2.2 Weyl spinors

The simplest non-trivial representations are $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$. The corresponding spinors are ψ_{R} and ψ_{L} (right- and left-handed Weyl spinors), respectively. By definition, the action of $\vec{J}_{R, L}$ on ψ_{R} is given by

$$
\begin{equation*}
\vec{J}_{R} \psi_{R}=\frac{1}{2} \vec{\sigma} \psi_{R}, \quad J_{L} \psi_{R}=0 \tag{2.2.1}
\end{equation*}
$$

This leads to the action of rotations and boosts, respectively,

$$
\begin{equation*}
\vec{L} \psi_{R}=\left(\vec{J}_{R}+\vec{J}_{L}\right) \psi_{R}=\frac{1}{2} \vec{\sigma} \psi_{R}, \vec{M} \psi_{R}=-i\left(\vec{J}_{R}-\vec{J}_{L}\right) \psi_{R}=-\frac{i}{2} \vec{\sigma} \psi_{R} \tag{2.2.2}
\end{equation*}
$$

Thus, under a finite Lorentz transformation,

$$
\begin{equation*}
\psi_{R} \rightarrow U_{R} \psi_{R}, \quad U_{R}=e^{-\frac{i}{2} \vec{\theta} \cdot \vec{\sigma}++\frac{1}{2} \vec{v} \cdot \vec{\sigma}} \tag{2.2.3}
\end{equation*}
$$

where we used eq. (2.1.17) - see also (2.1.8).
Working similarly, we find the effect of a general Lorentz transformation on ψ_{L},

$$
\begin{equation*}
\psi_{L} \rightarrow U_{L} \psi_{L}, \quad U_{L}=e^{-\frac{i}{2} \vec{\theta} \cdot \vec{\sigma}-\frac{1}{2} \vec{v} \cdot \vec{\sigma}} \tag{2.2.4}
\end{equation*}
$$

It is useful to construct quantities which transform nicely, such as vectors and scalars. These will represent physical quantities. One such quantity is

$$
\begin{equation*}
V^{\mu}=\psi_{R}^{\dagger} \sigma^{\mu} \psi_{R}, \quad \sigma^{\mu}=(I, \vec{\sigma}) \tag{2.2.5}
\end{equation*}
$$

Let us show that V^{μ} is a four-vector. To this end, we consider infinitesimal rotations and boosts. Under a rotation, it is clear from (2.2.3) that $V^{0}=\psi_{R}^{\dagger} \psi_{R}$ doesn't change. The spatial components of V^{μ} transform as

$$
\begin{align*}
\vec{V} & \rightarrow \psi_{R}^{\dagger}\left(1+\frac{i}{2} \vec{\theta} \cdot \vec{\sigma}+o\left(\theta^{2}\right)\right) \vec{\sigma}\left(1-\frac{i}{2} \vec{\theta} \cdot \vec{\sigma}+o\left(\theta^{2}\right)\right) \psi_{R} \\
& =\vec{V}+\frac{i}{2} \theta_{i} \psi_{R}^{\dagger}\left[\sigma^{i}, \vec{\sigma}\right] \psi_{R}+o\left(\theta^{2}\right) \tag{2.2.6}
\end{align*}
$$

Using (2.1.7), we deduce

$$
\begin{equation*}
\delta \vec{V}=\vec{\theta} \times \vec{V} \tag{2.2.7}
\end{equation*}
$$

showing that \vec{V} is a vector in three dimensions (cf. eq. (2.1.11)). Notice that this property was a direct consequence of the fact that $\vec{\sigma}$ transforms as a vector, which is the content of eq. (2.1.7).
Under an infinitesimal boost,

$$
\begin{equation*}
V^{0} \rightarrow \psi_{R}^{\dagger}\left(1+\frac{1}{2} \vec{v} \cdot \vec{\sigma}+o\left(v^{2}\right)\right)^{2} \psi_{R}=V^{0}+\vec{v} \cdot \vec{V}+o\left(v^{2}\right) \tag{2.2.8}
\end{equation*}
$$

and

$$
\begin{align*}
\vec{V} & \rightarrow \psi_{R}^{\dagger}\left(1+\frac{1}{2} \vec{v} \cdot \vec{\sigma}+o\left(v^{2}\right)\right) \vec{\sigma}\left(1+\frac{1}{2} \vec{v} \cdot \vec{\sigma}+o\left(v^{2}\right)\right) \psi_{R} \\
& =\vec{V}+\vec{v} V^{0}+o\left(v^{2}\right) \tag{2.2.9}
\end{align*}
$$

where we used $\left\{\sigma^{i}, \sigma^{j}\right\}=2 \delta^{i j}$. Thus, V^{μ} transforms correctly under boosts as well. ${ }^{1}$ It follows that V^{μ} is a four-vector.
To construct a Lagrangian density, we need to turn ψ_{R} into a field and then find a scalar. Then a Lorentz transformation will not only act on the spinor indices of ψ_{R} but also on its argument. It is easy to show that $\psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R}$ is a scalar. For the Lagrangian density we need a real quantity, so we define

$$
\begin{equation*}
\mathcal{L}=i \psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R} \tag{2.2.10}
\end{equation*}
$$

By treating ψ_{R} and ψ_{R}^{\dagger} as independent variablem the field equation is simple,

$$
\begin{equation*}
\sigma^{\mu} \partial_{\mu} \psi_{R}=0 \tag{2.2.11}
\end{equation*}
$$

This is the Weyl equation. Notice that

$$
\operatorname{det} \sigma^{\mu} \partial_{\mu}=\left|\begin{array}{cc}
\partial_{0}+\partial_{3} & \partial_{1}-i \partial_{2} \tag{2.2.12}\\
\partial_{1}+i \partial_{2} & \partial_{0}-\partial_{3}
\end{array}\right|=\partial_{\mu} \partial^{\mu}
$$

It follows that a Weyl spinor also satisfies the massless Klein-Gordon equation

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} \psi_{R}=0 \tag{2.2.13}
\end{equation*}
$$

which admits plane-wave solutions

$$
\begin{equation*}
\psi_{R}=u e^{-i p \cdot x} \tag{2.2.14}
\end{equation*}
$$

where u is a spinor and $p^{2}=0$ (massless particle). Suppose the energy is positive. We are free to choose axes so that the momentum is along the z axis. Then $p^{\mu}=(p, 0,0, p)$. Plugging into the Weyl equation, we obtain

$$
\begin{equation*}
p_{\mu} \sigma^{\mu} u=p\left(I-\sigma^{3}\right) u=0 \tag{2.2.15}
\end{equation*}
$$

Therefore, $\sigma^{3} u=u$, whose solution is $u=\binom{1}{0}$. It follows that the spin is along the momentum, i.e., the helicity is positive, i.e., this is a right-handed particle, which justifies our use of the subscript R in ψ_{R}.
The above discussion may be repeated for the left-handed spinors ψ_{L}. Under Lorentz tranformations,

$$
\begin{equation*}
\vec{L} \psi_{L}=\frac{1}{2} \vec{\sigma} \psi_{L}, \vec{M} \psi_{L}=\frac{i}{2} \vec{\sigma} \psi_{L} \tag{2.2.16}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
V^{\mu}=\psi_{L}^{\dagger} \bar{\sigma}^{\mu} \psi_{L}, \quad \bar{\sigma}^{\mu}=(I,-\vec{\sigma}) \tag{2.2.17}
\end{equation*}
$$

is a vector. The Lagrangian density (a scalar) is

$$
\begin{equation*}
L=i \psi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L} \tag{2.2.18}
\end{equation*}
$$

[^0]leading to the field equation
\[

$$
\begin{equation*}
\bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}=0 \tag{2.2.19}
\end{equation*}
$$

\]

The solutions also solve the massless Klein-Gordon equation. ${ }^{2}$ A plane-wave solution $\psi_{L}=u e^{-i p \cdot x}$ with momentum along the z-axis satisfies the Weyl equation if $u=\binom{0}{1}$. Thus, ψ_{L} is a left-handed spinor (of negative helicity).
Finally, two important observations:

- The Lagrangian density for a Weyl spinor is linear in the derivatives, unlike in the Klein-Gordon case, where it is quadratic. This is because there is no Lorentz-invariant operator linear in the derivatives that acts non-trivially on a scalar field.
- ψ_{R} and ψ_{L} are related to each other by parity $\left(P: \psi_{R} \leftrightarrow \psi_{L}\right)$. This follows from the action of P on Lorentz generators, $P: \vec{L} \rightarrow \vec{L}, \vec{M} \rightarrow$ $-\vec{M}$ and so, on account of (2.1.21), $P: \vec{J}_{R} \leftrightarrow \vec{J}_{L}$.

2.3 The Dirac equation

2.3.1 The equation

Let us combine ψ_{R} and ψ_{L} by adding their respective Lagrangian densities,

$$
\begin{equation*}
\mathcal{L}=i \psi_{R}^{\dagger} \sigma \cdot \partial \psi_{R}+i \psi_{L}^{\dagger} \bar{\sigma} \cdot \partial \psi_{L} \tag{2.3.1}
\end{equation*}
$$

We may add a mixed quadratic term, $\psi_{R}^{\dagger} \psi_{L}$, which is Lorentz-invariant (this follows easily from (2.2.3) and (2.2.4)). ${ }^{3}$ Actually, only the real part contributes to the Lagrangian. This is implemented by adding the complex conjugate of $\psi_{R}^{\dagger} \psi_{L}$. We obtain the more general Lagrangian density

$$
\begin{equation*}
\mathcal{L}=i \psi_{R}^{\dagger} \sigma \cdot \partial \psi_{R}+i \psi_{L}^{\dagger} \bar{\sigma} \cdot \partial \psi_{L}-m\left(\psi_{R}^{\dagger} \psi_{L}+\psi_{L}^{\dagger} \psi_{R}\right) \tag{2.3.2}
\end{equation*}
$$

where m is an arbitrary constant whose physical significance is yet to be determined. The field equations are easily deduced,

$$
\begin{align*}
i\left(\partial_{0}+\vec{\sigma} \cdot \vec{\nabla}\right) \psi_{R}-m \psi_{L} & =0 \\
i\left(\partial_{0}-\vec{\sigma} \cdot \vec{\nabla}\right) \psi_{L}-m \psi_{R} & =0 \tag{2.3.3}
\end{align*}
$$

They reduce to the respective Weyl equations (2.2.11) and (2.2.19) in the limit $m=0$. They can be collectively written in terms of a four-component spinor as

$$
i \gamma^{\mu} \partial_{\mu} \psi=m \psi, \psi=\binom{\psi_{L}}{\psi_{R}}, \quad \gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \tag{2.3.4}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

[^1]
[^0]: ${ }^{1}$ Note that the factor $\gamma=\left(1-v^{2}\right)^{-1 / 2}$ is missing because $\gamma=1+o\left(v^{2}\right)$.

[^1]: ${ }^{2}$ This is a consequence of $\operatorname{det} \sigma \cdot \partial=\partial^{2}$; notice also that $(\sigma \cdot \partial)(\bar{\sigma} \cdot \partial)=\partial^{2}$.
 ${ }^{3}$ Note that neither $\psi_{R}^{\dagger} \psi_{R}$ nor $\psi_{L}^{\dagger} \psi_{L}$ is Lorentz-invariant which is why we did not consider adding them to the Lagrangian density in our discussion of Weyl spinors.

