining nodes are located exactly at the centroid of their neighbors, nothing can

be said about anchored nodes. In fact, in several experiments we have seen that the

anchored nodes are located quite badly.

Alternatively, we do not use different strategies for dealing with two kinds of nodes,

but rather, we treat all the nodes similarly. The idea is to gradually increase the devia-

tions from centroids of neighbors as we move away from the origin (that is the center

of the drawing). This reflects the fact that central nodes can be placed exactly at their

neighbors’ centroid, whereas boundary nodes must be shifted outwards.

14

More specifically, node i, which is located in place x(i), is shifted from the center

toward the boundary by the amount of µ · |x(i)|, for some µ > 0. Formally, we request

the layout x to satisfy, for every 1 � i � n

x(i)−
∑

j∈N(i) wijx(j)

deg(i)
= µ · x(i) .

Note that the deviation from the centroid is always toward the boundary, i.e. toward +∞
for positive x(i) and toward −∞ for negative x(i). In this way we prevent a collapse at

the origin.

We can represent all these n requests compactly in a matrix form, by writing

D−1Lx = µx .

Left-multiplying both sides by D, we obtain the familiar generalized eigen-equation

Lx = µDx .

We conclude with the following important property of degree-normalized eigenvectors:

Proposition 1. Let u be a generalized eigenvector of (L,D), with associated eigen-

value µ. Then, for each i, the exact deviation from the centroid of neighbors is

u(i)−
∑

j∈N(i) wiju(j)

deg(i)
= µ · u(i) .

Note that the eigenvalue µ is a scale-independent measure of the amount of devia-

tion from the centroids. This provides us with a fresh new interpretation of the eigen-

values that is very different from the one given in Subsection 3.1, where the eigenvalues

were shown as the amount of energy in the drawing.

Thus, we deduce that the second smallest degree-normalized eigenvector produces

the non-degenerate drawing with the smallest deviations from centroids, and that the

third smallest degree-normalized eigenvector is the next best one and so on.

Similarly, we can obtain a related result for eigenvectors of the Laplacian:

Proposition 2. Let v be an eigenvector of L, with associated eigenvalue λ. Then, for

each i, the exact deviation from the centroid of neighbors is

v(i)−
∑

j∈N(i) wijv(j)

deg(i)
= λ · deg(i)−1 · v(i) .

Hence for eigenvectors of the Laplacian, the deviation between a node and the centroid

of its neighbors gets larger as the node’s degree decreases.

15

6 An Optimization Process

An attractive feature of the degree-normalized eigenvectors is that they can be computed

by an intuitive algorithm, which is directly related to their aesthetic properties. This is

unlike the (non generalized) eigenvectors, which are computed using methods that are

difficult to interpret in aesthetic terms. We begin by deriving an algorithm for producing

a 1-D layout x ∈ R
n, and then we show how to compute more axes.

Our algorithm is based on iteratively placing each node at the weighted centroid

of its neighbors (simultaneously for all nodes). The aesthetic reasoning is clear; as ex-

plained in Section 5 this principle unifies the Tutte layout [18] and the eigen-projection.

A rather impressive fact is that when initialized with a vector D-orthogonal to 1n,

such an iterative placement algorithm converges in the direction of a non-degenerate

degree-normalized eigenvector of L. More precisely, this algorithm converges either in

the direction of u2 or that of un. We can prove this surprising fact by observing that

the action of putting each node at the weighted centroid of its neighbors is equivalent to

multiplication by the transition matrix — D−1A. Thus, the process we have described

can be expressed in a compact form as the sequence{
x0 = random vector, s.t. xT

0 D1n = 0

xi+1 = D−1Axi .

This process is known as the Power-Iteration [19]. In general, it computes the “dom-

inant” eigenvector of D−1A, which is the one associated with the largest-in-magnitude

eigenvalue. In our case, all the eigenvectors are D-orthogonal to the “dominant” eigen-

vector — 1n, and also the initial vector, x0, is D-orthogonal to 1n. Thus, the series

converges in the direction of the next dominant eigenvector, which is either u2, which

has the largest positive eigenvalue, or un, which possibly has the largest negative eigen-

value. (We assume that x0 is not D-orthogonal to u2 or to un, which is nearly always

true for a randomly chosen x0.)

In practice, we want to ensure convergence to u2 (avoiding convergence to un). We

use the fact that all the eigenvalues of the transition matrix are in the range [−1, 1]. This

can be proved directly using the Gershgorin bound on eigenvalues [19], since in D−1A

all entries on the diagonal are 0, and the sum of each row is 1. Now it is possible to

shift the eigenvalues by adding the value 1 to each of them, so that they are all positive,

thus preventing convergence to an eigenvector with a large negative eigenvalue. This is

done by working on the matrix I + D−1A instead of the matrix D−1A. In this way the

eigenvalues are in the range [0, 2], while eigenvectors are not changed. In fact, it would

be more intuitive to scale the eigenvalues to the range [0, 1], so we will actually work

with the matrix 1
2 (I + D−1A). If we use our initial “intuitive” notions, this means a

16

more careful process. In each iteration, we put each node at the average between its old

place and the centroid of its neighbors. Thus, each node absorbs its new location not

only from its neighbors, but also from its current location.

The full algorithm for computing a multidimensional drawing is given in Fig. 3. To

compute a degree-normalized eigenvector uk, we will use the principles of the power-

iteration and the D-orthogonality of the eigenvectors. Briefly, we pick some random

x, such that x is D-orthogonal to u1, . . . , uk−1, i.e. xT Du1 = 0, . . . , xT Duk−1 =

0. Then, if xT Duk �= 0, it can be proved that the series 1
2 (I + D−1A)x, (1

2 (I +

D−1A))2x, (1
2 (I + D−1A))3x, . . . converges in the direction of uk. Note that in the-

ory, all the vectors in this series are D-orthogonal to u1, . . . , uk−1. However, to improve

numerical stability, our implementation imposes the D-orthogonality to previous eigen-

vectors in each iteration. The power iteration algorithm produces vectors of diminishing

(or exploding) norms. Since we are only interested in convergence in direction, it is cus-

tomary to re-scale the vectors after each iteration. Here, we will re-scale by normalizing

the vectors to be of length 1.

The convergence rate of this algorithm when computing uk is dependent on the ratio

µk/µk+1. Running time is significantly improved when replacing the random initializa-

tion of the vectors with some well-designed initialization. A way to obtain such a smart

initialization is described in Section 7. An alternative approach is to embed this algo-

rithm in a multi-scale construction. This is done by approximating the original graph

using a coarse graph about half the size, and then computing recursively the eigenvec-

tors of the coarse graph. These eigenvectors are used to obtain an initial prediction of

the eigenvectors of the original graph. Our experience with such a multi-scale strategy

shows an extremely rapid convergence; further details are given in [20].

7 Spectral Drawings within a Subspace

Most graph drawing methods suffer from lengthy computation times when applied to

really large graphs. Hence, a particularly challenging problem is drawing large graphs

containing 103–106 nodes, which has gained much interest recently because of the

rapid growth of data collections. (Recent work on accelrating force-directed layout al-

gorithms includes [21–24].) In general, when using standard eigen-solvers the eigen-

projection method is very fast compared to almost all other graph-drawing algorithms.

However, calculating the first few eigenvectors of L is a difficult task that presents a

real problem for standard algorithms when n becomes around 105. Consequently, we

describe an approach that significantly reduces running times, enabling the drawing of

huge graphs in a reasonable time.

17

Function SpectralDrawing (G – the input graph, p – dimension)

% This function computes u2, . . . , up, the top (non-degenerate) eigenvectors of D−1A.

const ε← 10−8 % tolerance

for k = 2 to p do

ûk ← random % random initialization

ûk ← ûk

‖ûk‖
do

uk ← ûk

% D-Orthogonalize against previous eigenvectors:

for l = 1 to k − 1 do

uk ← uk − (uk)T
Dul

(ul)T Dul
ul

end for

% multiply with 1
2
(I + D−1A):

for i = 1 to n do

ûk(i)← 1
2 ·
(

uk(i) +
∑

j∈N(i) wijuk(j)

deg(i)

)
end for

ûk ← ûk

‖ûk‖ % normalization

while ûk · uk < 1− ε % halt when direction change is negligible

uk ← ûk

end for

return u2, . . . , up

Fig. 3. The algorithm for computing degree-normalized eigenvectors

Whereas in eigen-projection we chose the drawing axes as arbitrary vectors in R
n,

now we would like to constrain the drawing axes to lie within some subspace (vector

space) S ⊆ R
n. Thus, we require x1, . . . , xp ∈ S. We define a subspace S by some

n × m matrix X whose columns span S (so S = Range(X)). Consequently, we can

always denote the axes of the drawing by the vectors y1, . . . , yp ∈ R
m so that x1 =

Xy1, . . . , xp = Xyp.

Clearly, constraining the drawing to lie within a subspace might result in arbitrarily

bad layouts. However, as we are going to show, we can construct subspaces that con-

tain reasonably nice layouts, so we are not loosing much by working only within such

subspaces.

18

7.1 The high dimensional embedding subspace

An appropriate subspace is based on the high-dimensional embedding (HDE) that we

have already used in [25]. This HDE comprises m axes X 1, . . . ,Xm ∈ R
n. In order to

construct it, we choose m pivot nodes p1, p2, . . . , pm that are uniformly distributed over

the graph and link each of the m axes with a unique node. The axis X i, which is asso-

ciated with pivot node pi, represents the graph from the “viewpoint” of pi. This is done

by assigning the j-th component of X i to the graph-theoretical distance between nodes

pi and j (i.e., the length of the shortest path connecting the two nodes). Henceforth, we

denote this graph-theoretical distance by Dpij , so in symbols X i(j) = Dpij .

The resulting algorithm for constructing the high-dimensional embedding is given

in Fig. 4. The graph-theoretical distances are computed using breadth-first-search (BFS)

[26]. The pivots p1, p2, . . . , pm are chosen by a heuristic for the k-centers problem,

as follows. The first member, p1, is chosen at random. For j = 2, . . . , m, node pj

is a node that maximizes the shortest distance from {p1, p2, . . . , pj−1}. This method

is mentioned in [27] as a 2-approximation2 to the k-center problem, where we want

to choose k nodes of V , such that the longest distance from V to these k centers is

minimized. The time complexity of this algorithm is O(m · |E|), since we perform BFS

in each of the m iterations.

We have previously shown that the HDE is a kind of m-dimensional layout of the

graph and that PCA projections of the high-dimensional embedding typically yield nice

layouts; see [25]. Projections are just a type of linear combinations, so restricting the

layout to lie inside span(X 1, . . . ,Xm) is plausible. In practice, we have found that

choosing m ∼ 50 serves very well for producing a nice layout.

It is important that X 1, . . . ,Xm are orthogonal, or at least linearly independent

(so they form a valid basis). Of course, this characteristic can be obtained without al-

tering span(X 1, . . . ,Xm). Moreover, it will be convenient for us that all vectors are

orthogonal to 1n, in order to eliminate the redundant translation degree-of-freedom. We

achieve all these requirements by a variant of the Gram-Schmidt orthonormalization

procedure shown in Fig. 5. Note that vectors that are (almost) linearly dependent will

get the value 0 and therefore should be removed. The entire orthonormalization process

takes O(m2n) time. After completing this process we take all the (non-zero) vectors,

and arrange them, column-wise, in the matrix X .

2 A δ-approximation algorithm delivers an approximate solution guaranteed to be within a con-

stant factor δ of the optimal solution.

19

Function HDE (G(V = {1, . . . , n}, E),m)

% This function finds an m-dimensional high-dimensional embedding of G

Choose node p1 randomly from V

d[1, . . . , n]←∞
for i = 1 to m do

% Compute the i − th coordinate using BFS

Dpi∗ ← BFS(G(V,E), pi)

for every j ∈ V

X i(j)← Dpij

d[j]← min{d[j],X i(j)}
end for

% Choose next pivot

pi+1 ← arg max{j∈V }{d[j]}
end for

return X 1, . . . ,Xm

Fig. 4. Constructing an m dimensional HDE

Function Orthonormalize ({u1, . . . , um})
% This function orthonormalizes a set of vectors.

% Also, it orthogonalizes the vectors against 1n

const u0 ← 1n

‖1n‖ , ε← 0.001

for i = 1 to m do

for j = 0 to i− 1 do

ui ← ui −
((

ui
)T

uj
)

uj

end for

if ‖ui‖ < ε then

% a linearly dependent vector

ui ← 0

else

ui ← ui

‖ui‖
end if

end for

Fig. 5. Gram-Schmidt orthonormalization

20

7.2 Eigen-projection in a subspace

As shown in Subsection 3.1, eigen-projection defines the axes as the minimizers of (14):

min
x1,...,xp∈Rn

∑p
k=1

(
xk
)T

Lxk∑p
k=1 (xk)T

xk

subject to:
(
xk
)T

xl = δkl, k, l = 1, . . . , p(
xk
)T · 1n = 0, k = 1, . . . , p.

In our case, we want to optimize x1, . . . , xp within the subspace Range(X), and this

can be achieved by replacing them with Xy1, . . . ,Xyp. Hence, (14) becomes

min
y1,...,yp∈Rm

∑p
k=1

(
yk
)T X T LXyk∑p

k=1 (yk)T X TXyk

subject to:
(
yk
)T X TXyl = δkl, k, l = 1, . . . , p.

Note, that here we do not impose orthogonality of the axes to 1n, as it is already

achieved by the fact that 1n /∈ Range(X). We can further simplify the problem by

utilizing the fact that X TX = I , obtaining the equivalent problem:

min
y1,...,yp∈Rm

∑p
k=1

(
yk
)T X T LXyk∑p

k=1 (yk)T
yk

(17)

subject to:
(
yk
)T

yl = δkl, k, l = 1, . . . , p.

By Corollary 1 the minimizers of (17), are the lowest eigenvectors of XT LX .

To summarize, let us be restricted to a subspace spanned by the columns of the

orthogonal matrix X . The drawing can be obtained by first computing the p lowest

eigenvectors of X T LX , denoted by y1, . . . , yp, and then taking the coordinates to be

X y1, . . . ,X yp.

Computation of the product X T LX is done in two steps: first, we compute LX
in time O(m|E|) utilizing the sparsity of L, and then we compute XT (LX) in time

O(m2n). Note that X T LX is an m × m matrix, where typically m ∼ 50, so the

eigenvectors’ calculation takes negligible time (about a millisecond). This is of course a

significant benefit of optimizing within a subspace. We recommend that a very accurate

calculation be performed; this improves the layout quality with an insignificant affect

on running time. In practice, we invert the order of the eigenvectors by using the matrix

B = µ·I−X T LX , and compute the highest eigenvectors of B using the power-iteration

[19]. The scalar µ is the highest eigenvalue of XT LX that can be computed directly by

the power-iteration. Alternatively, one can set µ to the Gershgorin bound [19], which is

21

a theoretical upper bound for (the absolute value of) the largest eigenvalue of a matrix.

Specifically, for our matrix this bound is given by:

max
i

⎛
⎝(X T LX)

ii
+
∑
j �=i

| (X T LX)
ij
|
⎞
⎠ .

Remarks

1. In a case that we want to use the notion of “degree-normalized” generalized eigen-

vectors (i.e., to optimize (15) within the HDE subspace), all we have to do is to

D-orthonormalize X ’s columns, instead of orthonormalizing them (this is a slight

change to the Gram-Schmidt process).

2. When the nodes represent multi-dimensional points, we can take the original coor-

dinates as the subspace within which we optimize. One of the benefits is that the

resulting layout is a linear combination of the original multi-dimensional data; for

more details see [28].

7.3 Results of subspace-constrained optimization

We have validated the performance of optimization within the HDE subspace by ex-

perimenting with many graphs. The results are very encouraging – we obtained quality

layouts in a very rapid time. For example we provide in Fig. 6 the layouts of the four

graphs that were previously shown in Fig. 1.

Here, we would like to mention some general comments about the nature of draw-

ings produced by the eigen-projection. On the one hand, we are assured to be in a

global minimum of the energy, thus we might expect the global layout of the drawing

to faithfully represent the structure of the graph. On the other hand, there is nothing

that prevents nodes from being very close. Hence, the drawing might show dense local

arrangement. These general claims are nicely demonstrated in the examples drawn in

Fig. 1. Comparing the layouts in Fig. 1 with those in Fig. 6, it is clear that when op-

timizing within the HDE subspace the layouts are somewhat less globally-optimal and

the symmetries are not perfectly shown. However, an aesthetical advantage of working

within the HDE subspace is that the undesirable locally dense regions are less common,

and the nodes are more evenly distributed over the layout. This can be observed by

comparing the boundaries of the layouts in the two figures or by observing the folded

part of the grid in layout (d).

The ability of the HDE-constrained optimization to show delicate details that are

often hidden in eigen-projection layouts stems from the fact that all coordinates in the

22

(a) (b)

(c) (d)

Fig. 6. Drawings obtained by HDE-constrained eigen-projection. (a) The 4970 graph. |V | =

4, 970, |E| = 7, 400. (b) The 4elt graph [10]. |V | = 15, 606, |E| = 45, 878. (c) The Crack

graph [10]. |V | = 10, 240, |E| = 30, 380. (d) A 100 × 100 folded grid with central horizontal

edge removed. |V | = 10, 000, |E| = 18, 713.

HDE subspace are integral (up to translation and orthogonalization). We further demon-

strate this ability in Fig. 7, where we compared side-by-side the results of constrained

and unconstrained eigen-projection. Clearly, the new method agrees with the eigen-

projection regarding the global structure of the layout, but provides additional finer

details.

An interesting issue is whether eigen-projection always produces cross-free layouts

of planar graphs. In general, the answer is no. For example, consider the 4elt graph,

which is planar as mentioned in [24]. The eigen-projection layout of this graph, which

23

is displayed in Fig. 1(b), contains clear crossings in its top-right portion. An easier

example is obtained by connecting two corners of a squared grid. The resulting graph

is planar, but eigen-projection will draw it with edge crossings. An open question is

whether can we define a family of planar graphs for which eigen-projection produces

crossing-free layouts.

eigen-projection eigen-projection in HDE subspace

Fig. 7. Comparison of eigen-projection (left) and eigen-projection optimized in HDE sub-

space (right). The results are given for the two graphs: top: the Bfw782a graph [29]

(|V|=782, |E|=3,394), and bottom: the Finan512 graph [10] (|V|=74,752, |E|=261,120).

Running time

A distinct advantage of optimization within the HDE subspace is the substantial re-

duction of running time thanks to replacing the n × n eigen-equation with an m ×m

eigen-equation. We cannot provide a recipe for the value of m, but in all our experi-

24

ments m = 50 served us well, regardless of the graph’s size. Note that unlike all itera-

tive eigen-solvers (including the rapid algebraic-multigrid implementation in [20]) for

which the number of iterations depends on the structure of the matrix, the running time

of our algorithm depends only on the graph’s size and is O(m2n + m|E|). Moreover,

the dimensionality of the drawing has virtually no effect on the running time, whereas

for (unconstrained) eigen-projection running time is linear in the dimensionality of the

layout (e.g., time for drawing a graph in 3-D will grow by ∼50% relative to drawing it

in 2-D).

Table 1 provides the actual running time of the various components of the subspace-

constrained algorithm, as measured on a single-processor Pentium IV 2GHz PC. In

addition to the total running time, we also provide the time needed for computing and

orthogonalizing the HDE subspace (in the HDE-titled column), and the time needed for

calculating the matrix X T LX (in the last column).

graph |V| |E| running time (sec.)

total HDE X T LX
516 [10] 516 729 0.02 0.00 0.00

Bfw782a [29] 782 3,394 0.06 0.02 0.00

Fidap006 [29] 1651 23,914 0.06 0.03 0.02

4970 [10] 4970 7400 0.77 0.09 0.64

3elt [10] 4720 13,722 0.77 0.09 0.64

Crack [10] 10,240 30,380 1.80 0.25 1.45

4elt2 [10] 11,143 32,818 1.84 0.28 1.52

4elt [10] 15,606 45,878 2.59 0.44 2.13

Sphere [10] 16,386 49,152 2.91 0.55 2.33

Fidap011 [29] 16,614 537,374 3.28 0.73 2.52

Finan512 [10] 74,752 261,120 8.17 2.83 5.30

Sierpinski (depth 10) 88,575 177,147 13.89 3.19 10.56

grid 317 × 317 100,489 200,344 7.59 3.28 4.24

Ocean [10] 143,437 409,593 25.73 8.00 17.50

Table 1. Running time (in seconds) of the various components of the algorithm

8 Discussion

In this paper we have presented a spectral approach for graph drawing, and justified it

by studying three different viewpoints for the problem. The first viewpoint is based on

25

solving a constrained energy minimization problem. We shaped the problem so that it

shares much resemblance with force directed graph drawing algorithms (for a survey

refer to [2, 3]). Compared with other force-directed methods, the spectral approach has

two major advantages: (1) Its global optimum can be computed efficiently. (2) The en-

ergy function contains only O(|E|) terms, unlike the O(n2) terms appearing in almost

all the other force-directed methods. A unique feature of our energy-based derivation is

that it optimizes a multidimensional layout, whereas previous energy-based approaches

to spectral layouts [4, 1, 11] deal with optimizing only a 1-D layout.

A second viewpoint shows that spectral methods place each node at the centroid

of its neighbors with some well defined deviation. This new interpretation provides an

accurate description of the aesthetic properties of spectral drawing and also explains the

relation between “nice” layouts and eigenvectors in a very direct manner.

We have also introduced a third viewpoint, showing that a kind of spectral drawing

is the limit of an iterative process, in which each node is placed at the centroid of its

neighbors. This viewpoint does not only sharpen the nature of spectral drawing, but

also provides us with an aesthetically-motivated algorithm. This is unlike other algo-

rithms for computing eigenvectors, which are rather complicated and far from having

an aesthetic interpretation.

In addition to the theoretical analysis of spectral layouts, we suggested a novel prac-

tical algorithm that significantly accelerates the layout computation based on the notion

of optimizing within a subspace. To this end, we described how to construct an appro-

priate subspace with a relatively low dimensionality that captures the “nice” layouts of

the graph. This way, each axis of the drawing is a linear combination of a few basis

vectors, instead of being an arbitrary vector in R
n (n is the number of nodes). The re-

sulting layout might be the final result of serve as a smart initialization for an iterative

eigen-solver.

References

1. Y. Koren, “On Spectral Graph Drawing”, Proc. 9th Inter. Computing and Combinatorics

Conference (COCOON’03), LNCS 2697, Springer-Verlag, 496–508, 2003.

2. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph Drawing: Algorithms for the

Visualization of Graphs, Prentice-Hall, 1999.

3. M. Kaufmann and D. Wagner (Eds.), Drawing Graphs: Methods and Models, LNCS 2025,

Springer Verlag, 2001.

4. K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management Science 17

(1970), 219–229.

26

5. F.R.K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, American Mathe-

matical Society, 1997.

6. B. Mohar, “The Laplacian Spectrum of Graphs”, Graph Theory, Combinatorics, and Appli-

cations 2 (1991), 871–898.

7. J. Shi and J. Malik, “Normalized Cuts and Image Segmentation”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22 (2000), 888–905.

8. A. Pothen, H. Simon and K.-P. Liou, “Partitioning Sparse Matrices with Eigenvectors of

Graphs”, SIAM Journal on Matrix Analysis and Applications, 11 (1990), 430–452.

9. M. Juvan and B. Mohar, “Optimal Linear Labelings and Eigenvalues of Graphs”, Discrete

Applied Math. 36 (1992), 153–168.

10. Walshaw’s collection: www.gre.ac.uk/˜c.walshaw/partition

11. J. Shawe-Taylor and T. Pisanski, “Characterizing Graph Drawing with Eigenvectors”, Tech-

nical Report CSD-TR-93-20 (Royal Holloway, University of London, Department of Com-

puter Science, Egham, Surrey TW20 0EX, England).

12. D.E. Manolopoulos and P.W. Fowler, “Molecular Graphs, Point Groups and Fullerenes”, J.

Chem. Phys. 96 (1992), 7603–7614.

13. U. Brandes and T. Willhalm, “Visualizing Bibliographic Networks with a Reshaped Land-

scape Metaphor”, Proc. 4th Joint Eurographics - IEEE TCVG Symp. Visualization (Vis-

Sym’02), pp. 159-164, ACM Press, 2002.

14. P. Eades, “A Heuristic for Graph Drawing”, Congressus Numerantium 42 (1984), 149-160.

15. T. M. G. Fruchterman and E. Reingold, “Graph Drawing by Force-Directed Placement”,

Software-Practice and Experience 21 (1991), 1129-1164.

16. A. Webb, Statistical Pattern Recognition, Arnold, 1999.

17. L. Carmel, Y. Koren and D. Harel, “Visualizing and Classifying Odors Using a Similarity

Matrix”, Proc. 9th International Symposium on Olfaction and Electronic Nose (ISOEN’02),

IEEE, to appear, 2003.

18. W. T. Tutte, “How to Draw a Graph”, Proc. London Math. Society 13 (1963), 743–768.

19. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

20. Y. Koren, L. Carmel and D. Harel, “Drawing Huge Graphs by Algebraic Multigrid Optimiza-

tion”, Multiscale Modeling and Simulation 1 (2003), 645–673, SIAM.

21. P. Gajer, M. T. Goodrich and S. G. Kobourov, “A Multi-dimensional Approach to Force-

Directed Layouts of Large Graphs”, Proc. 8th Graph Drawing (GD’00), Lecture Notes in

Computer Science, Vol. 1984, pp. 211–221, Springer-Verlag, 2000.

22. D. Harel and Y. Koren, “A Fast Multi-Scale Method for Drawing Large Graphs”, Journal

of Graph Algorithms and Applications 6 (2002), 179–202. Earlier version: Proc. 8th Graph

Drawing (GD’00), Lecture Notes in Computer Science, Vol. 1984, Springer-Verlag, pp. 183–

196, 2000.

23. A. Quigley and P. Eades, “FADE: Graph Drawing, Clustering, and Visual Abstraction”, Proc.

8th Graph Drawing (GD’00), Lecture Notes in Computer Science,Vol. 1984, pp. 197–210,

Springer Verlag, 2000.

27

24. C. Walshaw, “A Multilevel Algorithm for Force-Directed Graph Drawing”, Journal of Graph

Algorithms and Applications 7 (2003), 253-285.

25. D. Harel and Y. Koren, “Graph Drawing by High-Dimensional Embedding”, Proc. 10th

Graph Drawing (GD’02), LNCS 2528, pp. 207–219, Springer-Verlag, 2002.

26. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990.

27. D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems, PWS Publishing

Company, 1996.

28. Y. Koren and L. Carmel, “Robust Linear Dimensionality Reduction”, IEEE Transactions on

Visualization and Computer Graphics 10 (2004), 459–470.

29. The Matrix Market collection: math.nist.gov/MatrixMarket

28

