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2.2 Weyl spinors

The simplest non-trivial representations are ( 1
2 , 0) and (0, 1

2 ). The correspond-
ing spinors are ψR and ψL (right- and left-handed Weyl spinors), respectively.

By definition, the action of ~JR,L on ψR is given by

~JRψR = 1
2~σψR , JLψR = 0 (2.2.1)

This leads to the action of rotations and boosts, respectively,

~LψR = ( ~JR + ~JL)ψR = 1
2~σψR , ~MψR = −i( ~JR − ~JL)ψR = − i

2~σψR (2.2.2)

Thus, under a finite Lorentz transformation,

ψR → URψR , UR = e−
i
2
~θ·~σ++

1
2~v·~σ (2.2.3)

where we used eq. (2.1.17) - see also (2.1.8).
Working similarly, we find the effect of a general Lorentz transformation on
ψL,

ψL → ULψL , UL = e−
i
2
~θ·~σ− 1

2~v·~σ (2.2.4)

It is useful to construct quantities which transform nicely, such as vectors and
scalars. These will represent physical quantities. One such quantity is

V µ = ψ†Rσ
µψR , σµ = (I, ~σ) (2.2.5)

Let us show that V µ is a four-vector. To this end, we consider infinitesimal
rotations and boosts. Under a rotation, it is clear from (2.2.3) that V 0 = ψ†RψR
doesn’t change. The spatial components of V µ transform as

~V → ψ†R(1 + i
2
~θ · ~σ + o(θ2))~σ(1− i

2
~θ · ~σ + o(θ2))ψR

= ~V + i
2θiψ

†
R[σi, ~σ]ψR + o(θ2) (2.2.6)

Using (2.1.7), we deduce
δ~V = ~θ × ~V (2.2.7)

showing that ~V is a vector in three dimensions (cf. eq. (2.1.11)). Notice that
this property was a direct consequence of the fact that ~σ transforms as a vec-
tor, which is the content of eq. (2.1.7).
Under an infinitesimal boost,

V 0 → ψ†R(1 + 1
2~v · ~σ + o(v2))2ψR = V 0 + ~v · ~V + o(v2) (2.2.8)

and

~V → ψ†R(1 + 1
2~v · ~σ + o(v2))~σ(1 + 1

2~v · ~σ + o(v2))ψR

= ~V + ~vV 0 + o(v2) (2.2.9)
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where we used {σi, σj} = 2δij . Thus, V µ transforms correctly under boosts as
well.1 It follows that V µ is a four-vector.
To construct a Lagrangian density, we need to turn ψR into a field and then
find a scalar. Then a Lorentz transformation will not only act on the spinor
indices of ψR but also on its argument. It is easy to show that ψ†Rσ

µ∂µψR is a
scalar. For the Lagrangian density we need a real quantity, so we define

L = iψ†Rσ
µ∂µψR (2.2.10)

By treating ψR and ψ†R as independent variablem the field equation is simple,

σµ∂µψR = 0 (2.2.11)

This is the Weyl equation. Notice that

detσµ∂µ =
∣∣∣∣ ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

∣∣∣∣ = ∂µ∂
µ (2.2.12)

It follows that a Weyl spinor also satisfies the massless Klein-Gordon equation

∂µ∂
µψR = 0 (2.2.13)

which admits plane-wave solutions

ψR = u e−ip·x (2.2.14)

where u is a spinor and p2 = 0 (massless particle). Suppose the energy is
positive. We are free to choose axes so that the momentum is along the z-
axis. Then pµ = (p, 0, 0, p). Plugging into the Weyl equation, we obtain

pµσ
µu = p(I − σ3)u = 0 (2.2.15)

Therefore, σ3u = u, whose solution is u =
(

1
0

)
. It follows that the spin is along

the momentum, i.e., the helicity is positive, i.e., this is a right-handed particle,
which justifies our use of the subscript R in ψR.
The above discussion may be repeated for the left-handed spinors ψL. Under
Lorentz tranformations,

~LψL = 1
2~σψL , ~MψL = i

2~σψL (2.2.16)

It follows that
V µ = ψ†Lσ̄

µψL , σ̄µ = (I,−~σ) (2.2.17)

is a vector. The Lagrangian density (a scalar) is

L = iψ†Lσ̄
µ∂µψL (2.2.18)

1Note that the factor γ = (1− v2)−1/2 is missing because γ = 1 + o(v2).
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leading to the field equation

σ̄µ∂µψL = 0 (2.2.19)

The solutions also solve the massless Klein-Gordon equation.2 A plane-wave
solution ψL = u e−ip·x with momentum along the z-axis satisfies the Weyl
equation if u =

(
0
1

)
. Thus, ψL is a left-handed spinor (of negative helicity).

Finally, two important observations:

• The Lagrangian density for a Weyl spinor is linear in the derivatives,
unlike in the Klein-Gordon case, where it is quadratic. This is because
there is no Lorentz-invariant operator linear in the derivatives that acts
non-trivially on a scalar field.

• ψR and ψL are related to each other by parity (P : ψR ↔ ψL). This

follows from the action of P on Lorentz generators, P : ~L → ~L, ~M →
− ~M and so, on account of (2.1.21), P : ~JR ↔ ~JL.

2.3 The Dirac equation

2.3.1 The equation

Let us combine ψR and ψL by adding their respective Lagrangian densities,

L = iψ†Rσ · ∂ψR + iψ†Lσ̄ · ∂ψL (2.3.1)

We may add a mixed quadratic term, ψ†RψL, which is Lorentz-invariant (this
follows easily from (2.2.3) and (2.2.4)).3 Actually, only the real part contributes
to the Lagrangian. This is implemented by adding the complex conjugate of
ψ†RψL. We obtain the more general Lagrangian density

L = iψ†Rσ · ∂ψR + iψ†Lσ̄ · ∂ψL −m(ψ†RψL + ψ†LψR) (2.3.2)

where m is an arbitrary constant whose physical significance is yet to be de-
termined. The field equations are easily deduced,

i(∂0 + ~σ · ~∇)ψR −mψL = 0

i(∂0 − ~σ · ~∇)ψL −mψR = 0 (2.3.3)

They reduce to the respective Weyl equations (2.2.11) and (2.2.19) in the limit
m = 0. They can be collectively written in terms of a four-component spinor
as

iγµ∂µψ = mψ , ψ =
(
ψL
ψR

)
, γµ =

(
0 σµ

σ̄µ 0

)
(2.3.4)

2This is a consequence of detσ · ∂ = ∂2; notice also that (σ · ∂)(σ̄ · ∂) = ∂2.
3Note that neither ψ†RψR nor ψ†LψL is Lorentz-invariant which is why we did not consider

adding them to the Lagrangian density in our discussion of Weyl spinors.


