
ibm.com/redbooks

DCE Replacement
Strategies

Heinz Johner
Jakob Erber

Stephen Hawkins
Klaus Müller

Pallavi Nagesha Rao
Donna Skibbie

Replacement technologies

Replacement strategies

Best practice scenarios
and coding examples

Front cover

DCE Replacement Strategies

June 2003

International Technical Support Organization

SG24-6935-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2003)

This edition applies to Version 3.2 of IBM DCE, Version 1.3 of IBM Network Authentication
Service, Version 3.9 of IBM Tivoli Access Manager, Version 3.2.2 of IBM Directory Server and to
related products.

Note: Before using this information and the products described, read the information in
“Notices” on page xvii.

Contents

Tables . xiii

Figures . xv

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xx
Become a published author . xxi
Comments welcome. xxii

Part 1. Description of the DCE replacement strategies. 1

Chapter 1. DCE review . 3
1.1 Defining DCE. 4
1.2 Who uses DCE . 4
1.3 What DCE does. 5

1.3.1 Threads . 5
1.3.2 RPC. 5
1.3.3 Security core . 6
1.3.4 GSS-API . 9
1.3.5 Directory . 9
1.3.6 Time . 9
1.3.7 Cross component . 9

1.4 The DCE environment . 11
1.5 Application dependencies on DCE . 12

1.5.1 Direct dependencies . 12
1.5.2 Indirect dependencies . 13
1.5.3 No dependencies . 15

1.6 Summary of DCE review . 15

Chapter 2. Replacement technologies . 19
2.1 Criteria for selecting the technologies . 20

2.1.1 Compliance with industry standards . 20
2.1.2 Coverage of predominant DCE services . 20
2.1.3 Ease of migration . 20
2.1.4 Similarity to DCE services. 20
2.1.5 Technologies considered strategic . 21
© Copyright IBM Corp. 2003. All rights reserved. iii

2.1.6 Support of predominant platforms. 21
2.1.7 Support of predominant programming languages. 21
2.1.8 Availability of IBM implementations. 21

2.2 Technologies for C/C++ applications . 21
2.2.1 aznAPI. 22
2.2.2 CORBA . 23
2.2.3 DCE RPC . 26
2.2.4 DCE UUID. 26
2.2.5 Kerberos . 26
2.2.6 LDAP. 28
2.2.7 Network Time Protocol . 30
2.2.8 Platform auditing . 31
2.2.9 Platform logging and messaging . 31
2.2.10 POSIX 1003.1c threads . 32
2.2.11 Web services. 33

2.3 Technologies for Java applications . 34
2.3.1 J2EE application environment. 34
2.3.2 Standards for the J2EE . 35
2.3.3 DCE services that can be replaced by J2EE 37
2.3.4 IBM implementation of J2EE: WebSphere Application Server 39
2.3.5 Additional information on IBM WebSphere Application Server 40

2.4 Summary . 47

Chapter 3. Replacement strategies . 51
3.1 Replacement strategies for C/C++ applications . 52

3.1.1 Auditing . 52
3.1.2 Authentication . 53
3.1.3 Authorization, PAC, and UUID . 53
3.1.4 Backing store . 56
3.1.5 Configuration. 56
3.1.6 Delegation, GSS-API, and login . 56
3.1.7 Directory . 58
3.1.8 Extended Registry Attributes. 58
3.1.9 Event management . 59
3.1.10 GSS-API . 59
3.1.11 Host management . 59
3.1.12 Integrated login . 59
3.1.13 Login . 60
3.1.14 Messaging. 60
3.1.15 PAC. 61
3.1.16 Password strength . 61
3.1.17 Protection . 62
3.1.18 Registry . 62
iv DCE Replacement Strategies

3.1.19 RPC services . 63
3.1.20 Serviceability . 66
3.1.21 Threads . 67
3.1.22 Time . 69
3.1.23 UUID . 69

3.2 Replacement strategy for Java applications . 69
3.2.1 Determining a new architecture . 70
3.2.2 Revising the application environment for the new architecture. 72
3.2.3 Rewriting the DCE applications to the new architecture 73

3.3 Replacement strategies for mixed applications. 73
3.3.1 CORBA interoperability . 73
3.3.2 Java Native Interface . 73
3.3.3 JCA and JNI . 74

Chapter 4. Using DCE data with IBM Network Authentication Service . . 75
4.1 Introduction . 76
4.2 Migrating DCE data to an LDAP directory . 76
4.3 Configuring IBM Network Authentication Service 76
4.4 Managing the data in a shared environment . 77
4.5 Removing DCE-specific data . 79
4.6 Details about shared data . 79
4.7 Details about non-shared data . 81

Chapter 5. Using DCE objects with IBM Tivoli Access Manager 85
5.1 Introduction . 86
5.2 Data representation . 86
5.3 Configuration scenarios. 92

5.3.1 Scenario 1 . 92
5.3.2 Scenario 2 . 92
5.3.3 Scenario 3 . 94

5.4 Managing objects in a shared environment. 96
5.4.1 Creating a user with IBM Tivoli Access Manager 96
5.4.2 Creating a group with IBM Tivoli Access Manager 97
5.4.3 Adding a member to a group using IBM Tivoli Access Manager . . . 97
5.4.4 Deleting a user using IBM Tivoli Access Manager 98
5.4.5 Deleting a group using IBM Tivoli Access Manager 98
5.4.6 Removing a member from an IBM Tivoli Access Manager group . . . 99
5.4.7 Creating a principal with DCE . 99
5.4.8 Creating a DCE group. 100
5.4.9 Adding a member to a group using DCE . 100
5.4.10 Deleting a user using DCE . 101
5.4.11 Deleting a group using DCE commands . 101
5.4.12 Removing a member from a group with DCE commands 102
 Contents v

5.4.13 Sharing policies. 102
5.4.14 Attaching a DCE policy . 102
5.4.15 Deleting a shared DCE policy . 103

Chapter 6. Binary structure of DCE ERA data in LDAP 105
6.1 Recap: The DCE to LDAP migration process . 106
6.2 Reading binary DCE ERA data in LDAP . 106

Part 2. Replacement sample scenarios . 109

Chapter 7. Common replacement considerations 111
7.1 How to read the example scenarios . 112
7.2 Common assumptions in the sample scenarios 112
7.3 Simplifications in the sample scenarios. 112
7.4 Security considerations . 113
7.5 Performance considerations . 113
7.6 Using an LDAP directory . 114

7.6.1 LDAP security considerations . 114
7.6.2 Availability and performance considerations. 115

7.7 SSL implementation hints . 116
7.7.1 SSL and TLS overview . 116
7.7.2 Uses of SSL . 117
7.7.3 Using SSL in the replacement scenarios . 117
7.7.4 IBM GSKit . 118
7.7.5 Authentication with certificates . 119
7.7.6 Using self-signed certificates . 120
7.7.7 Using certificates from a Certificate Authority (CA) 121
7.7.8 Additional hints and considerations. 123

Chapter 8. Scenario 1: GSS-API application. 125
8.1 Scenario description . 126

8.1.1 Initial application with DCE dependencies 126
8.1.2 Revised application without DCE dependencies. 128

8.2 DCE application. 129
8.2.1 Configuring and running the DCE application 130
8.2.2 Application client . 130
8.2.3 Application server . 134

8.3 Replacement roadmap . 138
8.3.1 Software requirements . 138
8.3.2 Migration of DCE security registry to IBM Directory Server 139
8.3.3 Configuring IBM Network Authentication Service 144
8.3.4 Configuring IBM Tivoli Access Manager . 145
8.3.5 Configuring the Windows Kerberos client . 149
8.3.6 Revising the application . 151
vi DCE Replacement Strategies

8.3.7 Cleaning up the DCE related information in the IBM Directory 151
8.4 Revised application discussion . 152

8.4.1 Configuring and running the revised application 152
8.4.2 Application client . 153
8.4.3 Application server . 155

8.5 Administration considerations and interfaces . 157
8.5.1 Administration during the migration process 157
8.5.2 Administration after the migration process 164
8.5.3 IBM Network Authentication Service administration interface. 165
8.5.4 IBM Tivoli Access Manager administration interface 167

8.6 Discussion and conclusions . 168

Chapter 9. Scenario 2: Non-secure RPC application 171
9.1 Scenario description . 172

9.1.1 Initial application with DCE dependencies 172
9.1.2 Revised application without DCE dependencies. 174

9.2 DCE application. 177
9.2.1 Configuring and running the DCE application 177
9.2.2 Application client . 178
9.2.3 Application server . 178

9.3 Replacement roadmap . 180
9.3.1 Software requirements . 180
9.3.2 Installing and configuring WebSphere Application Server 180
9.3.3 Revising the application . 180
9.3.4 Removing DCE . 181

9.4 Revised application discussion . 181
9.4.1 Building, configuring, and running the revised application 181
9.4.2 CORBA IDL file . 183
9.4.3 Application client . 184
9.4.4 Application server . 189

9.5 Administration considerations and interfaces . 192
9.6 Discussion and conclusions . 192

Chapter 10. Scenario 3: Secure RPC application #1 195
10.1 Scenario description . 196

10.1.1 Initial application with DCE dependencies 196
10.1.2 Revised application without DCE dependencies. 198

10.2 DCE application. 203
10.2.1 Configuring and running the DCE application 203
10.2.2 Application interface definition . 204
10.2.3 Application client . 205
10.2.4 Application server . 207

10.3 Replacement roadmap . 210
 Contents vii

10.3.1 Software requirements . 211
10.3.2 Installing and configuring IBM WebSphere Application Server . . . 211
10.3.3 Configuring WebSphere Application Server security 212
10.3.4 Configuring the application client . 222
10.3.5 Developing the application . 223
10.3.6 Configuring IBM Directory Server . 223
10.3.7 Assembling the scenario application. 223
10.3.8 Deploying and starting the application . 227
10.3.9 Running the application client . 229

10.4 Revised application discussion . 230
10.4.1 Enterprise bean wrappers . 230
10.4.2 CORBA IDL file . 231
10.4.3 Application client . 231
10.4.4 Application server . 236
10.4.5 Java Native Interface . 238
10.4.6 J2EE Connector Architecture . 241

10.5 Administration considerations and interfaces . 245
10.6 Discussion and conclusions . 246

Chapter 11. Scenario 4: Secure RPC application #2 247
11.1 Scenario description . 248

11.1.1 Initial application with DCE dependencies 248
11.1.2 Revised application without DCE dependencies. 248

11.2 DCE application. 251
11.3 Replacement roadmap . 251

11.3.1 Software requirements . 252
11.3.2 Installing and configuring IBM WebSphere Application Server . . . 252
11.3.3 Configuring WebSphere Application Server security 252
11.3.4 Configuring the application client . 253
11.3.5 Developing the application . 254
11.3.6 Configuring IBM Directory Server . 255
11.3.7 Assembling the scenario application. 255
11.3.8 Deploying and starting the application . 258
11.3.9 Running the application client . 259

11.4 Revised application discussion . 259
11.4.1 Application client . 260
11.4.2 Application server . 260

11.5 Administration considerations and interfaces . 262
11.6 Discussion and conclusions . 262

Part 3. Appendixes . 265

Appendix A. Scenario 1: Source code listings . 267
Application with DCE dependencies . 268
viii DCE Replacement Strategies

Makefile for application client . 268
Makefile for application server . 269
DCE dependent application client . 270
DCE dependent application server . 276
Authorization module with DCE dependencies . 281
Utility source of the DCE dependent application . 286
Header file for utility source. 291

Revised application without DCE dependencies . 292
Makefile for application client . 293
Makefile for application server . 294
Revised application client . 294
Revised application server . 299
Authorization module using aznAPI . 304
Utility source of the revised application . 309
Header file for utility source. 317
Application configuration file . 319

Appendix B. Scenario 2: Source code listings . 331
Application with DCE dependencies . 332

Makefile for the AIX platform. 332
Makefile for the Windows platform . 334
IDL source. 335
DCE dependent application client . 335
DCE dependent application server . 337
Application server logic . 341

Revised application without DCE dependencies . 342
Makefile for the AIX platform. 343
Makefile for the Windows platform . 344
CORBA IDL file . 346
Header file for C wrapper functions. 346
C++ client for the revised application . 346
C client for the revised application . 350
Header file for CORBA servant . 350
Servant implemention . 352
Revised application server . 353
Revised application logic. 360
Properties file for client . 361
Properties file for server . 361

Appendix C. Scenario 3: Source code listings . 363
Application with DCE dependencies . 364

Makefile for the AIX platform. 364
Makefile for the Windows platform . 366
 Contents ix

IDL source. 367
DCE dependent application client . 368
DCE dependent application server . 371
Application server manager . 377
Application server logic header . 380
Application server logic . 380
Common error handling . 382

Revised application without DCE dependencies . 382
JNI connection . 383
JNI connection factory class . 385
JNI connection manager . 386
JNI managed connection . 386
JNI connection meta data . 388
JNI managed connection factory interface . 388
JNI managed connection meta data . 390
JNI resource adapter meta data . 390
Enterprise bean wrapper. 391
Enterprise bean remote interface . 393
Enterprise bean home interface . 393
Deployment descriptor for the application . 393
Deployment descriptor for the enterprise bean . 394
Deployment descriptor for the resource adapter . 396
“C” application server . 396
JNI wrapper for the application server . 398
Header file for application server . 399
CORBA C++ client . 399
Properties file for CORBA C++ client . 402

Appendix D. Scenario 4: Source code listings . 403
Application with DCE dependencies . 404
Revised application without DCE dependencies . 404

Build script to create class and jar files . 404
Java client program. 405
Java stateless session bean . 406
Java EJB home interface . 408
Java EJB remote interface . 408
Java application exception . 409
EJB deployment descriptor . 409
Application client deployment descriptor . 410
Application deployment descriptor . 411
Application client security properties. 411

Appendix E. Additional material . 417
x DCE Replacement Strategies

Locating the Web material . 417
Using the Web material . 418

System requirements for downloading the Web material 418
How to use the Web material . 418

Abbreviations and acronyms . 419

Related publications . 421
IBM Redbooks . 421
Other publications . 421
Online resources . 422
How to get IBM Redbooks . 423

Index . 425
 Contents xi

xii DCE Replacement Strategies

Tables

1-1 DCE Server Information. 11
1-2 Indirect dependencies for many DCE applications on DCE services . . 13
1-3 Indirect dependency for some DCE applications on DCE services 14
1-4 The dependencies of services . 15
2-1 Summary of recommended replacement technologies 48
3-1 DCE server replacements for auditing . 52
4-1 Shared data . 79
4-2 Data specific to DCE . 82
4-3 Data specific to IBM Network Authentication Service 82
4-4 Data stored in different attributes. 83
10-1 Security policy . 197
© Copyright IBM Corp. 2003. All rights reserved. xiii

xiv DCE Replacement Strategies

Figures

1-1 Relation of DCE to the application and platform 4
2-1 Authentication protocols. 40
2-2 J2EE connection process using RMI over IIOP 43
2-3 IBM WebSphere Application Server architectural overview. 45
2-4 Naming topology . 46
3-1 Java client and back-end enterprise beans . 70
3-2 Web clients, servlets, and back-end enterprise beans 71
3-3 JCA and JNI . 74
5-1 Sample DCE principal called user1 in LDAP . 87
5-2 Sample IBM Tivoli Access Manager user called user1 in LDAP 88
5-3 Sample shared account called user1 . 89
5-4 Sample DCE group called group1 in LDAP . 90
5-5 Sample IBM Tivoli Access Manager group called group1 in LDAP 91
5-6 Sample shared group called group1 . 91
7-1 The components of IBM GSKit (simplified) . 118
7-2 Using self-signed certificates . 120
7-3 Using certificates from a Certificate Authority 122
8-1 Authentication and authorization with DCE dependencies 128
8-2 Authentication and authorization without DCE dependencies 129
8-3 Migration environment with DCE dependencies 158
8-4 Replication and data access in a mixed environment 160
9-1 DCE RPC connection process using CDS. 173
9-2 CORBA connection process, using CORBA CosNaming service 175
10-1 Application with DCE dependencies . 197
10-2 The revised application . 199
10-3 Replacement roadmap. 202
10-4 SSL settings for IBM WebSphere Application Server 215
10-5 LDAP settings for IBM WebSphere Application Server 217
10-6 Name matching between client certificate and directory entry. 219
10-7 Global Security settings for IBM WebSphere Application Server 221
11-1 The revised application in the J2EE environment 249
11-2 Traditional and J2EE application layering . 262
© Copyright IBM Corp. 2003. All rights reserved. xv

xvi DCE Replacement Strategies

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2®
DFS™
IBM®
OS/390®

OS/400®
PTX®
Redbooks™
Redbooks (logo) ™
RS/6000®

SecureWay®
Tivoli®
TXSeries™
WebSphere®
z/OS™

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii DCE Replacement Strategies

Preface

Since its inception in the early 1990s, the Distributed Computing Environment
(DCE) has been used successfully in distributed, networked environments where
a high level of security, distributed and heterogeneous platforms, and large
numbers of systems, users, and groups were to be managed in a consistent way.
DCE has been used in small and large organizations. Such organizations may be
faced with other technologies that they consider strategic on which to build their
future infrastructure and application framework.

This IBM® Redbook lists and recommends strategies that can be used to replace
the DCE dependencies in such environments and to move to new technologies
and products. It covers the following topics:

� DCE overview and recap

� Replacement technologies and strategies

� Replacement scenarios with sample application code

� Additional information

While this book covers replacement strategies for DCE, it does not cover
replacement strategies for IBM products that use DCE, such as DFS™ and
TXSeries™.

This book assumes that you are an executive, administrator, or developer of an
IBM customer environment that uses IBM DCE for the AIX®, Solaris, and
Windows platforms.
© Copyright IBM Corp. 2003. All rights reserved. xix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world,
working at the International Technical Support Organization, Austin Center.

Heinz Johner is a Certified Consulting IT Specialist for Information Security at
IBM Switzerland. His primary areas of expertise are security architecture design
and reviews. As a previous lead author of various IBM Redbooks™ on DCE,
LDAP and other, security-related areas, he led the team at International
Technical Support Organization, Austin Center, for the development of this book.

Jakob Erber is a Senior Software Engineer with Paranor AG, a software
company in Switzerland. Paranor AG specializes in the field of mission-critical
banking applications. He holds a degree in Computer Science from the Munich
University of applied sciences. His areas of expertise range from design and
implementation of business applications to the field of middleware, including
DCE, CORBA, and J2EE.

Stephen Hawkins is a Consulting IT Architect with the IBM Software Group
Application Integration and Middleware WebSphere® Services team. He has
been an architect and developer of middleware and infrastructure for the past 20
years. His areas of expertise include system interoperability, transaction
processing, security, and IT operations.

Klaus Müller is a Security Architect at IBM Global Services, Strategic
Outsourcing. He has six years of experience in the middleware technology field
and holds a degree in Physics from the University of Dortmund. Before joining
IBM, he worked as a DCE/DFS consultant in the banking industry. His areas of
expertise include UNIX, RS/6000®, middleware, and security technologies.

Pallavi Nagesha Rao is a Software Engineer at IBM India. She has three years
of experience in the field of Information Technology. She holds a degree in
Computer Science from Bangalore University. Her area of expertise is designing
and developing applications for middleware, including J2EE application servers
and transaction processing systems such as TX-Series.

Donna Skibbie is a Distributed Systems Architect at IBM Austin. She was a lead
architect in developing the DCE replacement strategies and worked with the
Internet Engineering Task Force and The Open Group on the Kerberos and DCE
LDAP schemas. She holds a Masters Degree in Computer Science and has 15
years of experience in the distributed technology field. She has many years of
experience in technical writing.

Thanks to the following person for his significant contribution to this book:

Grant Alvis Software Project Leader, IBM Austin
xx DCE Replacement Strategies

Thanks to the following people for their help and contributions to this project:

Phil Adams IBM Austin
Axel Buecker International Technical Support Organization, Austin Center
Ching-Yun Chao IBM Austin
Garry Child IBM Austin
Kristen Clarke IBM Austin
Alaine DeMyers IBM Austin
Terry Dunkle IBM Austin
Gary Gerchak IBM Austin
Laura Giovannetti IBM Austin
Kevin Kelle IBM Austin
Ut Le IBM Austin
Robin Redden IBM Austin
Walter Schmid Paranor AG
Cindy Schneider IBM Austin
Dick Sikkema IBM Austin
Dawn Stokes IBM Austin
Betsy Thaggard International Technical Support Organization, Austin Center
Mary Trumble IBM Austin
Leo Uzcategui IBM Austin
Bill Wentworth IBM Austin

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xxii DCE Replacement Strategies

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Description of
the DCE
replacement
strategies

This part provides a description of the DCE replacement strategies.

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 DCE Replacement Strategies

Chapter 1. DCE review

This chapter presents a brief review of DCE. The purpose of this introductory
chapter is to establish a common way of thinking about each DCE service and
how your environment uses each service. The remainder of this book uses this
common knowledge when it describes the strategies that you can use to replace
each DCE service. For a detailed overview of DCE, the following book and
document are recommended:

� IBM DCE Version 3.2 for AIX and Solaris: Introduction to DCE

� DCE Overview, The Open Group (http://www.opengroup.org)

1

© Copyright IBM Corp. 2003. All rights reserved. 3

http://www.opengroup.org

1.1 Defining DCE
DCE is middleware software consisting of development tools, servers, and
commands. Customers use it to create, run, and manage distributed client and
server applications (called DCE applications) in a heterogeneous computing
environment. The specifications for DCE were developed by a consortium of
software vendors under the organization of The Open Group (formerly the Open
Software Foundation). Many software vendors, including IBM, have developed
implementations of DCE on many different platforms.

Architecturally, DCE acts as a layer of software between the platform and
network on the one hand, and the DCE application on the other. DCE enables
the DCE applications to interact with a group of heterogeneous platforms as if
they were a single system (known as a DCE cell). Figure 1-1 illustrates DCE in
relation to the application and platform.

Figure 1-1 Relation of DCE to the application and platform

1.2 Who uses DCE
DCE has three groups of users: developers, administrators, and, to a lesser
extent, end users. Developers use the DCE development tools to create DCE
applications.

Some popular DCE applications are:

� Distributed File System (DFS)
� IBM TXSeries
� High Performance File System (HPFS)
� IBM Tivoli® Access Manager (formerly named Tivoli Policy Director)
� AIX Parallel System Support Program (PSSP)

DCE Application

DCE

Platform and Network
4 DCE Replacement Strategies

Administrators use the DCE servers and DCE commands to manage the
environment for running DCE applications. End users sometimes run DCE
commands, such as the DCE login command.

1.3 What DCE does
DCE provides a set of services that a DCE application can use. These services
are grouped into the following components, further explained in the sections that
follow:

� Threads
� Remote procedure call (RPC)
� Security core
� Generic security services application programming interface (GSS-API)
� Directory services
� Global Directory Agent and Intercell
� Time synchronization
� Cross component

1.3.1 Threads
The threads component contains a single service: threads. This service provides
a user-level threads compatibility library, which developers can use to create a
multi-threaded DCE application that is independent of the threads model of the
underlying platform. The only users of this service are developers.

1.3.2 RPC
The RPC component contains a group of services that a developer can use to
create a DCE application. Application clients call procedures that are handled by
remote application servers. Using RPC, clients can call remote procedures
similar to the way that they call local procedures. The RPC services are:

� RPC basics
� RPC endpoint
� RPC namespace
� RPC security

Note: Some DCE specifications state that DFS is a component of DCE, while
other DCE specifications state that DFS is a user of DCE. In this paper, DFS is
considered to be a user of DCE — in other words, a DCE application.
 Chapter 1. DCE review 5

RPC basics
The RPC basics service provides the basic mechanism for RPC. This includes
defining remote interfaces using an Interface Definition Language (IDL),
serializing the RPC call so it can be transmitted over the communications line,
transmitting the call over a communications line using either a
connection-oriented or connectionless communications protocol, and converting
the data in the RPC call to the format of the native platform (if required). The only
users of the RPC basics service are developers.

RPC endpoint
The RPC endpoint service provides a way for a client to locate the port to use in
communication with a server. The primary users of this service are developers.
Other users of this service are administrators who sometimes use DCE
commands to clean up RPC endpoint information.

RPC namespace
The RPC namespace service provides a way for a client to locate the host name
and binding information of a server that offers the desired procedure. The
primary users of this service are developers. Other users of this service are
administrators who configure RPC namespace information in the directory. (See
section 1.3.5, “Directory” on page 9.)

RPC security
The RPC security service provides a way for developers to invoke the DCE
authentication service, the DCE protection service, or both in an RPC call. The
DCE authentication and protection services are described in section 1.3.3,
“Security core” on page 6. By invoking the authentication service in an RPC call,
the client must prove its identity to the server and the server must prove its
identity to the client. By invoking the protection service in the call, the data
transmitted in the call is protected through encryption, integrity, or both. The only
users of the RPC security service are developers.

1.3.3 Security core
The security core component of DCE provides services for securing a DCE
application. These services are:

� Authentication
� Authorization
� Delegation
� Login
� Privilege attribute certificate (PAC)
� Protection
6 DCE Replacement Strategies

� Registry
� Other

Authentication
The authentication service provides a way for clients and servers to pass
authentication information to each other to prove their identities. This service has
no direct users because it can be accessed by means of the GSS-API (see
section 1.3.4, “GSS-API” on page 9) and RPC security services only.

Authorization
The authorization service provides functions that a server can use to control
access to its services. The server does this by:

1. Comparing the identity or PAC of a client with the permissions configured for
the service

2. Using the comparison to determine whether the client is authorized to use the
service

The authorization service also provides functions that an administrator can use
to configure permissions for services, usually in access control lists (ACLs). The
primary users of this service are administrators and end users who use DCE
commands to configure ACLs. Developers also use this service programmatically
both to configure ACLs and to add access control functionality to an application
server.

Delegation
The delegation service provides a way for servers to assume the identities of
clients. The only users of this service are developers.

Login
The login service provides a way for a client to obtain a credential from a trusted
third party that authenticates the identity of the client. The primary users of the
login service are end users, who access it via the DCE login command.
Developers also use this service programmatically, and administrators also
access the service via the DCE login command.

PAC
The PAC service provides a way for a trusted third party to map the identity of a
client to a PAC and for a server to retrieve the contents of the PAC. The PAC
contains the client ID and an ID of each group in which the client is a member.
This information is used for authorization. The primary users of the PAC service
are end users who access it by means of the DCE login command. Developers
also use this service, programmatically, to retrieve the contents of the PAC.
 Chapter 1. DCE review 7

Protection
The protection service provides a way to protect the privacy of information
through encryption and to protect the integrity of information through checksums.
This service has no direct users because it can be accessed only by means of
the GSS-API (section 1.3.4, “GSS-API” on page 9) and RPC security services.

Registry
The registry service provides a way to configure a registry database. The registry
database contains information about each user principal, the groups and
organizations in which they are members, and the security policies that must be
enforced. The primary users of the registry service are administrators who use
this service to manage the DCE registry database. Other infrequent users of this
service are developers who program a DCE application to manage the DCE
registry database.

Other
The other security services are optional. They are:

Auditing Auditing provides a way for a server to log events
that might compromise the security system. The
primary users of this service are administrators
who configure and view the audit log. Other users
of this service are developers who use this
service to add the capability of auditing a
user-written server.

Extended Registry Attribute Extended Registry Attributes (ERAs) provide a
way to extend the registry database with
additional attributes. The primary users of this
service are administrators who configure
additional attributes in the registry database.
Other users of this service are developers who
program a DCE application to configure or
retrieve the contents of additional attributes.

Integrated login Integrated login provides a way to integrate a
DCE login with an operating system login. The
primary users of this service are end users. Other
users of this service are administrators and
developers.

Password strength Password strength provides a way to validate a
password against a set of rules. The passwords
are validated during a password change request.
The primary users of this service are
administrators who define the strength checking
8 DCE Replacement Strategies

rules and end users who change their passwords.
Other infrequent users of this service are
developers who write customized password
checking routines.

1.3.4 GSS-API
The GSS-API component contains a single service: GSS-API. This service
provides a way for developers to invoke the DCE authentication service, the DCE
protection service, or both through the standard programming interfaces of
GSS-API. Note that the GSS-API is a standard that is defined outside DCE, but
DCE, just like other security middleware software, supports the GSS-API. The
DCE authentication and protection services are described in section 1.3.3,
“Security core” on page 6. The only users of this service are developers.

1.3.5 Directory
The directory component contains a single service: directory (also known as the
Cell Directory Service, or CDS). This service, used internally by other DCE
components, provides a DCE application with a common repository for storing
information. The directory could be located in the same DCE cell or, through the
use of the Global Directory Agent (GDA), in a different DCE cell. The primary
users of this service are administrators. Other users of this service are
developers.

1.3.6 Time
The time component contains a single service: time. This service (also known as
the Distributed Time Service, or DTS) synchronizes the time among all of the
nodes in the DCE cell. The primary users of this service are administrators.
Other infrequent users of this service are developers.

1.3.7 Cross component
The cross component category contains a group of additional services that are
useful in DCE applications. The services in this category are:

� Backing store
� Configuration
� Event management
� Host management
� Messaging
� Serviceability
� Universal Unique Identifier (UUID)
 Chapter 1. DCE review 9

Backing store
The backing store service provides a way for an application server to create and
use a backend database (for example, to store dynamic run-time information).
The only users of this service are developers.

Configuration
The configuration service provides a way to configure DCE. The primary users of
this service are administrators. Developers also use this service.

Event management
The event management service provides a way to manage events in a DCE
application. The only users of this service are developers.

Host management
The host management service provides a way to manage data and processes on
local and remote hosts. The primary users of this service are administrators who
use DCE commands to manage remote hosts. Other users of this service are
developers who manage remote hosts programmatically.

Messaging
The messaging service provides a way to display text associated with errors and
system status in English and other written languages. The primary users of this
service are developers, who use it programmatically to develop applications that
display messages in English and, optionally, other languages. Developers also
use it to retrieve text associated with DCE system errors.

Serviceability
The serviceability service provides a way to log or display informational, error,
and debug messages. The users of this service are administrators and
developers. Administrators specify the type and amount of information that is
logged by DCE and the DCE applications. Then, administrators can view the logs
that are generated. Developers use this service programmatically to include
production and debug logging capability in their DCE applications and to obtain
information from DCE logs.

UUID
The UUID service generates UUIDs. The ability to generate UUIDs is a
requirement of the RPC basics and authorization services. The primary users of
the UUID service are developers who programmatically configure UUIDs for
RPC. Other users of this service are administrators who use commands to
configure UUIDs for servers and, by means of the authorization service, for users
and groups.
10 DCE Replacement Strategies

1.4 The DCE environment
Some DCE services require the use of DCE servers, and some of these DCE
servers maintain DCE databases. The DCE servers and any DCE databases
managed by these DCE servers must be configured on the network and
managed by a DCE administrator. The DCE applications, DCE servers, and DCE
databases are collectively referred to as a DCE environment. Table 1-1 lists each
of the DCE servers and provides the following information about each server:

� the name of the DCE process that implements the DCE server
� the database (if any) that is maintained by the DCE server
� the DCE services that directly depend on the DCE server

Table 1-1 DCE Server Information

Note that the documentation that comes with DCE often refers to the DCE
authentication, privilege, and registry servers as one DCE server: a DCE security
server. In this book, they are referred to as three independent DCE servers.

DCE server DCE process DCE database DCE authentication
service

DCE KDC
server

secd None (uses DCE
registry service to
access authentication
data in the DCE registry
database)

DCE authentication
service

DCE
directory
server

cdsd DCE namespace
database

DCE directory service

DCE host
server

dced DCE endpoint database DCE host management
service

DCE
privilege
server

secd None (uses the DCE
registry service to
access privilege data in
the DCE registry
database)

DCE PAC service

DCE registry
service

secd DCE registry database DCE registry service

DCE time
server

dtsd none DCE time service
 Chapter 1. DCE review 11

1.5 Application dependencies on DCE
For each DCE service, an application might have direct dependencies, indirect
dependencies, a combination of direct and indirect dependencies, or no
dependencies.

1.5.1 Direct dependencies
An application directly depends on a DCE service if it makes direct calls to the
service. To remove this dependency, the application must be revised either to not
use the service or to use a replacement for the service. For example, if an
application makes direct calls to the DCE authorization service, the application
has a direct dependency on this service. To remove this dependency, the
application must be revised either to not use an authorization service (which is
rather unlikely) or to use a replacement for the DCE authorization service.

Many DCE applications have direct dependencies on the following DCE services:

� Authorization
� GSS-API
� Login
� Messaging
� PAC
� RPC basics
� RPC endpoint
� RPC namespace
� RPC security
� Threads

Some DCE applications have direct dependencies on the following DCE
services:

� Auditing
� Backing store
� Delegation
� ERA
� Event management
� Serviceability

Few DCE applications have direct dependencies on the following DCE services:

� Configuration
� Directory
� Host management
� Integrated login
� Password strength
� Registry
12 DCE Replacement Strategies

� Time
� UUID

No DCE applications have direct dependencies on the following DCE services
because these services can be accessed only by means of the GSS-API or RPC
security services:

� Authentication
� Protection

1.5.2 Indirect dependencies
An application indirectly depends on a DCE service if it uses the service by
means of other DCE services (referred to here as intermediary services). This
dependency can be removed by revising the application either to not use the
intermediary services or to use replacement intermediary services that do not
have these DCE dependencies. For example, an application indirectly depends
on the DCE directory service if it makes calls to the DCE RPC namespace
service. If the application is revised, for example, to use the JNDI protocol offered
by IBM WebSphere Application Server as a replacement for the DCE RPC
namespace service, the application no longer has this indirect dependency on
the DCE directory service because IBM WebSphere Application Server does not
have any DCE dependencies.

Many DCE applications have indirect dependencies on the DCE services, as
shown in Table 1-2.

Table 1-2 Indirect dependencies for many DCE applications on DCE services

Service Reason for indirect dependency

Authentication All DCE servers use the RPC security service for authentication.

Authorization All DCE servers use the authorization service.

Configuration Some DCE services require a valid DCE configuration.

Directory The RPC namespace service uses the RPC namespace
database, which is maintained by the directory service.

Host management The RPC endpoint service uses the endpoint database, which is
maintained by the host management service.

Login All DCE servers use the login service. Also, the DCE
authentication and PAC services require the initial authentication
information produced by the login service.
 Chapter 1. DCE review 13

Some DCE applications have indirect dependencies on the DCE services shown
in Table 1-3.

Table 1-3 Indirect dependency for some DCE applications on DCE services

Messaging All DCE services use the messaging service to report errors.
Also, international DCE applications require the message service
to separate messages for translation.

PAC All DCE servers use the authorization service and implement this
service in a way that requires the PAC.

Protection All DCE servers use the RPC security service for protecting the
integrity of data. The RPC security service performs this service
by using the protection service.

Registry The DCE login, authentication, and PAC services require the
registry database, which is maintained by the registry service.

RPC basics All DCE servers use the RPC basics service.

RPC endpoint All DCE servers use the RPC endpoint service.

RPC namespace All DCE servers use the RPC namespace service. Also, the DCE
registry service uses the RPC namespace service.

RPC security All DCE servers use the RPC security service.

Serviceability All DCE servers use the serviceability service.

Threads All DCE servers use the threads service.

Time The time in the DCE cell must be synchronized if any of the DCE
applications in the cell depend on the DCE services that are
time-sensitive.

UUID The RPC basics and authorization services use the UUID
service.

Service Reason for indirect dependency

Auditing The DCE security, directory, and time servers optionally can be
configured to use the auditing service.

Backing store The authorization service optionally can use the backing store
service to store the ACL database.

ERA The login and authentication services use ERAs to store and
retrieve optional parameters. The password strength server uses
ERAs to store password rules.

Service Reason for indirect dependency
14 DCE Replacement Strategies

Few DCE applications have indirect dependencies on the remaining DCE
services, which are:

� Delegation
� Event management
� GSS-API
� Integrated login

1.5.3 No dependencies
An application does not have a dependency on a DCE service if the application
does not directly or indirectly use the service. In this situation, there is no
dependency to remove.

1.6 Summary of DCE review
DCE is middleware software used for creating, running, and managing
distributed client and server applications (called DCE applications) in a
heterogeneous environment. The users of DCE are developers, administrators,
and sometimes end users. DCE consists of a set of services organized into
components. Figure 1-4 lists each service and provides the following information
about the service:

� component of the service
� purpose of the service
� users of the service (asterisk (*) indicates the primary user)
� frequency of DCE applications with direct dependencies on the service
� frequency of DCE applications with indirect dependencies on the service

Table 1-4 The dependencies of services

Host management Some DCE applications require an environment in which
administrators can configure remote hosts.

Password strength Some DCE applications require an environment in which
password rules are enforced.

Service Reason for indirect dependency

Service Component Purpose Users Direct Indirect

Auditing Security
core

Audits events that
might compromise
security

Administrators*
Developers

Some Some
 Chapter 1. DCE review 15

Authentication Security
core

Invokes client and
server authentication
protocol

No direct users None Many

Authorization Security
core

Controls access to
services based on
configured
permissions

Administrators*
Developers

Many Many

Backing store Cross Provides the use of a
backend database

Developers Some Some

Configuration Cross Configures DCE
servers

Administrators*
Developers

Few Many

Delegation Security
core

Lets servers assume
the identities of clients

Developers Some Few

Directory Directory Provides the use of a
common repository for
information

Administrators*
Developers

Few Many

ERA Security
core

Extends the security
registry database with
user information

Administrators*
Developers

Some Some

Event
management

Cross Manages events Developers Some Few

GSS-API GSS-API Uses GSS-API to
involve the
authentication service,
protection service, or
both

Developers Many Few

Host
management

Cross Manages remote
hosts

Administrators*
Developers

Few Some

Integrated
login

Security
core

Configures a mapping
between DCE and
UNIX identities

Administrators*
Developers

Few Few

Login Security
core

Provides initial
authentication
information

End users*
Developers
Administrators

Many Many

Service Component Purpose Users Direct Indirect
16 DCE Replacement Strategies

Messaging Cross Displays the text
associated with errors
and system status in
English and other
written languages

Developers Many Some

PAC Security
core

Maps client identities
to PACs

End users*
Developers
Administrators

Many Many

Protection Security
core

Protects the privacy of
data, the integrity of
data, or both

No direct users None Many

Password
strength

Security
core

Configures password
strength policy

Administrators*
Developers

Few Some

Registry Security
core

Provides the use of a
security registry
database

Administrators*
Developers

Few Many

RPC basics RPC Provides the basics for
RPC

Developers* Many Many

RPC endpoint RPC Provides a way of
storing and retrieving
the ports of services

Developers Many Many

RPC
namespace

RPC Provides the use of a
database for finding
server host name and
binding information

Developers*
Administrators

Many Many

RPC security RPC Uses RPC to invoke
the authentication
service, protection
service, or both

Developers Many Many

Serviceability Cross Logs messages Administrators*
Developers

Some Many

Threads Threads Provides compatibility
library for developing
multi-threaded
applications

Developers Many Many

Time Time Synchronizes time Administrators*
Developers

Few Many

Service Component Purpose Users Direct Indirect
 Chapter 1. DCE review 17

UUID Cross Generates universally
unique identifiers

Developers Few Many

Service Component Purpose Users Direct Indirect
18 DCE Replacement Strategies

Chapter 2. Replacement technologies

This chapter lists and recommends technologies that can be used to replace
DCE services. The following topics are covered:

� Criteria used to select the technologies

� Technologies for C/C++ applications

� Technologies for Java applications

2

© Copyright IBM Corp. 2003. All rights reserved. 19

2.1 Criteria for selecting the technologies
The following criteria were used to select the recommended technologies:

� Compliance with industry standards
� Coverage of predominant DCE services
� Ease of migration
� Similarity to DCE services
� Technologies considered strategic
� Support of predominant platforms
� Support of predominant programming languages
� Availability of IBM implementations

2.1.1 Compliance with industry standards
Services offered by each recommended technology should conform to industry
standards to help increase their usable life and enable interoperate with other
software. Most of the recommended technologies meet this criterion.

2.1.2 Coverage of predominant DCE services
The set of recommended technologies should offer services that map to all of the
DCE services on which many DCE applications have direct dependencies. See
Section 1.5.1, “Direct dependencies” on page 12 for the names of these DCE
services. The set of recommended technologies meets this criterion.

2.1.3 Ease of migration
It is desirable to have a method to migrate DCE data to a new technology. In
some cases, this criterion is met, but in some other cases, additional design and
administration tasks might be necessary. For example, IBM DCE Version 3.2
supports methods that can be used to migrate the contents of the DCE registry
database to an open standard LDAP directory.

2.1.4 Similarity to DCE services
The services offered by each recommended technology should be functionally
similar to the replaced DCE services. Many of the recommended technologies
meet this criterion. For example, a replacement technology that supports the
GSS-API requires little migration effort for those applications that use the
GSS-API provided by DCE.
20 DCE Replacement Strategies

2.1.5 Technologies considered strategic
It is desirable that each technology is considered strategic by the industry and by
IBM. This means that IBM is invested in researching and implementing the
technology. Most of these technologies meet this criteria.

2.1.6 Support of predominant platforms
An implementation of each recommended technology should be available on the
predominant platforms used in IBM DCE customer environments: AIX, Windows,
and Solaris. Most of the recommended technologies meet this criterion.

2.1.7 Support of predominant programming languages
The IBM implementation of each recommended technology should have
development tools that support the C language, which is the predominant
programming language used by IBM DCE customers to develop and maintain
DCE applications. Most of the recommended technologies meet this criterion. It
also is desirable for development tools to support the Java language, as some
IBM DCE customers might want to migrate their applications to Java. Some of
the recommended technologies meet this criterion.

2.1.8 Availability of IBM implementations
It is desirable for each recommended technology to have an implementation of
the technology that is provided and supported by IBM. Most of these
technologies meet this criterion.

2.2 Technologies for C/C++ applications
The following technologies are recommended for applications that are written in
the C/C++ language:

� aznAPI
� Common Object Request Broker Architecture (CORBA)
� DCE RPC basics
� DCE UUID
� Kerberos
� Lightweight Directory Access Protocol (LDAP)
� Network Time Protocol (NTP)
� Platform auditing
� Platform logging and messaging
� POSIX 1003.1c threads
� Web services
 Chapter 2. Replacement technologies 21

2.2.1 aznAPI
The aznAPI is a set of interfaces that developers can use to configure and control
access to resources. The Open Group defined the aznAPI standard, and it can
be seen at http://www.opengroup.org. aznAPI can be used to replace the DCE
authorization, PAC, and UUID services. In many ways, aznAPI is similar to these
services; the differences are:

� DCE: The application client sends its Kerberos ticket to a privilege server, the
privilege server inserts a credential (a DCE PAC) into the ticket, the privilege
server returns the ticket to the client, and the client sends the ticket with the
PAC to the application server. The application server then receives the DCE
PAC from the ticket and uses the DCE PAC information to determine
authorization.

� aznAPI: On an “as needed” basis, the application server uses aznAPI to get a
PAC for a given client and, using the PAC and a set of configured permissions,
determines authorization. The application server cannot read the contents of
the PAC.

IBM has implemented the aznAPI in the IBM Tivoli Access Manager product. IBM
Tivoli Access Manager is available on many platforms including AIX, Linux,
Solaris, and Windows. It provides interfaces in the C/C++ and Java programming
languages. IBM offers an automatic method for migrating users, groups, and
group membership data from IBM DCE Version 3.2 for AIX and Solaris to those
platforms and versions of IBM Tivoli Access Manager that support storing this
information in LDAP. This is possible because IBM DCE Version 3.2 for AIX and
Solaris can be configured to store this registry data in LDAP using attributes
shared with IBM Tivoli Access Manager. See “Option 1: IBM Tivoli Access
Manager” on page 53 for more information.

A replacement strategy that uses IBM Tivoli Access Manager is described in
“Option 1: IBM Tivoli Access Manager” on page 53. An example scenario and
program that uses this replacement strategy can be found in Chapter 8,
“Scenario 1: GSS-API application” on page 125.
22 DCE Replacement Strategies

http://www.opengroup.org

2.2.2 CORBA
CORBA is an object-oriented architecture and infrastructure defined by the Open
Management Group (OMG). The purpose of CORBA is to enable computer
applications to work together, regardless of the vendor, operating system,
programming language, or network. In practice, however, implementations of
CORBA are not always able to interoperate with each other, so it is
recommended that you use different implementations of CORBA only if they
have been tested against each other or against a common reference
implementation.

CORBA consists of many components. The following list shows the five CORBA
components that pertain to the subject of this book, plus the components’
purpose and the OMG specifications that provide their standards. For the rest of
this book, the term CORBA refers to the CORBA components listed here:

� CORBA basics: An architecture that permits a client object to invoke an
operation on a local or remote server object. The architecture defines
interfaces, protocols, and conventions including the CORBA interface
definition language (IDL), the CORBA Object Request Broker (ORB), the
CORBA General Inter-ORB Protocol (GIOP), and the CORBA Internet
Inter-ORB Protocol (IIOP). For more information, refer to The Common Object

Product information: The IBM Tivoli Access Manager line of products
comprises three separate products:

� IBM Tivoli Access Manager for Business Integration
� IBM Tivoli Access Manager for e-business
� IBM Tivoli Access Manager for Operating Systems

The functionality described in this book that is used to replace the
authorization function of DCE (that is, the implementation of the aznAPI with
the underlaying support for IBM Directory Server and the administration
interfaces) is part of the IBM Tivoli Access Manager for e-business.

The full IBM Tivoli Access Manager for e-business product supports additional
functions, such as a Web authentication and authorization engine (called
WebSEAL) and replication of its authorization databases. These additional
functions are not of direct interest for the purpose of this book. Please refer to
the product documentation or your local IBM representative for a full overview
of the product’s capabilities.

A comprehensive view of the IBM Tivoli Access Manager line of products,
including other products, can be found online at:

http://www.ibm.com/software/tivoli/products
 Chapter 2. Replacement technologies 23

http://www.ibm.com/software/tivoli/products

Request Broker: Architecture and Specification, available at:
http://www.omg.org

� CosNaming: An interface for the OMG Naming Service. The OMG Naming
Service provides a mapping from names to object references. The document
Naming Service Specification is available at the following Web site address:
http://www.omg.org/docs/formal/02-09-02.pdf

� Common Secure Interoperability Version 2 (CSIv2): A protocol for securing
information transmitted over CORBA GIOP or IIOP. The protocol provides a
way for the two parties to determine whether to use a more secure transport
such as Secure Sockets Layer (SSL) or Transport Layer Security (TLS). It
also defines message-level authentication protocols and a way for the two
parties to determine whether to use a message-level authentication protocol.
The document The Common Security Interoperability Version 2 Specification
is available at http://www.omg.org/docs/ptc/01-06-17.pdf

� C language mapping: A mapping between the CORBA IDL and the C++
programming language. The document C Language Mapping Specification is
available at the following Web site:
http://www.omg.org/technology/documents/formal/c_language_mapping.htm

� Java language mapping: A mapping between the CORBA IDL and the Java
programming language. Two documents describe this mapping: The Java
Language Mapping to OMG IDL and the OMG IDL to Java Language
Mapping. They are available at the following two Web addresses (to be
entered as single lines):
http://www.omg.org/technology/documents/formal/java_language_mapping
_to_omg_idl.htm
http://www.omg.org/technology/documents/formal/omg_idl_to_java_langu
age_mapping.htm

An implementation of CORBA might be used to replace most of the services
offered by DCE RPC. CORBA basics and mapping might replace the DCE RPC
basics and endpoint services. CORBA CosNaming might replace the DCE RPC
namespace service. CORBA CSIv2 might replace the DCE RPC security
service.

Functionally, CORBA has many similarities to DCE RPC. The following is a list of
differences:

� The IDL used by CORBA is object-oriented. The IDL used by the DCE RPC
basics service is procedural-oriented.

� The CSIv2 used by CORBA makes it possible for two parties to negotiate the
type of authentication protocol they will use or whether they will use the
authentication protocol offered by the transport layer. DCE supports only the
Kerberos authentication protocol.
24 DCE Replacement Strategies

http://www.omg.org/docs/ptc/01-06-17.pdf
http://www.omg.org
http://www.omg.org/docs/formal/02-09-02.pdf
http://www.omg.org/technology/documents/formal/c_language_mapping.htm
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/technology/documents/formal/omg_idl_to_java_language_mapping.htm

IBM offers an implementation of CORBA in IBM WebSphere Application Server
Version 5 or later (referred to hereafter as IBM WebSphere Application Server).
The enterprise edition of this product provides Java and C++ development
environments. The base edition provides a Java development environment only.

The CORBA C++ support provided in IBM WebSphere Application Server
enables the use of CORBA interfaces between a server object providing a
service and a client using the service. In practice, this means that two types of
CORBA clients, WebSphere CORBA C++ clients and CORBA clients from
vendors supported by WebSphere, can access two types of servers, CORBA
C++ servers and WebSphere enterprise beans servers.

In addition, IBM WebSphere Application Server provides a basic CORBA
environment that can “bootstrap” into the J2EE name space and invoke J2EE
transactions. However, it does not provide its own naming and transaction
services. Therefore, CORBA C++ clients and servers rely on WebSphere to
provide these services.

WebSphere CORBA support can be divided into two categories:

WebSphere to WebSphere CORBA support
This enables the creation of CORBA client and server applications within the IBM
WebSphere Application Server environment. You can use the CORBA C++ SDK
to build a lightweight WebSphere CORBA C++ server to use with new or existing
C and C++ applications. The lightweight CORBA C++ server supports the
CORBA basics and namespace (CosNaming) protocols, but it does not support
the CORBA security (CSIv2) protocol. You can also use the SDK to build a
WebSphere CORBA C++ client to use with a WebSphere enterprise bean server
or WebSphere CORBA C++ server. The CORBA C++ client and enterprise bean
support the CORBA basics, CosNaming, and CSIv2 protocols. However, the
CSIv2 support available with CORBA C++ clients is limited to using SSL
transport for authentication.

WebSphere to other ORB support
This enables other applications that are based on CORBA Object Request
Brokers (ORBs) to interoperate with WebSphere. It enables these applications to
leverage WebSphere-supported open technologies, such as Java Server Pages,
XML, Java servlets, and enterprise beans.

For customers that require a full C++ CORBA development environment, some
independent vendor products are available that might meet these requirements.

Product information: The CORBA C++ SDK ships with IBM WebSphere
Application Server Enterprise, Version 5.
 Chapter 2. Replacement technologies 25

The Java development environment is discussed in Section 2.3.4, “IBM
implementation of J2EE: WebSphere Application Server” on page 39.

A sample application migration scenario that makes use of the CORBA
replacement technology is further detailed in Chapter 9, “Scenario 2: Non-secure
RPC application” on page 171.

2.2.3 DCE RPC
The source code for the DCE RPC technology can be downloaded from The
Open Group and could be used to create a stand-alone offering of the DCE RPC
technologies. This would require a considerable amount of development effort
and currently no such offering is available as a product. However, if such an
offering were made available, it might serve as a valuable option to use in
replacing the DCE RPC services. Therefore, this book discusses stand-alone
DCE RPC as a possible technology that could be used to replace the DCE RPC
services.

2.2.4 DCE UUID
The DCE UUID technology is used by the DCE RPC and authorization services.
This redbook recommends replacement technologies for both of these services.
However, some organizations might have a large investment in user-written
authorization code and want to continue using this code for authorization rather
than replacing it with a new technology. These customers might find it helpful to
obtain the DCE UUID code, with which they can generate new DCE UUIDs to
use with their user-written authorization code. The source for the DCE UUID
code can be downloaded from The Open Group (http://www.opengroup.org).

2.2.5 Kerberos
Kerberos Version 5 (called Kerberos hereafter) is a network authentication
technology that was developed by the Massachusetts Institute of Technology
(MIT) and implemented by many vendors including IBM, Microsoft, SuSE, Sun,
Hewlett Packard, and CyberSafe. Implementations of Kerberos are available on
many platforms including AIX, OS/390, OS/400®, Linux, Windows 2000, Solaris,
and UNIX. The following industry standards have been set for Kerberos:

� The over-the-wire protocol that Kerberos uses for logon, authentication, and
protection is defined in Internet Engineering Task Force (IETF) Request for
Comments (RFC) 1510.

� The GSS-API interfaces and over-the-wire protocol are defined in IETF RFCs
2743 and 2744, and the Kerberos implementation of GSS-API is defined in
IETF RFC 1964.
26 DCE Replacement Strategies

http://www.opengroup.org

Kerberos can be used to replace the following DCE services:

� Authentication
� Delegation
� Login
� GSS-API
� Protection

Functionally, Kerberos performs these services in a way that is similar to DCE.
This is because the DCE implementations of these services are based on
Kerberos. The few functional differences have to do with the following features
that DCE added to the Kerberos protocol:

� DCE third-party and public key pre-authentication protocols are not supported
by the Kerberos standard, as specified in RFC 1510. IETF is working on a
proposed standard for a Kerberos public key pre-authentication protocol, but
this is not yet a standard at the time of writing.

� The DCE sealed delegation is not supported by the Kerberos standard, which
only supports impersonation delegation.

Although Kerberos is functionally similar to DCE, most of its interfaces are
different. The only Kerberos interfaces that are the same as those used by DCE
are the GSS-API interfaces defined in IETF RFC 2743 and 2744. The remaining
Kerberos interfaces are different syntactically from those interfaces used by DCE.

The IBM implementation of Kerberos is named IBM Network Authentication
Service. IBM Network Authentication Service supports the following platforms in
the C development environment:

� AIX Version 5.1 and Version 5.2
� OS/390 Release 10
� OS/400 Version 5 Release 1 (client only)

IBM offers an automatic method for migrating authentication data (principals and
policies) from IBM DCE Version 3.2 for AIX and Solaris to those platforms and
versions of IBM Network Authentication Service that support storing this data in
LDAP. This is possible because IBM DCE Version 3.2 for AIX and Solaris can be
configured to store this data in LDAP using attributes shared with IBM Network
Authentication Service. See section 3.1.6, “Delegation, GSS-API, and login” on
page 56 for more information.

Chapter 8, “Scenario 1: GSS-API application” on page 125 explains the use of
IBM Network Authentication Service as a replacement technology in a practical
example.
 Chapter 2. Replacement technologies 27

2.2.6 LDAP
LDAP Version 3 (called LDAP hereafter) is a technology for accessing and
updating directory information. LDAP is a lightweight derivative of the
X.500-based directory services and its Directory Access Protocol (DAP).
Although, strictly speaking, the term LDAP refers to a protocol geared for
accessing directory information, the term is frequently used in similar, sometimes
confusing contexts. It is common to refer to a directory that supports LDAP as an
LDAP directory or to a system that runs such a directory as an LDAP system.

The information that is stored in an LDAP directory is organized in a hierarchical,
inverted-tree form. At the top of such an Directory Information Tree (DIT) are one
or more suffixes, which are one of the first steps an administrator must define
when configuring an LDAP directory. Following are two typical forms of such
suffixes as they may appear in LDAP directories (notice that a suffix may already
contain several elements that may be confused with a certain level of the DIT):

� dc=IBM,dc=com (dc stands for domain component)

� ou=Sales,o=IBM,c=US (ou, o, and c stand for organizational unit,
organization, and country, respectively)

Information is stored in an LDAP directory in objects and attributes. For example,
information about an employee may be stored as a single object that represents
the employee’s name and that has several attributes that store information such
as employee number, date of birth, telephone number, and the like. To continue
with the example, Joe Smith may be represented in an LDAP directory as
cn=Joe Smith,ou=Sales,o=IBM,c=US (cn stands for common name). The full
reference to Joe Smith as shown is called its Distinguished Name (DN), which
must be unique in the directory. There might be several Joe Smiths in the same
directory, all starting with cn=Joe Smith, but their full DN must be distinct. Thus,
cn=Joe Smith is also called the object’s Relative Distinguished Name (RDN).

The LDAP protocol also defines powerful search and retrieve operations on
directory data. However, it does not define how the objects are arranged in the
DIT and what information the directory may contain. In fact, an LDAP directory
may be used to store a variety of information, including binary files, and it is a
common misbelief that an LDAP directory is primarily used for storing
people-related information. In the course of this book, LDAP directories will be
used for storing security-related information as well as authorization data.

Product information: The IBM Network Authentication Service is not a
separate IBM product. It is available with current levels of IBM AIX, as well as
other IBM operating systems.
28 DCE Replacement Strategies

The type of information that can be stored, as well as any rules that go along with
the information types, are defined in LDAP schema. An LDAP directory product,
such as the IBM Directory Server, comes with a default schema that fits most
uses. If the default schema is not sufficient (for example, if specific information
such as DCE registry information is to be stored), the schema can be modified,
as we will see later in this book.

The details of the LDAP protocol are defined in IETF RFC 2251. The following
industry standards have been defined for LDAP:

� IETF RFC 1274 The COSINE and Internet X.500 Schema

� IETF RFC 1777 Lightweight Directory Access Protocol (Version 2)

� IETF RFC 1778 String Representation of Standard Attribute Syntaxes

� IETF RFC 1779 String Representation of Distinguished Names

� IETF RFC 1823 LDAP Application Program Interface (Version 2)

� IETF RFC 2052 A DNS RR for Specifying the Location of Services (DNS
SRV)

� IETF RFC 2219 Use of DNS Aliases for Network Services

� IETF RFC 2222 Simple Authentication and Security Layer (SASL)

� IETF RFC 2247 Using Domains in LDAP/X.500 Distinguished Names

� IETF RFC 2251 Lightweight Directory Access Protocol (Version 3)

� IETF RFC 2252 Lightweight Directory Access Protocol (Version 3): Attribute
Syntax Definitions

� IETF RFC 2253 Lightweight Directory Access Protocol (Version 3): UTF-8
String Representation of Distinguished Names

� IETF RFC 2254 The String Representation of LDAP Search Filters

� IETF RFC 2255 The LDAP URL Format

� IETF RFC 2256 A Summary of the X.500(96) User Schema for use with
LDAP Version 3

� IETF RFC 2891 LDAP Control Extension for Server Side Sorting of Search
Results

LDAP might be used to replace the following DCE services:

� Registry
� Directory
� Backing store
 Chapter 2. Replacement technologies 29

Functionally, LDAP offers some similarities to the DCE directory service. The
IBM implementation of LDAP is the IBM Directory Server. IBM Directory Server
(formerly named IBM SecureWay® Directory) is available on these platforms:

� AIX
� HP-UX
� Linux
� Solaris
� Windows

The development support for IBM Directory Server is provided in the C language.
Also, the IBM Directory Server can be accessed through the Java language
using the Java Naming and Directory Interface (JNDI). See 2.3, “Technologies for
Java applications” on page 34.

IBM DCE Version 3.2 for AIX and Solaris provides a way to migrate the DCE
registry database to LDAP. IBM does not provide a way to migrate backing store,
directory, or RPC namespace data to LDAP. For more information, see the IBM
DCE Version 3.2 for AIX and Solaris: DCE Security Registry and LDAP
Integration Guide.

2.2.7 Network Time Protocol
NTP Version 3 is a technology used for synchronizing time among a set of
distributed time servers and clients. It is available on many platforms, including
Solaris, HP-UX, Ultrix, OSF/1, IRIX, AIX, A/UX, PTX®, FreeBSD, NetBSD,
BSD/386, Linux, and Unixware. The standard for NTP is defined in IETF RFC
1305. This standard makes it possible for different implementations of NTP to
interoperate over-the-wire and to use the same architecture and algorithms for
synchronizing time. NTP servers can interact with SNTP (Simple Network Time
Protocol), which is available on many Windows platforms.

NTP might be used to replace the DCE time service. The configuration of NTP
and DCE time service has many similarities.

Product information: The IBM Directory Server is available at no charge for
the platforms as listed above, as well as for the OS/400 and OS/390 operating
system platforms.

For the AIX, HP-UX, Linux, Solaris and Windows platforms, download the IBM
Directory Server from the Downloads link at:

http://www.ibm.com/software/network/directory/server

For documentation about the IBM Directory Server, go to the same Web page
and click the Library link.
30 DCE Replacement Strategies

http://www.ibm.com/software/network/directory/server

IBM offers an implementation of NTP called the AIX xntpd daemon on AIX
platform versions 4.2 and later. The xntpd daemon can be accessed only through
command interfaces. DCE data does not need to be migrated to NTP.

2.2.8 Platform auditing
All operating system platforms that have been C2 certified by the National
Security Agency (NSA) offer a set of auditing interfaces that can be accessed
programmatically from a C/C++ program or administratively through either the
command line or an administration tool. The AIX, Solaris, and Windows platforms
all are C2 certified, so each of these platforms offers auditing interfaces. These
interfaces might be used to replace direct dependencies to the DCE auditing
service.

There are no standards for auditing interfaces, so they differ from one platform to
another and from the DCE auditing interfaces. However, if the platform is C2
certified, its auditing interfaces must allow application developers and
administrators to do all of the auditing functions required for C2 certification.
Therefore, the functions provided by the auditing interfaces of all C2-certified
platforms are similar. These functions also are similar to the functions provided
by the DCE auditing interfaces, as the DCE auditing interfaces were designed to
meet C2 certification requirements.

2.2.9 Platform logging and messaging
Most operating system platforms offer a set of logging and messaging interfaces
that can be accessed programmatically from a C/C++ program or
administratively from either the command line or an administrative tool. The
following logging and messaging interfaces are available on UNIX and Windows
platforms.

UNIX logging and messaging
The UNIX logging (syslog()) and messaging standards are defined in The Open
Group UNIX 98, POSIX.1-1996 standards. These standards can be used as
partial replacements for DCE messaging and serviceability.

UNIX offers the syslog() function, which provides a logging service similar to the
logging service provided by DCE serviceability. The logging scheme provided by
the syslog() function does not automatically fetch a status code’s error text from a
message catalog as DCE serviceability does, but it does support a similar type of
facility-based logging. For an example of how to use the syslog() function on
UNIX platforms, see the AIX 5L Version 5.1 Technical Reference: Base
Operating System and Extensions, Volume 2 at the following Web site:
http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
 Chapter 2. Replacement technologies 31

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

UNIX messaging is similar to DCE messaging in that both use message catalogs
and the XPG4 locale standard defined by The Open Group. The difference
between the two messaging services is that DCE messaging supports unique,
system-wide error codes, but UNIX messaging does not provide this support.
See chapter 16 about national language support in the AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs, available at:
http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

IBM implementations of UNIX exist on all IBM hardware. Because UNIX uses
XPG4 message catalogs, message catalog files can be migrated from DCE to
UNIX.

Windows logging and messaging
Windows platforms provide logging and messaging services that can be used as
partial replacements for the DCE serviceability and messaging services. For
logging, Windows supports proprietary logging to the Windows Event Log using
functions such as RegisterEventSource() and ReportEvent(). When used in
conjunction with message resource files, Windows can log message text that is
translated into the international language that matches the Windows regional
settings. Search for Event Logging Operations to get an overview of Windows
event logging and the associated API at:

http://msdn.microsoft.com/

Windows messaging is provided through proprietary support for message
resource files and functions that enable the support of multiple international
languages based on the Windows regional settings. Windows messaging is
implemented somewhat differently from the way DCE messaging is
implemented. See Writing Multilingual User Interface Applications at the
following Web site for a discussion and examples of how to use the Windows
proprietary messaging support:

http://www.microsoft.com/globaldev/articles/articles.asp

2.2.10 POSIX 1003.1c threads
POSIX 1003.1c, draft 10 is an Institute of Electrical and Electronics Engineers
(IEEE) standard defining a set of APIs, often called pthreads, for writing
multi-threaded applications. This set of APIs has evolved into a standard for
operating systems. Therefore, implementations of POSIX 1003.1c draft 10 are
part of many operating system platforms, including AIX, Solaris, HP-UX, and
Linux. Windows threads do not conform to POSIX 1003.1c, draft 10, but some
third parties provide libraries that map POSIX 1003.1c threads to Windows
threads.
32 DCE Replacement Strategies

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
http://www.microsoft.com/globaldev/articles/articles.asp
http://msdn.microsoft.com/

POSIX 1003.1c, draft 10 might be used as a replacement for the DCE threads
service. The DCE thread service is based on POSIX 1003.1c, draft 4 (also called
POSIX 1003.4a) and is sometimes called Concert Multi-thread Architecture
(CMA) threads. The semantics of most pthreads calls defined in POSIX 1003.1c,
draft 10 are the same as those used by the DCE thread service. Differences are:

� Syntax changes to some APIs

� Return error codes are used instead of setting the global errno variable for all
pthread functions

� New functions are introduced to enhance thread cancellation and thread
scheduling

� Differences in signal handling

� Specification of cancellation points

� Changes to the reentrant C library API

DCE data does not need to be migrated to POSIX 1003.1c.

2.2.11 Web services
Web services are self-contained application modules that you can describe,
publish, locate, and invoke over a network. A Web service is described using a
standard, formal eXtensible Markup Language (XML) notion, called its service
description. It covers all of the details necessary to interact with the service,
including message formats (that detail the operations), transport protocols, and
location. At minimum, Web services consist of a service requester, a service
provider, and a service registry. The service provider publishes its Web service in
a service registry. The service requester finds the Web service in the service
registry and invokes the service by binding to the service provider.

The standards for these operations are:

� World Wide Web Consortium (W3C) Simple Object Access Protocol (SOAP)
Version 1.1: Defines the XML messages that are exchanged between the
service requester and service provider when the service is invoked. These
messages can be transmitted over any protocol, such as HTTP and TCP/IP.

� W3C Web services Description Language (WSDL) Version 1.1: Defines
information about the service. The service provider publishes this information
in the service registry and the service requester finds this information in the
registry and uses it to invoke the service.

� uddi.org Universal Description Discovery and Integration (UDDI) Version 3.0:
Defines the protocol used to publish and find information in the service
registry.
 Chapter 2. Replacement technologies 33

Web services might be used to replace most of the services offered by the DCE
RPC component. SOAP and WSDL might be used as replacements for the DCE
RPC basics and DCE RPC endpoint services. They handle serialization,
marshalling, and bind protocols. The UDDI might be used to replace the RPC
namespace service.

A specification for SOAP security is being defined by various vendors through the
OASIS organization. The specification proposes a set of SOAP extensions for
implementing security by means of a variety of security models including PKI,
Kerberos, and SSL.

IBM provides C/C++ development support for SOAP in the form of toolkits. At the
time of writing, these toolkits are in the form of technical previews. IBM also
provides Java development support for SOAP on some platforms of WebSphere
Application Server.

For more information, refer to the following Web sites:

� For more information about the XML Version 1.0 standard, see
http://www.w3.org/TR/REC-xml

� For more information about the SOAP Version 1.1 standard, see
http://www.w3.org/TR/SOAP/

� For more information about the WSDL Version 1.1 standard, see
http://www.w3.org/TR/wsdl

� For more information about the UDDI Version 3.0 standard, see
http://www.uddi.org/specification.html

� For more information about the SOAP security specification, see
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

2.3 Technologies for Java applications
The recommended technology for applications being migrated to the Java
language is the Java 2 Enterprise Edition Version 1.3 or later (called J2EE
hereafter). J2EE is a Java platform specification for developing, running, and
managing applications in an enterprise environment. Implementations of J2EE
are available on most operating system platforms.

2.3.1 J2EE application environment
J2EE defines a platform for running the following types of components:

� Java applets
� Java client applications
34 DCE Replacement Strategies

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.uddi.org/specification.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� Servlets
� Java Server Pages (JSPs)
� Enterprise beans

Java applets and Java client applications are both client applications that are
written in the Java programming language. Java applets are downloaded
dynamically from a Web server to a client machine and run on the client
machine. Java client applications are installed and run on the client machine.

Servlets, JSPs, and enterprise beans are all server applications. Servlets are
written in the Java programming language and extend the function of a Web
server, typically by generating dynamic content and interacting with clients using
HTTP. JSP files are the same as servlets except that they are written in the Java
scripting language and then converted to a servlet when they are run. A JSP file
is referred to hereafter as a servlet. Enterprise beans are written in the Java
programming language and implement a business task.

Each type of component is run in a container. The container is configurable and
handles system tasks, such as network communications and security. For
example, an enterprise bean is run in an enterprise bean container, which is
configurable and handles network communications, security, multi-threading, and
other system functions. The container simplifies programming for the developer
and makes it possible for an administrator to revise the configuration of system
tasks at run time.

Some component types can interoperate with Web browsers, legacy
applications, or both. Servlets can interoperate with Web browsers using the
HTTP protocol. Enterprise beans can interoperate with legacy client programs
using CORBA protocols. Java client applications, servlets, and enterprise beans
can interoperate with legacy server programs using either CORBA protocols or
the Java Connector Architecture (JCA).

2.3.2 Standards for the J2EE
Implementations of J2EE must provide a platform for running each component
type. The platform must conform to the following standards.

J2EE deployment specification
A standard that defines a common way of packaging applications. This standard,
referred to as a document type definition (description language (DTD)), is defined
in the Java 2 Platform Enterprise Edition Specification Version 1.3.
 Chapter 2. Replacement technologies 35

Java technology standards for the J2EE platform
The Java technology standards are a set of specifications that are defined by the
Java organization. These specifications include the following:

� Java 2 Platform Enterprise Edition Specification Version 1.3
� Java 2 Platform Standard Edition (J2SE) Version 1.3 API Specification
� Java Database Connectivity (JDBC) Version 2.0 Standard Extension API
� Java Naming and Directory Interface Version 1.2 Specification
� JDBC Version 2.1 Application Programming Interface (API)
� Enterprise JavaBeans (EJB) Specification, Version 2.0
� Java Servlet Specification, Version 2.3
� Java Server Pages Specification, Version 1.2
� Java Message Service (JMS), Version 1.0
� Java Transaction API (JTA), Version 1.0.1
� Java Transaction Service, Version 1.0
� JavaMail API Specification Version 1.2
� JavaBeans Activation Framework (JAF) Specification Version 1.0
� Java API for XML Parsing (JAXP) Version 1.1
� Java Connector Architecture (JAC) Version 1.0
� Java Authentication and Authorization Service (JAAS) Version 1.0

IETF and de facto standards for the J2EE platform
The set of standards that is defined by the IETF and a de facto standard that is
defined by Netscape include:

� IETF RFCs defining the TCP/IP protocol family
� IETF RFC defining HTTP Version 1.0
� IETF RFC 2246: The TLS Version 1.0 Protocol
� IETF RFC defining HTML Version 3.2
� Netscape SSL Version 3.0

CORBA standards for the J2EE platform
CORBA standards include a set of standards defined by Object Management
Group:

� CORBA Version 2.3.1 Specification
� IDL to Java Language Mapping Specification
� Java Language to IDL Mapping Specification
� CORBA CosNaming Service
� Interoperable Naming Service
� Common Secure Interoperability Version 2 Final Available Specification
36 DCE Replacement Strategies

2.3.3 DCE services that can be replaced by J2EE
The J2EE standards listed in the previous section specify the APIs and functions
that must be implemented by J2EE components. Some of these APIs and
functions might be used to replace the following DCE services:

� Authentication
� Authorization
� Backing store
� Delegation
� Directory
� Login
� Messaging
� PAC
� Protection
� RPC (all RPC services)
� Threads

Therefore, a J2EE implementation might be used to replace most, but not all, of
the DCE services. (For a complete list of DCE services, see section 1.6,
“Summary of DCE review” on page 15). The following describes the J2EE
specification for each set of J2EE APIs or functions that can be used to replace a
DCE service.

Authentication and login
All containers for Java applets, Java client applications, and servlets must
support the following methods of transmitting client identity information:

� HTTP basic authentication (client passes its user identity and password)

� HTTP form-based authentication (client passes its user identity and password
in an HTML form)

� HTTPS (client passes its public certificate using an SSL transport)

If SSL is used (as it is with HTTPS), the servlet transmits its identity information
(a public certificate) to the client.

In addition, all Java client application, servlet, and enterprise bean containers
must support CSIv2 as described in “RPC” on page 38.

Authorization
All servlets and enterprise beans must support the configuration of roles and the
mapping of these roles to operating data, such as users and groups. In addition,
all servlet and enterprise bean containers must support declarative and
programmatic authorization. With declarative authorization, an administrator
configures authorization to servlets and methods in enterprise beans based on
 Chapter 2. Replacement technologies 37

roles. With programmatic authorization, the developer uses the Java
authorization API, which is a set of APIs consisting of isUserInRole and
getUserPrincipal for servlets and isCallerInRole and getCallerPrincipal to
program authorization for enterprise beans.

Backing store
All containers for servlets and enterprise beans must support the JDBC API,
which is a set of Java APIs for accessing structured query language (SQL)
databases and other databases that use tabular data.

Delegation
All containers for servlets and enterprise beans must support the propagating of
a client credential so that an impersonation type of delegation can be performed.

Directory
All Java applets, Java client applications, servlets, and enterprise beans must
support the JNDI, which is a set of APIs for interfacing with a directory.

Messaging
All Java applets, Java client applications, servlets, and enterprise beans must
support the Java String, ResourceBundle, and Locale APIs. The String API can
be used to print messages. The ResourceBundle and Locale APIs can be used
to support multiple languages. See the Java Internationalization Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/index.html for a discussion
and examples of how to handle messages in a Java application.

PAC
All containers for servlet and enterprise beans must be able to map a client
identity to a credential and associate the credential with the client context. The
credential contains a set of attributes. The format of the credential and the set of
attributes contained in the credential is implementation-specific.

Protection
All containers for Java applets, Java client applications, servlets, and enterprise
beans must support the ability to use SSL for transport. SSL protects transmitted
data with encryption and checksum algorithms.

RPC
All containers for Java client applications, servlets, and enterprise beans must
support the client side of Remote Method Invocation over Internet Inter-Orb
Protocol (RMI over IIOP), and all enterprise bean containers must support the
server side of RMI over IIOP. RMI over IIOP is a combination of Java and CORBA
38 DCE Replacement Strategies

http://java.sun.com/docs/books/tutorial/i18n/index.html

protocols that enables clients to invoke methods on remote objects. This is done
as follows: the client finds the method using either Java JNDI or CORBA
CosNaming; invokes the method using either Java RMI or CORBA IDL;
serializes, marshals, and transmits the method data using Common Object
Request Broker Architecture over Internet Inter-Orb Protocol (CORBA IIOP);
and, if required, secures the transmission using CORBA CSIv2. The method
data is transmitted in Unicode, so multiple languages are supported.

CSIv2 must be implemented as specified in Conformance Level 0. In this
conformance level, CSIv2 must be able to pass client identity information using
basic authentication (client passes its user identity and password), client
certificate authentication (client passes its public certificate using an SSL
transport), or credential (client passes its credential).

Threads
All Java applets, Java client applications, and servlets must support the Java
Threads API, which is a set of APIs for developing multi-threaded applications.
All enterprise bean containers must handle multi-threaded, thread safe logic.
Because enterprise bean containers handle the threading logic, J2EE requires
enterprise bean containers to prevent enterprise beans from using the Java
Threads APIs.

2.3.4 IBM implementation of J2EE: WebSphere Application Server
The IBM implementation of J2EE is IBM WebSphere Application Server Version
5 (called WebSphere Application Server hereafter). WebSphere Application
Server is available on many platforms including AIX, Linux, OS/400, OS/390®,
Windows, and Solaris.

IBM WebSphere Application Server can be used to replace all of the DCE
services described in the previous section. In addition, IBM WebSphere
Application Server offers extensions that map to DCE services:

� A registry database, which can be configured to be an LDAP directory, a local
operating system, or a custom database.

� An authentication mechanism, which validates the authentication information
transmitted by the client against the data configured in the registry database
and generates a client credential containing the attributes of the client. For
example, with the LTPA mechanism, if the client transmits a user identity and
password, LTPA validates this identity and password against the user identity
and password configured in the registry database. It then generates a
credential similar to a DCE PAC containing the user identity of the client and a
listing of the groups in which the client is a member.

� A method for configuring a login context for clients accessing servlets.
 Chapter 2. Replacement technologies 39

IBM offers an automatic method for migrating users, groups, and group
membership data from IBM DCE Version 3.2 for AIX and Solaris to those
platforms and versions of IBM WebSphere Application Server that support
storing this information in an LDAP directory. This is possible because IBM DCE
Version 3.2 for AIX and Solaris can be configured to store this data in an LDAP
directory using attributes shared with IBM WebSphere Application Server. See
section 3.2.2, “Revising the application environment for the new architecture” on
page 72 for more information.

The WebSphere Application Server extensions as described above are used and
demonstrated in two sample scenarios in this book.

2.3.5 Additional information on IBM WebSphere Application Server
For your convenience, this section lists and explains more features of the
WebSphere Application Server for better understanding of the similarities to and
differences from a DCE environment. The information provided in this section
repeats and expands on the general J2EE discussion of the previous sections.

WebSphere login and authentication mechanisms
When an application client requires access to a protected enterprise bean, it
sends the authentication information to the WebSphere Application Server using
the CSIv2 or SAS protocol. These are add-on IIOP services, where IIOP is the
application communication protocol. The underlying transport layer protocol can
be TCP/IP with or without SSL. Figure 2-1 depicts the relationship between these
protocols.

Figure 2-1 Authentication protocols

The authentication information sent by the client can be either basic
authentication (user ID and password), credential token, or client certificate. The
EJB Security Collaborator passes this data on to the Authentication Module that
is implemented using the Java Authentication and Authorization Service (JAAS)
login module. The login module can be either Lightweight Third Party
Authentication (LTPA) or (Simple WebSphere Authentication Mechanism
(SWAM).

TCP/IP

SSL

IIOP

CSIv2 (or SAS)
Message layer protocols

Transport layer protocols
40 DCE Replacement Strategies

The authentication module uses the registry that is configured on the system to
perform authentication. The registry can be either the local operating system
(LocalOS), LDAP, or a custom registry (CustomRegistry). Once the user is
authenticated, the login module returns the user credentials to the EJB Security
Collaborator in the EJB Container, which is used by the Authorization Engine to
perform further access control checks.

WebSphere authorization mechanisms
The WebSphere Application Server standard authorization mechanisms are
based on the J2EE security specification and JAAS. JAAS extends the security
architecture of the Java 2 Platform with additional support to authenticate and
enforce access controls upon users.

The JAAS programming model enables the developer to design application
authentication and authorization in a pluggable fashion, which makes the
application independent from the underlying authentication and authorization
technology. The Java 2 security architecture uses security policy to specify who
is allowed to execute a piece of code of the application. Code characteristics,
such as a code signature, signer ID, or source server, decide whether the code
will be granted access to be executed or not. JAAS extends this approach with
role-based access control.

The J2EE specification defines a security role as “a logical grouping of users that
are defined by an Application Component Provider or Assembler.” Security roles
provide a mechanism whereby application developers determine the security
policies for an application by creating named sets of users (such as managers,
customers, and employees) that will have access to secure resources and
methods. At application assembly time, these sets of users, or security roles, are
not tied to any real users or groups of users. Instead, they are placeholders that
will be mapped to real users and groups at application deployment time, during a
process called security role mapping. The J2EE Containers are responsible for
enforcing access control on component objects and methods. Containers provide
two types of security: declarative security and programmatic security.

Declarative security
Declarative security is the means by which an application’s security policies can
be expressed externally to the application code. At application assembly time,
security policies are defined in an application’s deployment descriptor. A
deployment descriptor is an XML file that includes a representation of an
application’s security requirements, including the application’s security roles,
access control, and authentication requirements. When using declarative
security, application developers are free to write component methods that are
completely unaware of security. By making changes to the deployment
 Chapter 2. Replacement technologies 41

descriptor, an application’s security environment can be changed radically
without requiring any changes in application code.

Programmatic security
Programmatic security is used when an application must be “security aware.” For
instance, a method might need to know the identity of the caller for logging
purposes, or it might perform additional actions based on the caller’s role. The
J2EE specification provides an API that includes methods for determining both
the caller’s identity and role. The enterprise bean methods are: isCallerInRole
and getCallerPrincipal.

Please note that WebSphere also can be configured to use external
authorization systems, such as IBM Tivoli Access Manager. Please refer to the
IBM Redbook IBM WebSphere V5.0 Security for more details.

WebSphere delegation
Delegation enables an intermediary enterprise bean to perform a task initiated by
a caller under the identity of that very caller or another specific security identity.
The WebSphere Application Server product provides delegation by implementing
the run-as feature of the J2EE specification. Run-as rules can be applied on
enterprise bean level or on enterprise bean method level. LTPA tokens are used
to carry run-as identities to downstream servers.

The run-as feature is comparable to the impersonation delegation feature of
DCE. With DCE impersonation, an intermediate server is allowed to impersonate
only the original caller, if that one allows for it.

WebSphere Application Servers also support CSIv2 identity assertion. However
CSIv2 identity assertion is not really identity delegation, as it does not provide the
downstream server(s) with means to authenticate the asserted identities.

For the sake of completeness, it is worth mentioning that DCE also provides
sealed delegation. With DCE sealed delegation, each downstream server
receives the credentials of all intermediate servers in the upstream chain.
WebSphere Application Server does not provide this type of delegation.

WebSphere protocols: RMI over IIOP
Figure 2-2 on page 43 gives an overview of how a CORBA or J2EE application
client binds to an Application Server in the J2EE model. All communications from
the application client to the Application Server use RMI over IIOP. RMI over IIOP
is the RPC mechanism that can replace DCE RPC. RMI over IIOP, unlike pure
RMI, enables J2EE applications to communicate with CORBA clients and
servers.
42 DCE Replacement Strategies

Figure 2-2 J2EE connection process using RMI over IIOP

The different communications that take place in a J2EE connection process are
described in reference to the numbers in Figure 2-2:

1. At startup time, among other activities, the J2EE application binds the IOR to
a home object with the Application Server’s name service, using the JNDI
interface.

2. When starting up, the application client makes an initial connection to the
Application Server.

3. The application client uses JNDI or CosNaming to look up the IOR to the
desired home interface of the enterprise bean.

4. The application client uses the IOR, obtained in the previous step, and
narrows it down to the home object of the enterprise bean. The home stub is
the client side implementation of the bean’s home interface.

5. In the next step, the application client calls the home stub’s create method to
obtain an object reference to the corresponding remote interface of the

Bean
instance

J2EE Application Server

2

5

7

home
stub

home
skeleton

remote
skeleton

Container

remote
stub

6

connect

lookup

use

create

3

business methods

5
use

<initial naming context>
<home context>

<home object>

narrow

load

Deployed
EAR-File

bind1

5

Name Space

Application
Client

6

load

4

 Chapter 2. Replacement technologies 43

enterprise bean. On the server side, an instance of the desired enterprise
bean is created and the create method of that enterprise bean is invoked.
After successful completion, an object reference to the newly created bean
instance is returned to the application client. The remote stub is the client side
implementation of the bean’s remote interface.

6. In this step, the application client uses the object reference to the enterprise
bean’s remote interface to call business methods exposed in this interface.

7. A request to a method of the enterprise bean’s remote interface is not routed
directly to the corresponding enterprise bean instance, but is received by the
J2EE Application Servers container, in which the enterprise bean is deployed.
After performing container-specific duties, such as checking client access or
performing enterprise bean activation, the request is finally forwarded to the
enterprise bean instance.

WebSphere network deployment
Figure 2-3 on page 45 shows an overview of IBM WebSphere Application Server
network deployment configuration. Although this is not of particular importance
for understanding DCE replacement strategies, it is interesting to note that the
WebSphere network deployment uses the term cell, which is not to be confused
with a DCE cell. A cell in the WebSphere network deployment is a grouping of
nodes into a single administrative domain. A node is a logical grouping of
WebSphere managed server processes that share common configuration and
operational control. The Application Servers inside each node provide the
run-time environment for the enterprise application.

For each Java application component, the WebSphere Application Server
provides containers (namely a Web container, EJB container, and JCA container)
to enable the execution of the components. The Web container processes
servlets, Java Server Page (JSP) files, and other types of server-side includes.
The EJB container provides an interface between enterprise beans and the
Application Server. It provides all of the run-time services to deploy and manage
enterprise beans.

The WebSphere Deployment Manager provides a single point of administrative
control for all elements in the cell. The node agent on each node coordinates with
the deployment manager to synchronize the configuration and to perform
management operations on behalf of the deployment manager.

The application client container is a separately installable component on the
client machine(s), and it hosts J2EE clients. These clients communicate with the
enterprise applications deployed on the WebSphere Application Servers.
44 DCE Replacement Strategies

Figure 2-3 IBM WebSphere Application Server architectural overview

WebSphere naming service
The WebSphere naming implementation is composed of Java Naming, Directory
Interface (JNDI) and CosNaming. JNDI provides the client-side access to
naming, presents the programming model used by application developers, and is
essentially built on top of CosNaming. CosNaming provides the server-side
interface and is where the name space is actually stored. The name space can
be accessed and manipulated through a name server.

In WebSphere, an initial context for a name server is associated with a bootstrap
host (machine on which the name server is running) and a bootstrap port. These
combined values can be viewed as the address of the name server that owns the
initial context. Naming clients can use the JNDI interface or the CosNaming
interface to access the name space. Each naming client must be configured
specifically to bootstrap (bind) to the name space root of a chosen Application
Server, node agent, or deployment manager. In case of J2EE clients, as each

Deployment Manager

Node Agent

Application Server

Name Server

Admin Service

Web Container

EJB Container

Security Server

Node

Cell

Client
Container

Admin Service
Name Server

J2EE Clients

JCA ContainerE
nt

er
pr

is
e

A
pp

lic
at

io
ns
 Chapter 2. Replacement technologies 45

client runs in its own JVM, the bootstrap host and port properties can be set as
environment variables of the JVM. In case of CORBA clients, these properties
either are specified in a configuration file or can be passed to the server as
run-time properties.

A JNDI binding to a name space can be a simple name (used when the object
being looked up is located on the same Application Server), a corbaname, or a
compound name (fully qualified name). The corbaname form is used when
performing a direct URL lookup using a previously obtained initial context.

Figure 2-4 shows the naming topology of WebSphere Application Server V5.

Figure 2-4 Naming topology

Features of WebSphere Application Server V5 name space include:

� The name space is distributed: The name space for a cell is distributed
among the various servers. The Deployment Manager, node agent, and
Application Server processes all host a name server. System artifacts, such
as enterprise bean homes and resources, are bound to the server root of the
server they are associated with.

� Transient and persistent partitions: The name space is partitioned into
transient areas and persistent areas. Server roots are transient.

Node Agent 1 Node Agent 2

Name space

Name space

Application Server 1

Name space

Name space

Application Server 2

Name space

Deployment ManagerNaming
Client

JNDI

JNDI

Name space links
46 DCE Replacement Strategies

System-bound artifacts, such as enterprise bean homes and resources, are
bound under server roots. There is a cell persistent root, which can be used
for cell-scoped persistent bindings, and a node persistent root, which can be
used to bind objects with a node scope.

� Federated name space structure: A name space can contain naming context
bindings to contexts located in other servers. If this is the case, the name
space is said to be a federated name space, because it is a collection of
name spaces from multiple servers. The name spaces link together to
cooperatively form a single logical name space.

� Configured bindings: The configuration graphical interface and script
interfaces can be used to configure bindings in various root contexts within
the name space. These bindings are read-only and are bound by the system
at server startup.

� Support for CORBA Interoperable Naming Service (INS) object URLs:
WebSphere Application Server V5 contains support for CORBA object URLs
(corbaloc and corbaname) as JNDI provider URLs and lookup names.

WebSphere application architecture
One significant difference in the architectures of distributed DCE and WebSphere
applications must be considered when migrating DCE applications to
WebSphere. As with DCE, the WebSphere infrastructure distinguishes between
client and server platforms concerning the middleware configuration. However, a
DCE application server or client can run on every node that is configured into a
DCE cell, regardless of whether that node is configured as DCE client (hosting
just the DCE client runtime) or server (hosting Security and/or CDS server). In a
WebSphere environment, on the other hand, Application Servers must be homed
on a WebSphere server platform, so in a new WebSphere environment, all
migrated DCE Application Servers must be moved to dedicated WebSphere
server platforms. This must be considered when planning the system topology of
the distributed environment.

This does not apply to a CORBA environment, because CORBA does not use
distinct server and client environments.

2.4 Summary
Table 2-1 on page 48 summarizes the information presented in this section. It
provides the following information:

� The DCE service that you will need to replace.

� The industry standards related to the service.

� The IBM implementation.
 Chapter 2. Replacement technologies 47

� The major platforms on which the implementation is available. (The list may
not be complete.)

� The programming language or languages for the implementation.

� The data that you will need to migrate to the new implementation.

Table 2-1 Summary of recommended replacement technologies

Technology Services Industry
standards

IBM
implemen-
tations

Major
Platforms

Programming
languages

Data
migration

aznAPI PAC
Authorization
UUID

The Open
Group
aznAPI

IBM Tivoli
Access
Manager

AIX
Linux
Solaris
Windows

C/C++
Java

Users,
groups, and
group
memberships

CORBA Any or all of the
RPC services

OMG
specifications

IBM
WebSphere
Application
Server

AIX
Linux
OS/400
OS/390
Solaris
Windows

Java
C/C++
(client only)

Not supported

DCE RPC Any or all of the
RPC services

DCE None Not applicable Not Applicable Not applicable

DCE UUID UUID DCE None Not applicable Not applicable Not applicable

J2EE Authentication
Authorization
Backing store
Delegation
Directory
Messaging
PAC
Protection
RPC (any or all
of the RPC
services)

J2EE
deployment
specification
J2EE
technology
standards
IETF
standards
CORBA
standards

IBM
WebSphere
Application
Server

AIX
Linux
HP-UX
OS/400
OS/390
Solaris
Windows

Java Users,
groups, and
group
memberships

Kerberos
Version 5

Authentication
Delegation
GSS-API
Login
Protection

IETF RFCs:
1510
1964
2743
2744

IBM Network
Authentication
Service

AIX
OS/390
OS/400 (client
only)

C Principals
and policies
48 DCE Replacement Strategies

1IBM supports a Java implementation of Web services in IBM WebSphere Appli-
cation Server.

LDAP Directory
Registry
Backing store
ERA

IETF RFCs:
1274
1777
1778
1779
1823
2052
2219
2222
2247
2251-2256
2891

IBM Directory
Server

AIX
HP-UX
Linux
RedHat
Solaris
Windows

C
Java (using
JNDI
interfaces)

Registry and
ERA data

NTP Time IETF RFC
1305

IBM AIX
(Version 4.2
or later)

AIX C Not applicable

Platform
auditing

Auditing None IBM AIX AIX C/C++ Not applicable

Platform
logging and
messaging/
UNIX
logging and
messaging

Serviceability The Open
Group UNIX
98, POSIX
1-1996
standards

All IBM
operating
systems

All IBM
platforms

C/C++ Message
catalog files

Platform
logging and
messaging/
Windows
logging and
messaging

Serviceability None None Not applicable Not applicable Not applicable

POSIX
1003.1c

Threads POSIX
1003.1c

IBM AIX AIX C Not applicable

Web
services (for
C/C++)

Any or all of the
RPC services

WSDL
SOAP
UDDI

Web services
toolkit
WebSphere
Application
Server

Not known Java1 Not supported

Technology Services Industry
standards

IBM
implemen-
tations

Major
Platforms

Programming
languages

Data
migration
 Chapter 2. Replacement technologies 49

50 DCE Replacement Strategies

Chapter 3. Replacement strategies

This chapter recommends strategies for replacing direct dependencies on DCE
services:

� The first part recommends strategies for applications written in C and C++.

� The second part recommends strategies for applications migrated to Java.

� The third part recommends strategies for applications in which a combination
of C/C++ and Java is used.

This chapter references technologies and IBM implementations of these
technologies. For information about these technologies and IBM
implementations, see Chapter 2, “Replacement technologies” on page 19.

3

© Copyright IBM Corp. 2003. All rights reserved. 51

3.1 Replacement strategies for C/C++ applications
The following subsections recommend C/C++ strategies for replacing direct
dependencies on many DCE services. Each section presents a DCE service,
states whether a C/C++ strategy is recommended to replace direct dependencies
to the service, and provides a high-level description of implementing the strategy.

3.1.1 Auditing
The recommended C/C++ strategy for replacing direct dependencies to the DCE
auditing service is to use auditing interfaces provided by the operating system
platform. (See section 2.2.8, “Platform auditing” on page 31.)

Take the following steps to implement this strategy.

Administrator
The administrator must use platform auditing interfaces rather than DCE auditing
interfaces.

Developer
The developer must revise the applications to use platform API auditing
interfaces rather than DCE API auditing interfaces.

Many application environments indirectly depend on configuring some of the
DCE servers to audit internal events on the server. If your environment has this
indirect dependency, you must consider whether the replacement servers that
you will use offer similar auditing capability.

Table 3-1 lists each DCE server that can be configured for auditing, the server
that is recommended for C/C++ applications to use as a replacement for this
DCE server, and whether the recommended replacement server can be
configured for auditing.

Table 3-1 DCE server replacements for auditing

DCE server Recommended replacement server Auditing?

DCE authentication
server

IBM Network Authentication Service
server

See the
following note

DCE directory server IBM Directory Server Yes

DCE privilege server IBM Tivoli Access Manager server Yes

DCE registry server IBM Directory Server Yes

DCE time server IBM AIX NTP server No
52 DCE Replacement Strategies

3.1.2 Authentication
No DCE applications depend directly on the DCE authentication service because
this service can be accessed indirectly only by means of the DCE GSS-API or
RPC security services. For applications that indirectly depend on the DCE
authentication service by means of DCE GSS-API, see 3.1.6, “Delegation,
GSS-API, and login” on page 56. For applications that indirectly access the DCE
authentication service by means of DCE RPC security, see 3.1.19, “RPC
services” on page 63.

3.1.3 Authorization, PAC, and UUID
The following alternate C/C++ strategies are recommended for replacing direct
dependencies on the DCE authorization and PAC services:

Option 1 Use IBM Tivoli Access Manager and IBM Directory Server. IBM Tivoli
Access Manager contains the IBM implementation of the aznAPI
technology. (See section 2.2.1, “aznAPI” on page 22 for more
information.) IBM Directory Server is the IBM implementation of the
LDAP technology. (See section 2.2.6, “LDAP” on page 28 for more
information.)

Option 2 Use user-written code, IBM Directory Server, and DCE UUID code.
(See section 2.2.4, “DCE UUID” on page 26 for more information.)

Option 1: IBM Tivoli Access Manager
This strategy is recommended for customers who do not want to develop and
maintain their own authorization code. Using this option, an external product
(IBM Tivoli Access Manager) handles all of the logic associated with
authorization, including storing ACLs and objects in a database, getting PACs for
users, and determining authorization of users. IBM Tivoli Access Manager is

Note: The IBM Network Authentication Service servers cannot be configured
explicitly for auditing. However, the IBM Network Authentication Service KDC
server can be configured to log information about all of the attempts to get
initial and service tickets. In addition, the administration server of the IBM
Network Authentication Service can be configured to log information about the
attempts to store authentication data. The log information might be used as an
audit trail.

Also, in a configuration where IBM Network Authentication Service uses an
IBM Directory Server as its user registry, the IBM Directory Server auditing
services can be used.
 Chapter 3. Replacement strategies 53

configured to use IBM Directory Server as its LDAP-based database for group
information so that DCE data can be migrated to IBM Tivoli Access Manager.

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the IBM Directory Server.

� Install the IBM Tivoli Access Manager servers.

� Configure privilege data (users, groups, and group memberships) in the IBM
Tivoli Access Manager privilege database. Some of this data can be migrated
from the DCE registry database by performing this procedure:

a. Load the IBM Tivoli Access Manager schema into IBM Directory Server.

b. Upgrade to DCE Version 3.2 and use DCE Version 3.2 to migrate the
entire DCE registry database to IBM Directory Server. (Prior versions of
DCE do not support this registry migration.)

c. Configure the IBM Tivoli Access Manager privilege database so that it
uses some of the DCE-migrated data. Note that this procedure must be
done in a certain sequence. Refer to Chapter 5, “Using DCE objects with
IBM Tivoli Access Manager” on page 85 and to the document IBM DCE
Version 3.2 for AIX and Solaris: DCE Security Registry and LDAP
Integration Guide.

� Configure the authorization data (object and ACL data), which currently is in
an application-specific database, into the IBM Tivoli Access Manager
authorization database. IBM does not provide a procedure for migrating this
data from the application-specific authorization database into the IBM Tivoli
Access Manager authorization database.

� Manage the privilege and authorization data using the interfaces of the IBM
Tivoli Access Manager rather than DCE. (Exception: DCE and IBM Tivoli
Access Manager can be configured to share some of the same privilege data,
which might be helpful during a staged migration. If you are sharing privilege
data, you must manage this data using a combination of DCE and Tivoli
Access Manager interfaces. Refer to Chapter 5, “Using DCE objects with IBM
Tivoli Access Manager” on page 85.

Developer
The developer must make the following changes to the applications:

� Remove any user-written authorization code, back-end rdacl code, and
user-written ACL database code.
54 DCE Replacement Strategies

� Remove any calls to the DCE authorization APIs (dce_acl_*, priv_*,
sec_acl_*, sec_cred_*, sec_id_*, rpc_binding_*auth_*)

� Revise the application servers to control access to objects by calling the IBM
Tivoli Access Manager API interfaces (azn*). The IBM Tivoli Access Manager
API accept, as input, an identity (such as a Kerberos identity), an object, and
the desired permissions. Then, IBM Tivoli Access Manager outputs an
authorization decision. The logic for acquiring and reading a user PAC, finding
an object, finding and reading the ACL on the object, and making a
comparison between the PAC, the ACL, and the desired permissions is
handled internally by IBM Tivoli Access Manager.

Option 2: User-written authorization code
This strategy is recommended for customers who have a large investment in
user-written authorization code and want to continue using this code. This
strategy also is recommended for customers who want to have complete control
over their authorization code.

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the IBM Directory Server.

� Acquire the DCE UUID code, and use it to create a DCE UUID generator. The
DCE UUID code can be acquired, for example, from The Open Group
(http://www.opengroup.org).

� Upgrade to DCE Version 3.2, and migrate the entire DCE registry database to
the IBM Directory Server. (Refer to the document IBM DCE Version 3.2 for
AIX and Solaris: DCE Security Registry and LDAP Integration Guide.) Note
that prior versions of DCE do not support this migration.

� Manage the privilege data (user, group, and group membership data) using
the interfaces of IBM Directory Server and the DCE UUID generator. To
determine where migrated privilege data is stored, refer to the information on
the DCE LDAP schema as documented in the IBM DCE Version 3.2 for AIX
and Solaris: DCE Security Registry and LDAP Integration Guide.

Developer
The developer must make the following changes to the applications:

� If the backend object and ACL databases were created using the DCE
backing store APIs (dce_db_*), move these databases to the replacement
strategy you are using for the DCE backing store service.
 Chapter 3. Replacement strategies 55

http://www.opengroup.org

� Replace all of the calls to the DCE authorization APIs (dce_acl_*, priv_*,
sec_acl_*, sec_cred_*, sec_id_*, rpc_binding_*auth_*) with user-written
code.

� Assuming that the replacement authentication service is IBM Network
Authentication Service or another implementation of the Kerberos technology,
the application server can receive only a principal name from this service.
Therefore, add the following logic to the application server:

– Using a principal name, search IBM Directory Server for the UUID of the
principal and the UUID of each group to which the principal is a member.
To determine where in IBM Directory Server this data is stored, refer to the
information on the DCE LDAP schema in the document IBM DCE Version
3.2 for AIX and Solaris: DCE Security Registry and LDAP Integration
Guide.

– Pass this information (the same information that is in a PAC) to the
user-written authorization code.

3.1.4 Backing store
The recommended C/C++ strategy for replacing direct dependencies to the DCE
backing store service is to use IBM Directory Server, which is the IBM
implementation of the LDAP technology. (See section 2.2.6, “LDAP” on page 28
for more information.)

The following steps are required to implement this strategy.

Administrator
The administrator must install the IBM Directory Server and manually configure,
in IBM Directory Server, the data that currently is configured in the DCE
back-end database.

Developer
The developer must revise the applications to access back-end data using the
LDAP-APIs of IBM Directory Server rather than DCE.

3.1.5 Configuration
There is no recommended strategy for replacing the DCE configuration service.
This service configures DCE and is not needed when DCE is removed.

3.1.6 Delegation, GSS-API, and login
The recommended C/C++ strategy for replacing direct dependencies to the DCE
delegation, GSS-API, and the login services is to use IBM Network
56 DCE Replacement Strategies

Authentication Service, which is the IBM implementation of the Kerberos
technology. (See section 2.2.5, “Kerberos” on page 26 for more information.)

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the IBM Directory Server.

� Install the IBM Network Authentication Service servers.

� Configure authentication data in the authentication database of IBM Network
Authentication Service. This data can be migrated from the DCE registry
database with the following procedure:

a. Upgrade to DCE Version 3.2 and use DCE Version 3.2 to migrate the
entire DCE registry database to the IBM Directory Server. (Refer to the
document IBM DCE Version 3.2 for AIX and Solaris: DCE Security
Registry and LDAP Integration Guide.) Note that prior versions of DCE do
not support this migration.

b. Configure IBM Network Authentication Service to use DCE-migrated data.
(Refer to Chapter 4, “Using DCE data with IBM Network Authentication
Service” on page 75 and to the document IBM DCE Version 3.2 for AIX
and Solaris: DCE Security Registry and LDAP Integration Guide.)

� Manage the authentication data using the interfaces of IBM Network
Authentication Service rather than DCE. (Exception: DCE and IBM Network
Authentication Service can be configured to share some of the same
authentication data, which might be helpful during a staged migration. If you
are sharing this data, you must manage it using a combination of DCE and
IBM Network Authentication Service interfaces. Refer to Chapter 4, “Using
DCE data with IBM Network Authentication Service” on page 75.)

Developer
The developer must make the following changes to the applications:

� Revise any DCE login and delegation API calls (sec_login_*) to use the
Kerberos APIs provided with IBM Network Authentication Service. If the
application makes use of sealed delegation, this must be changed to
impersonation delegation because the Kerberos technology only supports
impersonation delegation.

� Revise any gss_init_sec_context calls to use Kerberos rather than the DCE
GSS-API mechanism.

� Remove any DCE-specific GSS-API calls (gssdce_*) and, if required, replace
them with comparable API calls.
 Chapter 3. Replacement strategies 57

3.1.7 Directory
The recommended C/C++ strategy for replacing direct dependencies on the DCE
directory service is to use IBM Directory Server, which is the IBM implementation
of the LDAP technology. (See section 2.2.6, “LDAP” on page 28 for more
information.)

The following actions are required to implement this strategy.

Administrator
The administrator must install IBM Directory Server and configure in it the data
that the application needs to access directly.

Developer
The developer must revise the applications to access directory data using the
APIs of IBM Directory Server (which are LDAP APIs) rather than the DCE APIs.

3.1.8 Extended Registry Attributes
The recommended C/C++ strategy for replacing the ERA service is to use IBM
Directory Server, which is the IBM implementation of the LDAP technology.

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the IBM Directory Server.

� Upgrade to DCE Version 3.2 and use it to migrate the entire DCE registry
database to IBM Directory Server. (Refer to the document IBM DCE Version
3.2 for AIX and Solaris: DCE Security Registry and LDAP Integration Guide.)
Prior versions of DCE do not support this registry data migration to an LDAP
directory.

� Manage the ERA data using the interfaces of IBM Directory Server rather
than DCE. To determine where in IBM Directory Server the migrated ERA
data is stored, refer to the information on the DCE LDAP schema as
documented in IBM DCE Version 3.2 for AIX and Solaris: DCE Security

Note: At the time of writing, IBM does not offer Network Authentication
Service on the Windows platform. However, Windows 2000 can be configured
to be a Kerberos client to an IBM Network Authentication Service server, as
demonstrated in Chapter 8, “Scenario 1: GSS-API application” on page 125.
58 DCE Replacement Strategies

Registry and LDAP Integration Guide. As noted in this documentation, the
ERA data is stored as part of a binary structure, so it will be necessary to
parse this structure to obtain the ERA data. To determine how to read the
binary ERA data, read Chapter 6, “Binary structure of DCE ERA data in
LDAP” on page 105. To create new ERA types, use the interfaces of IBM
Directory Server to add new attribute types to the IBM Directory Server
schema.

Developer
The developer must change the application to use the APIs of IBM Directory
Server (which are LDAP APIs) rather than DCE APIs to read ERA data.

3.1.9 Event management
There is no C/C++ recommended strategy for replacing direct dependencies to
the DCE event management service. This service monitors events on DCE
servers. When DCE is removed, this service is no longer needed.

Your application might indirectly depend on monitoring events on DCE servers. If
this is the case, check each implementation that you will use to replace the DCE
servers to determine whether the replacement implementation offers a similar
event monitoring capability.

3.1.10 GSS-API
See section 3.1.6, “Delegation, GSS-API, and login” on page 56.

3.1.11 Host management
There is no C/C++ recommended strategy for replacing direct dependencies to
the DCE host management service. Few DCE applications directly depend on
this service.

3.1.12 Integrated login
There is no C/C++ recommended strategy for replacing the DCE integrated login
service because this service cannot be accessed directly by DCE applications.
Many application environments indirectly depend on users using their local
platform to perform a login that is integrated with the DCE login service. If your
application has this indirect dependency, you need to consider whether your local
operating system platform can perform an integrated login with the replacement
strategy you are using for the DCE login service.
 Chapter 3. Replacement strategies 59

IBM AIX supports integrated login with IBM Network Authentication Service.
Many other platforms also support integrated login. For example, many UNIX
platforms support Pluggable Authentication Modules (PAM), and all Windows
platforms support Graphical Identification and Authentication (GINA).

3.1.13 Login
See section 3.1.6, “Delegation, GSS-API, and login” on page 56.

3.1.14 Messaging
The recommended C/C++ strategy for replacing direct dependencies on the DCE
messaging service is to use the platform messaging interfaces. (See section
2.2.9, “Platform logging and messaging” on page 31 for more information.) Note
that messaging in this context refers only to the handling of messages within an
application and not to the communication of messages between applications,
which is handled by a different type of service. Because UNIX and Windows
messaging are both designed to be used by a single system, neither supports
the concept of associating a unique cell-wide number, such as a status code,
with a message.

To implement this strategy using UNIX messaging, the developer must refer to
the platform-specific documentation on how to use XPG4 messaging to support
multiple languages. On the AIX platform, see Chapter 16, National Language
Support, of the AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs, available from the AIX library at:

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

Similar documentation for Solaris can be found in Chapter 7, Writing
Internationalized Code, of the Solaris Internationalization Guide For Developers,
available at the following Web site:

http://docs.sun.com/db/doc/802-5878?q=catopen

Because UNIX messaging uses XPG4 messaging standards, which are the
standards that DCE uses, you can use the DCE message source files (*.msg)
and message output files (*.cat) without making any changes to these files.

To implement this strategy using Windows message handling, the developer
must refer to the Windows documentation on how to use Windows message
resource files and functions to support multiple languages based on the
Windows regional settings. For a discussion and examples of Microsoft
60 DCE Replacement Strategies

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
http://docs.sun.com/db/doc/802-5878?q=catopen

proprietary messaging support, see the document Writing Multilingual User
Interface Applications, available at:

http://www.microsoft.com/globaldev/handson/dev/muiapp.mspx

Because Windows messaging files are in a proprietary format, migrate the DCE
message source files to the Windows format.

3.1.15 PAC
See section 3.1.3, “Authorization, PAC, and UUID” on page 53.

3.1.16 Password strength
There is no C/C++ recommended strategy for replacing direct dependencies to
the DCE password strength service. Few applications directly depend on this
service.

Many applications indirectly depend on being able to configure DCE to enforce a
password strength policy when processing password create and password
change commands. If you have this indirect dependency, consider whether you
still will be using passwords with your replacement strategy for the DCE login
service and, if so, whether the replacement strategy you are using to create and
change these passwords offers a password strength service.

If you plan to use the strategies recommended in this paper for C/C++
applications, you will use the login service provided by IBM Network
Authentication Service and the administrative interfaces of IBM Network
Authentication Service to create and update passwords for the login service. The
administrative interfaces of IBM Network Authentication Service can be
configured to enforce the following password strength policies:

� Password dictionary file
� Password maximum lifetime
� Password minimum lifetime
� Password length

If you need more powerful password strength enforcement, do the following:

1. Develop an interface for users to use in creating and modifying passwords.
The interface needs to call a password strength server to validate the strength
of the password or to generate a password. Then, make the appropriate call
to the Network Authentication Service interfaces for creating and changing
passwords.
 Chapter 3. Replacement strategies 61

http://www.microsoft.com/globaldev/handson/dev/muiapp.mspx

2. Acquire or develop a password strength server. The password strength server
needs to perform expanded password checking based on the configuration of
password rules, dictionary lists, and policies.

3.1.17 Protection
There are no DCE applications that directly access this service because it
can be accessed indirectly by means of the DCE GSS-API or RPC security
services only. For applications that indirectly access the DCE protection
service by means of DCE GSS-API, see section 3.1.6, “Delegation, GSS-API,
and login” on page 56. For applications that indirectly access the DCE
protection service by means of DCE RPC security, see section 3.1.19, “RPC
services” on page 63.

3.1.18 Registry
The recommended C/C++ strategy for replacing direct dependencies to the DCE
registry service is to use IBM Directory Server, which is the IBM implementation
of the LDAP technology. (See section 2.2.6, “LDAP” on page 28 for more
information.)

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the IBM Directory Server.

� Upgrade to DCE Version 3.2 and use it to migrate the entire DCE registry
database to IBM Directory Server. Prior versions of DCE do not support this
registry data migration to LDAP. (Refer to the document IBM DCE Version 3.2
for AIX and Solaris: DCE Security Registry and LDAP Integration Guide.)

� Manage the registry data using the interfaces of IBM Directory Server rather
than DCE. To determine where in IBM Directory Server the migrated registry
data is stored, refer to the information on the DCE LDAP schema as
documented in IBM DCE Version 3.2 for AIX and Solaris: DCE Security
Registry and LDAP Integration Guide.

Developer
The developer must change the application to use the API interfaces of IBM
Directory Server rather than DCE to read registry data.
62 DCE Replacement Strategies

3.1.19 RPC services
The following alternate strategies are recommended for replacing direct
dependencies to the DCE RPC services:

Option 1 Use an implementation of the CORBA technology. (See section
2.2.2, “CORBA” on page 23 for more information.)

Option 2 Use an implementation of the Web Services technology. (See section
2.2.11, “Web services” on page 33 for more information.)

Option 3 Use a stand-alone implementation of the DCE RPC technology.

Option 1: Implementation of CORBA
This strategy uses a C/C++ implementation of the CORBA technology to replace
all of the DCE RPC services. Because different implementations of CORBA are
not always able to interoperate, it is recommended that you either use the same
CORBA implementation for the application clients and servers, or use different
CORBA implementations that have been tested against each other.

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the servers provided by the CORBA implementation. For example, it
might be necessary to install a security server provided by the CORBA
implementation.

� If the CORBA implementation you are using provides security support for
clients and servers, configure the authentication data required by the CORBA
implementation. For example, if the CORBA implementation performs
authentication based on user identities and passwords, user identities and
passwords must be configured for all user clients. If the CORBA
implementation performs authentication based on public certificates, it will be
necessary to acquire certificates for all user clients and configure a way of
mapping these certificates to user identities.

Developer
The developer must revise, redesign, and re-code the application to use CORBA
rather than the DCE RPC programming model.
 Chapter 3. Replacement strategies 63

Option 2: Web services
This strategy uses a C/C++ implementation of the Web services. As Web
services is a new technology, the following must be considered:

� Few implementations of Web services currently exist for a C/C++
development environment.

� At the time of writing, a standard for Web services security has not been set.
For information about the proposed standard, refer to:

http://www.ibm.com/developerworks/library/ws-secure/

The following steps are required to implement this strategy.

Administrator
The administrator must make the following changes to the application
environment:

� Install the servers provided by the Web Services implementation. For
example, it might be necessary to install a security server provided by the
Web Services implementation.

� Configure the authentication data required by the Web Services
implementation. For example, if the Web Services implementation performs
authentication based on user identities and passwords, user identities and
passwords must be configured for all user clients. If the Web Services
implementation performs authentication based on public certificates, it will be
necessary to acquire certificates for all user clients and configure a way of
mapping these certificates to user identities.

Developer
The developer must redesign the application to use the Web services rather than
the DCE RPC programming model and migrate the DCE RPC data to the data
format required by Web services. The following provides a loose mapping
between DCE RPC functions and the Web services counterparts:

� The DCE application client and server map to the Web services service
requestor and provider.

� The DCE RPC export and import operations map to the Web services publish
and find operations.

� The DCE RPC bind operation maps to the Web services bind operation.

� The DCE RPC manager routine invoked by the DCE application server maps
to the actual Web services implementation.

� The DCE RPC namespace maps to a subset of the Web services service
registry. (The information stored in the service registry is more extensive than
64 DCE Replacement Strategies

http://www.ibm.com/developerworks/library/ws-secure/

the information stored in the DCE RPC namespace, as noted in the next
bullet.)

� The DCE RPC IDL specification maps to the Web services service
description. The mapped information includes data types, operations, binding
information, and network location. However, with Web services, the service
requester can discover all of this information dynamically during run time.
With DCE, the application client statically links in the data type and operation
information and discovers only the binding and network location information
dynamically during run time.

Option 3: A stand-alone offering of DCE RPC

This optional strategy is applicable only if a stand-alone offering of the DCE RPC
technology becomes available. This offering would have to include, at minimum,
an implementation of the RPC basics service, which is comprised of:

� IDL compiler (which generates client/server stub code)
� RPC run-time server routines (rpc_server_*)
� RPC run-time binding routines (rpc_binding_*)
� RPC run-time management routines (rpc_mgmt_*)
� RPC run-time object routines (rpc_object_*)
� RPC run-time memory management routines (rpc_sm_*, rpc_ss_*)
� UUID routines (uuid_*)

It also might include:

� RPC namespace APIs (rpc_ns_*). These APIs would use a non-DCE
directory server, such as an LDAP directory server, for storing namespace
information.

� RPC endpoint APIs (rpc_ep_* and rpc_mgmt_ep_*). These APIs would use a
non-DCE host or file server, such as a stand-alone implementation of the
DCE host server or a non-DCE distributed file server, for storing endpoint
information.

� RPC security (rpc_*auth*) APIs. These APIs would use a non-DCE security
server, such as the Kerberos KDC server provided by IBM Network
Authentication Service, to process authentication and protection protocols.

If such an offering were made available and required the use of non-DCE
servers, the administrator would have to migrate to the non-DCE servers.
However, the developer probably would have to make only minor modifications to

Note: This optional strategy is not available currently because a stand-alone
offering of DCE RPC does not exist as a product.
 Chapter 3. Replacement strategies 65

the application, if any, because it would be expected that the RPC API interfaces
would remain the same.

3.1.20 Serviceability
There is no recommended C/C++ strategy for replacing direct dependencies to
all of the functions offered by DCE serviceability. However, a platform-specific
strategy is recommended to replace the primary function offered by DCE
serviceability, which is the logging function. On UNIX platforms, the
recommended strategy is to use UNIX logging. On Windows platforms, the
recommended strategy is to use Windows logging. As stated previously, these
two strategies replace only the logging function and do not replace other
serviceability functions, such as controlling the types of messages that are
logged and forwarding messages to an event management service.

To implement this strategy on UNIX-compliant platforms, the developer must
refer to the platform-specific documentation on the syslog() function. This
function is somewhat similar to DCE serviceability. This error-logging scheme
does not automatically fetch a status code’s error text from a message catalog as
DCE serviceability does, but it supports a similar type of facility-based logging.
For a discussion and examples of how to use the syslog() interface on the AIX
platform, see the AIX 5L Version 5.1 Technical Reference: Base Operating
System and Extensions, Volume 2, available at the following Web site:

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

Similar documentation for Solaris can be found in the online Sun Solaris product
documentation, section 3: Basic Library Functions, syslog(3C) at:

http://docs.sun.com/db/doc/806-0627/6j9vhfn8g?a=view

To implement this strategy on the Windows platform, the developer must refer to
the Windows documentation describing Windows proprietary logging to the
Windows Event Log, using functions such as RegisterEventSource() and
ReportEvent(). When used in conjunction with message resource files, Windows
can log message text that is translated into the language that matches the
Windows regional settings. Search for Event Logging Operations for an overview
of Windows event logging and the associated API at:

http://msdn.microsoft.com/

Many application environments indirectly depend on configuring DCE servers to
log internal events on the server. If this is the case, check each replacement
server to determine whether the replacement server offers a similar logging
capability.
66 DCE Replacement Strategies

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
http://docs.sun.com/db/doc/806-0627/6j9vhfn8g?a=view
http://msdn.microsoft.com/

3.1.21 Threads
The recommended C/C++ strategy for replacing the DCE threads service is to
use an implementation of the POSIX 1003.c draft 10 threads technology. An IBM
implementation of this technology is available with AIX. Some independent
software vendors offer implementations of POSIX 1003.c draft 10 on other
operating system platforms. (For further information, see also section 2.2.10,
“POSIX 1003.1c threads” on page 32.)

To implement this strategy, the developer must port the DCE pthread API calls
(which are based on draft 4 of POSIX 1003.c) to the pthread calls defined by
draft 10 of POSIX 1003.c. The following provides a high-level description of the
types of porting issues that a developer must address.

Non-portable extensions in the draft 4 pthreads API
Draft 4 pthreads defines non-portable API routines that do not have equivalent
draft 10 pthreads API routines. These routines are designated by their _np
extensions.

Changes in API syntax
A number of pthread API routines must be mapped to a new syntax. As an
example, the draft 4 pthread routine pthread_mutexattr_create has been
renamed to pthread_mutexattr_init in draft 10.

Changes in data types
Some draft 4 pthreads data types must be replaced with those specified in draft
10. For example, the draft 4 pthread_startroutine_t start_routine pthreads
data type must be replaced by void *(*start_routine) (void *)in draft 10.

Changes in error codes
Draft 4 pthread functions return a –1 on error and set the global errno variable to
the appropriate value. Draft 10 pthread functions return all of the error numbers
as return values. Applications must be modified to handle error returns correctly.
In addition, some draft 10 pthread routines return different errno values than draft
4 pthreads do.

Changes in exception handling
Draft 10 pthreads do not support the DCE exception handling functionality.
Programs written to handle DCE exceptions must be rewritten to work with draft
10 pthreads. For cancellation clean-up handling, replace TRY/CATCH with
pthread_cleanup_push and pthread_cleanup_pop. Replace all other exception
handling with code that handles error returns from the draft 10 pthread_* calls.
 Chapter 3. Replacement strategies 67

Changes in thread functions
Some of the basic pthreads functionality has changed in draft 10. This means
that either the use of a pthread routine must be altered to preserve the intended
functionality or the program must adapt to the new functionality of the pthreads
routine. The areas where function has changed are listed next.

Default thread attributes
Draft 10 pthreads use NULL to indicate the use of default attribute properties,
instead of pthread_attr_default.

Thread detach/join
Draft 10 pthreads create a thread in a joinable state by default, as does draft 4.
However, draft 10 allows you to create a thread in a detached state. When you do
this, you do not have to call pthread_detach to detach the thread.

Scheduling
Significant changes were made in getting and setting thread scheduling policy
and priority. For example, draft 10 pthreads require you to use the sched_param
structure in conjunction with the pthread_setschedparam and
pthread_attr_setprio routines to specify scheduling policy and priority. In
contrast, draft 4 uses the pthread_setprio routine.

Mutexes
Draft 4 pthreads support three types of mutexes: fast, non-recursive, and
recursive. Draft 10 pthreads support non-recursive mutexes only. Applications
requiring other mutex types must provide them themselves.

Condition variables
Draft 4 pthreads provide a default value of pthread_condattr_default; in draft
10, this value is specified with a NULL value. Draft 10 supports static initialization
of condition variables and has changed the arguments to condition variable
initialization.

Thread cancellation
Draft 10 pthreads change the syntax of the pthread routines pertaining to thread
cancellation. In addition, the routines now return the previous state as a function
parameter.

Pre- and post-fork handling
The order of invocation of pre-fork handlers has been changed to last in, first out
(LIFO) in draft 10 pthreads. The order of post-fork handlers is first in, first out
(FIFO).
68 DCE Replacement Strategies

Changes in reentrant C library function
There are syntactical differences in the DCE libc_r and AIX libc_r routines.
However, the basic functionality of the routines is the same and just needs to be
mapped.

3.1.22 Time
There is no recommended C/C++ strategy for replacing direct dependencies to
the DCE time service. It is assumed that applications do not depend directly on
this service.

Many applications indirectly depend on using a time service to synchronize the
time on each system containing a DCE security authentication server, as this
server is time-sensitive. For applications that currently use the DCE time service
to handle this indirect dependency, the recommended replacement is to use a
platform-specific implementation of the Network Time Protocol (NTP). AIX
includes an xntpd daemon, which is an AIX implementation of NTP.
Implementations of NTP are available on other platforms and some of these
implementations are freely available. For information about NTP, refer :

http://www.ntp.org/index.html

3.1.23 UUID
See section 3.1.3, “Authorization, PAC, and UUID” on page 53 for more
information.

3.2 Replacement strategy for Java applications
This section recommends a Java strategy for replacing direct dependencies to
DCE services. The strategy is to use IBM WebSphere Application Server and
IBM Directory Server. IBM WebSphere Application Server is the IBM
implementation of the J2EE technology. (See section 2.3, “Technologies for Java
applications” on page 34 for more information.) The IBM Directory Server is the
IBM implementation of the LDAP technology. (See 2.2.6, “LDAP” on page 28 for
more information.)

To implement this strategy:

� The architect must determine a new J2EE component architecture for the
DCE applications.

� The administrator must revise the application environment for the new
architecture.
 Chapter 3. Replacement strategies 69

http://www.ntp.org/index.html

� The developer must rewrite the DCE applications to run in the new
environment.

3.2.1 Determining a new architecture
The architect must determine a new J2EE component architecture to which each
DCE application will be rewritten. The following presents two examples of J2EE
component architectures. For complete information about J2EE component
architectures, refer to the J2EE and IBM WebSphere Application Server
documentation.

Example 1: Java client applications and enterprise beans
This example maps to a DCE application consisting of application clients,
application servers, and back-end application servers, with all communications
being performed using the DCE RPC protocol.

In this example, the DCE RPC clients are rewritten to be Java client applications,
the DCE RPC servers are rewritten to be enterprise beans, and the back-end
DCE RPC servers are rewritten to be back-end enterprise beans.

Figure 3-1 illustrates this example:

Figure 3-1 Java client and back-end enterprise beans

The Java client application or the client enterprise bean finds the desired method
using the Java Naming and Directory Interface (JNDI) and invokes the desired
method using Java Remote Method Invocation (RMI). If the enterprise bean
containing the desired method is located on a remote node, the client serializes,
marshals, and transmits the method invocation using CORBA IIOP and, if
necessary, secures the IIOP transmission using CORBA CSIv2.

The administrator can configure CSIv2 so that client identity information is
passed to the target enterprise bean using client basic authentication (client
passes its user identity and password), client certificate authentication (client
passes its public certificate using an SSL transport), delegation, or identity
assertion. If CSIv2 is configured to use an SSL transport, SSL passes the public
certificate of the target enterprise bean to the client and protects the privacy and
integrity of all transmitted data.

Java client

applications

Enterprise

beans

Back-end

enterprise beans
70 DCE Replacement Strategies

Example 2: Web clients, servlets, and enterprise beans
This example maps to a DCE application consisting of application clients,
application servers, and back-end application servers. In the DCE application,
communications between the application clients and servers is performed with a
Web protocol, and communications between the application servers and
back-end application servers is performed using the DCE RPC protocol.

In this replacement example, the application clients are rewritten to be Web
clients (for example, browsers, Java applets, or Java client applications), the
application servers are rewritten to be servlets, and the back-end application
servers are rewritten to be enterprise beans.

Figure 3-2 illustrates this example:

Figure 3-2 Web clients, servlets, and back-end enterprise beans

The Web client finds the servlets using some external method (such as an
Internet search engine), uses HTTP request and response commands to
communicate with the servlet, and if necessary, secures communications using a
Web login method.

The Web login method determines the authentication information that the client
passes to the servlet. The information might be HTTP basic authentication (client
passes its user identity and password), HTTP form-based authentication (client
passes its user identity and password in a HTML form), or HTTPS (client passes
its public certificate using an SSL transport). If SSL is configured, which it is with
HTTPS, SSL passes the public certificate of the servlet to the client and protects
the privacy and integrity of all transmitted data.

The servlets invoke methods on enterprise beans using the set of protocols
described in “Example 1: Java client applications and enterprise beans” on
page 70 (JNDI, RMI, IIOP, and CSIv2). This makes it possible to delegate or
assert a client identity to downstream enterprise beans.

Web clients Servlets
Back-end

enterprise beans
 Chapter 3. Replacement strategies 71

3.2.2 Revising the application environment for the new architecture
The administrator must revise the application environment required to run
applications in the new architecture by doing the following:

� Install WebSphere Application Server servers.

� If IBM Directory Server is being used as the registry database:

– Install IBM Directory Server.

– Configure each IBM WebSphere Application Server to use IBM Directory
Server as its registry database.

– Configure users and groups in IBM Directory Server. This information can
be migrated from DCE by upgrading to DCE Version 3.2, using it to
migrate the entire DCE registry database to IBM Directory Server, and
configuring IBM WebSphere Application Server to use DCE attributes for
user identity, group identity, and group membership information. For more
information about moving the DCE registry to the IBM Directory Server,
see the IBM DCE Version 3.2 for AIX and Solaris: DCE Security Registry
and LDAP Integration Guide.

For an example of configuring WebSphere Application Server to use the
DCE attributes that have been migrated to the IBM Directory Server, see
Chapter 10, “Scenario 3: Secure RPC application #1” on page 195.

– If authentication will be based on user passwords, configure a password in
IBM Directory Server for each user. (DCE passwords cannot be migrated
to IBM WebSphere Application Server.) If authentication will be based on
certificates, obtain a certificate for each user and configure a mapping
between the certificate and a user stored in IBM Directory Server. (IBM
WebSphere Application Server provides administrative tools to do this
mapping).

For an example of configuring a mapping between certificates and
migrated DCE identities, see “Configure LDAP filter rules” on page 218.

– Configure each IBM WebSphere Application Server to use Lightweight
Third Party Authentication (LTPA) as its authentication mechanism. Using
LTPA, IBM WebSphere Application Server will use information in its
registry database (in this case, IBM Directory Server) to validate
authentication information received from the client and associate a
credential, which is similar to a DCE PAC, with the client context.

– Configure any or all of the following as required by the J2EE architecture
that the applications will be using: CSIv2, SSL, and a Web login method.
72 DCE Replacement Strategies

3.2.3 Rewriting the DCE applications to the new architecture
To port a DCE application component to J2EE components, the developer must:

� Remove from the DCE application all of the system processing that will be
handled by the container

� Replace the remaining code with Java APIs

� Compile and package the application as J2EE components

� Configure the container for each component

3.3 Replacement strategies for mixed applications
This section recommends mixed strategies for replacing direct dependencies to
DCE services. Each strategy uses a mixture of the C/C++ and Java strategies
described in the previous two sections. These strategies might be useful for
customers who want to migrate to Java but wish to preserve some C/C++ code.

3.3.1 CORBA interoperability
This strategy makes use of the CORBA C/C++ client libraries and the enterprise
bean CORBA interoperability provided with IBM WebSphere Application Server.
Using these libraries and the interoperability, it is possible to do the following:

� Rewrite a DCE application server as an enterprise bean and configure the
enterprise bean so that it interoperates with CORBA application clients.

� Revise the C/C++ DCE application client so that it communicates with the
enterprise bean, which is written in Java, using CORBA protocols.

The strategy has a few limitations, which are as follows:

� The CSIv2 provided by IBM WebSphere Application Server for the C/C++
libraries supports only one method of passing client identity information to the
target enterprise bean. The supported method is client certificate
authentication (client passes its public certificate using an SSL transport).

� The data types used by the interfaces in the enterprise bean must be data
types defined in either the CORBA Java API mapping specification or in the
value type libraries provided by IBM WebSphere Application Server.

3.3.2 Java Native Interface
This strategy makes use of the Java Native Interface (JNI) APIs provided by IBM
WebSphere Application Server in Java 2 Standard Edition (J2SE). Using JNI, it is
 Chapter 3. Replacement strategies 73

possible to wrap a C/C++ application as a Java applet, Java client application, or
servlet.

3.3.3 JCA and JNI
This strategy makes use of the Java Connector Architecture (JCA) provided by
IBM WebSphere Application Server along with JNI. Using JCA, it is possible to
connect an enterprise bean, servlet, or Java client application to a simple, local
resource adapter. Using JNI, it is possible to interface the resource adapter to a
local C/C++ application.

Figure 3-3 illustrates an enterprise bean, a resource adapter, and a C/C++
application. In this example, the enterprise bean and resource adapter serve as
wrappers for the C/C++ application.

Figure 3-3 JCA and JNI

For an example of using JCA and JNI, see “Scenario 3: Secure RPC application
#1” on page 195.

Note: It also is possible to wrap a C/C++ application in an enterprise bean.
However, the J2EE specifications state that an enterprise bean should not use
JNI. For this reason, this paper does not recommend wrapping a C/C++
application in an enterprise bean, but instead recommends using JCA in
combination with JNI as described in the following section.

Enterprise Resource C/C++

Applicationadapterbeans
JNIJCA
74 DCE Replacement Strategies

Chapter 4. Using DCE data with IBM
Network Authentication
Service

This chapter is for administrators who want to use DCE authentication data with
IBM Network Authentication Service, which basically provides Kerberos
functionality as a means for authentication. In order to use IBM Network
Authentication Service as a replacement technology for DCE, the following is
required:

� IBM DCE Version 3.2 with PTF Set 3 or higher

� IBM Network Authentication Service Version 1.3 or higher

� An LDAP directory that is supported by both IBM DCE Version 3.2 or higher
and IBM Network Authentication Service Version 1.3 or higher

4

© Copyright IBM Corp. 2003. All rights reserved. 75

4.1 Introduction
Authentication data is used to authenticate the identities of principals and is
comprised of identity, key, and policy data. DCE and IBM Network Authentication
Service use similar authentication data, and both support locating this data in an
LDAP directory using common LDAP objects and attributes. This makes it
possible to migrate DCE authentication data to an LDAP directory and then
configure IBM Network Authentication Service to use the same data. After doing
this, you can use the data with both DCE and IBM Network Authentication
Service, or you can remove DCE-specific data from the LDAP directory and use
the authentication data only with IBM Network Authentication Service.

4.2 Migrating DCE data to an LDAP directory
To migrate DCE authentication data to the LDAP directory, refer to the IBM DCE
Version 3.2 Security Registry and LDAP Integration Guide and follow the
instructions for migrating the entire DCE registry database to the LDAP directory.
Bear in mind that DCE does not support migrating only a portion of the DCE
registry database to the LDAP directory.

4.3 Configuring IBM Network Authentication Service
To configure IBM Network Authentication Service to use the DCE authentication
data that you migrated to the LDAP directory, do the following:

1. When you load the Kerberos LDIF schema file provided by IBM Network
Authentication Service, be sure that all of the schema entries load without
error. It might be necessary to do ldap modify operations in order to load
some of the schema entries without error.

2. Configure IBM Network Authentication Service in the realm by following the
instructions in the IBM Network Authentication Service Version 1.3 for AIX,

Note: The configuration of IBM Network Authentication Service followed by
DCE configuration is not supported. DCE must be configured to use LDAP
prior to the configuration of IBM Network Authentication Service. Also, IBM
Network Authentication Service cannot use DCE data that is not related to
authentication. For example, IBM Network Authentication Service cannot use
DCE data that is used to define groups, group membership, UUIDs, and
extended registry attributes (ERAs) that are not used for authentication.
76 DCE Replacement Strategies

Administrator’s and User’s Guide. Use the LDAP plug-in configuration and
observe the following exceptions:

– Do not configure a new realm entry. Instead, use the realm entry that you
configured for DCE.

– In the realm entry, add one krbTrustedAdmObject attribute and one
krbKdcServiceObject attribute for each IBM Network Authentication
Service server in the realm, and configure the identity of the IBM Network
Authentication Service server in each of these attributes.

– Update the access control configuration of the LDAP directory so that
each IBM Network Authentication Service server, as well as each DCE
server, has full permission to access attributes residing in the realm entry,
under the realm entry, and under each entry referenced by the
krbPrincSubtree attribute of the realm entry.

– Configure the appropriate LDAP bind protocol. For more information, refer
to the IBM Network Authentication Service Version 1.3 for AIX,
Administrator’s and User’s Guide.

– When running the config.krb5 command or when editing the
configuration files:

• Specify a realm name that is the same as the DCE cell name stored in
the krbRealmName-v2 attribute of the realm entry.

• You will not be prompted for a database master password (also referred
to as a master key). The DCE master key will be the master key of the
realm.

3. Configure clients in the realm by following the instructions in the IBM Network
Authentication Service Version 1.3 for AIX, Administrator’s and User’s Guide.

4. Revise each IBM Network Authentication Service krb5.conf file, using a text
editor, so that the enctype field lists des-cbc-crc as the first encryption type.
This is necessary if sharing keys with DCE, because des-cbc-crc is the only
encryption type supported by DCE. You must restart the KDC servers for the
changes to take effect.

4.4 Managing the data in a shared environment
If you want DCE and IBM Network Authentication Service to use the same
authentication data, you must observe the following special considerations for
 Chapter 4. Using DCE data with IBM Network Authentication Service 77

managing this environment (and see sections 4.6, “Details about shared data” on
page 79 and 4.7, “Details about non-shared data” on page 81):

� When creating a principal or policy object that contains shared data, use DCE
interfaces to create the object. (An object created using IBM Network
Authentication Service interfaces will not be recognized by DCE.)

� When deleting a principal or policy object that contains shared data, use DCE
interfaces to delete the object. (IBM Network Authentication Service
interfaces will not delete an object that contains DCE data.)

� When viewing a principal or policy object that contains shared data, use either
the DCE or IBM Network Authentication Service interfaces to view the object.
Regardless of which set of interfaces you use, you will be able to view all
shared data. However, if the object contains any non-shared data, observe
the following:

– If you use DCE interfaces to view an object with non-shared data, you will
be able to view only the data that is used by DCE and stored in the
attributes used by DCE.

– If you use IBM Network Authentication Service interfaces to view an object
with non-shared data, you will be able to view only the non-shared data
used by IBM Network Authentication Service and stored in the attributes
used by IBM Network Authentication Service.

� When modifying a principal or policy object with shared data, use one of the
following interfaces depending on the data in the object that you want to
modify:

– If you want to modify shared data, use either DCE or IBM Network
Authentication Service interfaces to make the modifications. Understand
that DCE or IBM Network Authentication Service can change the same
shared data.

– If you want to modify data that is not shared because it is DCE-specific,
use DCE interfaces to make the modifications.

– If you want to modify data that is not shared because it is IBM Network
Authentication Service–specific, use IBM Network Authentication Service
interfaces to make the modifications.

– If you want to modify data that is not shared because DCE and IBM
Network Authentication Service stores the data in different attributes,
make the modification twice: one time with the DCE interfaces and the
second time with the IBM Network Authentication Service interfaces (or in
reverse sequence).

� The key version number is shared data. The administrator must ensure that
the DCE and IBM Network Authentication Service keytab files are kept in sync
with the key version number.
78 DCE Replacement Strategies

4.5 Removing DCE-specific data
If you no longer need to use DCE, you can remove DCE-specific data from the
LDAP directory by doing the following:

1. Set the delete type in the realm entry to dce and un-configure DCE. Because
the delete type has been set to dce, DCE will delete only DCE-specific data
but not data used by IBM Network Authentication Service or any other
applications.

2. In the realm entry, remove any of the following attributes that configure the
identity of a DCE server:

– krbTrustedAdmObject

– krbKdcServiceObject

3. Modify the access control configuration of the LDAP directory so that the DCE
servers can no longer access attributes residing in the realm entry and under
the realm entry.

4. If you desire an encryption type other than des-cbc-crc, edit each IBM
Network Authentication Service krb5.conf file so that the enctype field
contains the desired encryption type.

After doing this, you must manage the data using IBM Network Authentication
Service interfaces.

4.6 Details about shared data
Table 4-1 lists the authentication data that DCE and IBM Network Authentication
Service can share because both use the data in the same way and store this
data in the same LDAP attributes.

Table 4-1 Shared data

DCE Object Network
Authentication
Object

Shared Data Special
Considerations

account principal account valid

account principal allow/disallow
forwardable tickets

account principal allow/disallow
postdated tickets
 Chapter 4. Using DCE data with IBM Network Authentication Service 79

account principal allow/disallow
proxiable tickets

account principal allow/disallow
renewable tickets

account principal allow/disallow
server

account principal allow/disallow
subkey

account principal allow/disallow TGT
based
authentication

account principal associated DCE
organization or IBM
Network
Authentication
Service policy

account principal current key version

account principal expiration date

account principal maximum
renewable lifetime

account principal maximum ticket
lifetime

key key key data

key key key type

key key key version

key key version of master
key used to encrypt
this key

key key salt/pepper type

key key salt/pepper value

master key master key master key file

master key master key master key value

DCE Object Network
Authentication
Object

Shared Data Special
Considerations
80 DCE Replacement Strategies

4.7 Details about non-shared data
Some data cannot be shared by DCE and IBM Network Authentication Service
for one of the following reasons:

� The data is specific to DCE.
� The data is specific to IBM Network Authentication Service.
� DCE and IBM Network Authentication Service store the data in different

attributes.

Table 4-2 on page 82 lists the authentication data that DCE and IBM Network
Authentication Service cannot share because the data is specific to DCE. In
addition to the data in this table, IBM Network Authentication Service cannot use
any DCE data that is not used for authentication, such as group, group
membership, and UUID data.

master key master key master key version

organization policy password lifetime Possible conflict if
a DCE ERA is used
to set the password
lifetime.

organization policy password minimum
length

Possible conflict if
a DCE ERA is used
to set the password
minimum length.

principal principal principal name

realm realm name of master
key file

realm realm version of master
key currently used
in this realm

realm realm name of master
key principal

realm realm name of realm

DCE Object Network
Authentication
Object

Shared Data Special
Considerations
 Chapter 4. Using DCE data with IBM Network Authentication Service 81

Table 4-2 Data specific to DCE

Table 4-3 lists the authentication data that cannot be shared because it is specific
to IBM Network Authentication Service.

Table 4-3 Data specific to IBM Network Authentication Service

DCE Object Non-Shared Data Notes to Administrator

account creation_date

account creator

account key expiration time

account multiple key versions OK

account user-to-user authentication

master key key type

realm default certificate lifetime

realm password lifetime

registry policy passwd_min_len

IBM Network
Authentication Service
Object

Non-Shared data Notes to Administrator

policy minimum password
lifetime

principal e_data

principal last password change

principal new principal

principal password change service

principal principal type When DCE creates a
principal, it sets the
principal type to an NT
principal. DCE does not
update or use this attribute.

principal requires pre-authentication

principal requires hardware
authentication

principal requires password change
82 DCE Replacement Strategies

The authentication data in Table 4-4 cannot be shared because DCE and IBM
Network Authentication Service store the data in different attributes.

Table 4-4 Data stored in different attributes

principal supports MD5

principal tl_data

DCE Object Network
Authentication
Object

Non-Shared Data Notes to
Administrator

account principal current number of
bad login attempts

account principal date of last modifier

account principal name of last
modifier

account principal time of last bad
login

account principal time of last good
login

organization ERA realm password
dictionary files

organization ERA
(IBM-pwd_comp_r
ules: mindiff)

policy minimum different
characters in
password

When this data is
created or modified
using DCE
interfaces, the data
is copied to the
attribute used by
IBM Network
Authentication
Service. A possible
conflict could occur
if this same DCE
ERA is configured
for a principal.

IBM Network
Authentication Service
Object

Non-Shared data Notes to Administrator
 Chapter 4. Using DCE data with IBM Network Authentication Service 83

organization ERA
(IBM-pwd_hist_rul
es: histsize)

policy number of
password history
entries

When this data is
created or modified
using DCE
interfaces, the data
is copied to the
attribute used by
IBM Network
Authentication
Service. A possible
conflict could occur
if this same DCE
ERA is configured
for a principal.

realm realm maximum
renewable lifetime

realm realm maximum ticket
lifetime

DCE Object Network
Authentication
Object

Non-Shared Data Notes to
Administrator
84 DCE Replacement Strategies

Chapter 5. Using DCE objects with IBM
Tivoli Access Manager

The information in this chapter is for administrators who have IBM DCE Version
3.2 and IBM Tivoli Access Manager (formerly known as Tivoli Policy Director)
and want to do either of the following:

� Use DCE and IBM Tivoli Access Manager to share user and group objects in
LDAP.

� Migrate DCE user and group information into existing IBM Tivoli Access
Manager objects in LDAP.

� Migrate DCE user and group information in the IBM Directory to IBM Tivoli
Access Manager objects.

5

© Copyright IBM Corp. 2003. All rights reserved. 85

5.1 Introduction
IBM DCE 3.2 and IBM Tivoli Access Manager both support using an LDAP
directory to store data. This makes it possible for DCE and IBM Tivoli Access
Manager to share objects in LDAP. That is, DCE users and groups can have the
same Distinguished Name (DN) as IBM Tivoli Access Manager users and
groups. Otherwise, little is shared.

Specifically, the following are not shared:

� Passwords
� Unique IDs
� User attributes
� Most group attributes

The group membership attribute, however, can be shared:

� Group membership attribute

Policy data can be shared in a limited way because policies are handled
differently between the technologies. DCE allows policies to be created, then
users are associated with a specific policy. IBM Tivoli Access Manager creates a
default policy, then users can override that policy. The user overrides are stored
with the user’s definition. A policy can be shared between IBM Tivoli Access
Manager and DCE if DCE attaches to IBM Tivoli Access Manager's default
policy. This is discussed in 5.4, “Managing objects in a shared environment” on
page 96.

The following policy data can be shared if DCE is attached to the IBM Tivoli
Access Manager default policy:

� Account lifetime
� Password expiration time
� No spaces in a password
� No alpha characters in a password
� Maximum lifetime of a password
� Minimum lifetime of a password
� Account expiration lockout time
� Maximum number of failed logins

5.2 Data representation
The following figures illustrate how DCE and IBM Tivoli Access Manager store
and share data in the LDAP directory.
86 DCE Replacement Strategies

Figure 5-1 shows a sample DCE principal used by DCE as it is stored in the
LDAP directory tree.

Figure 5-1 Sample DCE principal called user1 in LDAP

cn=user1,cn=principal,krbrealmname-v2=dce_cell,...,cn=dce_tree
objectclass=person
objectclass=krbprincipal
objectclass=dcepolicy
objectclass=dceunix
objectclass=krbpolicy
sn=user1
cn=user1
krbprincipalname=user1@dce_cell
dcequota=0
secacctexpires=19001000000Z
secacctvalid=false
...

cn=principal,krbrealmname-v2=dce_cell,...,cn=dce_tree

krbrealname-v2=dce_cell,...,cn=dce_tree

Suffix: cn=dce_tree

cn=uniqueid,cn=user1,cn=principal,
krbrealmname-v2=dce_cell,...,
cn=dce_tree

cn=dceacl,cn=user1,cn=principal,
krbrealmname-v2=dce_cell,...,
cn=dce_tree

krbkeyversion=1,cn=user1,cn=principal,
krbrealmname-v2=dce_cell,...,
cn=dce_tree

cn=krblog,cn=user1,cn=principal,
krbrealmname-v2=dce_cell,...,
cn=dce_tree
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 87

Figure 5-2 shows a sample user and its representation in the LDAP directory tree
as it is stored by the IBM Tivoli Access Manager.

Figure 5-2 Sample IBM Tivoli Access Manager user called user1 in LDAP

cn=user1,...,cn=AM_tree
objectclass=inetOrgPerson
objectclass=ePerson
objectclass=organizationalPerson
objectclass=person
cn=user1
sn=user1
userpassword=<encrypted pwd>
uid=

Suffix: cn=AM_tree

secAuthority=Default,cn=user1,...,cn=AM_tree
objectclass=secUser
objectclass=eUser
objectclass=cimManagedElement
secauthority=default
seclogintype=Default:LDAP
secacctvalid=false
secpwdvalid=true
principalname=user1
secuuid=324eb822-d227-11d6-9d69-006
sechaspolicy=false

cn=policy,secAuthority=Default,
cn=user1,...,cn=AM_tree

...

cn=PolicyData,secAuthority=Default,
cn=user1,...,cn=AM_tree

...
88 DCE Replacement Strategies

Figure 5-3 illustrates how a DCE account and an IBM Tivoli Access Manager
user share an object in the IBM Tivoli Access Manager tree.

Figure 5-3 Sample shared account called user1

DCE uniqueid
object

DCE acl object

DCE key object

DCE log object

DCE uniqueid
object

DCE acl object

DCE key object

DCE log object

cn=user1,...,cn=AM_tree
objectclass=person
objectclass=krbprincipal
objectclass=dceprincipal
objectclass=dcepolicy
objectclass=dceunix
objectclass=krbpolicy
objectclass=inetOrgPerson
objectclass=organizationalperson
sn=user1
cn=user1
dcequota=0
dcecreatetimestamp=1033134343
secacctvalid=false
secacctexpires=19700101000000Z
userpassword=<encrypted pwd>
dceunixpassword=<encrypted pwd>
uid=user1
unixpwdvalid=false
...

secAuthority=Default,cn=user1,...,
cn=AM_tree

objectclass=secUser
objectclass=eUser
objectclass=cimManagedElement
secauthority=Default
seclogintype=Default:LDAP
secacctvalid=false
secpwdvalid=true
principalname=user1
secuuid=7d15796c-d255-11d6-0060904e93c
secpolicy=true
secpwdlastchanged=20020927201247.0Z
...

IBM Tivoli Access Manager
Policy object

IBM Tivoli Access Manager
Policy Data object

DCE attributes (in the IBM

IBM Tivoli Access Manager
attributes

Tivoli Access Manager tree)
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 89

Figure 5-4 Sample DCE group called group1 in LDAP

Figure 5-4 shows a sample representation of a DCE group within the DCE tree of
the LDAP directory, and Figure 5-5 on page 91 shows how the IBM Tivoli Access
Manager stores a group in its LDAP directory tree.

cn=uniqueid,cn=group1,cn=group,
krbrealmname-v2=dce_cell,...,cn=dce_tree

Suffix: cn=dce_tree

krbrealmname-v2=dce_cell,...,cn=dce_tree
objectclass=krbrealmname-v2

cn=group,krbrealmname-v2=dce_cell,...,cn=dce_tree

cn=group1,cn=group,krbrealmname-v2=dce_cell,...,cn=dce_tree
objectclass=groupofnames
objectclass=dcegroup
cn=group1
dcegroupname=group1@dce_cell
dceprojlistok=true
dceisrequired=false
member=cn=user1,cn=principal,
krbrealmname-v2=dce_cell,...,cn=dce_tree

cn=dceacl,cn=group1,cn=group,
krbrealmname-v2=dce_cell,...,cn=dce_tree
90 DCE Replacement Strategies

Figure 5-5 Sample IBM Tivoli Access Manager group called group1 in LDAP

Figure 5-6 represents the IBM Tivoli Access Manager directory tree of a sample
group that is shared between DCE and the IBM Tivoli Access Manager.

Figure 5-6 Sample shared group called group1

Suffix: cn=AM_tree

cn=group1,...,cn=AM_tree
objectclass=groupOfNames
cn=testgrp1
member=secAuthority=Default

secAuthority=Default,cn=testgrp1,...,cn=AM_tree
objectclass=secGroup
secauthority=Default
cn=testgrp1
secuuid=9aff50a0-d4b8-11d8-9d69-00609
sechaspolicy=false

cn=group1,...,cn=AM_tree
objectclass=accessGroup
objectclass=dcegroup
cn=group1
dceisrequired=false
dceprojilistok=true
member=secAuthority=Default
member=user1,cn=principal,

krbrealmname-v2=dce_cell,...,cn=dce_tree

secAuthority=Default,cn=group1,...,
cn=dce_tree

cn=dceacl,cn=group1,...,
cn=AM_tree

cn=uniqueid,cn=group1,...,cn=AM_tree
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 91

5.3 Configuration scenarios
In the sections that follow, three practical scenarios are discussed as they could
exist in practical environments.

5.3.1 Scenario 1
The DCE user data has been migrated to LDAP already. The administrator wants
to configure IBM Tivoli Access Manager and attach to the existing DCE principals
and groups.

Currently, it is not possible to configure IBM Tivoli Access Manager in an LDAP
server that DCE uses. When IBM Tivoli Access Manager configures, it attempts
to change or update some attributes. However, some of these attributes are used
by DCE. This causes the IBM Tivoli Access Manager configuration to fail
because attributes cannot be changed when they are in use.

5.3.2 Scenario 2
A DCE registry database is being migrated into an existing LDAP tree to share
objects with IBM Tivoli Access Manager. That is, DCE principals and groups are
migrated into existing IBM Tivoli Access Manager user and group objects in
LDAP. To migrate DCE:

1. Load the DCE and Kerberos schema files into the LDAP directory as
described in the IBM DCE Version 3.2 for AIX and Solaris: DCE Security
Registry and LDAP Integration Guide.

2. Using the IBM Tivoli Access Manager interfaces, create an IBM Tivoli Access
Manager user for each DCE user that needs to share an object in LDAP. For
each of these users, add the krbprincipal objectclass and krbprincipalname
attribute to the user object in LDAP.

To add the IBM Tivoli Access Manager user, type the following:

pdadmin> user create <user name> <user DN> <CN> <SN> <user password>

To add krbprincipal and krbprincipalname attributes, complete the following
substeps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=person objectclass > personobj

b. Edit the personobj file created and append the following:

objectclass=krbprincipal
krbprincipalname=<princ>@<realm>
92 DCE Replacement Strategies

c. Type the following:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f personobj

d. Verify that the krbprincipal objectclass and the krbprincipalname attribute
were added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=person

3. Using the IBM Tivoli Access Manager interfaces, create an IBM Tivoli Access
Manager group for each DCE group that needs to share an object in LDAP.
For each of these groups, add the dcegroup objectclass and the
dcegroupname attribute to the group object in LDAP.

To add the IBM Tivoli Access Manager group, type the following:

pdadmin> group create <group name> <DN> <CN>

To add dcegroup and dcegroupname, complete the following substeps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <group DN> \
objectclass=groupOfNames > groupobj

b. Edit the groupobj file created and append the following:

objectclass=dcegroup
dcegroupname=<group>@<realm>

c. Type the following:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f groupobj

d. Verify that the dcegroup objectclass and dcegroupname attribute were
added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <group DN> \
objectclass=dcegroup

4. Add the DCE realm information to LDAP as described in the IBM DCE
Version 3.2 for AIX and Solaris: DCE Security Registry and LDAP Integration
Guide. The subtree or subtrees containing the IBM Tivoli Access Manager
users and groups need to be added the krbprincsubtree attribute in the DCE
realm information. To add the subtree or subtrees:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
objectclass=krbrealm-v2 krbprincsubtree > subtree

b. Edit the subtree file that is created and append a line for each additional
subtree needed:

krbprincsubtree=<subtree DN1>
krbprincsubtree=<subtree DN2>
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 93

c. Type the following:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f subtree

d. Verify that the krbprincsubtree attributes are added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
objectclass=krbrealm-v2

5. Using the DCE interfaces, migrate the legacy DCE registry database to LDAP
as described in the IBM DCE Version 3.2 for AIX and Solaris: DCE Security
Registry and LDAP Integration Guide.

6. When migration is finished, verify that the user and group objects are shared
in LDAP by typing either of the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=krbprincipal

or

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=dcegroup

5.3.3 Scenario 3
Legacy DCE is migrated to LDAP and IBM Tivoli Access Manager is already
configured in LDAP. However, you still must attach IBM Tivoli Access Manager
users to DCE users. Scenario 3 differs from scenario 2 in that DCE is not
migrated into an existing IBM Tivoli Access Manager configuration.

To attach the IBM Tivoli Access Manager users to DCE users:

1. Using the DCE interfaces, migrate the legacy DCE registry database to LDAP
as described in the IBM DCE Version 3.2 for AIX and Solaris: DCE Security
Registry and LDAP Integration Guide.

2. Verify that cn=SecurityGroup,secAuthority=Default, which is an LDAP group
access control list (ACL), has been added to the suffix where DCE data
resides. This is done when IBM Tivoli Access Manager is configured in order
to enable IBM Tivoli Access Manager to write in the DCE subtrees.

3. For each DCE principal that needs to share an LDAP object with IBM Tivoli
Access Manager, use the IBM Tivoli Access Manager interface to create the
user. To create the user, use the DN of the DCE principal:

a. First, add the inetOrgPerson objectclass to the principal object in LDAP by
completing the following substeps:

i. Run the following command:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=krbprincipal)(krbprincipalname=<princ>@<realm>))" \
objectclass > princobj
94 DCE Replacement Strategies

ii. Edit the princobj file and append the following:

objectclass=inetOrgPerson

iii. Add the objectclass to the principal object by typing:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f princobj

iv. Verify that the objectclass was added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=krbprincipal)(krbprincipalname=<princ>@<realm>))" \
objectclass

b. Get the DN of the user object by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
“(&(objectclass=krbPrincipal)(krbPrincipalName=<princ>@<realm>))”

c. Add the IBM Tivoli Access Manager user by typing:

pdadmin> user import <user name> <user DN>

d. Verify that the IBM Tivoli Access Manager user was created by typing:

pdadmin> user show <user name>

e. Verify that the user information is in LDAP along with the DCE principal
information by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=krbprincipal

4. For each DCE group that needs to share an LDAP object with IBM Tivoli
Access Manager, use the IBM Tivoli Access Manager interfaces to create the
group using the DN of the DCE group:

a. Get the DN of the group object by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=dcegroup)(dcegroupname=<group name>@realm))"

b. Attach an IBM Tivoli Access Manager group to the DCE group by typing:

pdadmin> group import <group name> <group DN>

c. Verify that the IBM Tivoli Access Manager group is created:

pdadmin> group show <group name>

Note: IBM Tivoli Access Manager Version 3.9 requires this addition of
the inetOrgPerson objectclass; otherwise the pdadmin user import
command (see below) will fail. Newer versions or releases of the IBM
Tivoli Access Manager may not require this modification.
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 95

d. Verify that the IBM Tivoli Access Manager information and DCE
information are in LDAP:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -D <group DN> \
objectclass=*

5.4 Managing objects in a shared environment
This section describes how to manage shared objects in LDAP when using both
DCE and IBM Tivoli Access Manager.

5.4.1 Creating a user with IBM Tivoli Access Manager
You can create an object with IBM Tivoli Access Manager and attach a DCE
principal by completing the following steps:

1. Create a user with IBM Tivoli Access Manager by typing:

pdadmin> user create <user name> <user DN> <CN> <SN> <user password>

2. Add the krbprincipal objectclass and the krbprincipalname attribute to the
user’s DN by completing the following substeps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=person objectclass > userobj

b. Edit the userobj file that was created in the previous step and add the
following lines to the end of the file:

objectclass=krbprincipal
krbpirncipalname=<user>@<realm>

c. Add the objectclasses and attributes to the user object by typing:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f userobj

d. Enter another LDAP search to verify that the object is updated. This can
be verified by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=krbprincipal

3. Create the DCE principal by typing:

dcecp> princ create <user name>

4. Verify that the user has been created by typing:

dcecp> princ show <user name>
96 DCE Replacement Strategies

5. Verify that DCE information is in LDAP by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=*

5.4.2 Creating a group with IBM Tivoli Access Manager
You can create a group with IBM Tivoli Access Manager and attach a DCE group
by completing the following steps:

1. Create a group with IBM Tivoli Access Manager by typing:

pdadmin> group create <group name> <DN> <CN>

2. Add the dcegroup objectclass and the dcegroupname attribute to the group
DN. This can be accomplished by completing the following substeps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <group DN> \
objectclass=accessgroup objectclass > groupobj

b. Edit the groupobj file created and add these lines to the end of the file:

objectclass=dcegroup
dcegroupname=<group>@<realm>

c. Add the objectclass and attribute to the user object:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f groupobj

d. Enter another ldap search to make sure the object is updated by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=dcegroup

3. Create the DCE group by typing:

dcecp> group create <group name>

4. Verify that the group is created by typing:

dcecp> group show <group name>

5. Verify that DCE information is in LDAP by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passsword> -b <group DN> \
objectclass=*

5.4.3 Adding a member to a group using IBM Tivoli Access Manager
The group membership attribute is shared between IBM Tivoli Access Manager
and DCE. When a user is added to the group using IBM Tivoli Access Manager,
the group membership list is also seen by DCE. DCE will report this user as a
member of the group as long as the user is a valid DCE user. This causes some
inconsistency in DCE because users keep a list of their groups. When a user is
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 97

added to a group using IBM Tivoli Access Manager, the DCE user is not aware of
the fact that they have been added to a group. Thus, it is recommended that
users are added to groups using DCE. This method is described in 5.4.9,
“Adding a member to a group using DCE” on page 100. However, to add a
member to a group with IBM Tivoli Access Manager, type the following:

pdadmin> group modify <group name> add <user name>

5.4.4 Deleting a user using IBM Tivoli Access Manager
To delete a user from IBM Tivoli Access Manager, type:

pdadmin> user delete <user name>

This will remove the IBM Tivoli Access Manager user definition in LDAP. The
person object that the IBM Tivoli Access Manager user is attached to is not
changed. Therefore, the user remains defined in DCE. The IBM Tivoli Access
Manager delete command has another flag, -registry, which attempts to delete
the person object:

pdadmin> user delete -registry <user name>

When this command is issued, IBM Tivoli Access Manager attempts to delete the
person object. If subtrees that IBM Tivoli Access Manager does not know about
are attached to the person object, then it will not remove that person object. DCE
creates subtrees under the person object; this prevents IBM Tivoli Access
Manager from removing the person object. The DCE person is not changed.

5.4.5 Deleting a group using IBM Tivoli Access Manager
To delete a group using IBM Tivoli Access Manager, type:

pdadmin> group delete <group name>

This command removes the IBM Tivoli Access Manager group definition from
LDAP. All of the IBM Tivoli Access Manager attributes will be removed from the
group object. The DCE group attributes and objectclass are not changed. The
-registry flag on the delete command will attempt to delete the group object. To
delete the group object, type:

pdadmin> group delete -registry <group name>

If subtrees that IBM Tivoli Access Manager does not know about are attached to
the group object, then it will not remove that group object. DCE creates subtrees
under the group object; this prevents IBM Tivoli Access Manager from removing
the group object. The DCE group is not changed.
98 DCE Replacement Strategies

5.4.6 Removing a member from an IBM Tivoli Access Manager group
The group membership attribute is shared between IBM Tivoli Access Manager
and DCE, so when a user is deleted from a group using IBM Tivoli Access
Manager, the user is no longer listed as a member of the DCE group. That is,
when you issue the command to see the DCE list group membership, the user
does not appear. The problem is that the DCE user keeps a list of the groups it
belongs to. It appears to the DCE user that it is still a member of the group.
Because of this, it is recommended that group membership be done using the
DCE utilities as described in 5.4.12, “Removing a member from a group with
DCE commands” on page 102.

5.4.7 Creating a principal with DCE
To create a principal with DCE and then attach it to IBM Tivoli Access Manager,
complete the following steps:

1. Create a principal with DCE by typing:

dcecp> princ create <principal name>

2. Add the inetOrgPerson objectclass to the principal object in LDAP by
completing the following substeps:

a. Run the following command:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=krbprincipal)(krbprincipalname=<princ>@<realm>))" \
objectclass > princobj

b. Edit the princobj file and append the following:

objectclass=inetOrgPerson

c. Add the objectclass to the principal object by typing:

ldapmodify [-h <host>] -D <bind DN> -w <bind passwd> -f princobj

d. Verify that the objectclass was added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=krbprincipal)(krbprincipalname=<princ>@<realm>))" \
objectclass

Note: IBM Tivoli Access Manager Version 3.9 requires this addition of the
inetOrgPerson objectclass; otherwise the pdadmin user import command
(see below) will fail. Newer versions or releases of the IBM Tivoli Access
Manager may not require this modification.
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 99

3. Get the DN of the user object by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
“(&(objectclass=krbPrincipal)(krbPrincipalName=<princ>@<realm>))”

4. Add the IBM Tivoli Access Manager user by typing:

pdadmin> user import <user name> <user DN>

5. Verify that the IBM Tivoli Access Manager user was created by typing:

pdadmin> user show <user name>

6. Verify that the user information is in LDAP along with the DCE principal
information by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <user DN> \
objectclass=krbprincipal

5.4.8 Creating a DCE group
To create a DCE group and then attach it to a IBM Tivoli Access Manager group,
complete the following steps:

1. Create a group with DCE by typing:

dcecp> group create <group name>

2. Get the DN of the group object by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -b <realm DN> \
"(&(objectclass=dcegroup)(dcegroupname=<group name>@realm))"

3. Attach an IBM Tivoli Access Manager group to the DCE group by typing:

pdadmin> group import <group name> <group DN>

4. Verify that the IBM Tivoli Access Manager group is created by typing:

pdadmin> group show <group name>

5. Verify that the IBM Tivoli Access Manager information and DCE information
are in LDAP by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind passwd> -D <group DN> \
objectclass=*

5.4.9 Adding a member to a group using DCE
The group membership attribute is shared between DCE and IBM Tivoli Access
Manager. When a member is added to a group with DCE, that membership list is
also seen by IBM Tivoli Access Manager. If that user is a valid IBM Tivoli Access
Manager user, then IBM Tivoli Access Manager considers the user a member of
that group.
100 DCE Replacement Strategies

The following command adds a member to a group in DCE:

dcecp> group add <group name> -member <user name>

5.4.10 Deleting a user using DCE
To delete a principal using DCE, type the following:

dcecp> princ delete <user name>

This will delete a principal. The information that gets removed from LDAP
depends on the krbdeletetype attribute value. The krbdeletetype values are:

none(1) This value indicates that nothing will be deleted from LDAP.
The delete command is successful, but nothing is deleted.

dce(2) This value indicates that all of the DCE-related attributes are
removed from the user object in LDAP. The IBM Tivoli Access
Manager user is still defined and usable.

dce and krb5(3) This value indicates that all of the DCE- and Kerberos-related
attributes are removed from the person object in LDAP. Also, all
of the DCE- and Kerberos-related subtrees attached to the
person are removed. The IBM Tivoli Access Manager user is
still defined and usable.

all(4) This value indicates that the person object and all of the DCE
and Kerberos subtrees are removed. An error is returned
because the person object can not be removed. There are IBM
Tivoli Access Manager related subtrees attached to the person
object and that prevents DCE from deleting the object. From an
IBM Tivoli Access Manager perspective, the user is defined
and usable.

5.4.11 Deleting a group using DCE commands
To delete a group using DCE, type the following:

dcecp> group delete <group name>

This command deletes a group. The information that is removed from LDAP is
based on the krbdeletetype attribute value. The krbdeletetype values are:

none(1) This value indicates that nothing is deleted from LDAP. The
delete command is executed successfully, but the group is not
deleted from LDAP. The IBM Tivoli Access Manager group is
defined and usable.
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 101

dce(2) This value indicates that all of the DCE-related attributes are
removed from the group object in LDAP. The IBM Tivoli Access
Manager group is still defined and usable.

dce and krb5(3) This value indicates that all of the DCE-related attributes are
removed from the group object in LDAP. The IBM Tivoli Access
Manager group is still defined and usable.

all(4) This value indicates that the group object and all of the
DCE-related subtrees are removed from LDAP. When DCE
attempts to delete the group object, the IBM Tivoli Access
Manager related subtrees that are on the group object make its
removal impossible. From an IBM Tivoli Access Manager
perspective, the group is defined and usable.

5.4.12 Removing a member from a group with DCE commands
The group membership attribute is shared between IBM Tivoli Access Manager
and DCE. When a user is deleted from a group using DCE commands, that user
is no longer listed as a member of the IBM Tivoli Access Manager group.

5.4.13 Sharing policies
Only one policy can be shared between DCE and IBM Tivoli Access Manager.
IBM Tivoli Access Manager has a default policy; all variations to the default policy
are placed on the user object. The only way for DCE and IBM Tivoli Access
Manager to share a policy is for DCE to attach to the IBM Tivoli Access Manager
default policy. The IBM Tivoli Access Manager default policy's DN is
cn=Default,cn=Policies,secAuthority=Default.

5.4.14 Attaching a DCE policy
To attach a DCE policy to the IBM Tivoli Access Manager policy, complete the
following steps:

1. Put the IBM Tivoli Access Manager Policy in the principal subtree list on the
DCE realm by completing the following substeps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b <DCE realm DN> \
objectclass=krbrealm-v2 krbprincsubtree > subtreefile

b. Edit the subtreefile file and add the following line to the end of it:

krbprincsubtree=cn=Default,cn=Policies,secAuthority=Default
102 DCE Replacement Strategies

c. Add the new principal subtree by typing:

ldapmodify [-h <host>] -B <bind DN> -w <bind pwd> -f <subtreefile>

d. Verify that the principal subtree was added by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b <DCE realm DN> \
objectclass=krbrealm-v2 krbprincsubtree

2. Add the krbpolicy objectclass and krbprolicyname attribute to the IBM Tivoli
Access Manager’s default policy by completing the following steps:

a. Type the following:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b \
cn=Default,cn=Policies,secAuthority=Default objectclass=secPolicy \
objectclass > dfltpol

b. Edit the dfltpol file and add the following lines to the end of the file:

objectclass=krbpolicy
krbpolicyname=<policy name>@<realm>

c. Add the values to the default policy by typing:

ldapmodify [-h <host>] -D <bind DN> -w <bind pwd> -f dfltpol

d. Verify that the objectclass and attribute were added successfully by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b \
cn=Default,cn=Policies,secAuthority=Default objectclass=secPolicy

3. Create the DCE policy by typing:

dcecp> org create <policy name>

4. Verify that the DCE policy is attached to the IBM Tivoli Access Manager
default policy by typing:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b \
cn=Default,cn=Policies,secAuthority=Default objectclass=secPolicy \
objectclass=*

If dcepolicy and dceorg objectclasses are now a part of the object, then the DCE
org was created successfully.

5.4.15 Deleting a shared DCE policy
Deleting the DCE policy that is shared with the IBM Tivoli Access Manager
default policy can result in the deletion of the IBM Tivoli Access Manager default
policy.
 Chapter 5. Using DCE objects with IBM Tivoli Access Manager 103

Set the DCE delete type to none if DCE is attached to the IBM Tivoli Access
Manager default policy. The following is a list of krbdeletetype values:

none(1) This value indicates that nothing is deleted from LDAP. The
delete command is executed successfully but the policy is not
removed from LDAP.

dce(2) This value indicates that all of the DCE-related attributes are
removed from the policy. The problem is that some of the
DCE-related attributes are shared with IBM Tivoli Access
Manager. Thus, some attributes will be missing from the IBM
Tivoli Access Manager Policy. All of the DCE-related subtrees
are removed from the policy object.

dce and krb(3) This value indicates that all of the DCE- and Kerberos-related
attributes are removed from the policy object. Most of these
attributes are shared with IBM Tivoli Access Manager. This
leaves the IBM Tivoli Access Manager policy object without
policy attributes.

all(4) This value indicates that the entire policy object is removed.
The IBM Tivoli Access Manager is without a default policy,
which causes problems when IBM Tivoli Access Manager
creates users.
104 DCE Replacement Strategies

Chapter 6. Binary structure of DCE ERA
data in LDAP

This chapter describes how to read binary DCE ERA data that has been
migrated to an LDAP directory, such as IBM Directory Server, using non-DCE
interfaces. This information is provided as a reference for environments that use
DCE ERA data (for example, for storing additional policy data), have migrated
the DCE registry database to an LDAP directory, and have removed DCE from
their configuration. These environments might need to know how to read the
migrated DCE ERA data using non-DCE interfaces. If your environment does not
use DCE ERA data or if you do not need to read migrated DCE ERA data using
non-DCE interfaces, you may skip this chapter.

The following is covered in this chapter:

� A brief recap of the DCE-to-LDAP migration process

� A description of how to read the binary DCE ERA data migrated to LDAP

6

© Copyright IBM Corp. 2003. All rights reserved. 105

6.1 Recap: The DCE to LDAP migration process
As a short recap, a recommended replacement for the DCE registry database is
the IBM Directory Server that is the IBM implementation of a standardized LDAP
directory. During the migration, a copy of the DCE registry database is stored and
maintained in the LDAP directory where it is available to other services, such as
the IBM Network Authentication Service or the IBM Tivoli Access Manager, for
providing authentication and authorization services.

The document IBM DCE Version 3.2 for AIX and Solaris: DCE Security Registry
and LDAP Integration Guide explains how DCE-related objects from the registry
database are stored in the LDAP directory. User-defined Extended Registry
Attributes (ERA) are stored in the LDAP directory as binary objects in a separate
ERA structural object. The internal structure of this binary object is explained in
the next section.

6.2 Reading binary DCE ERA data in LDAP
To read binary DCE ERA data migrated to an LDAP directory:

1. Obtain the sec_attr_base.h file that is shipped with IBM DCE Version 3.2, and
include this file in your application.

2. Search the LDAP directory for the PGO entry, which is the entry representing
the DCE principal, group, or organization for which the ERA is configured. To
search for the PGO entry, set the LDAP search filter to one of the following,
depending on whether the search is for a principal, group, or organization:

krbPrincipalName = <principal name>@<realm_name>
dceGroupName = <group name>@<realm_name>
krbPolicyName = <organization name>@<realm_name>

For example, to search for an entry representing a DCE principal with a
principal name of john and a realm (cell) name of realm1, set the LDAP
search filter to search for an LDAP attribute named krbPrincipalName with a
value equal to john@realm1.

3. Search the LDAP directory for the ERA entry, which represents the ERA that
has been configured for the DCE principal, group, or organization. To search
for this ERA entry, set the LDAP search filter to search for an entry residing
under the PGO entry where:

object class = DCEERA

and

dceXattrName = <ERA name>
106 DCE Replacement Strategies

(This search filter could be combined with the search filter in the previous
step.)

4. From the ERA entry, get the value stored in dceXattrValue attribute. The
dceXattrValue is a binary LDAP attribute. DCE uses this attribute to store an
era_object_data_t buffer, which is defined as follows:

typedef struct era_object_data_t {
 unsigned32 num_vals;
 unsigned32 data_len;
 uuid_t era_uuid;
 unsigned char db_attrs[1];
} era_object_data_t;

where:

num_vals Number of rsdb_attr_object_t buffers stored in the db_attrs
field of this era_object_data_t buffer.

data_len Length of this era_object_data_t buffer.
era_uuid UUID of the ERA defined in this era_object_data_t buffer.
db_attrs One or more rsdb_attr_object_t buffers. Each

rsdb_attr_object_t buffer contains an ERA value.

5. Use each rsdb_attr_object_t buffer to get each ERA value that is stored in this
ERA object. The rsdb_attr_object_t buffer is defined as follows:

typedef struct rsdb_attr_inst_t {
 rsdb_thread_hdr_t threads;
 unsigned32 attr_inst_len;
 sec_rgy_domain_t domain;
 rsdb_pvt_id_t object_id;
 sec_attr_encoding_t encoding;
 char buf[VARYING];
} rsdb_attr_inst_t;

where:

threads Not used.
attr_inst_len Length of this rsdb_attr_object_t buffer.
domain Not used.
object_id Not used.
encoding The encoding type of the ERA value. The encoding type is

defined in the sec_attr_encoding_t variable of the DCE
sec_attr_base.h file.

buf Buffer containing the ERA value. The data type of this value
is defined by the encoding type.
 Chapter 6. Binary structure of DCE ERA data in LDAP 107

108 DCE Replacement Strategies

Part 2 Replacement
sample
scenarios

In this part we provide example scenarios that are being migrated from DCE to
other technologies.

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 109

110 DCE Replacement Strategies

Chapter 7. Common replacement
considerations

This chapter contains information that is common for all of the migration
scenarios described in the chapters that follow. In particular, this chapter lists and
explains:

� How to read the sample scenarios

� Common assumptions in the sample scenarios

� Simplifications in the sample scenarios

� Migration security considerations

� Performance considerations

� Considerations when using an LDAP directory

� SSL implementation hints

7

© Copyright IBM Corp. 2003. All rights reserved. 111

7.1 How to read the example scenarios
The example scenarios that are described in the following chapters of this
section are all structured in the same manner:

� First, an introduction is given that explains the environment of the scenario
and the strategy that is chosen for removing the DCE dependencies.

� A sample application program that depends on DCE services is explained,
followed by an explanation of the way the DCE dependencies are removed in
the revised application.

� The replacement roadmap is explained, including some brief steps to install
and configure replacement products.

� As a result of the replacement, the application program using the replacement
technologies is then explained.

� The scenario is summarized with a discussion that also elaborates on
additional considerations and possible alternatives.

For the description of the code examples, only excerpts or fragments of the code
are being shown and explained. The full program code listings are in the
appendix of this book and can be downloaded. (See Appendix E, “Additional
material” on page 417 for instructions.)

7.2 Common assumptions in the sample scenarios
The example applications used in the following chapters of this book are used for
the purpose of explaining the use of the chosen replacement technologies. They
do not represent real applications, as the application logic is considered
irrelevant for the purpose of this book.

Because actual system and development environments vary to a large extent,
only information that is assumed important in regard to the environment used for
writing this book is provided.

7.3 Simplifications in the sample scenarios
The purpose of the replacement scenarios in this book is to demonstrate the
technologies for the replacement of DCE dependencies. The examples are kept
simple, and they are not meant to serve as schoolbook examples for
production-ready applications.
112 DCE Replacement Strategies

Simplifications made in the scenarios include:

� The DCE-dependent application servers do not perform a login to DCE.
Instead, they inherit their DCE credentials from the environment.

� There is no DCE ticket-refreshing logic included in the scenarios.

� Unless used by the underlying services, the example scenarios use a single
thread approach.

� Although strongly recommended, SSL is not used to protect inter-system
communication. (Also see section 7.7.3, “Using SSL in the replacement
scenarios” on page 117.)

� The examples do not include any meaningful error-handling or error-recovery
procedures, but rather terminate in the case of an error.

7.4 Security considerations
DCE provides both an environment for cross-platform distributed applications
and a high level of security with respect to the following two areas:

� All DCE-internal communication and services can be highly secured,
representing in its entirety a highly secure middleware platform.

� DCE applications are provided with a rich set of security-related functions,
such as authentication and authorization services, and encryption for
over-the-wire communication.

While it is the responsibility of the application architect and programmer to
replace the security-related functions by means of other technology, the system
administrator must ensure that the replacing infrastructure also maintains an
acceptable level of security.

It is important that the security features of the replacement technologies (and the
products that implement those technologies) are fully understood. This book is
not intended as a replacement for proper training and education on the products
being used.

For security considerations specific to SSL, please also read section 7.7, “SSL
implementation hints” on page 116.

7.5 Performance considerations
This book and the examples provided with it do not take any performance issues
into consideration. The primary purpose of the examples is to show replacement
technologies and strategies.
 Chapter 7. Common replacement considerations 113

If performance is of concern, the individual replacement technologies and the
products that implement those technologies must be evaluated further for
performance-related matters.

For example, the IBM Directory Server that is used as a replacement strategy for
DCE security registry data provides several features for performance, such as:

� Excellent vertical scalability by supporting a wide range of industry platforms,
including all IBM operating system platforms from Windows to z/OS™.

� Excellent horizontal scalability, not only by relying on the high performance
IBM DB2® database, but also by providing replication for spreading a
directory among several servers.

7.6 Using an LDAP directory
The replacement scenarios in the following chapters often use an LDAP directory
for storing various kinds of information, such as the DCE security registry. In
contrast to proprietary directories as maintained by DCE, an LDAP directory is
an open-standard, multi-purpose directory that is likely to be installed and
running on a dedicated system (or multiple systems if replication is being used)
on the network. Because of this and some other differences to the DCE
directories, it is worth taking a closer look at some features that an LDAP
directory provides.

7.6.1 LDAP security considerations
Except for some administrative tasks, an LDAP directory is accessed over the
network through a well-standardized protocol. There are many LDAP clients
available, including standard Web browsers such as the Netscape browser
products and Microsoft Internet Explorer. In other words, an LDAP directory is
accessible over the network by potentially everybody who can establish a TCP/IP
connection to the system that runs the LDAP directory. In most organizations,
this includes most employees. Due to this, there is a security exposure if the
information in the LDAP directory is not properly secured.

The IBM Directory Server offers several options to protect the directory contents
from unauthorized access, including:

� Various authentication models, from anonymous to certificate-based mutual
authentication over SSL

� Access Control Lists (ACL) for the protection of specific information in the
Directory Information Tree (DIT)

� Audit trails
114 DCE Replacement Strategies

In addition to the protection options listed above, the system environment must
be protected like every other system that stores sensitive information, including:

� Strict account and password management for administrator accounts

� Securing access to the underlying IBM DB2 database

� Physical and logical access control, which includes adequate protection of
any backup media

� Network segregation: placing sensitive systems in network segments that are
protected with firewalls or other similar network access control

7.6.2 Availability and performance considerations
Another important feature of the IBM Directory Server is replication. Note that
replication is not part of the LDAPv3 standard; therefore, vendor products have
different implementations. The IBM Directory Server supports single-master and
multiple-master replication. In the more-frequently used single master replication
mode, one IBM Directory Server acts as a master, being the only directory that
allows updates to the stored information. One or more LDAP replica servers
receive their updates only from the master. Except for this master/replica update,
the LDAP replica servers do not allow any updates, but rather refer a client to the
master if the client wishes to update the directory.

Just as in DCE, replication serves two purposes: availability and performance.
An LDAP client can choose among several servers, increasing overall availability.
Overall performance is increased by load-balancing client requests among
multiple LDAP server systems (although LDAP does not include a mechanism for
automatic load balancing).

The use of LDAP replica servers is always recommended when availability is a
concern. Configuration of an LDAP replica server using the IBM Directory Server
simply requires specifying some self-explanatory information via the
administration interface. Before replication can work, however, a few
prerequisites must be met:

� The LDAP replica server must have the same suffix(es) defined as the LDAP
master server. Suffixes do not get replicated automatically.

� If the LDAP master server uses schema changes, the LDAP replica server
must be updated with these changes before replication can take place. This is
of importance in the context of this book as DCE and other components make
use of schema changes.

� If an LDAP master server is already populated with directory information, that
information must be manually transferred to the replica before replication can
work.
 Chapter 7. Common replacement considerations 115

7.7 SSL implementation hints
Secure Sockets Layer (SSL) Version 3 and Transport Layer Security (TLS)
Version 1 are protocols that provide server authentication, client authentication
(optional), and protection by means of privacy and data integrity between two
communicating entities. Implementations of SSL and TLS are available on many
platforms including AIX, OS/390, OS/400, Linux, Windows 2000, and Solaris.

7.7.1 SSL and TLS overview
SSL is a Netscape proprietary protocol that has become a de facto standard.
TLS is an industry-standard protocol that is based on SSL and defined in IETF
RFC 2246, “TLS Protocol Version 1.0.” Both the SSL and TLS protocols use
standards defined in IETF RFC 2459, “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile.” The two protocols have few differences and often
are referred to interchangeably.

Several products recommended in this book, including IBM WebSphere
Application Server, contain embedded SSL/TLS. Customers can use the
embedded SSL/TLS to replace the DCE authentication and protection services.
The use of SSL is recommended between systems that exchange sensitive data
and/or when strong authentication is required. The major differences between
SSL/TLS and the DCE authentication and protection services are:

� SSL/TLS operates at a transport level, whereas DCE authentication and
protection operates at a higher level.

� When using SSL/TLS, server authentication is required and client
authentication is optional. When using the DCE authentication service, client
authentication is required and server authentication is optional.

� When using SSL/TLS, all of the data transmitted over the connection must be
protected through encryption and integrity. When using DCE, the
authentication service can be used independently of the protection service so
authentication can be performed without data protection or with selected data
protection.

� SSL/TLS uses the public key infrastructure (PKI) protocol for authentication.
DCE uses the Kerberos protocol for authentication. (DCE has the option of
using PKI for initial authentication, but supports only the Kerberos protocol for
client and server authentication.)

The differences between SSL Version 3 and TLS Version 1 are only minor and
not important for the subject of this book. Because the term SSL is more often
used throughout the industry, it is used in this book as a synonym for both
protocols.
116 DCE Replacement Strategies

7.7.2 Uses of SSL
SSL is used for encryption (privacy) and authentication. SSL uses Public Key
Infrastructure (PKI) technology, namely X.509 digital certificates and digital
signatures, to authenticate a server or a client, and the process of authentication
is carried out by the SSL implementation (SSL libraries).

A server or a client that has to authenticate with SSL needs a certificate (more
precisely, an X.509v3 digital certificate). It also needs a private key (sometimes
also referred to as a secret key) that belongs to the certificate, because only the
possession of the private key and the certificate is evidence of authenticity.

7.7.3 Using SSL in the replacement scenarios
Most products mentioned in this book, including DCE, IBM Network
Authentication Service, IBM Directory Server, IBM Tivoli Access Manager, and
IBM WebSphere, support SSL for encryption and authentication when
communicating with other products. Specifically:

� IBM Directory Server supports SSL for the protection of the communication
with its clients.

� DCE, IBM Network Authentication Service, IBM Tivoli Access Manager, and
IBM WebSphere Application Server all support SSL when communicating
with IBM Directory Server.

� IBM WebSphere supports SSL for the CORBA application client to
authenticate to the CORBA application server.

� The HTTP Server, as part of IBM WebSphere, supports SSL for Web
browsers.

Although these products support SSL, and using SSL is recommended for
security reasons wherever feasible, for the sake of simplicity the scenarios in the

Note: In common language, the phrase “authentication with a certificate” is,
strictly speaking, incomplete and misleading. A certificate is, by definition, not
confidential and maybe copied easily. Thus, the possession of a certificate
cannot be proof of authenticity. Only the possession of the private key that
belongs to a certificate is considered proof of authenticity. In contrast to
certificates, private keys must not be shared and must be protected by all
means. When a subject authenticates to another subject using SSL and
certificates, a complex handshaking protocol takes place that includes digital
signatures using the private key. The private key, however, is never transmitted
over the network and hence this is strong authentication. The SSL handshake
protocol is transparent to the user or the application.
 Chapter 7. Common replacement considerations 117

following chapters do not usually use SSL. The only instances where SSL is
used is for replacing secure RPC.

7.7.4 IBM GSKit
The IBM products as listed in the previous section all use a common tool, called
the IBM GSKit (sometimes also referred to as the ikeyman tool), that constitutes
an implementation of the SSL protocol. Besides the SSL protocol handling, IBM
GSKit also supports elementary functions for certificate handling through a
graphical administrator interface, such as:

� Creating self-signed certificates for temporary or lab-type installations
� Creating certificate requests for later approval by a Certificate Authority
� Storing personal certificates (including server certificates) in a certificate file
� Storing root certificates (also called signer certificates) in a certificate file

Figure 7-1 shows a simplified representation of the IBM GSKit. As can be seen, it
manages the SSL protocol and contains two lists of certificates, the personal and
the root certificates of trusted CAs. The graphical user interface is not shown.

Figure 7-1 The components of IBM GSKit (simplified)

With these elementary functions, IBM GSKit serves as the primary administrator
tool for managing certificates and setting up secure SSL connections.

IBM GSKit ships with the products that use and support it and is not available
separately. Refer to the documentation that comes with the respective products
for further information and specific instructions.

SSL Protocol Stack

Root certificates
of trusted
Certificate
Authorities

Personal
Certificates
118 DCE Replacement Strategies

7.7.5 Authentication with certificates
A certificate, together with the private key, proves the authenticity of an entity
such as a person or a system. (In PKI terminology, an entity is also called a
subject.) A certificate provides evidence that, at the time of certificate issuance,
the subject possesses the private key that belongs to the certificate. Assuming
that the private key is not stolen, lost, or otherwise compromised, the subject is
the only person or system that can use this private key together with the
certificate to prove its authenticity.

The authentication process itself involves a number of substeps that are beyond
the scope of this book to detail as many variants and exceptions as must be
considered. They require a sound understanding of public key cryptography,
including the handling of cases when the private key is lost or stolen.

Nevertheless, a few statements can be made that must be met in order to make
certificate authentication work:

� The SSL implementation (such as IBM GSKit) has the technical means to
ensure that a certificate belongs to a certain subject. This is an important
function because a certificate could be copied and misused by fraudulent
subjects.

For example, an application server that receives a certificate with a DN of
John Doe can rely on the SSL implementation that it is really John Doe who
authenticated to that server. There is no need for a password or the like.

� In order for the SSL implementation to verify the validity of a subject’s
certificate, it must know and trust the authority that issued the certificate.

Trusted Certificate Authorities (CA) issue root certificates required by an SSL
implementation to verify the validity of a subject’s certificate. The SSL
implementation (IBM GSKit) must have a copy of the root certificate of the CA
that issued the subject’s certificate.

� For authorization and audit purposes, a subject’s certificate must contain
some information that can be used for such purposes.

According to the X.509v3 standard, a certificate may contain various
information. The subject DN is one piece of information that is contained in all
certificates. Although the format of this text string is not strictly specified, it is
obvious that the subject DN can be used as an identifier for the subject.

To sum up: A certificate must contain some information that can be used by the
receiving party to identify the subject. The receiving partner also must have a
copy of the root certificate of the CA that issued the certificate. The technical
details of the authentication and encryption processes are hidden and carried out
by the SSL implementation, such as the IBM GSKit.
 Chapter 7. Common replacement considerations 119

The application programmer or system administrator must enable SSL in the
application or product and provide necessary references to the respective IBM
GSKit resources in order to use SSL. Before SSL can be used with IBM GSKit,
however, the certificate files (also referred to as key files, trust files, or key
databases) must be populated with the certificates to be used.

An administrator has different options for obtaining certificates, including:

� Self-signed certificates: GSKit allows generating self-signed certificates for
temporary or testing purposes.

� Certificates from a Certificate Authority (CA): A CA is a trusted authority that
can issue trusted certificates.

7.7.6 Using self-signed certificates
Using self-signed certificates simplifies the administration process by not
involving a separate CA. Self-signed certificates can be used as regular
certificates for authentication purposes (for people and systems), and, at the
same time, they can be used as root certificates.

Figure 7-2 shows an example of two application partners, Joe and Sue, that
require mutual SSL certificate authentication. Note that it is irrelevant in this
example whether Joe or Sue are actually application servers or clients.

Figure 7-2 Using self-signed certificates

The following actions are required to make the example work.

GSKit GSKit

Application “Joe” Application “Sue”Mutual
Authentication

SSL
(TCP/IP)

SSL Stack SSL Stack

Sue JoeSueJoe

CAs CAs
120 DCE Replacement Strategies

The administrator:
1. Creates a self-signed certificate with IBM GSKit for application Joe.

2. Creates a self-signed certificate with IBM GSKit for application Sue.

3. Imports Joe’s self-signed certificate (as a root certificate) into the list of
trusted CAs on Sue’s GSKit.

4. Imports Sue’s self-signed certificate (as a root certificate) into the list of
trusted CAs on Joe’s GSKit.

The application administrator:
1. Configures the application to use the specific certificate file(s) created by the

administrator.

2. Specifies which certificate from within the certificate file to use. (There can be
multiple certificates in a certificate file.)

3. (Optionally) Specifies certain encryption algorithms (cipher specs) for the
SSL encryption.

The application programmer:
1. Initializes and uses SSL for session initiation. (The details may vary largely

depending on the application.)

2. After SSL session initiation on the receiving partner, extracts the required
information from the partner’s certificate. This is most likely the subject DN
that will be extracted.

3. If required, looks up further information, such as group membership or
authorization data of the subject, by calling additional services not provided
by SSL and/or GSKit.

As an alternative to self-signed certificates, some products such as IBM
WebSphere ship with ready-to-use certificates that allow for a quick start of the
product(s). These certificates are shipped in keyfiles, so the administrator does
not have to import or otherwise deal with them. For a production environment,
however, certificates from a CA are recommended.

7.7.7 Using certificates from a Certificate Authority (CA)
Using certificates from a CA has some advantage over using self-signed
certificates. In terms of security, more-stringent rules may be applied when a

Note: This example shows mutual authentication. When only server
authentication is required, then only one self-signed certificate has to be
created for the server and imported into the client’s GSKit.
 Chapter 7. Common replacement considerations 121

trusted third party issues certificates. Also, only one root certificate has to be
imported into all involved GSKits, rather than mutually importing self-signed
certificates from each possible communication partner. The process, however,
involves different procedures, as shown in Figure 7-3.

A trusted CA can be either a commercial third-party provider, such as VeriSign,
Inc. (http://www.verisign.com), or a private CA run and managed by
organizations for their own needs. The open source community runs a project
called OpenSSL (http://www.openssl.org) that provides tools that may be used
for running a private CA (subject to terms and conditions). Alternatively, products
and services are available on the market for running private CAs.

In the example depicted in Figure 7-3, only one-way authentication is shown; Joe
needs to authenticate to Sue. There is no change in the process for the
application administrator and the application programmer, but the generation of
the certificate differs from using self-signed certificates.

Figure 7-3 Using certificates from a Certificate Authority

GSKit GSKit

Application “Joe” Application “Sue”Authenti-

SSL
(TCP/IP)

SSL Stack SSL Stack

Joe

CAs CAs

Certificate
Authority

cation

Certificate
Request

Certificate

Root
Certificate

CA CA
122 DCE Replacement Strategies

http://www.verisign.com
http://www.openssl.org

In contrast to using self-signed certificates, the following must be done.

The administrator:
1. Imports the CA’s root certificate into the list of trusted CAs on Joe’s and Sue’s

GSKit. Most commercial CAs have their root certificates on their Web sites for
download at no cost.

2. Creates a certificate request on Joe’s GSKit and sends it to the trusted CA.
This step involves the generation of the private key, which remains in the key
file maintained by GSKit for Joe.

The CA will then, based on its terms and conditions, generate and issue a
certificate for Joe. (Remember that “Joe” may be a person or a system.)

3. Receives Joe’s certificate from the CA and stores it in Joe’s GSKit.

7.7.8 Additional hints and considerations
Although the process of certificate administration and SSL setup is
straightforward and, in principle, the same for all products or platforms, a few
considerations and pitfalls lead to questions. These include:

� Certificates, including root certificates, can be stored in various formats,
including some that are not supported by, say, IBM GSKit. This could prevent
the certificate from being imported. Try to generate the certificate in, or
convert it to, a format that is supported by IBM GSKit.

� The key files managed by IBM GSKit also contain the private key(s) of the
personal certificates. Because private keys should be treated as confidential,
proper file and password protection for these key files is strongly
recommended.

� By default, IBM GSKit comes with a list of root certificates of publicly known
trusted CAs. For maximum security, administrators may consider reducing the
list of root certificates to a minimum.

� For authorization and audit purposes, most applications extract the subject
DN (or any other unique identifier) from the certificate. This often means that
additional filters and/or code must be applied or written in order to match the
certificate information to known identifiers.

� If a specific format or information has to be stored in a certificate, such as in
the subject DN field, bear in mind that most tools or public CAs have some
restrictions or rules that may prevent you from storing your specific
information in the desired format.

� When using SSL, most products allow a wide range of encryption ciphers to
be used. For maximum security, only strong ciphers should be allowed. This
can be configured in most applications or products to override the defaults.
 Chapter 7. Common replacement considerations 123

� All certificates have a validity period of two, five, or 10 years. After the validity
period expires, the certificate will be rejected by most SSL implementation.
Thus, a process must be in place to renew certificates before they expire. This
is especially essential on production systems.

� Most commercial CAs also offer test certificates that can be used like normal
certificates. Be aware that such test certificates often have only a short
validity period of a few weeks or months and that a special root certificate for
the test CA must be imported into IBM GSKit.

� On production systems, a root certificate of a test CA should never be
installed in IBM GSKit. It would allow successful SSL connection (and maybe
even authentication) of anyone who has a test certificate of that CA, which
normally can easily be obtained.
124 DCE Replacement Strategies

Chapter 8. Scenario 1: GSS-API
application

This chapter presents scenario 1, which demonstrates C/C++ replacement
strategies for an application that directly depends on the DCE login, GSS-API,
authorization, and PAC services. The strategies are:

� Leave the entire application in C/C++.

� Replace DCE login and GSS-API with IBM Network Authentication Service
and the Microsoft Windows implementation of the Kerberos client.

� Replace DCE PAC and authorization with IBM Tivoli Access Manager.

� Migrate the DCE registry database to IBM Directory Server, and configure
IBM Network Authentication Service and IBM Tivoli Access Manager to use
the migrated data.

Before reading this chapter, make sure that you read the previous Chapter 7,
“Common replacement considerations” on page 111.

8

© Copyright IBM Corp. 2003. All rights reserved. 125

8.1 Scenario description
This scenario concerns an example application with DCE dependencies that is
revised in order to remove the DCE dependencies. The chapter contents are:

� The initial application with its DCE dependencies is discussed first, followed
by an overview of how the DCE dependencies are replaced.

� The application with DCE dependencies is detailed in section 8.2, “DCE
application” on page 129.

� The replacement roadmap is explained in section 8.3, “Replacement
roadmap” on page 138.

� The revised application, including coding fragments, is explained in section
8.4, “Revised application discussion” on page 152.

� The major considerations for the management of the new environment are
discussed in section 8.5, “Administration considerations and interfaces” on
page 157.

� The chapter concludes with section 8.6, “Discussion and conclusions” on
page 168.

8.1.1 Initial application with DCE dependencies
This part of the scenario demonstrates a client/server application that depends
on DCE for authentication, authorization, and protection of data. The application
client is on the Windows platform and the application server is on the AIX
platform.

The application logic is simple: The application client sends a character string to
the application server, which reverses the character string and returns it to the
application client.

Figure 8-1 on page 128 illustrates the DCE dependencies of the application. The
application directly depends on the DCE login, GSS-API, PAC, and authorization
services. The application indirectly depends on the DCE KDC, privilege, and
registry servers, the DCE registry database, and an application-specific
authorization database. The application also indirectly depends on the DCE
directory server and namespace database, but this indirect dependency is only
during replication of the registry database and is not shown in the illustration.

The application does the following:

1. The application client:

a. Calls the DCE login API to obtain a security credential. The DCE login
service processes this API by obtaining a ticket granting ticket (TGT) from
126 DCE Replacement Strategies

the DCE KDC server and a privilege TGT (PTGT) from the DCE privilege
server. (A PTGT is a TGT with an embedded DCE PAC.)

b. Calls the DCE GSS-API to obtain a service ticket (containing the same
embedded DCE PAC) from the KDC server and wraps this service ticket in
a GSS-API authentication token.

c. Sends the GSS-API authentication token to the application server.

2. The application server then:

a. Calls the DCE GSS-API to verify the client GSS-API authentication token
and obtain a GSS-API mutual authentication token.

b. Sends the GSS-API mutual authentication token to the application client.

3. The application client:

a. Calls DCE GSS-API to verify the mutual authentication token.

b. Calls DCE GSS-API to encrypt a message and wrap it in a GSS-API data
token.

c. Sends the GSS-API data token to the application server.

4. The application server:

a. Calls DCE GSS-API to decrypt the GSS-API data token.

b. Calls DCE GSS-API to get the DCE PAC from the client GSS-API
authentication token.

c. Calls DCE authorization API to get the client permissions from the client
DCE PAC and an ACL stored in a simulated authorization database.

d. Determines whether the client is authorized by comparing the client
permissions with the desired permissions.

e. If the client is authorized, reverses the string in the client message and
sends the reversed string to the application client.

Note: The application server in this example does not perform a DCE or
Kerberos login. Using Kerberos security (DCE security is based on it), only the
context initiator has to obtain a Kerberos TGT, and therefore perform a
Kerberos login. The application server in this scenario is a context acceptor
only. However, some DCE application servers would still need to perform a
DCE or Kerberos login, because they become clients themselves to other
servers, such as DCE CDS.
 Chapter 8. Scenario 1: GSS-API application 127

Figure 8-1 Authentication and authorization with DCE dependencies

8.1.2 Revised application without DCE dependencies
Figure 8-2 on page 129 shows the revised application. The DCE direct
dependencies are replaced as follows:

� On the application client, the DCE login and GSS-API APIs are replaced with
Windows APIs and the Windows login utility. Note that Windows requires
some configuration in order to use a remote KDC service.

� On the application server, the DCE GSS-API APIs are replaced with IBM
Network Authentication Service GSS-API APIs, and the DCE authorization
APIs are replaced with IBM Tivoli Access Manager APIs (also referred to as
aznAPI).

The DCE indirect dependencies are replaced as follows:

� The DCE registry server is replaced with the IBM Directory Server, and the
DCE registry database is migrated to this IBM Directory Server (representing
an LDAP directory).

� The DCE KDC server is replaced with the IBM Network Authentication
Service KDC server, and this server is configured to use the migrated registry
database.

Application

DCE
Privilege
Server

DCE
Registry
Server

TGT PAC

TGT

Application

DCE Dependencies

TKT w. GSS-API
Token

TKT: Ticket
TGT: Ticket Granting Ticket
PAC: Privilege Attribute Certificate

DCE
API

request

Authorization decision

authzDCE API

Client Server

DCE
KDC

Server

DB

TKT with
PAC

PAC

w. PAC
128 DCE Replacement Strategies

� The DCE privilege server is replaced with the IBM Tivoli Access Manager
policy server, which is configured to use the migrated registry database.

� The application-specific authorization database is migrated to the IBM Tivoli
Access Manager policy database.

� The authorization logic of the application server is replaced with the IBM Tivoli
Access Manager authorization database and according functions.

Figure 8-2 Authentication and authorization without DCE dependencies

Note that, depending on the setup, the IBM Tivoli Access Manager authorization
database may be replicated to the system where the application server resides.
Planning, performance and installation considerations for the IBM Tivoli Access
Manager, however, are beyond the scope of this book.

8.2 DCE application
This section briefly describes the sample program source code, which makes
use of DCE services to secure its communication. The DCE dependencies of this
program are replaced as described in the subsequent sections of this chapter.
The key DCE services that are used by this program are extracted and explained
separately. The use of input and output parameters of the individual API calls are
described in the order they appear in the respective service calls. The
communication mechanism between client and server is TCP/IP sockets.

IBM Tivoli
Access Manager

Authorization Server

IBM Tivoli
Access Manager

Policy Server

IBM Directory
Server

TGT

GSS-API
Token

Windows
API & GUI

request

IBM Network
Authentication

Service

aznAPI

Master

Replica

Authorization decision

Application
Client

Replacement Dependencies

Application
Server

TKT

Policy
DB

TKT
 Chapter 8. Scenario 1: GSS-API application 129

The application logic exclusive of the security programming consists of the
application server returning a string, delivered by the client, in reversed byte
order. For the sake of simplicity, only the application messages (strings) that the
application client sends to the application server are protected by GSS-API. The
reply of the server takes place in clear text. The complete source code can be
found in Appendix B, “Scenario 2: Source code listings” on page 331.

8.2.1 Configuring and running the DCE application
For the sample program to run, the following principals and groups have been
entered into the DCE security registry:

scenario1_princ The principal used by the application client to acquire
network credentials.

scenario1_server_princ The principal used by the application server to acquire
network credentials.

scenario1_clients A group, which is part of the ACL of the resource to be
protected. Both scenario1_princ and
scenario1_server_princ are members of this group.

scenario1_resource The actual resource to be protected. This is not used
in the DCE example, as the application holds its
resources in its own, simulated data store.

These registry objects are later part of the migration of DCE registry objects to
the LDAP directory and the IBM Tivoli Access Manager.

Start the applications by entering their executable names on the command line.
Note that changes likely will be necessary to the hard-coded server host name in
the client example to adapt the program to your environment.

8.2.2 Application client
Upon startup, the application client in this DCE-dependent example logs in to
DCE, using the DCE security login API. Subsequently, the application client
initiates a security context with the application server. If this security context is
accepted by the server, the client starts sending encrypted application data to the
application server. Example 8-1 shows the typical DCE login code. In the process
of this login, a DCE PAC is added to the security ticket. The DCE PAC is added
through a call to the DCE privilege server, made transparently for the application.

Example 8-1 DCE login code

int login_to_dce(
 unsigned_char_p_t prin_name, /* Server principal name.*/
 unsigned_char_p_t keytab) /* Keytab file */
130 DCE Replacement Strategies

{

 sec_passwd_rec_t *keydata;
 sec_login_auth_src_t auth_src;
 boolean32 reset_pwd;
 sec_login_handle_t login_context;
 unsigned32 status = error_status_ok;

 /***** Create a context and get the login context *****/
 sec_login_setup_identity(

prin_name,
sec_login_no_flags,
&login_context,
&status);

 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_login_setup_identity(), status: %d\n",status);
 return -1;
 }

 /***** Get secret key from the keytab file *****/
 sec_key_mgmt_get_key(
 rpc_c_authn_dce_secret,
 keytab,
 prin_name,
 0,
 (void**)&keydata,
 &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_key_mgmt_get_key(), status: %d\n",status);
 return -1;
 }

 /***** Validate the login context *****/
 sec_login_validate_identity(
 login_context,
 keydata,
 &reset_pwd,
 &auth_src,
 &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_login_validate_identity(), status: %d\n",status);
 return -1;
 }

 /***** Finally, set the context *****/
 sec_login_set_context(
 Chapter 8. Scenario 1: GSS-API application 131

 login_context,
 &status);
 if (status != error_status_ok){
 fprintf(stderr, "Error - sec_login_set_context(), status: %d\n",status);
 return -1;
 }

 printf("DCE login successful.\n");
 return 0;
}

Example 8-2 on page 133 shows the use of the GSS-API function
gss_init_sec_context to create an authentication token, which the application
client then sends to the application server in order to prove its identity and to
deliver a session key to the server. If mutual authentication is required, which is
the case in this example, the application server also is required to send a token
back to the client. Then, the application client can verify this token to authenticate
the application server. After successful completion of this mutual authentication
process, the application client and server share a common secret key for further
communication.

The following is a brief description of the parameters as they are used in the
gss_init_sec_context API call: After the usual status parameter (min_stat),
GSS_C_NO_CREDENTIAL indicates that the client assumes default
credentials. Out parameter sec_ctx takes the created security context. In server,
the name of the context acceptor is passed in. In this example it is the principal
name, which the server program uses. GSSDCE_C_OID_DCE_KRBV5_DES
specifies the security context to be used. The security context in this example
supports three service options: Mutual authentication, data integrity, and data
encryption. This is achieved by the bitwise Ored flags GSS_C_MUTUAL_FLAG,
GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG. 24*60*60 specifies the
desired period of time in seconds for which the context should remain valid. In
this example the period shall be 24 hours. No channel binding should be used,
which is indicated by GSS_C_NO_CHANNEL_BINDINGS. Channel bindings
enable the GSS-API callers to bind the establishment of the security context to
relevant characteristics such as addresses or to application-specific data.

Note that because in this example mutual authentication is requested,
gss_init_sec_context is actually called in a loop. That means that the client
initiates a security context and sends an authentication token (snd_token) to the
server, which in turn sends an authentication token back after it has accepted the
client’s context. The server’s token (rcv_token) is then used by the client to call
gss_init_sec_context one more time. This way, the client authenticates the
server. The three NULL output parameters specify that the level of protection, its
quality, and the actual context lifetime are not requested to be returned.
132 DCE Replacement Strategies

Example 8-2 GSS setup of initial security context

maj_stat = gss_init_sec_context(
&min_stat,
GSS_C_NO_CREDENTIAL, /* Default cred */
sec_ctx,
server,
GSSDCE_C_OID_DCE_KRBV5_DES,
GSS_C_MUTUAL_FLAG | GSS_C_INTEG_FLAG | GSS_C_CONF_FLAG,
24*60*60,
GSS_C_NO_CHANNEL_BINDINGS,
&rcv_token,
NULL,
&snd_token,
NULL,
NULL);

Example 8-3 shows the use of the GSS-API functions gss_seal and gss_unseal.
These functions are used for securing the exchange of data between the
application client and the application server with regards to both the data type
conversions between different platforms and data protection. In newer versions
of GSS-API, this functions have been replaced by gss_wrap and gss_unwrap.

With gss_seal, after the status and security context parameter, the parameter
true indicates that both integrity and confidentiality (encryption) services are
requested. GSS_C_QOP_DEFAULT specifies the cryptographic algorithm
(quality of protection). The DCE GSS-API only supports one quality of protection.
Next, the actual application message is supplied as input in message. Of the 2
remaining output parameters, NULL indicates that the level of protection is not
requested in this case and token is the application message, sealed (encrypted)
and returned in a GSS token for later transmission to the server.

With gss_unseal status and the security context are specified again as the first
two parameters. In the next two parameters, the GSS token (token) is unpacked
into the decrypted application message (message). The level of protection and
its quality again are not requested here, indicated by the last two NULL
parameters.

Example 8-3 GSS wrapping and unwrapping of messages

maj_stat = gss_seal(
&min_stat,
security_context,
true,
GSS_C_QOP_DEFAULT,
&message,
NULL,
&token);
 Chapter 8. Scenario 1: GSS-API application 133

maj_stat = gss_unseal(
&min_stat,
security_context,
&token,
&message,
NULL,
NULL);

8.2.3 Application server
At startup, the application server in this example registers its identity with the
DCE run-time environment. Then it acquires the credentials for the registered
identity, which it subsequently uses to accept the security context initiated by the
client. After mutual authentication is achieved successfully, the actual exchange
of application messages between the application server and the application client
can take place.

In this example, the application client sends a line of text to the server, which the
server simply returns in reversed character order. All messages are encrypted
and packed in GSS tokens for communication. Additionally, the server contains
authorization code, based on DCE ACLs, to check the client’s permissions for
each message sent.

Example 8-4 shows the use of gssdce_register_acceptor_identity. This DCE
GSS API registers the application server with the DCE run time, which includes
registration of the server principal name and the location of the keytab file to be
used. The NULL parameter indicates that no special function for key-retrieval
shall be used.

Example 8-4 GSSDCE register acceptor identity

gssdce_register_acceptor_identity(
&min_stat,
server_name_t,
NULL,
file_param);

In Example 8-5 on page 135, the server acquires credentials for its principal
name and key.

Note: The preceding and following examples often use the value NULL
instead of an output parameter. This is common practice when an output is not
requested.
134 DCE Replacement Strategies

The period of time in seconds for which the credentials should be valid is
specified by 24*60*60. The example uses GSS_C_NULL_OID_SET to specify
the default security mechanism. GSS_C_ACCEPT tells the run time that these
credentials should only be used to accept a security context, rather than initiating
one. This way, as mentioned earlier, no Kerberos or DCE login is required by the
server. Out parameter cred_handle is the handle to the created credentials. The
actual mechanism and credential lifetime are not of interest here, which is
indicated by the last two NULL parameters.

Example 8-5 GSS acquire credentials

maj_stat = gss_acquire_cred(
&min_stat,
server_name_t,
24*60*60,
GSS_C_NULL_OID_SET,
GSS_C_ACCEPT,
&cred_handle,
NULL,
NULL);

In Example 8-6, gss_accept_sec_context corresponds to the API
gss_init_sec_context, which the client program uses as shown in Example 8-2 on
page 133. This API allows the server program to verify the ticket received from
the client in order to authenticate the client and to extract a session key.

The sec_ctx parameter is the handle to the security context that was created
after the function call succeeded. The handle to the server credentials
cred_handle, obtained in the pervious call to gss_acquire_cred, is passed in.
Like on the client side, no channel binding should be used, which is indicated by
GSS_C_NO_CHANNEL_BINDINGS. Channel bindings enable the GSS-API
callers to bind the establishment of the security context to relevant characteristics
such as addresses or to application-specific data. Given this input, together with
the token rcv_token received form the client, a token snd_token is created, which
is then sent back to the client. snd_token will be verified by the client to
authenticate the server for mutual authentication. As additional information, the
principal name of the client is returned in client.

Example 8-6 GSS accept security context

maj_stat = gss_accept_sec_context(
&min_stat,
sec_ctx,
cred_handle,
&rcv_token,
GSS_C_NO_CHANNEL_BINDINGS,
&client,
 Chapter 8. Scenario 1: GSS-API application 135

NULL,
&snd_token,
NULL,
NULL,
NULL);

Authorization code
As mentioned previously, the DCE example makes use of DCE-dependent
authorization code based on DCE ACLs. It is assumed that the application
maintains its own ACLs in application-specific data stores. Usually this also
involves the use of a DCE ACL manager, using the DCE rdacl interface.
However, as rdacl is not involved in the actual authorization decision, it is not
included in this example.

The example shows how the core of ACL-based authorization works, without
using direct RPC and CDS dependencies. This explains which DCE
authorization code has to be revised in order to remove DCE dependencies.
Example 8-7 shows how authorization is achieved in the scenario example. The
complete source code can be found in “Authorization module with DCE
dependencies” on page 281.

Example 8-7 DCE authorization code

boolean32 is_client_authorized(
 gss_ctx_id_t security_context,
 sec_acl_permset_t desired_perms){

 rpc_authz_cred_handle_t cred_h;
 sec_acl_t *sample_acl;
 rpc_authz_cred_handle_t output_cred;
 OM_uint32 maj_stat, min_stat;
 error_status_t status;
 sec_acl_permset_t perms = dce_acl_c_no_permissions;

 /* Set up sample a ACL */
 setup_sample_acl(&sample_acl, &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - setup_sample_acl(), status: %d\n",status);
 return false;
 }

 maj_stat = gssdce_extract_creds_from_sec_context(
 &min_stat,
 security_context,
 &output_cred);
 if (GSS_ERROR(maj_stat)) {
136 DCE Replacement Strategies

 display_error(
 "gssdce_extract_creds_from_sec_context", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };

 dce_acl_inq_permset_for_creds(
 output_cred,
 sample_acl,
 NULL,
 NULL,
 sec_acl_posix_no_semantics,
 &perms,
 &status);

 if (status != error_status_ok){
 fprintf(stderr,
 "Error - dce_acl_inq_permset_for_creds(), status: %d\n",status);
 return false;
 }

printf("granted perms: %x\n",perms);

 /* If desired permissions are included in caller permissions,
 caller is authorized */
 if ((desired_perms & perms) == desired_perms){
 printf("access granted.\n");
 return true;
 }

 return false;
}

The function is_client_authorized in Example 8-7 on page 136 uses the following
functions and DCE APIs to achieve authorization:

1. setup_sample_acl

This function simulates the use of an application-specific ACL store. The ACL
to test against is fetched from this store.

2. gssdce_extract_creds_from_sec_context

This DCE API pulls the DCE PAC information from the GSS security context.

3. dce_acl_inq_permset_for_creds

This DCE API compares the client’s PAC information with the ACL read from
the applications data store, so the list of access rights is returned as a bitmap.

The authorization decision is then made by testing this bitmap against the
desired access rights.
 Chapter 8. Scenario 1: GSS-API application 137

8.3 Replacement roadmap
This section describes the migration path for the DCE application. The
environment must be migrated in the order shown in the following migration
roadmap, which is explained in the upcoming sections:

1. Fulfill the software requirements.

2. Configure a DCE security replica server to store its security registry in a
shared LDAP directory (IBM Directory Server).

3. Configure the IBM Network Authentication Service (Kerberos) for
authentication using the data in the LDAP directory.

4. Configure the IBM Tivoli Access Manager for authorization using the data in
the LDAP directory.

5. Configure the Windows client(s) to use a remote Kerberos authentication
service.

6. Revise the application(s).

7. Remove DCE or DCE dependencies.

8.3.1 Software requirements
This scenario uses the following software:

� IBM Directory Server Version 3.2.2 with e-fix SWD-002

E-fixes are available at:

http://www.ibm.com/software/network/directory/support/fixes

� IBM Network Authentication Service V1.3

Install this using the AIX Version 5.1 5L Expansion Pack.

� IBM Tivoli Access Manager V3.9, namely its following components:

– Access Manager Runtime (PD.RTE)
– Access Manager Authorization Server (PD.Acld)
– Access Manager Policy Server (PD.Mgr)
– Access Manager Application Developer Kit, if required (PD.AuthADK)

� Microsoft Platform SDK - Core

This can be downloaded from:

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm

Note: The former name of the IBM Directory Server at Version 3.2.2 was
IBM SecureWay Directory. It will be referred to as the IBM Directory Server.
138 DCE Replacement Strategies

http://www.ibm.com/software/network/directory/support/fixes
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm

� Microsoft Client Configuration to a non-Windows KDC

– Windows 2000 Resource Kit Tool
– Windows 2000 Support Tool - Provided on the Windows 2000 CD-ROM

8.3.2 Migration of DCE security registry to IBM Directory Server
This section briefly describes the procedure to migrate the DCE security registry
to IBM Directory Server. It is important to understand that only a DCE security
replica server is used for this migration as the first step. This way, both the
original DCE master security service and a copy of its registry in the LDAP
directory are available at the same time during the migration time period. During
that time period, the DCE master security server continues to accept updates
and it keeps its registry in the local file system. This ensures continuous
operation of the existing DCE cell.

For more detailed information, refer also to the IBM DCE Version 3.2 for AIX and
Solaris: DCE Security Registry and LDAP Integration Guide. (See “Online
resources” on page 422.) The following is a contraction of this integration guide,
provided here for your convenience.

Before Migration
To ensure a successful migration to utilize an LDAP directory as a security
registry, verify that the following actions have been performed before beginning
the migration:

� IBM DCE V3.2 is installed on all server machines that are going to be
migrated. This is required because only Version 3.2 supports the migration of
the registry to an LDAP directory.

� It is recommended that there are at least two DCE security replica servers in
the DCE cell that you are migrating. This ensures best safety and availability
should any error occur during the migration.

� The LDAP client package must be installed on all DCE security server
machines that you are migrating.

� The master key must be available to each security server you are migrating.
All DCE security servers using the LDAP directory must have access to the
same master key file. If you store the master key in LDAP (by specifying the
-master_key_in_ldap flag when you migrate), it is automatically available to all
security servers. However, if you prefer to store the master key in a file, you
must copy the key file to each server. The default location is the local file
system in /opt/dcelocal/var/security/.mkey. Prior to migrating a legacy security
server to LDAP, make a backup copy of the existing .mkey file on the server
and then copy the common master key file to the local file system. To specify
an alternate location for the key file, use the -dce_master_key flag when you
 Chapter 8. Scenario 1: GSS-API application 139

migrate the server. Ensure that the master key is secure. The legacy DCE
implementation sets the permissions on the master key so it is accessible as
read/write by root only.

� The DCE schema definitions for LDAP must be loaded into the LDAP
directory. IBM DCE Version 3.2 ships with the following LDIF files for the IBM
Directory Server Version 3.2.2 (additional LDIF files are also included for
Netscape directory servers):

– IBM.DCE.schema.ldif
– IBM.KRB.schema.ldif

These files contain DCE schema definitions and Kerberos schema definitions,
respectively. These schema definitions are necessary to store DCE security
data in the LDAP directory. The Kerberos portion of the schema might already
be installed, but loading it again does not cause any problems. If the schema
on the LDAP servers does not already have the DCE and Kerberos schema
installed, you must install and load it on all of the LDAP directories that will be
storing DCE security data.

Use this command to load the schema files into the IBM Directory Server:

ldapadd -c -D <bind DN> -w <passwd> -f <filename>

Where bind DN is the DN of the administrator or an account that has sufficient
write authority (for example cn=root), passwd is the password for this account
and filename is one of the two LDIF files mentioned before. Run this
command twice, first loading the Kerberos schema, then the DCE schema.

� The krbRealm for the DCE cell must be created in LDAP. You must configure
an entry to represent the DCE security registry database. This entry is
referred to as the realm entry. DCE uses this entry as the base for storing
DCE security registry data. Do the following to configure the realm entry:

– Choose a location for the realm entry in the directory information tree
(DIT). This location must be serviced by trusted LDAP servers only.

– Assign the realm entry an RDN of krbRealmName-v2=realmname where
realmname is the name of the DCE cell without the preceding /.../. For
example, if the name of the DCE cell is /.../artichoke_cell, use
artichoke_cell as the realm name.

– Use the KrbRealm-v2 structural object class and the DCERealm auxiliary
object class to configure the realm entry.

– Add the required krbRealmName-v2 attribute to the entry, and configure
this attribute with the same realm name that is in the RDN.

Important: You must load the IBM Tivoli Access Manager schema files
before you load the DCE schema.
140 DCE Replacement Strategies

– Add the required krbPrincSubtree attribute to the realm entry, and store in
this attribute a list of one or more DNs. Each DN represents a directory
subtree entry under which DCE searches for DCE principal, DCE group,
and DCE organization data. Do the following to ensure the security of
each DN specified in the krbPrincSubtree:

• Ensure that each DN resides in a directory location that can be
serviced only by trusted LDAP servers.

• Ensure that each DN can be protected with LDAP ACLs so that only
trusted identities can configure DCE attributes under the DN.

Be sure that at least one DN in the krbPrincSubtree entry is the DN of the
realm entry itself or a DN under which the realm entry resides. Because
LDAP performs searches fastest when able to search an entire suffix, it is
recommended that you configure only the DNs of LDAP suffixes in the
realm entry. However, for security reasons you should not configure the
DN of a suffix in the krbPrincSubtree entry if any entries under the suffix
are serviced by untrusted LDAP servers. You also should not configure the
DN of a suffix in the krbPrincSubtree entry if you cannot protect all entries
residing under the suffix from untrusted identities configuring DCE
attributes.

– Add the krbKdcServiceObject attribute to the realm entry, and configure
this attribute with the DN of each DCE security service entry.

– Add the krbTrustedAdmObject attribute to the realm entry, and configure
this attribute with the DN of each DCE security service entry.

In the following example of an LDIF file, the DN of the realm entry is
krbRealmName-v2=realm1,ou=Austin. This DN and the DN of
cn=dept1,ou=Austin are the only DNs configured in krbPrincSubtree.
Therefore, DCE searches only under the realm entry and the
cn=dept1,ou=Austin for DCE principals, groups, and organizations. The realm
contains two DCE servers: servera.deptabc.ibm.com and
serverb.deptabc.ibm.com.

DN: krbRealmName-v2=realm1, ou=Austin
objectclass: KrbRealm-v2
objectclass: KrbRealmExt
krbRealmName-v2: realm1
krbPrincSubtree: krbRealmName-v2=realm1, ou=Austin
krbPrincSubtree: cn=dept1, ou=Austin
krbKdcServiceObject:
serviceName=servera.deptabc.ibm.com,dc=deptabc,dc=IBM,dc=COM

krbKdcServiceObject:
serviceName=serverb.deptabc.ibm.com,dc=deptabc,dc=IBM,dc=COM

krbTrustedAdmObject:
serviceName=servera.deptabc.ibm.com,dc=deptabc,dc=IBM,dc=COM

krbTrustedAdmObject:
 Chapter 8. Scenario 1: GSS-API application 141

serviceName=serverb.deptabc.ibm.com,dc=deptabc,dc=IBM,dc=COM

� The LDAP ACLs must be set on the DCERealm and KrbMstrKey objects.

� A suitable LDAP bind protocol and authentication method must be selected. It
is recommended to use SSL to secure the communication between the DCE
security server and the IBM Directory Server. If not using SSL, wiretapping
could be used to copy sensitive information as it transmits over the network.

� There must be one or more entries configured in LDAP to represent the DCE
security server(s) in the realm. The DCE security servers use these entries to
bind to LDAP. The following example represents such an entry:

dn: serviceName=servera,dc=itso,dc=ibm,dc=com
objectclass: cimManagedSystemElement
objectclass: eService
objectclass: cimManagedElement
objectclass: cimLogicalElement
objectclass: top
objectclass: KrbAuthObject
userpassword: {iMASK}>16rS7rRd7bSFdYPJ7GXi32d/1t+xE7sSyTHGI7QaiWcV1lzNNCnnZ
 qUov0QN0R7aRCTbppVUpQDMx3t2sN90skGtjI7YCSxUvq3hqF8Ok0ha406kJnXgJVUgSBwcnVd
 vTge1zdkegoumOnfW9KcOacEUcDUOz<
servicename: servera

� The SEC_REP_INIT_FROM_UUID environment variable must be set on the
master security server machine with the UUID of a legacy replica that will
initialize the LDAP migration server. This enables the master server to
continue accepting updates during initialization.

The steps as mentioned before prepare the environment such that the actual
migration of a DCE security replica server to utilize the LDAP directory can take
place, as described next.

Actual Migration
Perform the following steps to migrate a DCE replica security server to use an
LDAP directory as its registry back end store:

1. Use the dcecp command to convert one legacy replica server into an LDAP
migration security server:

dcecp -c registry migrate -migrationslave \
 -ldap_host <hostname:port | "list of hostnames"> \
 -bind_dn <bind_dn> -bind_dn_pw <bind_dn_pw> \
 [-ssl {-auth_type <ssl | cram-md5>} | \
 -auth_type <simple | ssl | cram-md5>] \
 [-keyring <ldap_keyring_file>] \
 [-keyring_pw <ldap_keyring_pw>] \
 [-master_key_in_ldap] \
142 DCE Replacement Strategies

 [-dce_master_key <dce_master_key_file>] \
 [-delete_type <all | krb_dce | dce>]

After you perform this step, the migration server migrates all of the registry
information to the LDAP directory and then uses this LDAP directory as the
only backend store. The DCE cell can continue to operate in this state for an
indefinite period of time. However, it is recommended that you migrate the
security servers to LDAP once you are comfortable with the performance and
stability of the cell. If you do not complete the migration of all of the security
servers, any changes made to the LDAP directory using LDAP interfaces are
not passed to the DCE master or any other replicas. After you are sure that
the security data stored in LDAP is correct and is in sync with the legacy
master’s security data, move on to the next step.

If there is a problem at this stage, unconfigure the migration server and
remove any extraneous data from LDAP, perform problem determination, and
then start over.

2. Use the dcecp -c registry migrate -ldapslave command to convert all
legacy replica servers into LDAP security slaves. After you convert the legacy
replica servers to LDAP, they no longer have a local database or process the
propagations from the legacy master. When they receive requests from
clients, they retrieve the data from LDAP. Although it is strongly recommended
that you continue the migration process, it is not mandatory. The DCE cell can
remain in this state with a migration server and a legacy master for an
undetermined amount of time.

3. Unconfigure all DCE legacy security servers that have not been migrated to
LDAP.

4. Use the dcecp -c registry modify -version secd.dce.1.3 command to
raise the registry version to secd.dce.1.3. This only works if the legacy master
server is running IBM DCE V3.2. To ensure that all downlevel servers shut
down, issue any command that updates the registry database. When the
master attempts to propagate the update, all downlevel servers shut down.
Although this ensures that all downlevel servers shut down, it does not ensure
that all level 3.2 security servers have been migrated to LDAP.

5. Use the dceback command to back up legacy DCE security data on the
legacy master. To do this, enter the following at the command prompt:

dceback dumpsecurity -destfile <sec_backup_file>
dceback dumpmisc -destfile <misc_backup_file>

Note: The registry version can be raised only one level at a time. If it is
currently at 1.2.2, it must be raised to 1.2.2a before it is raised to 1.3.
 Chapter 8. Scenario 1: GSS-API application 143

6. Use the dcecp -c registry migrate -ldapmaster command to convert the
legacy master into an LDAP security master.

After you perform the last step, the LDAP security master writes security data to
LDAP (rather than to memory and local databases), and the migration server
becomes an LDAP security slave. Any DCE security servers that have not been
migrated to LDAP no longer receive updates from the master and must be
unconfigured. Replicas that do not receive updates return outdated information
to clients. The DCE legacy master can be converted to an LDAP security master
even if all of the DCE legacy slaves in the cell have not been converted to LDAP
security slaves. If the promotion to the DCE security master fails, run the
following commands:

stop.dce
dceback restoremisc -sourcefile <misc_backup_file>
dceback restoresecurity -sourcefile <sec_backup_file>
start.dce

8.3.3 Configuring IBM Network Authentication Service
Two documents that are included with the AIX product describe IBM Network
Authentication Service in more detail. They are:

� IBM Network Authentication Service Version 1.3 for AIX, Administrator’s and
User’s Guide

� IBM Network Authentication Service Version 1.3 for AIX, Application
Development Reference

For details about how the IBM Network Authentication Service uses the DCE
authentication data in the IBM Directory Server, refer to Chapter 4, “Using DCE
data with IBM Network Authentication Service” on page 75.

For your convenience, the following is a brief description of what needs to be
done. The configuration of the IBM Network Authentication Service to use the
DCE authentication data that have been migrated to the IBM Directory Server
can be done with one single command:

config.krb5 -h | -S [-a <admin>] \
 -d domain \
 -r realm \
 -s server \
 [[-l {ldapserver | ldapserver:port}] \
 [-u ldap_DN -p ldap_DN_PW] \

Note: After you convert the DCE legacy master to an LDAP security
master, there is no way to revert to the legacy security function.
144 DCE Replacement Strategies

 [-f {keyring | keyring:entry_dn} -k keyring_pw] \
 [-m masterkey_location] \
 [-b bind_type] \
 [-R ldap_replica_list]]

For example, if your domain was deptabc.ibm.com and the realm was realm1,
the LDAP security master was on host servera.deptabc.ibm.com (no SSL used),
and the replica was on serverb.deptabc.ibm.com, then use the command:

config.krb5 -S -d deptabc.ibm.com -r realm1 -l servera.deptabc.ibm.com \
 -u cn=root -p Xc5dF3Kw -b simple -R “serverb.deptabc.ibm.com”

8.3.4 Configuring IBM Tivoli Access Manager
Configuring the IBM Tivoli Access Manager to use the migrated privilege data
stored in the LDAP directory (IBM Directory Server) is described in Chapter 5,
“Using DCE objects with IBM Tivoli Access Manager” on page 85. More
information about the IBM Tivoli Access Manager can be found in the IBM Tivoli
Access Manager Base Administrator’s Guide. (See “Online resources” on
page 422.)The following summarizes the steps involved:

1. Attaching the users and groups in the LDAP directory to the IBM Tivoli Access
Manager.

DCE users and groups must be attached to the information in the LDAP
directory so that the IBM Tivoli Access Manager can use them. Rather than
doing this manually, this section shows example UNIX shell scripts that
perform this task more conveniently for an administrator, as most installations
involve a large number of users and groups.

Example 8-8 is a sample script to attach DCE users in the IBM Directory
Server to the IBM Tivoli Access Manager information tree. It assumes that all
the users are directly under the myapp directory tree and have unique names.
The script uses a bind DN of cn=root and a password for this bind DN of
Xc5dF3Kw. While writing scripts, care must be taken to preserve the directory
structure of the principals.

Example 8-8 Attach users in IBM Directory to Access Manager

#!/bin/ksh

file1="principals"
file2="principals_new"

Search the IBM Directory to find all the applciation users under the myapp
directory tree
ldapsearch -D cn=root -w Xc5dF3Kw \
-b cn=myapp,cn=principal,krbRealmName-v2=realm1,dc=itso,dc=ibm,dc=com \
"(krbPrincipalName=*@realm1)" objectclass > $file1
 Chapter 8. Scenario 1: GSS-API application 145

Modify the file to add the inetOrgPerson objectclass for each user.
cat $file1 | while read var
 do
 if [[-n $var]] then
 echo $var >> $file2
 else
 echo "objectclass=inetOrgPerson\n" >> $file2
 fi
 done

Modify the IBM Directory entries with the inetOrgPerson objectclass added to
all users
under /myapp
ldapmodify -D cn=root -w Xc5dF3Kw -f $file2

Retrieve the DN of all the DCE users
ldapsearch -D cn=root -w Xc5dF3Kw \
-b cn=myapp,cn=principal,krbRealmName-v2=realm1,dc=itso,dc=ibm,dc=com \
"(krbPrincipalName=*@realm1)" dn > $file1

Import each DCE user (extract the username from the DN) into IBM Tivoli AM
and modify the user to activate the
account. Any other modifications to the user can be done here.
cat $file1 | while read dn
 do
 if [[-n $dn]] then
 userName=$(echo $dn |sed -e 's/cn=//'|sed -e 's/,.*//')
 pdadmin -a sec_master -p Ye7Cu2ve user import $userName "$dn"
 pdadmin -a sec_master -p Ye7Cu2ve user modify $userName account-valid yes
 pdadmin -a sec_master -p Ye7Cu2ve user show $userName
 fi
 done

rm $file1 $file2

Example 8-9 is a sample script to attach DCE groups in the IBM Directory
Server to the IBM Tivoli Access Manager information tree. Again, it assumes
that all the groups are directly under the myapp directory tree and have
unique names.

Example 8-9 Attach groups in IBM Directory to Access Manager

#!/bin/ksh

file1="principals"

#Search the IBM Directory for all the DCE groups and retrieve their DNs
ldapsearch -D cn=root -w Xc5dF3Kw \
146 DCE Replacement Strategies

 -b cn=myapp,cn=group,krbRealmName-v2=realm1,dc=itso,dc=ibm,dc=com \
 "(dceGroupName=*@realm1)" dn > $file1

Import each DCE group (extract the group name from the DN) into the Access
Manager
cat $file1 | while read dn
 do
 if [[-n $dn]] then
 echo $dn
 groupName=$(echo $dn |sed -e 's/cn=//'|sed -e 's/,.*//')
 echo $groupName
 pdadmin -a sec_master -p Ye7Cu2ve group import $groupName "$dn"
 pdadmin -a sec_master -p Ye7Cu2ve group show $groupName
 fi
 done

rm $file1

Note that the group membership attribute is shared between DCE and IBM
Tivoli Access Manager. When a member is added to a group with DCE, that
membership is also seen by IBM Tivoli Access Manager.

2. Creating an objectspace in the IBM Tivoli Access Manager and adding the
application resources to the objectspace.

All application resources, such as files, services, and programs, must be
migrated to the IBM Tivoli Access Manager as protected objects. The
protected objects are contained in protected objectspaces. There are various
types of protected objects. For every resource, use the object type that is
most appropriate for that resource. For information about the various types of
protected objectspace and objects, and how to create them, refer to the IBM
Tivoli Access Manager Base Administrator’s Guide. (See “Online resources”
on page 422.)

For your convenience, the two scripts as presented here are included in the
downloadable additional material for scenario 1. (See “Additional material” on
page 417.)

The application resource information typically is stored in an application
specific ACL database. The DCE security registry can be used for the same
purpose. This step has to be performed irrespective of the repository, if you
must replace the use of DCE authorization API with aznAPI.

To demonstrate the migration, consider an application, myapp, using
resources file1 and file2. To migrate these resources to the IBM Tivoli Access
Manager, create a protected objectspace /myapp of the “Application
Container Object (14)” type in the Access Manager, and add file1 and file2 as
“file” objects in the objectspace:

pdadmin> objectspace create /myapp “Objectspace for my appl.” 14
 Chapter 8. Scenario 1: GSS-API application 147

pdadmin> object create /myapp/file1 “File 1 ” 2 ispolicyattachable yes
pdadmin> object create /myapp/file2 “File 1 ” 2 ispolicyattachable yes

Again, it is convenient to have scripts to do this, if possible.

3. Creating, modifying, and attaching ACLs to the objects added in the
objectspace.

Once the resources are migrated as protected objects in the IBM Tivoli
Access Manager, corresponding ACLs must be set on each protected object.
The following steps outline what needs to be done:

a. Create ACLs: Create new access control lists using the acl create
command. This creates new ACL policies in the ACL database, but not
specific ACL entries.

b. Modify ACLs: Set ACL entries using the acl modify command for the
users and groups in the specified access control list. The user registry
must contain an entry for the specified user or group before you can run
this command to add an entry for the user or group to an ACL.

To set permissions for a user or group, the IBM Tivoli Access Manager
defines 17 default permissions. It also provides the capability to define
many more additional permissions. You can choose to use the default
permissions or create your own as appropriate.

c. Attach ACLs to objects: Attach the specified ACL to the specified
protected object using the acl attach command. If the specified protected
object already has an ACL attached, this function replaces that ACL with
the new one. At most, one ACL can be attached to a given protected
object. The same ACL can be attached to multiple protected objects.

In the example mentioned above, say, file1 has only read permission for a
group called mygroup1 and has read, write (modify), and execute permission
for mygroup2. To migrate ACL to the IBM Tivoli Access Manager, do the
following:

pdadmin> acl create ExampleACL
pdadmin> acl modify ExampleACL set group mygroup1 r
pdadmin> acl modify ExampleACL set group mygroup2 rmx
pdadmin> acl attach /myapp/file1 ExampleACL

For detailed information about using the access control policies of the Access
Manager, refer IBM Tivoli Access Manager Base Administrator’s Guide. (See
“Online resources” on page 422.)
148 DCE Replacement Strategies

8.3.5 Configuring the Windows Kerberos client
For the revised example in this scenario, a Windows 2000 Professional
workstation is configured using an external Kerberos realm for authentication.
The Kerberos configuration is provided by the IBM Network Authentication
Service and based on the DCE registry data, migrated to LDAP. Thus, the realm’s
name is the same as the DCE cell name, in this example realm1.austin.ibm.com.

To configure a Windows 2000 system into a Kerberos realm, follow the general
description provided by Microsoft at the following link:

http://www.microsoft.com/windows2000/techinfo/planning/security/kerbste
ps.asp

To perform the actual configuration, the Windows 2000 support command ksetup
is used. It is part of the Windows 2000 installation CD-ROM. To check whether
the Windows System has gained proper Kerberos credentials, the klist
command, which comes with the Windows 2000 Resource Kit, can be used. To
configure Kerberos to accept Windows 2000 as a client, the standard
administration command kadmin is utilized. The following configuration steps are
necessary for this scenario.

Configuration of Kerberos
On AIX, the following administration commands are issued to the IBM Network
Authentication Service using kadmin:

� After the initial Kerberos configuration, remove references to des3-cbc-sha1
from the default_tkt_encytpes and default_tgs_enctypes lines in the
/etc/krb5/krb5.conf file.

� Next, remove both references to des3-cbc-sha1:normal from the
/var/krb5/krb5kdc/kdc.conf file.

� Execute stop.krb5 and then start.krb5 to refresh the daemons.

� Create the host principal for the Windows 2000 System with this command,
using only lower-case letters to specify the Windows system’s host name:

add_principal host/<windows_hostname>.realm1.austin.ibm.com

Note: The examples provided in the previous section used the command
line interface to administer the IBM Tivoli Access Manager. This is a
suggested way, embedded in script programs, when a large number of
objects are to be manipulated. The IBM Tivoli Access Manager also
supports a graphical user interface (called the Web Portal Manager) that
may be more suitable for incidental or help desk operations.
 Chapter 8. Scenario 1: GSS-API application 149

http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp
http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp

Configuration of Windows 2000
On the Windows 2000 System, the ksetup command is used as follows:

� ksetup /setdomain realm1.austin.ibm.com
This command configures Windows 2000 to use the Kerberos realm
realm1.austin.ibm.com as domain. Although the ksetup command states that
it configures a DNS domain, the realm name given does not have to be an
existing DNS or host name.

� ksetup /addkdc realm1.austin.ibm.com <kdc_hostname>
Next, the real, full qualified host name is specified for the node, where the
Kerberos server resides. This tells Windows the location of the server, which
serves authentication requests for the configured realm.

� ksetup /mapuser scenario1_princ@realm1.austin.ibm.com local_user
The mapuser option of the ksetup command links a local Windows 2000 user
account with a Kerberos principal. Thus, when you log on to Windows 2000
using principal name scenario1_princ, Windows 2000 uses the specified local
user local_user for the local login to the system and scenario1_princ to
authenticate against Kerberos.

� ksetup /setmachpassword <password>
This command sets the password that the Windows 2000 system uses to
authenticate itself against Kerberos. The password specified in this command
has to correspond to the one that was used when creating the host principal
in Kerberos. (See “Configuration of Kerberos” on page 149.)

After these commands have been executed successfully, the Windows 2000
System has to be rebooted. After reboot, there is a domain selector in the login
dialog. To log on, the domain must be chosen from the list and the user ID (in our
scenario1_princ) must be entered with a correct password. When successfully
logged on, the klist command can be used to confirm that proper credentials
have been acquired.
150 DCE Replacement Strategies

8.3.6 Revising the application
Revising the application includes the replacement of the login and authorization
code by the respective services provided by the replacement technologies and/or
products. See section 8.4, “Revised application discussion” on page 152 for the
details concerning these design and programming tasks.

8.3.7 Cleaning up the DCE related information in the IBM Directory
When you are confident that you have migrated all of the users, groups, ACLs on
resources, and the application successfully, you can remove DCE-related
information in the IBM Directory Server. The appropriate dcecp command to
remove users and groups supports the option of removing only DCE-specific
portions of the registry so that other applications may continue to use the basic
principal and group information. This option is specified with the krbdeletetype
attribute, so be sure that the krbdeletetype attribute of the realm entry for DCE in
the IBM Directory Server is set to dce(2) when you delete the DCE principals and

Important: Be careful when replacing login mechanisms on operating
systems because errors may lead to unrecoverable situations. The following
hints may be useful in order to avoid surprises:

� Preferably, the local user in this configuration should be part of the local
machine’s administrator group.

� The Kerberos log file /var/krb5/log/krb5kdc.log on the AIX system may
have useful information in case of login difficulties or improper credentials.

� The information defined with the ksetup command is kept in the Windows
registry under the key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos.
This key can be exported into a registration file for later use.

� Use care when resetting the Windows system to its original domain. The
ksetup command does not offer a reset option. In this case, the reset may
be achieved by entering ksetup/setdomain ““ and subsequently entering
the system into the original workgroup through the Start -> Settings ->
Control Panel -> System dialog. Do not shut down the system before
these steps have been performed successfully, as the system may become
unusable otherwise.

Note: This procedure for resetting a Windows system was successful in the
lab environment used for writing this book, but it was not found in any product
documentation. Therefore, this procedure might not be supported.
 Chapter 8. Scenario 1: GSS-API application 151

groups using the proper dcecp commands. This will remove only the DCE-related
attributes from the objects in the IBM DirectoryServer that are not used
otherwise. The Kerberos and IBM Tivoli Access Manager information will still be
defined and usable.

Examples:

dcecp> princ delete <user name>
dcecp> group delete <group name>

Finally, when all DCE dependencies are removed, you can also remove the DCE
security server from the environment and unconfigure the DCE cell.

8.4 Revised application discussion
In this section, the example introduced in section “DCE application” on page 129,
is presented in a revised form with all DCE dependencies replaced. As
introduced earlier, the Windows Security Service Provider Interface (SSPI) is
used for authentication, and the aznAPI provided by the IBM Tivoli Access
Manager is used for authorization. The Windows SSPI is an API that is very
similar to the GSS-API, but without providing source code compatibility with the
latter. The key services that are used by this API are extracted and explained
separately if they have been added or changed compared to the DCE example.

The application logic remains unchanged. The application server returns a string
passed by the client in reverse character order.

8.4.1 Configuring and running the revised application
The revised example relies on the same objects as the DCE example (see
section 8.2.1, “Configuring and running the DCE application” on page 130),
which are now migrated to LDAP and IBM Tivoli Access Manager. In order to
comply with IBM Tivoli Access Manager naming conventions, the object
scenario1_resource has been renamed to /Scenario1/Resource1 in the IBM
Tivoli Access Manager LDAP name space. This represents a resource being
protected by the IBM Tivoli Access Manager.

Before making use of the aznAPI, the application has to be configured to
communicate with IBM Tivoli Access Manager’s authorization server. (Note that
the IBM Tivoli Access Manager documentation sometimes refers t the
authorization server as the Policy Director.) This example uses the remote cache
mode to communicate with authorization servers. This involves less configuration
and initialization code at the cost of a possible slight performance decrease.
Also, a configuration file is necessary for the example scenario to run; find an
example configuration file in “Application configuration file” on page 319. To
152 DCE Replacement Strategies

configure an application to communicate with IBM Tivoli Access Manager’s
authorization server, the management command svrsslcfg is used. An example
for the use of svrsslcfg can be found in the example directory that is included in
the product installation.

The applications are started simply by entering their executables’ names on the
command line. Note that most likely changes will be necessary to the hard-coded
server hostname in the client example to adapt the program to your environment.

8.4.2 Application client
The revised client example is written for the Windows platform. Section 8.3.5,
“Configuring the Windows Kerberos client” on page 149, explains the necessary
configuration steps. In the revised application client code, the DCE login code
has been eliminated. The program gains the correct credentials from the context
provided by the Windows login then initiates a common security context with the
application server. Both tasks, acquiring credentials and initializing the security
context, are accomplished through calls to the Windows SSPI.

Example 8-10 shows the use of the AcquireCredentialsHandle service in the
example program. No principal name is specified, as existing credentials are
expected. "Kerberos" is the name of the underlying security package to be used.
The SECPKG_CRED_OUTBOUND parameter indicates that the credentials will
be used to enable a local credential to prepare an outgoing token. All other
in-parameters are omitted. The actual handle for the credential is received in
cred_handle. expiry is a pointer to a timeStamp structure that receives the time at
which the returned credentials expire. This timestamp is not used further in this
example, but it could be used in a separate credential refresh thread, which
periodically refreshes the credentials before they expire. Such a refresh thread is
not implemented in the example.

Example 8-10 SSPI acquire existing credentials

maj_stat = AcquireCredentialsHandle(
 NULL, // no principal name
 "Kerberos", // package name
 SECPKG_CRED_OUTBOUND,
 NULL, // no logon id
 NULL, // no auth data
 NULL, // no get key fn
 NULL, // noget key arg
 &cred_handle,
 &expiry);

The call to InitializeSecurityContext in Example 8-11 on page 154 closely
resembles the GSS-API call in Example 8-2 on page 133. As in the earlier
 Chapter 8. Scenario 1: GSS-API application 153

example it is called in a loop to achieve mutual client/server authentication.
cred_handle points to the credentials, obtained in the call to
AcquireCredentialsHandle. context_handle is initially empty, but passed in with
the value of gss_context in the second call to InitializeSecurityContext.
server_name is the principal name that the application server uses. deleg_flag
contains the bit flags that indicate the requirements of the context. Those
correspond closely to the service options used in Example 8-2 on page 133,
although under Windows more options are supported but not used in this
example. SECURITY_NATIVE_DREP indicates the data representation, such as
byte ordering, on the target. Then, input_desc and output_desc follow; they
correspond to rcv_token and snd_token in Example 8-2 on page 133. After two
calls to InitializeSecurityContext, gss_context contains a handle to the final
security context, shared between the application client and server. The additional
output parameters ret_flags and expiry indicate the actual service options that
the context offers and the expiration time of the context. Neither is used further in
the example.

Example 8-11 SSPI setup of initial security context

OM_uint32 deleg_flag = (
ISC_REQ_MUTUAL_AUTH |
ISC_REQ_ALLOCATE_MEMORY |
ISC_REQ_CONFIDENTIALITY |
ISC_REQ_REPLAY_DETECT);

maj_stat = InitializeSecurityContext(
 &cred_handle,
 context_handle,
 (char *)server_name,
 deleg_flag,
 0, // reserved
 SECURITY_NATIVE_DREP,
 &input_desc,
 0, // reserved
 gss_context,
 &output_desc,
 &ret_flags,
 &expiry);

Example 8-12 shows the SSPI complement to GSS-API’s gss_seal.
EncryptMessage takes as input the current security context and as in/out
parameter the token to be protected. The two parameters, which are specified
with ‘0’, are not used with this version of SSPI.

Example 8-12 SSPI wrapping of messages

maj_stat = EncryptMessage(
security_context,
154 DCE Replacement Strategies

0,
&in_buf_desc,
0);

8.4.3 Application server
This section explains how the application server example program has to be
revised in order to remove DCE dependencies. The necessary changes to the
application server’s authentication code are actually small. The major change
occurs in the authorization part, where the whole DCE authorization module has
to be replaced by a module that makes use of the aznAPI. The service provider
for the aznAPI is IBM Tivoli Access Manager Policy Director. Finally, as
mentioned before, the application logic of the server remains unchanged.

When starting, the server program first gains default credentials by looking up his
secret key in the default key table, specifying his principal name in
gss_acquire_cred. A separate keytab file could be used here, by setting the
environment variable KRB5_KTNAME, before calling gss_acquire_cred. For the
principal name used, an entry has to be created in a Kerberos keytab file on the
same machine. Again, no Kerberos login is required by the server application as
it is purely a context acceptor. As in the DCE example, the server then
establishes a common security context with the client. If this is successful, the
message exchange between application client and server can take place. The
code for all of this remains unchanged. The only change in the authentication
code affects the call to gssdce_register_acceptor_identity, described in
Example 8-4 on page 134. This call can be removed.

Authorization code
This section explains how the revised server example makes use of the aznAPI.
Again, the most relevant service calls are presented in detail. The complete
authorization source code can be found in a separate module called
azn_authz.c, as opposed to dce_authz.c in the DCE example. (See “Revised
application without DCE dependencies” on page 292.)

Example 8-13 provides an excerpt of the function is_client_authorized from the
authorization module azn_authz.c. Unlike DCE, the client’s authorization
information is not passed over the network from the application client, but instead
is gained on the server side using aznAPI calls. The principal name of the
already authenticated client is used to retrieve its credentials from the underlying
authorization system.

Example 8-13 AZN authorization code

 /* Set mechanism ID to NULL so the aznAPI will determine
 * which registry (LDAP or URAF) that Policy Director is
 Chapter 8. Scenario 1: GSS-API application 155

 * configured to use. */
 mech = (char *)NULL;
 default_minfo.principal = prin_name;
 buf.length = sizeof(default_minfo);
 buf.value = (unsigned char *)&default_minfo;

 /* create a credential */
 status = azn_creds_create(&creds);
 check_status("azn_creds_create", status);
 if (status != AZN_S_COMPLETE) {
 fprintf(stderr, "Could not create a cred!\n");
 exit(1);
 }

 /* get a credential */
 status = azn_id_get_creds(NULL, mech, &buf, &creds);
 check_status("azn_id_get_creds", status);
 if (status != AZN_S_COMPLETE) {
 fprintf(stderr, "Could not get creds!\n\n");
 }

 /* Perform standard authorization check */
 status = azn_decision_access_allowed(
 creds,
 obj_name,
 operation,
 &permitted);
 check_status("azn_decision_access_allowed", status);

 status = azn_creds_delete(&creds);

 if (permitted == AZN_C_PERMITTED) {
 printf("Permitted.\n\n");
 return TRUE; }
 else {
 printf("Not permitted.\n\n");
 return FALSE;
 }

The function is_client_authorized in Example 8-13 on page 155 utilizes two
important APIs to achieve authorization:

1. azn_creds_create and azn_id_get_creds

These calls create and extract azn credentials (similar to a DCE PAC) for a
given principal.
156 DCE Replacement Strategies

2. azn_decision_access_allowed

This function makes the actual authorization decision by comparing the
desired permissions with the client’s credential information. In order to
achieve this, the application passes in the client credentials, the name of the
protected resource, and the desired permissions. A AZN_C_PERMITTED
status signals positive permission. Otherwise the request is rejected. Please
note that unlike in the DCE example, credential checking and the
authorization decision are performed in a single function call.

8.5 Administration considerations and interfaces
This section points out the new considerations concerning administrative tasks
and interfaces. The overview comprises the transition environment with DCE
security service, the IBM Network Authentication Service, and IBM Tivoli Access
Manager all together, and then the final environment without DCE dependencies.

8.5.1 Administration during the migration process
Figure 8-3 on page 158 illustrates the components of the administrative
environment during the migration process. The LDAP directory service
represents a central repository containing all registry data. The DCE, IBM
Network Authentication Service, and IBM Tivoli Access Manager servers all
share the data in the LDAP directory.

The LDAP directory as a centralized data store
As a recap, the term LDAP refers to a protocol (Lightweight Directory Access
Protocol). The term LDAP directory denotes a directory that is accessible by the
use of LDAP. Besides a few administrative tasks that are done through a Web
interface and a server-side plug-in that resides on the LDAP server system, all
components access the LDAP directory by means of the LDAP. That means in
this sample replacement scenario that the DCE security service, IBM
Authentication Service, and IBM Tivoli Access Manager all use LDAP to access
the LDAP directory.

In practical environments where security is of primary concern, the LDAP
network connection would certainly need to be protected by strong
authentication and encryption. (See section 7.4, “Security considerations” on
page 113.) LDAP over SSL, simply referred to as LDAPS, provides this. See the
corresponding product documentation about setting up and using LDAPS.

The DCE registry server uses the LDAP directory to store and manage all data
that was kept previously in the local, files-based security registry. The IBM
Network Authentication Service uses a subset of the security information kept in
 Chapter 8. Scenario 1: GSS-API application 157

the LDAP directory in order to authenticate users to a Kerberos realm, and
additionally for issuing tickets to clients. At last, the IBM Tivoli Access Manager
stores and maintains group information, object information, and access control
lists in the LDAP directory. The three services share some but not all of their
information in the LDAP directory. This raises administration questions as it has
to be clear what service is to be used for the various administration tasks.

Figure 8-3 depicts the tree components and their primary administration
interfaces that access the shared LDAP directory.

Figure 8-3 Migration environment with DCE dependencies

Sharing data with IBM Tivoli Access Manager
As LDAP information can be modified by every participating component (and, of
course, by LDAP-native interfaces as well), some considerations arise
concerning administration. As described in detail in Chapter 5, “Using DCE
objects with IBM Tivoli Access Manager” on page 85, an administrator has to
take care of the consistency of shared objects stored in the LDAP directory,
especially when modifications are made by either DCE security service or IBM
Tivoli Access Manager.

LDAP
directory

IBM Network
Authentication

Service
Admin Server

DCE Registry
Server

IBM Tivoli
Access Manager

Policy Server

pdadmin
dcecp

rgy_edit kadmin

Administrator

r/w r/w r/w

I) II)
158 DCE Replacement Strategies

Each technology shares user objects in the LDAP directory when they refer to
same Distinguished Names (DN) of the objects. But only the user name is shared
initially while other attributes of the user, such as group membership, passwords,
and unique IDs, remain unshared because they are specific to the technologies.
If not handled properly, inconsistencies can exist. Another inconsistency over
user data can arise because the DCE security service and the IBM Tivoli Access
Manager have different ways of handling policies. In DCE, policies are defined in
DCE organizations; that is, DCE policies are applied to a user via membership in
an organization. The IBM Tivoli Access Manager, on the other hand, creates a
default policy and then users can override the policy. Note that it is the task of an
administrator to keep consistency between the two technologies.

A newly created DCE user has to be attached to the corresponding IBM Tivoli
Access Manager user. On the other hand, DCE security service recognizes IBM
Tivoli Access Manager users and the related policy only if they are attached to
DCE users.

In the transition environment, it is good practice to change user and group
information via DCE first. With the command line interfaces to the DCE security
service, including the dcecp and rgy_edit commands, both user and group
information can be managed easily from a single point. Policy data can be
administered by means of DCE commands as well. However, keep in mind to
update policy and user data for the IBM Tivoli Access Manager user in the LDAP
directory every time changes are made. The same procedure applies to group
membership information.

Access control lists (ACL) and protected object policies (POP) are maintained by
the IBM Tivoli Access Manager differently from DCE ACLs. With the IBM Tivoli
Access Manager, administrators protect resources by applying policies to the
object representation of these resources in terms of ACLs. Because ACL
information is different between DCE and the IBM Tivoli Access Manager, their
administration must be done separately for DCE and IBM Tivoli Access Manager.

Sharing data with IBM Network Authentication Service
Sharing objects in the LDAP directory concerning DCE security service and IBM
Network Authentication Service turns out to be easier. Following the same LDAP
schema layout and realm layout, it is possible for DCE security service and IBM
Network Authentication Service to share principals, passwords, and policy
information. However, changes that are made to user objects are recognized
instantly by both of the technologies.

Replication considerations
Figure 8-4 on page 160 illustrates the replication direction concerning the DCE
registry data. The DCE security master, holding the read/write replica of the
 Chapter 8. Scenario 1: GSS-API application 159

registry database, synchronizes with the DCE security replica database that uses
the LDAP directory as its database. Changes made to the DCE registry are
propagated to the LDAP server database by means of the DCE replication
process, therefore are visible for IBM Network Authentication Service and IBM
Tivoli Access Manager. On the other hand, if data is added directly to the LDAP
database, it is not updated with the master DCE security registry automatically.
The administrator has to synchronize both databases by adding the missing data
directly to the DCE registry. For the sake of data consistency and simplicity, it is
good practice to initiate changes concerning user data via DCE registry.

Figure 8-4 Replication and data access in a mixed environment

Best practice approach for common administration tasks
To summarize and better understand the previous statements and the more
detailed information given in Chapter 4, “Using DCE data with IBM Network
Authentication Service” on page 75 and Chapter 5, “Using DCE objects with IBM
Tivoli Access Manager” on page 85, the following sections represent a best
practice approach for the most common administrative tasks.

Adding a user
A user is added by performing the following steps:

1. Add a user using DCE commands:

dcecp> principal create <user name>

2. The previous dcecp command creates a new object for the principal in the
LDAP directory. In order to attach the DCE user to IBM Tivoli Access
Manager, a required objectclass has to be added to the LDAP directory
object. IBM Tivoli Access Manager version 3.9 requires the addition of the

IBM Tivoli
Access Manager

Policy Server

DCE
Security Service

Replica

IBM Directory
Server

IBM Network
Authentication

Server

DCE
Security Service

Master
Replication

Access

DCE
160 DCE Replacement Strategies

inetOrgPerson objectclass to the LDAP directory object; otherwise the import
of the DCE user will fail. Newer versions of IBM Tivoli Access Manager may
not require this modification. A convenient way to modify the LDAP directory
entry is provided by using a temporary file. The following command retrieves
the objectclasses of the DCE principal:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b <user DN> \
“krbPrincipalName=*@<realm>“ objectclass > user.obj

Add the inetOrgPerson objectclass by either editing the user.obj file or
executing the following command:

echo “objectclass=inetOrgPerson“ >> user.obj

To modify the LDAP directory information, use the ldapmodify command:

ldapmodify [-h <host>] -D <bind DN> -w <bind pwd> -f user.obj

To verify the modification, the ldapsearch command is issued:

ldapsearch [-h <host>] -D <bind DN> -w <bind pwd> -b <user DN> \
“krbPrincipalName=*@<realm>“ objectclass

3. Import the user using IBM Tivoli Access Manager commands in order to add
the attributes that are specific to the IBM Tivoli Access Manager.

Prior to importing the DCE user to IBM Tivoli Access Manager, you must log
on as an IBM Tivoli Access Manager administrator. With IBM Tivoli Access
Manager version 3.9, the administrator account is sec_master and cannot be
changed. Hence the following command is used to log on:

pdadmin> login -a sec_master -p <admin pwd>

Next, the import of the DCE user to IBM Tivoli Access Manager continues:

pdadmin> user import <user name> <user DN>

Then the imported IBM Tivoli Access Manager user has to be activated:

pdadmin> user modify <user name> account-valid yes

The import of the DCE user can be verified with the pdamin command:

pdadmin> user show <user name>

Note that there is no additional step involved for the IBM Network
Authentication Service as it will share the information as added by the DCE
commands. However, IBM Network Authentication Service does not
recognize the DCE user until an account is created for the DCE user, for
instance, via the dcecp command. Note also that the principal is added to the
primary group and the organization at first:

dcecp> group add <primary group> -member <user name>
dcecp> organization add <user organization> -member <user name>
dcecp> account create <user name> -group <primary group> -home <user home>\
-organization <user organization> -password <user password>
 Chapter 8. Scenario 1: GSS-API application 161

Now the IBM Network Authentication Service can gather information about
the DCE user. The following command shows attributes of the user object
concerning IBM Network Authentication Service. Note that the kadmin.local
command can be executed directly on KDC server without Kerberos
authentication:

kadmin.local -q “getprinc <user name>“

Adding a group
Adding a group is simple and can be done following these steps:

1. Add a group using DCE command:

dcecp> group create <group name> -inprojlist yes

2. Import the group using IBM Tivoli Access Manager commands in order to add
the attributes that are specific to the IBM Tivoli Access Manager:

pdadmin> group import <group name> <group DN>

The import of the DCE group can be verified with the pdamin command:

pdadmin> group show <group name>

Modifying a group membership
The group membership attribute is shared between DCE and IBM Tivoli Access
Manager. If both, DCE user and DCE group, are attached to IBM Tivoli Access
Manager, changes concerning group membership via DCE commands are
recognized by IBM Tivoli Access Manager.

The following command adds a member to a group in DCE:

dcecp> group add <group name> -member <user name>

In order to verify that the modification of the group membership is also perceived
by IBM Tivoli Access Manager, the pdamin command can be used:

pdadmin> group show-members <group name>

The removal of a user from a group works in a similar way:

dcecp> group remove <group name> -member <user name>

And again, the pdamin command can be used for verification.
162 DCE Replacement Strategies

Deleting a user or group
Follow these steps to remove a user or a group:

1. Delete the user or group using DCE commands, but be sure the krbdeletetype
attribute is set to dce and krb (3) so only DCE- and Kerberos-specific
attributes will be deleted and the user account remains in the LDAP directory.

To delete a user in DCE, enter:

dcecp> principal delete <user name>

To delete a group in DCE, enter:

dcecp> group delete <group name>

2. Delete the user or group using IBM Tivoli Access Manager to remove the user
or group and all associated information that is exclusive to it.

To delete an IBM Tivoli Access Manager user, use the pdadmin command:

pdadmin> user delete <user name>

Delete an IBM Tivoli Access Manager group using the command:

pdadmin> group delete <group name>

Changing a user password
DCE security service and IBM Network Authentication Service can share the
password object for users in the LDAP directory. It is good practice to use DCE
interfaces to change user passwords. To accomplish this, DCE provides
interfaces such as:

� dcecp> account modify <account name> -password <new password>
� Integrated login in association with the AIX command passwd
� rgy_edit

Managing authorization data
As mentioned before, the administrator must be aware of the differences
between DCE and the IBM Tivoli Access Manager. These differences are likely to
be carried on to the applications as well. Thus, an administrator must handle the
authorization for each environment separately.

Note: No additional step is involved for the IBM Network Authentication
Service as the DCE commands also remove the Kerberos information used by
the IBM Network Authentication Service. If you do not want DCE to remove
the Kerberos information, set the krbdeletetype attribute to dce (2).
 Chapter 8. Scenario 1: GSS-API application 163

Security
Although this is not normally an ongoing administrative task, it is important for a
system administrator to set up and maintain an adequate level of security
measures. Specifically:

� DCE, IBM Network Authentication Service, and IBM Tivoli Access Manager
should use a strong authentication mechanism, such as SSL with client
authentication, to access the IBM Directory Server.

� ACLs should be used and maintained throughout the environments, including
DCE, IBM Network Authentication Service, IBM Tivoli Access Manager, and
IBM Directory Server, in order to further protect the stored information.

� The system and network environment must be protected physically and
logically from unauthorized access.

8.5.2 Administration after the migration process
The right side of Figure 8-3 on page 158 (part II) shows the situation after the
migration process is completed. The environment has no more DCE
dependencies. The IBM Network Authentication Service and IBM Tivoli Access
Manager use the LDAP directory as a shared database for principal information.

As a good practice, users (principals) should be managed only with IBM Tivoli
Access Manager. This is, of course, the only way for all other objects that are not
known by IBM Network Authentication Service, such as groups and ACLs.

Securing the shared LDAP directory
Administrators must ensure adequate security by maintaining three sets of ACLs:

� In the IBM Network Authentication Service to protect the kadmin server
database

� In the IBM Tivoli Access Manager to protect its resources

� In the IBM Directory Server to protect directory objects

Creating a user
Use the following steps to create a new user:

1. Using IBM Tivoli Access Manager interfaces, create an IBM Tivoli Access
Manager principal. For example:

pdadmin> user create user1

2. Using LDAP interfaces, search for the DN of the IBM Tivoli Access Manager
principal just created (an entry where the principalname attribute equals the
name of the IBM Tivoli Access Manager principal).
164 DCE Replacement Strategies

3. Determine the parent DN of the IBM Tivoli Access Manager principal. For
example, if the DN of the IBM Tivoli Access Manager principal is:

secAuthority=Default, cn=user1, cn=AM_tree

Then the parent DN is:

cn=user1, cn=AM_tree

4. Using the KrbPrincipal auxiliary object class, add the following attribute to the
parent DN of the IBM Tivoli Access Manager principal:

krbPrincipalName=<princ>@<realm>

where <princ> is the Kerberos principal name and <realm> is the Kerberos
realm name. For example:

krbPrincipalName=user1@realm1

5. Using the IBM Network Authentication Service interfaces, create a Kerberos
principal using the same <princ>@<realm> name that you configured in the
krbPrincipalName attribute. For example:

kadmin> add_principal user1@realm1

Deleting a user
Use IBM Tivoli Access Manager interfaces (such as pdadmin) to delete the user.

Modifying a user
If you want to modify IBM Network Authentication Service information, use IBM
Network Authentication Service interfaces (such as kadmin) to make the
modification. If you want to modify IBM Tivoli Access Manager information, use
the IBM Tivoli Access Manager interfaces (such as pdadmin) to make the
modification. For example, if you want to change the user password that is used
to perform a login to the IBM Network Authentication Service KDC server, make
this modification using the IBM Network Authentication Service interfaces.

The two sections that follow give a brief overview of the administration interfaces
of the IBM Network Authentication Service and the IBM Tivoli Access Manager.

8.5.3 IBM Network Authentication Service administration interface
IBM Network Authentication Service provides mainly two components:

� The Key Distribution Center (KDC) authenticates clients and issues TGTs for
requesting service tickets. The KDC daemon is krb5kdc, which listens on the
Kerberos port 88. All communication to the LDAP directory resulting from
requests by clients is done via the administration server process.

� The administration server is used for all kinds of principal administration,
which includes adding, deleting, modifying, and viewing principals and
 Chapter 8. Scenario 1: GSS-API application 165

policies. If changes are made, the administration server propagates the
changes to the LDAP directory. The kadmind represents the administration
server daemon with 749 as the default port. It is required to configure one
administration server in a realm.

The interfaces to the administration server are the kadmin and the kdb5_util
commands. Both commands are used to alter information in the IBM Network
Authentication Service database. For instance, the kadmin command is used to
add, delete, and modify principals and administrating keytab files. The kadmin
command exists as both a remote and a local client (kadmin.local). Both kadmin
and kadmin.local provide identical function; the difference is that kadmin.local
runs on the KDC and does not use Kerberos authentication. As a remote client,
the kadmin command uses the Kerberos authentication protocol and an RPC
mechanism to achieve a secure administration from anywhere on the network.
Access to the administration server can be secured by the aid of IBM Network
Authentication Service access control. It utilizes an ACL file for mapping of
administration user to administrative requests, which is located in the file
/var/krb5/krb5kdc/kadm5.acl. If IBM Network Authentication Service access
control is configured, the administration server processes a request from a client
only if the client is configured with the correct permissions for this request.

Whereas the kadmin command is used for direct principal manipulating
operations, the kdb5_util interface is used for low level database manipulations.
In addition, the kdb5_util command includes a command to stash a copy of the
master database key in a KDC file to enable it to authenticate itself to the
kadmind and krb5kdc daemons at startup.

This list includes a brief description of common IBM Network Authentication
Service commands:

config.krb5 Configures IBM Network Authentication Service clients
and servers.

kadmin, kadmin.local IBM Network Authentication Service database
administration program. The kadmin.local command
runs only on the KDC master without Kerberos
authentication. The kadmin command comprises a
subset of commands.

krb5_util Enables an administrator to perform low-level
maintenance procedures on the IBM Network
Authentication Service database.

kdestroy Deletes a credentials cache.

kinit Obtains or renews a ticket-granting ticket.

klist Displays the contents of a credentials cache or a
keytable.
166 DCE Replacement Strategies

kpasswd Changes the password for a given principal name.

ksetup Manages IBM Network Authentication Service entries in
the LDAP directory. The ksetup program comprises a
subset of commands.

ktutil Enables administrators to read, write, or edit entries in a
keytab file.

start.krb5 Starts the IBM Network Authentication Service servers
(krb5kdc and kadmind).

stop.krb5 Stops the IBM Network Authentication Service servers.

unconfig.krb5 Unconfigures IBM Network Authentication Service
clients and servers.

IBM Network Authentication Service can use various levels of authentication to
the IBM Directory Server, but SSL with client authentication is the most secure.
Be aware that IBM Network Authentication Service stores its ACLs in flat files.

8.5.4 IBM Tivoli Access Manager administration interface
The IBM Tivoli Access Manager provides two administration interfaces:

� The pdadmin command line utility. The pdadmin command comprises a subset
of commands to change user, groups, ACLs, and policies.

� The Web Portal Manager, providing a graphical user interface.

The security administrator may use either the pdadmin command or the Web
Portal Manager. The pdadmin command provides several advanced management
functions that are not available through the Web Portal Manager. Also, it is
possible to automate certain management functions by writing scripts that use
pdadmin commands in-line. The utility is installed as part of the IBM Tivoli Access
Manager run-time package.

The IBM Tivoli Access Manager servers communicate with the LDAP directory
using native LDAP or LDAP over SSL (LDAPS). For security reasons, it is
recommended to configure IBM Tivoli Access Manager to use SSL. The
components of IBM Tivoli Access Manager, namely the authorization server(s)
and the policy server, use SSL to communicate with each other.
 Chapter 8. Scenario 1: GSS-API application 167

8.6 Discussion and conclusions
The sample scenario in this chapter shows that when applications that make use
of DCE security services via DCE login and GSS-API are migrated, the major
task usually is migrating the underlying infrastructure. The programming part
mainly includes the migration of the client application to use Windows SSPI
instead of GSS-API and to replace the DCE authorization code by aznAPI in the
application server. Note that the application client code would have required few
or no changes for non-Windows clients when using GSS-API. On non-Windows
platforms, the GSS-API code can remain unchanged, but the DCE login code
would have to be replaced by a Kerberos login. As described earlier, the sample
application in this scenario makes use of the login to Kerberos, carried out
through a modified Windows login.

An important step in this scenario is the migration of the DCE registry data to the
LDAP directory to be used by IBM Network Authentication Service (Kerberos)
and IBM Tivoli Access Manager. As demonstrated in section 8.5, “Administration
considerations and interfaces” on page 157, this adds some administrative
considerations. Making the data available for the new environment is only a first
step. Building up a replacement environment that also is fail-safe, scalable, and
well-performing includes more planning and configuration. It includes:

� Replication of the LDAP directory

� Replication of the IBM Network Access Manager Authorization Servers
including cache tuning

A consideration of the migrated environment is the lack of a single administration
interface. Thus, special care has to be taken when modifying security data via
the administration interfaces of DCE, IBM Directory Server, IBM Network
Authentication Service, or the IBM Tivoli Access Manager.

The new environment gains remarkable advantages by using powerful products
as the replacement technologies, including:

� Scalability of LDAP directories

Note: The information about the administration interfaces of the IBM Network
Authentication Service and the IBM Tivoli Access Manager presented in the
previous sections is provided here for your convenience. It is not the intention
of this book to replace official product documentation or proper education.
Also, it is strongly recommended to do a proper systems and security policy
planning prior to installing and using these products.
168 DCE Replacement Strategies

� Additional authentication features of IBM Network Authentication Service,
such as its support for Triple DES (3DES) encryption

� Additional authorization features of the IBM Tivoli Access Manager, such as
Web-based authorization and graphical user interfaces for administration

Finally, note that the migration path as shown in this scenario provides
advantages both for large DCE configurations with large security registries and
for smaller environments, because it enables the two environments to run in
parallel for an undetermined period of time. This permits a smooth migration
without the typical risks that a “big-bang” migration would carry.
 Chapter 8. Scenario 1: GSS-API application 169

170 DCE Replacement Strategies

Chapter 9. Scenario 2: Non-secure RPC
application

This chapter presents scenario 2, which demonstrates C/C++ replacement
strategies for an application that depends directly on the DCE RPC basics, RPC
naming, and RPC endpoint services. The strategies are:

� Leave the entire application in C/C++.

� Replace the DCE services with the following services provided by
WebSphere: CORBA IDL, CORBA IIOP, and CORBA COSNaming and JNDI.

Before reading this chapter, be sure to read Chapter 7, “Common replacement
considerations” on page 111.

9

© Copyright IBM Corp. 2003. All rights reserved. 171

9.1 Scenario description
This chapter explains a second scenario application with DCE dependencies and
how the DCE dependencies are removed. The chapter contents is:

� The first section discusses the initial application with its DCE dependencies,
followed by an explanation of how the DCE dependencies are replaced in this
application.

� The initial application with its DCE dependencies is detailed in section 9.2,
“DCE application” on page 177.

� The replacement roadmap is explained in section 9.3, “Replacement
roadmap” on page 180.

� Section 9.4, “Revised application discussion” on page 181 discusses the
revised application.

� A discussion for the management of the new environment is contained in
section 9.5, “Administration considerations and interfaces” on page 192.

� Section 9.6, “Discussion and conclusions” on page 192 concludes the
chapter.

9.1.1 Initial application with DCE dependencies
The sample DCE application used in this scenario makes use of DCE RPC
services and CDS facilities to establish and use a connection from the
application client to the application server.

Figure 9-1 on page 173 details the process of establishing a DCE RPC
connection using the CDS functionality, as it is used by the sample scenario
application.
172 DCE Replacement Strategies

Figure 9-1 DCE RPC connection process using CDS

The different communications that take place in a DCE RPC connection process
are described in reference to Figure 9-1:

1. The application server process uses the DCE host server (also called dced)
to register its bindings (a structure that contains interface ID, network
protocol, network address, port number, and more) with the local endpoint
map database. These bindings are initially negotiated with the operating
system.

2. The application server exports its bindings to its CDS namespace entry, then
begins to listen for client calls at the dynamic ports as registered with the
endpoint map. In CDS, only partial bound bindings are stored, including
application server node network address and communication protocol.

3. The application client looks up and imports the application server’s bindings
from the server’s CDS name space entry.

4. The application client resolves the partial bindings imported from CDS to full
bindings. To do so, the application client contacts the endpoint mapper on the
application server node using the information from the partial binding. By
passing the interface ID, which the application client shares with the
application server, to the endpoint mapper, the endpoint mapper can map the
correct endpoints (ports) under which the application server is listening and
return it to the application client.

5. Using the full binding obtained in the previous step, the application client can
invoke a (remote) procedure call to the correct interface and service offered

Application

DCE CDS Namespace
/.:/<...>/

Application Client Node Application Server Node

1

2

5

4

3

DCE API

request

DCE API

DCE API

/.:/<server directory>/<server entry>
/.:/...

Client

Application
Server

(dynamic port)

DCE Host
Server

(port 135)

End-
point
DB

(import)

DCE API
(export)

(map)

(register)
 Chapter 9. Scenario 2: Non-secure RPC application 173

by the application server. Note that steps 4 and 5 may be fully transparent to
the application client, as DCE RPC run time performs an automatic binding
resolution from partially bound to fully bound if required by the programmer.

9.1.2 Revised application without DCE dependencies
For many applications that use DCE RPC services, it seems obvious to consider
CORBA for the replacement of the DCE RPC services. This is because of the
fact that CORBA, like DCE, knows the concept of IDL interfaces as a common
definition between application clients and servers. In addition, CORBA, while
basically following an object-oriented model, supports applications written in the
“C” language, which is the predominant language used for most DCE
applications. However, besides these important similarities, CORBA has some
differences to DCE, even if only RPC and naming are taken into account.

Some of the most important differences are described below.

RPC issues when migrating DCE RPC applications to CORBA
The features of the IDL of DCE and CORBA show important differences with
respect to DCE RPC applications that are to be migrated. While CORBA IDL is
designed as a common subset for a broad range of possible supported
programming languages, the DCE IDL concentrates on the needs and features of
only the C and C++ languages. Hence, DCE IDL offers some important features
that CORBA IDL does not, including:

� Full pointer support: DCE IDL enables seamless usage of pointer semantics
throughout the network.

� Data streaming, using pipes: DCE IDL offers this feature to transfer a large
number of data structures of the same type over the network efficiently.

� Conformant arrays: DCE IDL enables the programmer to specify arrays, the
actual size of which can vary from RPC call to call. This enables efficient use
of network bandwidth.

� Context handles: DCE IDL enables the programmer to define a context to be
transmitted with every RPC call, transparently for the application. The context
lets it maintain a state over a series of different RPC calls. RPC run time
understands the information in the context and informs the server application
if a context becomes invalid.

� Exceptions: In DCE IDL, user exceptions that can be raised by the server
implementation code and propagated to the client are defined on the interface
level for all services of an interface. In CORBA, user exceptions must be
declared as record style data types, containing user-defined fields.
Subsequently these exceptions must be specified in every method declaration
that could possibly raise them.
174 DCE Replacement Strategies

IBM WebSphere Application Server’s implementation of CORBA 2.3 is no
exception to these limitations.

Another important difference between DCE RPC and CORBA lies in the
application RPC server itself. A DCE RPC server is, by default, a multi-threaded
application, using a configurable number of working threads per exported
communication protocol. The thread model used by CORBA, on the other hand,
is not standardized but vendor- or platform-specific. Some ORBs are even strictly
single-threaded. The ORB provided by WebSphere supports multi-threading.
The number of working threads can be configured as a run-time property of the
WebSphere CORBA server.

Figure 9-2 gives a high-level overview of how an application client binds to an
application server in the CORBA model. The picture follows the process only up
to the point where the application client request reaches the server. However, it is
important to understand that a CORBA Interoperable Object References (IOR),
unlike the DCE binding, carries more details; these include the name of the
object adapter, which accepts requests for a particular CORBA object, and the
name of the actual CORBA object itself.

Figure 9-2 CORBA connection process, using CORBA CosNaming service

Note: The intention of this section is to point out the most important DCE RPC
features, which likely must be replaced or changed when migrating a DCE
RPC application to CORBA. Therefore, additional features and services that
CORBA implementations also may include are not mentioned here.

Implementation
Repository

(fix port)

Application
Server

(dynamic port)

CORBA CosNaming Service

Application Client Node Application Server Node

1

2

5

4

3 (bind)

remote method call

(map)

(register)

<initial naming context>
<server context>

<server object>

Application (resolve)
Client

CORBA

CORBA

CORBA

CORBA
 Chapter 9. Scenario 2: Non-secure RPC application 175

The different communications that take place in a CORBA connection process
are described with reference to the numbers in Figure 9-2 on page 175:

1. If the application server has created a persistent object reference, it registers
the object reference with an Implementation Repository, which does not have
to reside on the same node as the application server.

2. The application server program binds the object reference with an object
name in the CORBA CosNaming service, using its name service context.

3. The application client resolves an object name into an object reference to the
application server object using the CORBA CosNaming service.

4. The application client uses the object reference, obtained in the previous
step, to invoke a method of the application server object. If the object
reference is created as being transient by the application server, it points to
the actual server object and the request can be processed immediately.

5. In the case when the object reference has been created as being persistent
by the application server, its network part does not point to the actual server
but to the Implementation Repository, which contains the network details
(node name, port number) about how to find the actual application server.
Using these details, the ORB run time completes the application client’s
request to the server object. The indirection caused by this extra step is
transparent for the application client.

Persistent object references, unlike transient ones, stay valid even in case of an
application server termination and restart. The connection process, using an
Implementation Repository, is also called indirect binding.

IBM WebSphere Application Server Enterprise provides an implementation
registration utility, regimpl, which must be run in the Implementation Repository
to register CORBA servers. For more details, refer to IBM WebSphere
Application Server Enterprise, Version 5, Common Object Request Broker
Architecture (CORBA). See “Related publications” on page 421 for how to
download this document.

Naming issues when migrating DCE applications to CORBA
DCE applications that heavily rely on the DCE Cell Directory Service (CDS) may
have to undergo some substantial changes when migrating to CORBA. The way
the CORBA CosNaming is configured, managed, and programmed against
differs from the way it works with DCE CDS. Some of the differences with respect
to the DCE applications to be migrated include:

� Groups and profiles: CORBA CosNaming is not designed to support
constructs such as groups and profiles to route client accesses to similar
network resources in either a random or prioritized way.
176 DCE Replacement Strategies

� Root contexts: Unlike a DCE CDS cell namespace, CORBA CosNaming
allows for more than one root context. (A CORBA CosNaming context can
roughly be compared with a directory in CDS.)

� Object UUIDs: CORBA CosNaming does not support DCE UUIDs. In DCE,
object UUIDs are used to distinctly identify multiple interchangeable servers
by name, for example, or to identify objects inside the server application.

� Management: Some implementations of CORBA CosNaming do not offer
management tools. However, the IBM WebSphere Application Server
implementation of CORBA offers the regimpl tool for management.

WebSphere supports the CORBA CosNaming service, which binds CORBA
objects to a public name. Clients are “bootstrapped” according to the CORBA
programming model. CORBA-compliant Interoperable Object References (IORs)
must be obtained, and server objects must be bound to the CORBA CosNaming
service. WebSphere also enables you to manage namespace bindings and
name servers through the administrative console.

For a detailed description of IBM WebSphere Application Server name server,
refer to chapter 13, “Using naming,” of the IBM WebSphere Application Server
Enterprise, Version 5, Applications. (See “Related publications” on page 421 to
learn how to download this document.)

9.2 DCE application
This section briefly describes the sample DCE dependent program, which makes
use of DCE RPC basic, namespace, and endpoint services without using DCE
security. The key DCE services that are used by this program are extracted and
explained. The complete source code can be found in Appendix B, “Scenario 2:
Source code listings” on page 331.

The application logic of the sample application again is simple: The application
client sends a string message to the application server in one parameter of the
remote procedure call. The application server, after writing the client’s message
to standard output, replies to the application client with another string message in
another parameter of the same call in reverse character order.

9.2.1 Configuring and running the DCE application
For the example to run, the directory /.:/servers has to exist in the DCE CDS
namespace. If it does not already exist, it can be created using the command:

cdscp create directory /.:/servers

(The issuer of this command has to be logged in to DCE as cell administrator.)
 Chapter 9. Scenario 2: Non-secure RPC application 177

To build the application, the DCE IDL compiler has to process the IDL definition
of this example in order to produce a client and a server stub.

Start the application server by entering its executable name on the command
line. For the application client, the string message and the number of RPC calls
must be added to the command, separated by a blank. For example:

$ server_s2
$ client_s2 “Hello World” 5

9.2.2 Application client
The client program uses a sequence of calls to the DCE naming service API
(rpc_ns_*) to obtain a partial bound bind handle to the server. It exclusively looks
for a binding using the UDP protocol. When it finds a binding handle to the
server, it immediately invokes an RPC to that server, leaving the endpoint
resolution to the DCE RPC run time. The client sample application uses to these
key services to make a connection to the server:

� rpc_ns_binding_import_begin

When calling this API, the application client passes in the server’s entry name
and the interface handle of the interface to be imported. The service returns
an import context handle to be used in the subsequent calls.

� rpc_ns_binding_import_next

With the import context handle, created with the previous API, the application
client parses the namespace for server bindings, meeting its needs. In this
case, a binding handle to the application server is using the protocol UDP.
The application client calls this API in a loop until either no more entries are
available or a suitable binding is found. To filter out binding handles that use
UDP, the client converts the retrieved bindings into string form and performs a
string comparison.

� rpc_ns_binding_import_done

After successfully retrieving a binding handle to the server, the application
client closes the import context using rpc_ns_binding_import_done.

9.2.3 Application server
The application server uses a sequence of calls to the RPC server, RPC naming
service, and RPC endpoint API (rpc_server_*, rpc_ns_*, and rpc_ep_*,
respectively), using only the UDP protocol. It exports a partial binding to its DCE
CDS name service entry /.:/servers/greet and full bindings to the local endpoint
map. When this is accomplished, it starts listening for client calls. The server
program in this example accepts a maximum of 5 concurrent client connections.
178 DCE Replacement Strategies

The application server in this sample uses the following key services to register
with DCE CDS and RPC in order to receive client calls:

� rpc_network_is_protseq_valid

This API enables the application server to test whether a protocol it wants to
use is supported by DCE run time.

� rpc_server_use_protseq

The application server uses this API to create a dynamic endpoint for the
requested protocol sequence.

� rpc_server_register_if

Calling this API, the application server registers its interface with RPC run
time.

� rpc_server_inq_bindings

Now, the application server can retrieve all binding handles that resulted from
the calls it made before. It uses these binding handles in the next two calls to
register its binding information with the DCE CDS naming service and the
DCE RPC endpoint map.

� rpc_ep_register

This API registers a vector of binding handles, which is passed in, with the
local RPC endpoint map.

� rpc_ns_binding_export

This API registers a vector of binding handles, which is passed in, with the
DCE CDS naming service.

� rpc_server_listen

When calling this API, the application server is ready to receive client
requests. Even though other application server threads might be processing
client requests, a call to this function does not return until an
rpc_mgmt_stop_server_listening call is issued by another thread or program.

Note: Strictly speaking, the application server in this example is both a
server and a client to the DCE CDS. Therefore the server actually has to
perform a login to DCE in order to assume a proper identity, which is
reflected in the ACL of its name service entry. However, as this example
demonstrates non-secure RPC, the code for DCE login is omitted. To run
the example, the server would have to inherit proper credentials from its
environment (such as by a preceding DCE login on the command line).
 Chapter 9. Scenario 2: Non-secure RPC application 179

9.3 Replacement roadmap
This section describes the migration path for the DCE application to remove the
DCE dependencies. In this scenario, the environment (DCE CDS and RPC) is
replaced by using the CORBA support provided by IBM WebSphere Application
Server Enterprise. The migration roadmap comprises the following steps, which
are explained in the sections that follow:

1. Fulfilling the software requirements
2. Installing and configuring the IBM WebSphere Application Server Enterprise
3. Revising the application
4. Removing DCE

9.3.1 Software requirements
Before starting to migrate the application, install and configure the following
software:

� WebSphere Application Server Enterprise, Version 5

� Database software (optional). You will need this only if you plan to persist the
interface definitions. IBM WebSphere comes with database software.

9.3.2 Installing and configuring WebSphere Application Server
Follow the instructions that come with the product to install IBM WebSphere
Application Server Enterprise, being sure to include the following components in
the installation:

� CORBA C++ SDK component.

� CORBA C++ SDK samples component.

� You can choose Interface Repository Support if you want to provide persistent
storage of interface definitions. If you select this, be sure IBM DB2 is already
installed.

9.3.3 Revising the application
In the application code, all of the DCE RPC API calls must be replaced with
CORBA API calls. The revised application presented in the next section provides
guidelines for revising the DCE application. The entries of application servers in
the CDS namespace can no longer be used or migrated. The revised CORBA
application server must be registered manually in the CORBA Implementation
Repository.
180 DCE Replacement Strategies

9.3.4 Removing DCE
By removing and replacing the DCE RPC API calls, the DCE dependencies for
RPC and naming are also removed. As mentioned before, there is no migration
of any DCE data related to RPC and naming, such as endpoint maps to
application servers, involved in this scenario.

Unless there are other DCE dependencies, such as for login or authorization, the
DCE environment is no longer required to run the revised application.

9.4 Revised application discussion
In this section, the example introduced in section 9.1.1, “Initial application with
DCE dependencies” on page 172 is presented in a revised form with all DCE
dependencies replaced. The RPC basic, namespace, and endpoint API have
been replaced with CORBA naming API provided by IBM WebSphere Application
Server Enterprise, Version 5.0. WebSphere supports CORBA 2.3.

In the sections that follow, the key services of CORBA that are used are
extracted from the revised example and compared with the DCE example. For a
complete code listing of the revised example, refer to Appendix B, “Scenario 2:
Source code listings” on page 331.

The application logic remains the same: The application server returns a string
passed by the client in reverse character order. In fact, the revised application
uses the application logic part of the DCE application and only replaces the RPC
portion of it with CORBA.

9.4.1 Building, configuring, and running the revised application
Before starting to configure the revised application, make sure:

� WebSphere Application Server is installed along with the CORBA C++
Software Development Kit (SDK).

� A C++ compiler supported by WebSphere is installed.

� WebSphere Application Server is running.

For details about creating a CORBA application server and client, refer to the
document WebSphere Application Server Enterprise, Version 5, Common Object
 Chapter 9. Scenario 2: Non-secure RPC application 181

Request Broker Architecture (CORBA). To build, configure, and run the revised
application:

1. Create your CORBA application server and client and build them.

For the revised application presented here, makefiles are provided for
building the application. (See Appendix B, “Scenario 2: Source code listings”
on page 331.) Use the GreetNt.mak file for Windows and GreetAix.mak file for
AIX. You can also choose to build either the application client or the
application server or both, for example:

On Windows:

>nmake -f GreetNt.mak GreetClient.exe

On AIX:

>make -f GreetAix.mak GreetServer.exe

2. Register the CORBA application server in the WebSphere environment:

a. Run the following script provided by WebSphere, located under <install
root>/bin of the WebSphere Application Server, to set the environment
variables:

On Windows:

setupCmdLine.bat

On AIX:

. setupCmdLine.sh

b. Enter the following command to store a logical definition for the application
server in the Implementation Repository using a server alias. Note that the
alias does not have to match the name of the server executable.

regimpl -A -i <server alias> -p <C++ server>

For the revised application sample presented here, use the command:

regimpl -A -i GreetS -p GreetServer

c. Verify that the Implementation Repository has the server alias defined in it
by entering the following command (which gives information about the
implementation definition):

regimpl -L -i myServer

For example, the output of the regimpl -L -i GreetS command for the
revised sample application will look like:

==
Information for implementation definition 1:
 ID: 2ddd705f-6764-1ec1-e000-0790090304e6
 ALIAS: GreetS
 PROGRAM: GreetServer
182 DCE Replacement Strategies

 PROTOCOLS: TCPIP
 CONFIG:
--
CORB1148I: Exiting the regimpl utility

3. Create CORBA application client and CORBA application server properties
files. The files contain settings for the values of hostName,
bootstrapHostName, bootstrapPort and other run-time properties. The
hostName and bootstrapHostName must match your system name, because
the CORBA application server must run on the same machine as the
WebSphere Application Server. The values set must match the settings used
by the application server.

Refer to the document WebSphere Application Server Enterprise, Version 5,
Common Object Request Broker Architecture (CORBA) for details about
creating properties files.

For the revised application, modify WSServer.props and WSClient.props to
suit your environment. (See Appendix B, “Scenario 2: Source code listings”
on page 331.)

4. On the application server machine, set the WASPROPS environment variable
to point to the server properties file before running the CORBA application
server. In case of the revised sample application, enter the following to set the
environment variable and start the application server:

>export WASPROPS=/scenario2/nondce/WSServer.props (UNIX)

>GreetServer GreetS

5. On the client machine, set the WASPROPS environment variable to point to
the client properties file before running the CORBA application client. In case
of the revised application, enter:

>set WASPROPS=/scenario2/nondce/WSClient.props (Windows)

>GreetClient IBM 1

6. Use <install root>/bin/WSStopServer to stop the application server. The
general syntax of the command is:

WSStopServer <server alias>

The Samples Gallery of IBM WebSphere Application Server provides CORBA
C++ samples and instructions about configuring, building and running them. You
can use this as a base to develop your applications.

9.4.2 CORBA IDL file
The CORBA IDL file is the public interface to the CORBA application server
implementation object class. In the revised application here, it is greet.idl.
 Chapter 9. Scenario 2: Non-secure RPC application 183

Example 9-1 shows the CORBA IDL file. It is analogous to the DCE IDL file that
takes an input string from the client and places the output in the “out” string.

Example 9-1 CORBA IDL file

interface Greet{
 void greet_CORBA(in string client_greeting, out string server_reply);
};

While migrating, you also may choose to change the interface definition. For
example, the interface definition could be changed to return a string instead of
placing the output in the “out” string:

string greet_CORBA(in string client_greeting);

For illustration purposes, however, a one-to-one correspondence is maintained in
this sample scenario.

9.4.3 Application client
The revised CORBA application client comprises the following:

� Client side usage bindings: These are generated when the IDL files are
compiled by the idlc compiler. In our example:

idlc -suc:hh greet.idl generates greet_C.cpp and greet.hh

� The main code for the client program, which in our example is a set of files, is
client_s2.c, client_CORBA.cpp, and CWrapper.h.

Each of these components is explained in detail next and compared with the
DCE application, excepting the client-side usage bindings as this part is
generated by the idlc compiler.

Client program
The client of the revised application consists of the following:

� client_CORBA.cpp: This is the C++ CORBA application client that initializes
the client environment, locates a servant object hosted by the CORBA
application server, and calls methods on the servant object.

� CWrapper.h: This header file consists of declarations for the C wrapper
functions of the C++ CORBA application client, so that the C application
client, client_s2.c, can invoke the functions defined in the C++ CORBA
application clients.

� client_s2.c: This is the modified DCE application client. The application logic
part has not been changed.
184 DCE Replacement Strategies

The following three sections provide more description of each of these files.

client_CORBA.cpp
Example 9-2 shows some of the include statements in the source code of the C+
CORBA application client.

� CosNaming.hh: The header file for the CosNaming functions.

� greet.hh: The client-side usage bindings header file for the application server
implementation class. This file is created when the greet.idl file is compiled
using the idlc compiler.

� CWrapper.h: The header file for the C wrapper functions of the C++ CORBA
application client. This is explained in section “CWrapper.h” on page 187.

Example 9-2 Include statements for C++ CORBA application client

#include <CosNaming.hh>

/* Local includes follow */
#include "greet.hh"
#include "CWrapper.h"

Example 9-3 on page 186 illustrates the initialize function, a C wrapper function
that performs the following CORBA C++ operations:

� Initializing the client environment: The initialize function first invokes a function
called perform_initialization(argc, argv), which in turn invokes the
::CORBA::ORB_init(argc, argv, "DSOM") function to initialize the Object
Request Broker(ORB).

� Getting a pointer to the root naming context: The initialize function then
invokes a function called get_naming_context(), which in turn:

– Invokes the resolve_initial_references("NameService") to find the naming
service and receives a pointer to it into ::CORBA::ORB_ptr op.

– Narrows the object pointer, op, to the appropriate object type by invoking
the ::CosNaming::NamingContext::_narrow(objPtr) function and receives a
pointer into ::CosNaming::NamingContext_ptr rootNameContext.

– Performs some checks on rootNameContext and releases the original
pointer, op, using the release_resources(::CORBA::ORB_ptr op) function,
which in turn invokes the ::CORBA::release(op) function.

� Accessing the servant object: The initialize function finally gets a new
::CosNaming::Name for the servant object that is created by the CORBA
application server and looks up the servant object with that name in the name
space.
 Chapter 9. Scenario 2: Non-secure RPC application 185

Example 9-3 Initialize function of the CORBA application client

int initialize(int argc, char* argv[]) {
 int rc;
 ::CORBA::Object_ptr objPtr;
 ::CosNaming::NamingContext_var rootNameContext = NULL;

 if ((rc = perform_initialization(argc, argv)) != 0)
 return rc;

 cout << "Before getting naming context " << endl;

 // Get the root naming context.
 rootNameContext = get_naming_context();
 if (::CORBA::is_nil(rootNameContext))
 return -1;

 // Find the Greet_Impl created by the server. Look up the
 // object using the complex name of domain.GreetContext.GreetObject1,
 // which is its full name from the root naming context, as created
 // by GreetServer.

 cout << "Before CosNaming" << endl ;
 try {
 // Create a new ::CosNaming::Name to pass to resolve().
 // Construct it as the full three-part complex name starting at legacyRoot.
 ::CosNaming::Name *greetName = new ::CosNaming::Name;
 greetName->length(3);
 (*greetName)[0].id = ::CORBA::string_dup("legacyRoot");
 (*greetName)[0].kind = ::CORBA::string_dup("");
 (*greetName)[1].id = ::CORBA::string_dup("GreetContext");
 (*greetName)[1].kind = ::CORBA::string_dup("");
 (*greetName)[2].id = ::CORBA::string_dup("GreetObject1");
 (*greetName)[2].kind = ::CORBA::string_dup("");
 ::CORBA::Object_ptr objPtr = rootNameContext->resolve(*greetName);
 delete greetName;
 liptr = Greet::_narrow(objPtr);
 cout << "After narrow, liptr = " << liptr << endl;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 cerr << "ERROR: resolve threw NotFound" << endl;
 release_resources(op);
 return 0;
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: resolve threw CannotProceed" << endl;
 release_resources(op);
 return 0;
 }
186 DCE Replacement Strategies

 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: resolve threw InvalidName" << endl;
 release_resources(op);
 return 0;
 }
 catch(::CORBA::SystemException e) {
 cerr << "ERROR: resolve rootNameContext threw SystemException"
 << endl;
 release_resources(op);
 return(0);
 }

 return 0;
}

Example 9-4 shows the greet_CORBA function, which is also a C wrapper
function. It invokes the greet_CORBA method of the servant object. The reply
parameter of this function is an indirection to a character pointer, because the
server_reply of the function, liptr->greet_CORBA(client_greeting, server_reply) is
of type ::CORBA::String_out. It has been implemented this way so that the
signature corresponds to the greet_RPC call of the DCE application. However,
the signature does not necessarily need to match and an application developer
can choose to change it.

Example 9-4 C wrapper for the greet_CORBA function

void greet_CORBA(char* client_greeting, char** reply) {
 char* server_reply;
 liptr->greet_CORBA(client_greeting, server_reply);
 *reply=server_reply;
}

There is another C wrapper function, void finalize(), which invokes
release_resources(::CORBA::ORB_ptr op), which in turn calls
::CORBA::release(op) to deallocate all of the resources used by the program.

CWrapper.h
Example 9-5 on page 188 shows an excerpt from the CWrapper.h header file.
For a C application to use C++ objects or routines, a C wrapper function has to
be provided in the C++ application. These wrapper functions will be C functions
using C++ objects or routines. For such functions, name-mangling has to be
turned off by declaring the prototypes for these functions with C linkage. To
achieve this, precede each of the C wrapper function prototypes with extern “C”
to instruct the linker to use C linkage and not mangle names.
 Chapter 9. Scenario 2: Non-secure RPC application 187

This header file is included in both the CORBA C++ client and the C application
client.

Example 9-5 The header file for the C wrapper functions

#ifdef __cplusplus
extern "C"{
#endif
 int initialize(int argc, char* argv[]);
 void finalize();
 void greet_CORBA(char* client_greeting, char** reply);
 void greet_mirror(const char * client_greeting, char * server_reply);
#ifdef __cplusplus
}
#endif

client_s2.c
Example 9-6 lists the application client logic. Notice that the application logic part
of the DCE application has been preserved and only the following changes have
been made:

� The CWrapper.h header file has been included so that the application client
can use the C wrapper functions defined in the CORBA C++ client.

� The DCE RPC calls have been replaced by the initialize function.

� The greet_RPC function has been replaced by greet_CORBA.

� The finalize function has been invoked to deallocate resources.

Example 9-6 Application logic

#include <stdio.h>
#include "CWrapper.h"

int main (int ac, char* av[]) {
 int i, MAX_PASS;
 char *name_to_greet, *reply;

 if (ac !=3){
 fprintf(stderr, "Usage: %s message passes \n",av[0]);
 exit(1);

Note: For a C++ program, name mangling transforms the names of entities
(classes or functions) so that the names include information about aspects of
the entity's type and fully qualified name. Name mangling generates external
names that will not clash. For the compiler to do a C style naming, name
mangling must be turned off for C functions.
188 DCE Replacement Strategies

 }

 /* A call to the CORBA C++ client to initialize the client,
 get naming context and to access the servant object */
 initialize(ac,av);
 printf("after initialize \n");

 name_to_greet = av[1];
 MAX_PASS = atoi(av[2]);
 for (i=1; i<=MAX_PASS; i++){
 /* Access the servant object method.
 In the DCE applciation, the function call was:
 greet_RPC(name_to_greet,reply); */
 greet_CORBA(name_to_greet, &reply);
 printf("The Greet Server said : %s\n", reply);
 fflush(stdout);
 }

 /* A call to the CORBA C++ client to deallocate the resources */
 finalize();
 return 0;
}

9.4.4 Application server
The revised CORBA application server comprises the following:

� Server side usage binding files: The CORBA IDL file is compiled using the
idlc compiler to produce the usage binding files needed to implement and
use the servant object.

� Servant implementation files: These files are also generated by compiling the
CORBA IDL file using the idlc compiler. They should be modified to add the
implementation logic.

� The main code for the server program: The server main source file has the
code for the methods that the server implements.

In the revised application presented here, the CORBA IDL file, greet.idl, is
compiled using the idlc compiler to generate the usage binding files and the
servant implementation files.

The command idlc -e:ih:ic:sc greet.idl generates the files greet.ih,
greet_I.cpp, and greet_S.cpp, where:

� greet.ih and greet_I.cpp are the servant implementing files, and

� greet_S.cpp is the server usage binding file and does not need any
modification.
 Chapter 9. Scenario 2: Non-secure RPC application 189

Servant implementation
The modifications made to the servant implementation files, greet.ih and
greet_I.cpp are explained below. The server_manager.c file of the DCE
application is also part of the servant implementing and is also explained.

greet.ih
This is the skeleton implementation header file for the revised application. This
file has been modified to add declarations for constructors and destructors.
Example 9-7 shows the constructor and destructor declarations that have been
added to this file. The methods declared here have been implemented in the
associated greet_I.cpp file.

As the application logic itself is simple, it does not require any other methods or
private data members. In a more-complex application, other method declarations
and definitions of any private data members for the implementation code in the
greet_I.cpp file may be included in the greet.ih file as well.

Example 9-7 Modified greet.ih

class Greet_Impl : public virtual ::Greet_Skeleton {

 public:
 ::CORBA::Void greet_CORBA(const char* client_greeting,
 ::CORBA::String_out server_reply);

/* The following declarations for the constructor and destructor have been
 added to this generated file */
 public:
 Greet_Impl();
 virtual ~Greet_Impl();
};

greet_I.cpp
The code defines the methods that implement the business logic for the server
implementation class, Greet_Impl. The declarations of class variables,
constructor and destructor for this class are present in the greet.ih header file, as
explained in the previous section. Example 9-8 shows an excerpt from the
greet_I.cpp file.

Example 9-8 Excerpt from greet_I.cpp

#include "CWrapper.h"

::CORBA::Void Greet_Impl::greet_CORBA(const char* client_greeting,
 ::CORBA::String_out server_reply) {
 // DEVELOPER_NOTE: Provide method implementation
190 DCE Replacement Strategies

 char reply[STR_SZ];
 greet_mirror(client_greeting, reply);
 server_reply=::CORBA::string_dup(reply);
}

The excerpt in Example 9-8 on page 190 shows the implementation of the
greet_CORBA(const char* client_greeting, ::CORBA::String_out server_reply)
method as defined in the IDL file, greet.idl. This method invokes a C routine,
greet_mirror(client_greeting, reply) which is defined in the server_manager.c file
of the DCE application. Hence, the application logic part of the DCE application
is preserved. The function prototype for greet_mirror is included in the
CWrapper.h header file with an extern “C” for C linkage.

server_manager.c
Example 9-9 shows the revised server_manager.c file. Notice that all of the DCE
related declarations and definitions have been removed, retaining only the
application logic part.

Example 9-9 Revised server_manager.c

#include <stdio.h>
#include "CWrapper.h"

void greet_mirror(const char * client_greeting, char * server_reply) {
 char tmp[STR_SZ];
 int i,msglen;

 msglen = strlen(client_greeting);
 printf("The client says: %s\n", client_greeting);
 for (i=0;i<msglen;i++) {
 tmp[i] = client_greeting[msglen-i-1];
 }
 tmp[i] = '\0';
 printf("This I turn around into %s\n",tmp);
 fflush(stdout);
 strncpy(server_reply,tmp,msglen);
}

Server program
In the revised application, the server program consists of just one file,
server_CORBA.cpp. The application server performs the following tasks:

1. Validates user input
2. Initializes the server environment
3. Accesses naming contexts
4. Names, creates, and binds a servant object
 Chapter 9. Scenario 2: Non-secure RPC application 191

5. Creates a server shutdown object
6. Goes into a wait loop
7. Services requests

Refer to Appendix B, “Scenario 2: Source code listings” on page 331 for the
listing of the server program server_CORBA.cpp. It is not listed here because of
its length.

The server_CORBA.cpp file has been coded as explained in the section
“Creating the CORBA server main code” in the WebSphere Application Server
Enterprise, Version 5, Common Object Request Broker Architecture (CORBA).
Refer this document for more details.

9.5 Administration considerations and interfaces
The sample scenario in this chapter only uses communication and naming
services; it does not involve any user, group, and authorization services.
Administration tasks therefore only include the management of the CORBA
naming service, which is done with the implementation registration utility
(regimpl), provided by the IBM WebSphere Application Server Enterprise.

The regimpl utility provides primitive operations on the CORBA naming service,
such as adding, updating, deleting, and listing entries. (See section 9.4.1,
“Building, configuring, and running the revised application” on page 181.) Refer
to the product document IBM WebSphere Application Server Enterprise, Version
5, Common Object Request Broker Architecture (CORBA) for reference
information related to the regimpl utility.

9.6 Discussion and conclusions
This scenario demonstrated the migration of a small, non-secure DCE RPC
program to CORBA. Due to the simplicity of the example application, this
involved only minor programming and easy configuration tasks.

Once a DCE RPC application is successfully ported to CORBA, the wide range
of additional CORBA services and facilities provided by some CORBA vendor
implementations may well outweigh the effort of the migration. Also, there are
mature CORBA products on the market that possess strong failover and
scalability features, although different from the ones used by DCE. Another

Note: The revised application uses Basic Object Adapter (BOA), as the
WebSphere C++ ORB does not support Portable Object Adapter (POA).
192 DCE Replacement Strategies

important feature, which is standardized in CORBA and which many CORBA
vendors have added to their product, is a Quality of Service Framework (QoS),
which is not in DCE. For example, an RPC time-out mechanism would have to be
programmed in DCE and handled by the application using threads and thread
cancellation techniques. CORBA QoS enables the application to specify a period
of time after which the control shall return from the remote method call.

However, as described in section 9.1.2, “Revised application without DCE
dependencies” on page 174, for more elaborated DCE RPC programs, the code
migration part can become more complex. Important differences between DCE
and CORBA IDL on the one side and DCE CDS and CORBA CosNaming on the
other hand lead to this conclusion.

Many features that a DCE RPC application does not need to reflect in its code,
such as load-balancing and prioritizing with DCE CDS groups and profiles, must
be dealt with in additional code when using CORBA. DCE IDL features that are
not present in CORBA IDL must be substituted by lower-level CORBA IDL
constructs, which in turn will lead to additional code changes in the application.
 Chapter 9. Scenario 2: Non-secure RPC application 193

194 DCE Replacement Strategies

Chapter 10. Scenario 3: Secure RPC
application #1

This chapter presents scenario 3, which demonstrates mixed Java and C/C++
replacement strategies for an application that directly depends on the DCE RPC
basics, RPC naming, RPC endpoint, RPC security, login, authorization, and PAC
services. The strategies are:

� Leave the application client and the business logic of the application server in
C/C++.

� Wrap this business logic of the application server in modules coded in Java.

� Replace DCE services with the following services provided by WebSphere:
CORBA IDL, CORBA IIOP, CORBA CosNaming, JNDI, LTPA, role-based
authorization, CORBA CSIv2, and SSL with client certificates.

� Migrate the DCE registry database to IBM Directory Server, and configure
WebSphere to use the migrated data.

Before reading this chapter, make sure that you read Chapter 7, “Common
replacement considerations” on page 111.

10
© Copyright IBM Corp. 2003. All rights reserved. 195

10.1 Scenario description
The scenario in this chapter demonstrates mixed Java and C replacement
strategies for an application that has direct dependencies on secure DCE RPC
services as well as the DCE login, authorization, and PAC services. The
motivation for using this migration scenario might be for an application with a
large amount of existing business logic written in C but with all future
development to be in Java. The chapter is organized as follows:

� The first section discusses the initial application with its DCE dependencies
and how these dependencies are removed.

� The example application with its DCE dependencies is explained in section
10.2, “DCE application” on page 203.

� Section 10.3, “Replacement roadmap” on page 210 explains the steps
necessary to build and run the revised application in the WebSphere
environment.

� Section 10.4, “Revised application discussion” on page 230 explains and
discusses the revised application.

� Section 10.5, “Administration considerations and interfaces” on page 245
contains some considerations for the management of the new environment.

� Section 10.6, “Discussion and conclusions” on page 246 concludes the
chapter.

10.1.1 Initial application with DCE dependencies
The application for this scenario is a simple lookup of employee information that
might be found in an on-line corporate directory. This application uses RPC
security and authorization to restrict the type of information a directory user can
view about an employee.

This scenario uses a highly secure DCE application server and client. The
application server ensures that the network security server has validated its
credentials before starting. The application client validates the identity of the
server before sending it any remote procedure calls (RPCs). When the
application client makes RPCs, it annotates the DCE binding handle with the
current user’s authentication information. The application server verifies that the
RPC was made using packet privacy (encryption) and checks the user’s
authorization based on the membership in suitable groups in accordance with the
security policy.

The security policy for this sample application is shown in Table 10-1 on
page 197.
196 DCE Replacement Strategies

Table 10-1 Security policy

Unauthenticated users cannot see any information in the directory. Authenticated
but unauthorized users can see only department information. Directory
application employees or managers can see more information.

Figure 10-1 depicts the scenario application with the DCE dependencies.

Figure 10-1 Application with DCE dependencies

Function
(get)

Unauthenticated Authenticated
Unauthorized

Authenticated
Directory
Employee

Authenticated
Directory
Manager

department deny allow allow allow

grade deny deny allow allow

salary deny deny deny allow

Application

DCE
Privilege
Server

DCE
Registry
Server

TGT PAC

TGT

Application

DCE Security Server

TKT w.

TKT: Ticket
TGT: Ticket Granting Ticket
PAC: Privilege Attribute Certificate

DCE
API

authz
Client Server

DCE
KDC

Server

DB

TKT with
PAC

PAC

w. PAC

RPC

Endpt
DB

DCE CDS Server

DCE Host
Server

DCE
API

DCE API
DCE A

PI

DCE API

Appl. Server NodeAppl. Client Node

1

23

4

5

6
7

 Chapter 10. Scenario 3: Secure RPC application #1 197

With reference to Figure 10-1 on page 197, the following simplified steps take
place:

1. Upon startup, the application server registers its binding information with the
local DCE host server.

2. The application server registers its binding information with the DCE CDS
server.

3. The application client queries the DCE CDS server for the partial binding
information of the application server.

4. The application client queries the application server node’s DCE host server
for the full binding information.

5. The application client requests and receives the required tickets from the
DCE security server.

6. The application client connects to the application server and forwards the
ticket with the PAC information.

7. The application server performs local authorization decisions.

10.1.2 Revised application without DCE dependencies
The replacement strategies to be demonstrated in this scenario are:

� Replacing DCE application client with a CORBA client.

� Replacing DCE application server with a WebSphere Application Server
running a stateless session enterprise bean using a JCA connector and JNI to
interface with the C business logic. The reason for this choice is that a
stateless session bean maps most closely to context-free DCE RPC. DCE
RPC using contexts, on the other hand, most likely would be mapped to J2EE
stateful session beans.

� Replacing mutual authentication between client and server with the SSL
secure exchange identity certificates.

� Replacing DCE authorization with WebSphere J2EE authorization.

� Replacing DCE protection with Secure Sockets Layer (SSL).

� Preserving the business logic in C language.

Figure 10-2 on page 199 illustrates the revised application in the WebSphere
Application Server environment.
198 DCE Replacement Strategies

Figure 10-2 The revised application

As shown by the numbers in Figure 10-2, the various steps involved when a
CORBA C++ client tries to access the application logic in the C application server
via a secured enterprise bean wrapper and a JCA resource adapter are:

1. The CORBA client performs a lookup using CosNaming and receives the
Interoperable Object Reference (IOR) of the enterprise bean wrapper.

Application Server

CORBA
C/C++ Client

N
am

e
sp

ac
e

E
nt

er
pr

is
e

B
ea

n
S

ec
ur

ity
 C

ol
la

bo
ra

to
r

LTPA
Module

(Authentication Module)

Authorization Engine
EJB Container

Properties File

Security Server

1
2

3

5

6

RMI/IIOP

RMI/IIOP

RMI/IIOP with
CSIv2 & SSL transport

Simple

LDAP
user

registry

IBM Directory
Server

binding

Resource Adapter

Enterprise
Bean

Wrapper

JCA Container

C Application Server
(shared libraries)

7

4
8

 Chapter 10. Scenario 3: Secure RPC application #1 199

2. The CORBA client sends authentication information and requests access to
the methods of the enterprise bean wrapper. The authentication information is
the client certificate sent by means of SSL.

3. The enterprise bean Security Collaborator in the EJB Container sends
authentication data to the Security Server and requests authentication.

4. The Security Server performs authentication by looking up the user in the
LDAP user registry. In this scenario, this directory has been migrated from the
DCE registry.

5. If the user is a valid user, the Security Server returns the credentials for the
user.

6. The enterprise bean Security Collaborator performs authorization with the
help of the Authorization Engine.

7. Upon successful authorization, the enterprise bean wrapper method calls
methods of the resource adapter. For this, the enterprise bean looks up the
connection factory of the resource adapter and acquires a JNI connection. It
then invokes the respective methods in the connection class.

8. The resource adapter in the JCA container uses the JNI interface to invoke
the functions of the native C application server. The return values of the native
C functions are returned to the enterprise bean wrapper which in turn returns
it to its caller, the CORBA client.

The CORBA client must be configured to access secured applications. Certain
properties, such as the security settings of the client ORB, must be provided in a
properties file (environment variable WASPROPS must point to this file) or as
run-time properties on the command line. Similarly, other properties such as the
bootstrap host and port must also be specified.

WebSphere also can be configured to use external authorization systems such
as IBM Tivoli Access Manager. For more information, refer to the IBM Redbook
IBM WebSphere V5.0 Security.

Authentication in the revised application
As mentioned above, authentication of the client is achieved via the information
provided by the client’s SSL certificate. The subject DN of the client certificate
contains the Kerberos name of the user. The identity of the client is verified by a
comparison of that subject DN with a Kerberos principal name in the LDAP
directory (carried over from the DCE registry migration). This is done by the
WebSphere CSIv2 and LTPA authentication mechanisms. The migration of the
DCE data to LDAP is used in the previous scenarios and described in 8.3.2,
“Migration of DCE security registry to IBM Directory Server” on page 139, or in
the document IBM DCE Version 3.2 for AIX and Solaris: DCE Security Registry
and LDAP Integration Guide.
200 DCE Replacement Strategies

As a consequence of the revised authentication using client certificates, users
must have X.500v3 digital certificates for authentication instead of DCE user IDs
and passwords. The matching between the information in the client’s certificate
and the contents of the LDAP directory can be tailored through the use of
customizable filters in order to adapt to individual environments.

Additional information about WebSphere authentication can be found in
“WebSphere login and authentication mechanisms” on page 40.

Authorization in the revised application
Authorization is performed in the revised application using standard J2EE
authorization mechanisms provided by WebSphere Application Server. (See also
“WebSphere authorization mechanisms” on page 41.) Security roles are used to
restrict the access to the methods of the Enterprise Bean wrapper. Two roles,
employee and manager, with different authorization options are defined. The
manager role can access the methods getGrade and getSalary but the employee
role can access only the getSalary method. The revised application does not
have any authorization code. During the deployment phase of the enterprise
application, a mapping between the roles of the enterprise application and
existing groups in IBM Directory Server is done.

Process roadmap overview
The first step to the revised application is to develop enterprise bean wrappers
that surround the existing business logic in C. From these, CORBA Interface
Definition Language files can be generated that will lead to the production of a
CORBA client. Next, a Java class can be created to expose the business logic
using the Java Native Interface. Then a set of new C functions can be created to
act as the bridge between Java and the old business logic. Finally the enterprise
bean can be deployed in WebSphere Application Server.

A roadmap to the overall process is shown in Figure 10-3 on page 202.
 Chapter 10. Scenario 3: Secure RPC application #1 201

Figure 10-3 Replacement roadmap

The diagram in Figure 10-3 shows the steps required to enable the library of
business logic developed in the DCE example to be used in this scenario. From
the existing library in the center, there are two manual steps to create an
enterprise bean wrapper and a wrapper for using the JNI. The bottom portion of
the diagram uses dashed lines from the business logic library to indicate the
processes and tools to create CORBA IDL files and supporting C++ classes for
building the CORBA client. The upper portion of the diagram also uses dashed
lines to show the steps required to produce a new library that implements the JNI
for calling the existing business logic. Overlaying this development-based

JNI C header

Java JNI Connection

Server business logic

Server JNI C

Java EJB wrapper

Client CORBA IDL

Client CORBA stub

CORBA client
implementation

implementation

classes

calls

calls
calls

calls

include

include

idlc

javah

rmic-idl

JNI ConnectionFactory

calls

creates
202 DCE Replacement Strategies

diagram, shown with solid lines, is an interaction diagram showing the calling
sequence from the new CORBA client to the existing business logic.

10.2 DCE application
This section describes the DCE application and how to configure and run it. The
dependencies on DCE are explained using excerpts from the program source
code (the complete program code listings can be found in Appendix C, “Scenario
3: Source code listings” on page 363).

10.2.1 Configuring and running the DCE application
To set up the DCE example:

� Set up and start the DCE services for directory and security.

� Log on to DCE as the cell administrator.

� Go to the working directory for the directory_server.

� Use rgy_edit to enter the following commands, replacing items in angular
brackets <…> with information specific for your site:

rgy_edit=> domain group
rgy_edit=> add directory_server
rgy_edit=> add directory_employee
rgy_edit=> add directory_manager
rgy_edit=> domain principal
rgy_edit=> add directory_server
rgy_edit=> add john_doe
rgy_edit=> domain account
rgy_edit=> add directory_server -g directory_server -o none \
 -pw <server password> -mp <cell admin pw>
rgy_edit=> add john_doe -g directory_employee -o none \
 -pw <john does's password> -mp <cell admin password>
rgy_edit=> ktadd -p directory_server -pw <server password> \
 -f directory_server_tab

� Enable the directory_server principal to create a binding entry in the Cell
Directory Service root using dcecp:

dcecp -c acl modify /.: -add user:directory_server:rwcxid

To run the client program you must log on to DCE using the dce_login command.
The client program takes up to two optional parameters: employee name and
function code.
 Chapter 10. Scenario 3: Secure RPC application #1 203

For example, this command looks up the department name of the employee
john_doe:

client -function 0 -employee john_doe

There are three function codes that can be used by the example: 0 = get
department name, 1 = get employee grade, and 3 = get employee salary. The
default function code is 0. There are five employees in the sample directory:
peter_morgan, ruth_jones, howard_stein, fran_cooper, and john_doe. The
current DCE user is the default employee.

10.2.2 Application interface definition
All DCE applications require an interface definition written in(IDL. This language
completely describes the remote function calls to be made from the client to the
server. An IDL definition is usually generated manually and stored in a file that
ends with the suffix .idl.

For this scenario the IDL definition is shown in Example 10-1.

Example 10-1 IDL for sample scenario

[
 uuid(e2f98da0-8a19-11d7-8a68-00609437fb07),
 version(1.0),
 pointer_default(ptr)]
interface Directory{
 typedef [string] char *dept_name_t;
 void get_dept(
 [in] handle_t handle,
 [in,string] char *emp_name,
 [out] dept_name_t *dept_name
);
 void get_grade(
 [in] handle_t handle,
 [in, string] char *emp_name,
 [out]long *grade
);
 void get_salary(
 [in] handle_t handle,
 [in, string] char *emp_name,
 [out] double *salary
);
}

204 DCE Replacement Strategies

10.2.3 Application client
The application client is a fairly straightforward DCE program. The code is
divided into two sections: initialization and the RPC and presentation logic.

In the initialization code, the application client first looks up the location of the
application server from the DCE directory services. It then asks the application
server for its DCE network identity and verifies that it is in the directory_server
group. The client then creates a binding handle and annotates it with its own
DCE credentials. Finally, the application client calls execute_query to perform the
requested user function through an RPC. All of this code is shown in Appendix C,
“Scenario 3: Source code listings” on page 363.

The RPC and presentation logic is shown in Example 10-2.

Example 10-2 RPC and presentation logic

rpc_binding_handle_t binding_handle;
void show_usage(int argc, char *argv[]) {
 printf("Usage is: %s <-function {0|1|2}> <-employee emp_name>",argv[0]);
 exit(1);
}
void execute_query(int argc, char **argv) {
 int i=0;
 int query_type=0;
 enum query_type {DEPT,GRADE,SALARY};
 char *emp_name="";
 long grade;
 double salary;
 char *dept_name="";
 for(i=0;i<argc;i++) {
 if(strcmp(argv[i],"-function")==0) {
 if(i<argc-1) {
 query_type=atoi(argv[i+1]);
 i++;
 }
 }
 if(strcmp(argv[i],"-employee")==0) {
 if(i<argc-1) {
 emp_name=argv[i+1];
 i++;
 }
 }
 if(strcmp(argv[i],"-?")==0) show_usage(argc,argv);
 }
 switch(query_type) {
 case DEPT: {
 get_dept (binding_handle, emp_name, &dept_name);
 printf ("Department for %s is: %s\n",
 Chapter 10. Scenario 3: Secure RPC application #1 205

 strcmp(emp_name,"")!=0?emp_name:"current user",
 dept_name
);
 break;
 }
 case GRADE: {
 get_grade (binding_handle, emp_name, &grade);
 if(grade<0) {
 printf (
 "Grade for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user"
);
 }
 else {
 printf (
 "Grade for %s is: %i\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
 break;
 }
 case SALARY:{
 get_salary(binding_handle, emp_name, &salary);
 if(salary<0) {
 printf (
 "Salary for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user"
);
 }
 else {
 printf (
 "Salary for %s is: %f.2\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 break;
 }
 default: {
 printf("Invalid query type %d\n",query_type);
 show_usage(argc,argv);
 break;
 }
 }
}

206 DCE Replacement Strategies

The execute_function function scans the application client argument list for the
function or employee parameters and chooses suitable defaults if it does not find
them. Then execute_function performs the actual remote procedure call and
displays the results.

There are two slightly obscure points in this code. First, the use of the DCE
remote binding handle as a global variable, set in the initialization code, is the
only dependency in the execute_function function on DCE. By using a global
variable, the actual execute_function code remains re-usable. Second, this
business logic does not have any code for error handling after the initial contact
has been made with the directory server. Production quality code must address
this issue.

10.2.4 Application server
The application server code in this scenario is also a traditional DCE application
server. The code for the application server has been split into three parts:
initialization, RPC handling, and business logic.

For the initialization code, please refer to Appendix C, “Scenario 3: Source code
listings” on page 363. The application server first authenticates against the DCE
security server to ensure that it is a valid server. Then it binds itself into the DCE
directory service under the name directory_server and specifies that clients
communicate with it using packet privacy (encryption).

The RPC handling code hides the DCE infrastructure from the business logic and
makes that code completely portable. The RPC handling code uses the binding
handle from the application client to make an authorization decision in the
check_auth function. If it decides that the application client is authorized, it
enables the business logic to run; otherwise, it returns some default values to the
application client.

Example 10-3 shows an illustrative excerpt from the RPC handling code.

Example 10-3 Sample RPC handling code

#include <stdio.h>
#include "Directory.h"
#include "check_status.h"
#include <dce/binding.h>
#include <dce/pgo.h>
#include <dce/secidmap.h>
#include <dce/id_base.h>
#include <string.h>
#include "directory_impl.h"
#define CONTINUE 0
#define UNAUTHENTICATED_USER "unauthenticated user"
 Chapter 10. Scenario 3: Secure RPC application #1 207

int check_auth(
 rpc_binding_handle_t handle,
 char *type,
 char **client_name
) {
 sec_id_pac_t *pac;
 unsigned_char_t *server_principal_name;
 sec_rgy_name_t client_principal_name;
 unsigned32 protection_level;
 unsigned32 authn_svc;
 unsigned32 authz_svc;
 sec_rgy_handle_t rgy_handle;
 error_status_t status;
 int is_valid=TRUE;
 /*
 * Check the authentication parameters that the
 * client selected for this call.
 */
 rpc_binding_inq_auth_client (
 handle,
 (rpc_authz_handle_t *) &pac,
 &server_principal_name,
 &protection_level,
 &authn_svc,
 &authz_svc,
 &status
);
 CHECK_STATUS (status, "inq_auth_client failed",CONTINUE);
 /*
 * Make sure that the caller has specified the required
 * level of protection, authentication, and authorization.
 */
 if (! (
 (protection_level == rpc_c_protect_level_pkt_integ) &&
 (authn_svc == rpc_c_authn_dce_secret) &&
 (authz_svc == rpc_c_authz_dce)
)) is_valid=FALSE;
 /*
 * Establish a binding to the registry interface of the
 * Security Server.
 */
 sec_rgy_site_open_query(NULL, &rgy_handle, &status);
 CHECK_STATUS (status, "rgy_site_open failed",CONTINUE);
 /*
 * Convert the UUID in the PAC into a name.
 */
 sec_rgy_pgo_id_to_name (
 rgy_handle,
 sec_rgy_domain_person,
208 DCE Replacement Strategies

 &(pac->principal.uuid),
 client_principal_name,
 &status
);
 CHECK_STATUS (status, "pgo_id_to_name failed",CONTINUE);
 /*
 * Check to see if the client principal is an employee
 */
 if(type!=NULL) {
 is_valid = sec_rgy_pgo_is_member (
 rgy_handle,
 sec_rgy_domain_group,
 type,
 client_principal_name,
 &status
);
 CHECK_STATUS (status, "is_member failed", CONTINUE);
 }
 /*
 * We are done with the Security registry; free the handle now.
 */
 sec_rgy_site_close(rgy_handle,&status);
 CHECK_STATUS (status, "rgy_site_close failed",CONTINUE);
 *client_name=client_principal_name;
 return is_valid;
}
void IDL_STD_STDCALL get_grade(
 rpc_binding_handle_t handle,
 idl_char *emp_name,
 long *grade
) {
 char *name;
 if(check_auth(handle,"directory_employee",&name)==TRUE) {
 if(emp_name==NULL) emp_name=name;
 *grade=getGradeImpl(emp_name);
 return;
 }
 *grade = -2;
 return;
}

The business logic is straightforward. The actual directory is implemented as a
global in-memory data structure. The code searches the structure for an
employee matching its only input parameter and returns the required value of
department, grade, or salary to the application client. In reality, the business logic
could be more complicated and could involve retrieving the employee directory
as a database query.
 Chapter 10. Scenario 3: Secure RPC application #1 209

Example 10-4 shows an extract of the business logic function.

Example 10-4 Extract from business logic

typedef struct {
 char *emp_name;
 char *dept_name;
 long grade_value;
 double salary_value;
} emp_entry_t;

emp_entry_t emp_table [] = {
 {"peter_morgan", "Accounting",1,24000.0},
 {"ruth_jones", "Marketing",2,38000.0},
 {"howard_stein","Finance",2,42000.0},
 {"fran_cooper", "Administration",1,27000.0},
 {"john_doe", "Training",1,18000.0},
 {NULL,NULL,-1,0}
};
DIRECTORY_EXPORT long getGradeImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return -1;
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->grade_value;
 emp_table_p++;
 }
 return -1;
}

By maintaining this code structure for the application server, it is possible to
create and deploy the business logic as a shared library on the target platform.

10.3 Replacement roadmap
If the revision of the DCE C code is to work inside a Java-based WebSphere
Application Server, it depends on how well the code was structured originally. In
our scenario the application server C code was divided into three parts: server
initialization, server RPC management and authorization, and business logic.
The client was split into two parts: client initialization and business/presentation
logic. With this arrangement, it is possible to re-use virtually all of the business
logic in both the client and server.

As this type of code usually forms the majority of code in an application, this
approach makes the migration highly feasible both in terms of the amount of new
210 DCE Replacement Strategies

code to be written and in the scope of testing for the revised application. If the
application business logic is highly interwoven with DCE infrastructure code, the
amount of change required might dictate that a complete rewrite of the
application, maybe in Java, is a better approach.

The replacement roadmap includes the following steps, which are described in
the sections that follow:

� Meeting the software requirements
� Installing and configuring IBM WebSphere Application Server
� Configuring WebSphere Application Server security
� Configuring the application client
� Developing the application
� Configuring IBM Directory Server (LDAP directory)
� Assembling, deploying, and running the application

10.3.1 Software requirements
The software requirements for running the revised application run time are:

� IBM WebSphere Application Server, Version 5 (any edition can be used
except for the CORBA SDK, which is provided with WebSphere Application
Server Enterprise only)

� IBM Directory Server 3.2.2

� IBM Java JDK 1.3.1 (included with IBM WebSphere Application Server
Enterprise, Version 5)

The software requirements for the revised application development are:

� IBM WebSphere Studio Application Developer 5.01 or other Java
development tool

� A C compiler, such as Visual C++ 6.0 for Windows and Visual Age for C++ for
AIX

10.3.2 Installing and configuring IBM WebSphere Application Server
The necessary steps for installing and configuring IBM WebSphere Application
Server are described in the respective product documentation, and briefly in
section 9.3.2, “Installing and configuring WebSphere Application Server” on
page 180.

In this scenario, WebSphere Application Server is used on a single system. If
multiple WebSphere Application Servers are configured as a cell, install either
IBM WebSphere Application Server Network Deployment or IBM WebSphere
 Chapter 10. Scenario 3: Secure RPC application #1 211

Application Server Enterprise. Before installing, check product documentation to
find more about WebSphere Application Server Version 5 packaging.

Administration Interface
IBM WebSphere Application Server provides a browser-based graphical user
interface for managing all topics related to the Application Server.

When Global Security is disabled, you can reach the administrative console of
IBM WebSphere Application Server at:

http://<MwWir>:<port>/admin

However, when Global Security is enabled, you must use:

https://<MwWir>:<secure-port>/admin

where:

� https is the hypertext transfer protocol over SSL
� MwWir is the machine where WebSphere is running
� secure-port is the secured port for the administrative console

It is possible to define four different roles concerning administration: Monitor,
Configurator, Operator, and Administrator. Users who are assigned to the
Monitor role are able to view the configuration of the IBM WebSphere Application
Server and the current state. Members of the configurator group can alter the
IBM WebSphere Application Server configuration. The Operator role has the
monitor rights plus the ability to start and stop the IBM WebSphere Application
Server. The administrator role comprises both the configurator role and the
operator role.

In order to set the administration roles, navigate on the administrative console to
System Administration -> Console Users.

10.3.3 Configuring WebSphere Application Server security
This section describes the necessary steps for setting up the security
configuration of the IBM WebSphere Application Server for the current scenario.
The components configured in these steps are described in detail in upcoming
sections.

1. Prepare SSL key and trust files: These files are needed for the SSL
configuration.

2. Configure SSL: This creates an SSL configuration that will be assigned to the
CSIv2 communication mechanism.
212 DCE Replacement Strategies

http://<MwWir>:<port>/admin
https://<MwWir>:<secure-port>/admin

3. Configure CSIv2: With CSIv2, IBM WebSphere Application Server provides a
communication mechanism in order to pass authentication information of the
J2EE client to the enterprise application.

4. Configure LDAP as the user registry: As an LDAP directory is used in the
current scenario as a user registry, the configuration for accessing the LDAP
server is done in this step.

5. Configure LDAP filter rules: The configuration of the LDAP filter rules is
needed to match client certificate information to DCE users (principals) in the
LDAP directory.

6. Configure LTPA as the authentication mechanism: Specifies the LTPA facility
as an authentication mechanism for the IBM WebSphere Application Server.

7. Configure Global Security: To activate the security settings.

Each of the elements must be configured in order to establish a security
framework in which the scenario application is secured by the same level as an
application is in a DCE environment. Assuming that authorization is done within
the enterprise application, authentication, authorization and encryption are
covered by the security configuration of the IBM WebSphere Application Server.

Prepare SSL key and trust files
The current scenario uses self-signed certificates created with the ikeyman tool,
as described in section 7.7.6, “Using self-signed certificates” on page 120. In
brief, the following must be done:

1. As a preparation step, copy the default key and trust files provided with
WebSphere Application Server to files that are used for the scenario. For
example:

– Copy DummyServerKeyFile.jks to ITSOSrvKeyFile.jks

– Copy DummyServerTrustFile.jks to ITSOSrvTrustFile.jks

– Copy DummyKeyRingFile.KDB to ITSOKeyRingFile.KDB

(On AIX, these default key files are in the /usr/WebSphere/AppServer/etc
directory.)

2. Using the ikeyman utility and the ITSOKeyRingFile.KDB key file, create a
self-signed certificate for the application client. For that certificate, choose a
subject Common Name (CN) that matches a DCE principal name. For
example, the subject CN of the certificate is johndoe for a user whose DCE
principal name is johndoe. Later, this name will be matched to its
 Chapter 10. Scenario 3: Secure RPC application #1 213

krbPrincipalName attribute in the LDAP directory using LDAP filters (as
explained in “Configure LDAP filter rules” on page 218).

The application client key file that is prepared in this step will be used later for
the configuration of the application client. (See section 10.3.4, “Configuring
the application client” on page 222.)

3. Extract the self-signed certificate to a file for use in the next step.

4. With the ikeyman utility of WebSphere Application Server, add the application
client’s self-signed certificate to the list of Signer Certificates in the
ITSOSrvTrustFile.jks file. This file is used by the Application Server to validate
the application client’s certificate.

Because the default key files shipped with WebSphere Application Server
already contain the necessary root certificates, no further root certificates must
be added to the client’s or the server’s key files. In a production environment, it is
recommended to use certificates from a trusted CA, as shown in scenario 4.
(See “Prepare SSL key and trust files” on page 252.)

Configure Secure Socket Layer (SSL)
Navigate on the administrative console to: Security -> SSL.

The SSL configuration is needed as an authentication mechanism for the client
application. For further information and a general discussion about SSL, refer to
section 7.7, “SSL implementation hints” on page 116.

Figure 10-4 on page 215 shows the sample settings necessary for the SSL
configuration in this scenario. Note that these settings are stored under an alias
name that will be referred to in later configuration steps. Multiple aliases (sets of
configuration settings) can be created and managed.

Note: For step 2, use the ikeyman tool that comes with the IBM HTTP
Server because this version of ikeyman supports the key database file
format required for the CORBA client.

Note: For step 4, use the ikeyman utility that comes with WebSphere
Application Server because it supports the jks file format. On AIX, launch
ikeyman with /usr/WebSphere/AppServer/bin/ikeyman.sh
214 DCE Replacement Strategies

Figure 10-4 SSL settings for IBM WebSphere Application Server

The following list is a description of the items, and how they are used in the
current scenario.

� Alias: A descriptive name for the SSL settings, used later as input for the
CSIv2 configuration.

� Key File Name: Enter the fully qualified SSL key file name of the key file as
prepared in the previous step (“Prepare SSL key and trust files” on page 213).

� Key File Password: The password for the key file specified in the previous
entry field. The password was set when the key file was prepared. (The
default password for the provided key files is WebAS.)

� Key File Format: Select the database format of the key file. As the default key
files were copied and used in this scenario, the file format is JKS.

� Trust File Name: Enter the fully qualified file name of the trust file that was
prepared in the previous step (“Prepare SSL key and trust files” on page 213).

� Trust File Password: Specifies the password for the trust file. (The default
password for the provided key files is WebAS.)

� Trust File Format: Select the database format of the trust file. As with the key
files, the trust files are in the JKS format for this scenario.

� Client Authentication: Specifies whether to request a certificate from the client
for authentication purposes when making a connection. This attribute is valid
only when used by the Web Container HTTP transport. As IIOP is used for
 Chapter 10. Scenario 3: Secure RPC application #1 215

communication in this scenario, the authentication settings for the client
request are made via the CSIv2 Inbound Authentication item, so this item is
not selected for the current scenario.

� Security Level: Specifies a selection from a pre-configured set of security
levels. Possible values are LOW, MEDIUM, and HIGH. LOW specifies only
digital signing ciphers (no encryption). MEDIUM specifies 40-bit ciphers
(including digital signing), and HIGH, as used in this scenario, specifies only
128-bit ciphers (including digital signing).

Configure CSIv2
Next, enable the SSL support for the CSIv2 protocol. On the administrative
console, navigate to Security -> Authentication Protocol. Do the following to
configure CSIv2:

1. In the CSIv2 Inbound Authentication item, choose supported for Client
Certificate Authentication and select the appropriate SSL alias as defined
earlier.

2. In the CSIv2 Inbound Transport item, check the SSL-Supported box in the
Transport field and select the appropriate SSL alias as defined in “Configure
Secure Socket Layer (SSL)” on page 214. (If only authentication via client
certificate is allowed, set this value to required instead of supported.)

Configure LDAP as the user registry
Navigate on the administrative console to Security -> User Registries -> LDAP.

This step configures the LDAP user registry that has been migrated from DCE.
Figure 10-5 on page 217 shows the settings for the IBM WebSphere Application
Server in order to connect to the LDAP server.
216 DCE Replacement Strategies

Figure 10-5 LDAP settings for IBM WebSphere Application Server

The following list is a description of the items.

� Server User ID: Enter a user ID under which the Application Server runs.
Because LDAP directory is used as the user registry in this scenario, the user
ID must be a valid user entry in the LDAP directory tree located under the
Base Distinguished Name. In the sample scenario, the user wsadm was
created with the DCE command dcecp user create.

� Server User Password: Specifies the password corresponding to the Server
User ID as specified in the previous field.

� Type: Select the type of LDAP server to be connected to, which is an IBM
Directory Server in our scenario. The type is used to preload default LDAP
properties.

� Host: Enter the host name or IP address of the LDAP server. In this scenario,
the LDAP server resides on host ldap.itsc.austin.ibm.com.
 Chapter 10. Scenario 3: Secure RPC application #1 217

� Port: Enter the port of the LDAP server. The default port is 389, as used in this
scenario.

� Base Distinguished Name: Enter the base DN in the LDAP directory tree used
as a starting point for LDAP directory searches. This scenario uses
dc=itso,dc=ibm,dc=com.

� Bind Distinguished Name: Enter the DN of the Application Server to use when
binding to the LDAP server. This DN must exist (or has to be created) in the
LDAP directory with a password (see next option) prior to run the application.

� Bind Password: Enter the password for the Application Server to use when
binding to the LDAP server with the DN as entered in the previous field.

� Search Timeout: The scenario uses the default value, which is 120 seconds.

� Reuse Connection: Select if the Application Server should reuse the
connection to the LDAP directory server, which is selected (though not
required) for this scenario.

� Ignore Case: Specifies that a case-insensitive authorization check will be
performed. When using certificates for authentication, as in this scenario,
enable this option.

� SSL Enabled: If checked, activates the SSL communication to the LDAP
server. In the current scenario, a simple bind to the LDAP server is used for
the sake of simplicity, so this box is not checked.

� SSL Configuration: This scenario does not use SSL to connect to the LDAP
server (see previous setting SSL Enabled), so this entry is ignored.

Configure LDAP filter rules
IBM WebSphere Application Server uses LDAP directory as a repository for
users and groups, so appropriate filter rules must be applied in order to resolve
users and groups correctly. Filter rules match information in a client certificate to
entries in the LDAP directory. Filters are necessary because the representation
of the information in a certificate may differ from the information in the directory.

This scenario assumes the name matching as depicted in Figure 10-6 on
page 219. Note that johndoe’s krbPrincipalName is composed of the DCE
principal name and the realm name (johndoe@realm1.austin.ibm.com).
218 DCE Replacement Strategies

Figure 10-6 Name matching between client certificate and directory entry

As an example, the client certificate’s subject CN is cn=johndoe, as shown in
Figure 10-6. The LDAP filters are configured to match the certificate’s subject CN
to the krbPrincipalName attribute in the LDAP directory, which in this scenario is
johndoe@realm1.austin.ibm.com. The krbPrincipalName attribute is set when
DCE registry data is migrated to an LDAP directory. The groups residing in LDAP
are utilized by the enterprise application to make subsequent authorization
decisions based on the group membership of the J2EE client user. Thus, LDAP
filters for groups are configured as well.

The configuration of the LDAP filter rules is done via the Advanced LDAP
Settings item, found in Security -> User Registries -> LDAP. These LDAP
filters are used in this scenario:

� User Filter: The LDAP user filter. The value for the current scenario is:

(&(krbPrincipalName=%v@realm1.austin.ibm.com)(objectclass=krbPrincipal))

� Group Filter: The LDAP group filter. The value for the current scenario is:

(&(cn=%v)((objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

� Certificate Map Mode: Specifies whether to match the LDAP entry by the
Distinguished Name of the LDAP user or via a specified filter. In the current
scenario the value is set to CERTIFICATE_FILTER.

� Certificate Filter: Specifies the LDAP filter, which is used to map the CN in the
client certificate to entries in the LDAP registry. The value is set to:

krbPrincipalName=${SubjectCN}@realm1.austin.ibm.com

Subject:
cn=johndoe

Root

cn=johndoe
krbPrincipalName=johndoe@realm1.austin.ibm.com

Client Certificate

LDAP Directory
 Chapter 10. Scenario 3: Secure RPC application #1 219

Configure LTPA as the authentication mechanism
Navigate on the administrative console to: Security -> Authentication
Mechanisms -> LTPA. Enter a password in the Password and Confirm
Password fields. This password will be used to generate LTPA keys when global
security is enabled for the first time, as described in the next section, Configure
global security.

The LTPA represents an authentication mechanism for the security domain of the
IBM WebSphere Application Server, whereas CSIv2 (see following section) is
utilized as a communication protocol for the J2EE application to the enterprise
application.

After a valid authentication of a user, the LTPA mechanism generates security
tokens, which can be propagated to subsequent enterprise applications.
Equivalent to DCE, the user information can be delegated by means of an LTPA
token and application beans within the scope of its authorization role. Acquiring
an LTPA token during the authentication process is referred to as the Single
SignOn (SSO) feature of IBM WebSphere Application Server. In the current
scenario, the LTPA mechanism is used for communication with the user registry
located in the LDAP directory.

LTPA uses three keys:

� A public/private key pair for signing LTPA tokens
� A shared key for encrypting the LTPA token

When global security is turned on for the first time with LTPA as the
authentication mechanism, LTPA keys are generated automatically. The keys are
protected with the password entered in the LTPA configuration panel. This panel
(not shown here) is simple, because only the password for protecting the keys
has to be specified.

Configure global security
Navigate on the administrative console to: Security -> Global Security.

Figure 10-7 on page 221 shows the global security settings of the administrative
console as used for the current scenario. Beside the main activation of the
security configuration, items such as user registry, the active authentication
mechanism, and communication protocol are set in this mask. Note that the
Java 2 Security is not needed, as global security policies are not utilized in the
current scenario.
220 DCE Replacement Strategies

Figure 10-7 Global Security settings for IBM WebSphere Application Server

The following list provides a description of the items.

� Enabled: Must be checked to enable WebSphere global security.

� Enforce Java 2 Security: Used to activate or disable Java 2 security
permission checking. The application in the current scenario does not use
security policies for simplicity reasons, so this box is not checked.

� Use Domain Qualified User IDs: Not used, and thus, not checked for the
current scenario.

� Cache Timeout: The scenario uses the default value.

� Issue Permission Warning: This check box is used in conjunction with Java 2
security and is not used (and thus not checked) in the current scenario.

� Active Protocol: This setting is for backward compatibility with previous
versions of IBM WebSphere; the selection does not affect the current
scenario.

� Active Authentication Mechanism: Specifies the active authentication
mechanism, which is LTPA for the current scenario.

� Active User Registry: Specifies the active user registry, which is LDAP for the
current scenario.
 Chapter 10. Scenario 3: Secure RPC application #1 221

After applying and saving the settings, the IBM WebSphere Application Server
must be restarted to activate the security settings. Furthermore, the login
process to the administrative console requires the name and the password of the
console users.

10.3.4 Configuring the application client
The CORBA C++ client is configured after the enterprise application and the
client is built. The configuration is explained here for the sake of continuity. Refer
to section 10.4.2, “CORBA IDL file” on page 231 and section 10.4.3, “Application
client” on page 231, for instructions for building the client.

Complete the following configuration steps before running the client:

� Ensure that you have access to the client key file that was prepared in
“Prepare SSL key and trust files” on page 213. The client key file contains the
self-signed certificate that is used for client authentication. In this scenario,
the file name is:

/usr/WebSphere/AppServer/etc/ITSOKeyRingFile.KDB

� Create a client properties (WASPROPS) file. A CORBA client must have
several initialization properties pre-defined. These are used during the ORB
init method. These properties may be specified on the CORBA client
command line, included in the parameters to the ORB init method, or
contained inside a properties file. The name of this special file is specified in
the WASPROPS environment variable. The WASPROPS file for the CORBA
client in this scenario, WSEJBClient.props, is shown in Example 10-5.

Example 10-5 WSEJBClient.props file for the CORBA client

com.ibm.CORBA.bootstrapPort=2809
com.ibm.CORBA.translationEnabled=1
com.ibm.CORBA.nativeWCharCodeset=UCS2
com.ibm.websphere.serverName=server1
com.ibm.websphere.EJBName=ejb/com/ibm/redbook/scenario3/EJB/DirectoryHome
com.ibm.CORBA.securityEnabled=yes
com.ibm.ssl.keyFile=/usr/WebSphere/AppServer/etc/ITSOKeyRingFile.KDB
com.ibm.ssl.keyPassword=WebAS
com.ibm.CSI.performTLClientAuthenticationSupported=yes
com.ibm.CSI.performTransportAssocSSLTLSSupported=yes
com.ibm.CORBA.initServices=security
com.ibm.CORBA.dllName=libwassccl.so
com.ibm.CORBA.securityTraceLevel=1
com.ibm.CSI.performMessageIntegritySupported=yes

� Set the WASPROPS environment variable to the file created above before
running the application client.
222 DCE Replacement Strategies

After the client configuration has been completed as described, the application
client can be run. (See section 10.3.9, “Running the application client” on
page 229.)

10.3.5 Developing the application
Application development in J2EE differs from developing DCE applications.
Whereas DCE (and CORBA) eased network and security programming by
providing IDL and high-level programming APIs, J2EE goes one step farther: It
almost completely frees the application developer from programming on the
middleware level. The Application Server’s middleware API is not accessible for
the programmer, but only used by the Application Server itself and the container
in which the J2EE application is deployed. Explicit security programming can be
avoided mostly by using declarative security; that is, the container handles
security as configured during application assembly and deployment.

10.3.6 Configuring IBM Directory Server
As mentioned earlier, the revised application uses the migrated DCE user
registry data in the IBM Directory Server. For instructions for the migration, refer
to section 8.3.2, “Migration of DCE security registry to IBM Directory Server” on
page 139.

If you plan to use BasicAuth as the authentication type for application users, the
passwords of all of the migrated users must be set manually (or through a script)
in the IBM Directory Server, as WebSphere will not be able to recognize the DCE
(Kerberos) passwords. However, this scenario uses client certificates, and thus,
the migrated data can be used without any modification. The LDAP filter rules as
discussed before provide the necessary means of mapping certificate
information to corresponding information in the LDAP directory.

10.3.7 Assembling the scenario application
In the J2EE development process, the responsibility of the application
programmer ends with the delivery of a jar file that contains the class files of the
enterprise beans developed for an application. If a native Java application client
has also been developed, then there would be a jar file for that as well.

These jar files are then packaged using an application assembly tool that is
usually included in the distribution of the Application Server product, which is the
case with IBM WebSphere Application Server.

The application assembly tool enables the application assembler to package
applications according to the J2EE specification. It lets you create enterprise
 Chapter 10. Scenario 3: Secure RPC application #1 223

bean modules, Web modules, resource adapter archives, and application client
modules from the jar or class files, along with the configuration input. These then
can be assembled into an enterprise application archive.

The output of the assembly process is a war (web archive) or ear (enterprise
archive) file, which can be deployed using the Application Server’s management
interface. The war and ear files (without the deployment code) can be deployed
on any J2EE Application Server.

General steps
The the most important tasks performed by the Application Assembly Tool (AAT)
provided by WebSphere are:

� Generating standard J2EE deployment descriptors, IBM deployment
descriptor extensions, and binding definitions for each of the modules.
Bindings also can be defined during deployment time.

� Configuring enterprise bean modules with session or entity beans. And, in
case of entity beans, declaring container-managed relationships.

� Configuring Web modules with servlets and JSPs. And, in case of servlets,
declaring servlet mappings.

� Packaging a client application.

� Declaring environment variables.

� Declaring enterprise bean references and creating resource references.

� Setting enterprise bean transactional attributes.

� Defining security roles and creating a placeholder for the corresponding roles
with existing users and groups in the Application Server’s security registry.

� Assigning roles to enterprise bean methods in order to control access.

� Assigning bean or Method Level Run-As mappings to enable enterprise
beans to call downstream enterprise beans with the same security identity as
the original caller ID or with another specified ID(delegation).

After the application assembler has entered all necessary information, the
assembly tool can create the XML deployment descriptors for the enterprise
beans of the application client and the application itself. These descriptors,
together with the extended jar files, are subsequently packed into the ear file,
generating the output.

The AAT can generate deployment code as well, such as stubs, skeletons, and
helper class files for the WebSphere Application Server. They enable application
clients and enterprise beans to communicate over the network in the first place.
These generated files are added to the jar file, which contains the enterprise
bean class files.
224 DCE Replacement Strategies

Assembling the scenario application
The following steps assemble the scenario application, called Redbook_Sample.
On a system that has WebSphere Application Server installed and that has
access to the jar files for the J2EE client and Mirror enterprise beans, do the
following to assemble the application:

1. On Windows, start the WebSphere Application Server Application Assembly
Tool by selecting Start -> Programs -> IBM WebSphere -> Application
Server v5.0 -> Application Assembly Tool.

On Unix, start the Application Assembly Tool using the shell script:

<install root of WebSphere>/AppServer/bin/assembly.sh

2. Select Application from the choice of subjects that can be created.

3. In the panel for the new enterprise application, enter Redbook_Sample for
the Display name, and click Apply.

4. On the left part of the Assembly Tools window, select EJB Modules and
right-click to select New.

5. Enter the common configuration information for the enterprise bean:

a. Replace the default jar file name with Redbook_Sample_EJB.jar.

b. Enter the Display Name Redbook_Sample_EJB.

6. Add the enterprise bean directory to the created EJB Module and configure it:

a. Under EJB Modules, expand the Redbook_Sample_EJB entry, select
Session Beans, and right-click to select New.

b. In the General tab of the New Session Bean window, enter Directory as
the EJB Name and subsequently browse and enter EJB class, EJB home,
and remote interface, through accessing the EJB.jar file for the
DirectorySession provided by the application development process. Enter:

• com.ibm.redbook.scenario3.EJB.DirectorySessionBeanImpl.class
for EJB Class

• com.ibm.redbook.scenario3.EJB DirectorySessionHome.class for
Home

• com.ibm.redbook.scenario3.EJB DirectorySessionBean.class for
Interface

c. Select the Advanced tab and ensure that stateless is selected for the
Session Type.

d. Select the Bindings tab and enter the JNDI name for Directory, which in
this case is com/ibm/redbook/scenario3/EJB/DirectoryHome.

e. Select OK in the General tab.
 Chapter 10. Scenario 3: Secure RPC application #1 225

7. Return to the application level on the left side of the main window, select
Security roles, and right-click to select New.

8. Create two new roles, manager and employee. In the Bindings tab of the New
Security Role window, bind the manager role with registry group
cn=DirectoryManagers,cn=group,krbRealmName-v2=realm1.austin.ibm.com,
dc=itso,dc=ibm,dc=com

9. Bind the employee role with registry group
cn=DirectoryEmployees,cn=group,krbRealmName-v2=realm1.austin.ibm.com
,dc=itso,dc=ibm,dc=com

In the scenario example, these groups have been created by DCE and
migrated to the LDAP directory.

Note that you must use the full Distinguished Name (DN) of the groups with
the assembly tool. When this is done, the role manager and employee are
known globally for the Directory enterprise application and are ready to be
used for further configuration.

10.Specify for the EJB Module Redbook_Sample_EJB which roles to use locally.
To do so, under EJB Modules, expand the Redbook_Sample_EJB entry, and
right-click Security roles to select New twice to create the roles manager and
employee here as well.

11.Now the configuration is ready to annotate enterprise bean methods with
role-based permissions. Therefore, on level Redbook_Sample ->
Redbook_Sample_EJB -> Session Beans, select Method Permissions
and right-click to create new permissions.

12.In the New Method Permission window, enter a method permission name of
manager. Then click Add for Methods and select the method to be annotated.
In our scenario, this is the getGrade and getSalary methods of the Directory
enterprise bean. These methods contain the business logic of our example for
manager use. Add getGrade and getSalary and click OK. Next, click Add for
Roles and select the manager roles that shall have access to the methods.
Click OK.

13.Again in the New Method Permission window, enter a method permission
name of employee. Then click Add for Methods and select the method to be
annotated. In our scenario, this is the getGrade method of the Directory
enterprise bean. This method contains the business logic of our example for
employee use. Add getGrade and click OK. Next, click Add for Roles and
select the employee roles that should have access to the methods. Click OK.

14.Create a resource reference to link the EJB with the resource adapter: Go to
RedbookSample -> Redbook_Sample_EJB -> SessionBeans ->
Directory -> Resource References and right-click to create a new reference.
Name the reference redbook_jni_connection and type
javax.resource.cci.ConnectionFactory. Choose Application for
226 DCE Replacement Strategies

Authentication. Click the Bindings tab and enter redbook_jni_connection.
Then click OK to save the reference.

15.Create a resource adapter: On the left part of the Assembly Tools window,
select Resource Adapter and right-click to select New.

16.Enter the common configuration information for the resource adapter:

Click the General tab. Enter Redbook Sample Connector for the Display name,
JNI Connection for EIS type, IBM for Vendor name, 1.0 for Version, and 1.0
for Specification.

17.Click the Advanced tab and browse for the Connector.jar provided by the
application development process. Enter:

– com.ibm.redbook.scenario3.RA.JNIManagedConnectionFactory.class for
ManagedConnectionFactory

– javax.resource.cci.ConnectionFactory for Connection Factory interface

– com.ibm.redbook.scenario3.RA.JNIConnectionFactory for Connection
Factory implementation

– javax.resource.cci.Connection for Connection interface

– com.ibm.redbook.scenario3.RA.JNIConnection for Connection
implementation

Click Apply to save these entries.

18.From the left panel, select Files and right-click to select Add. Browse to the
Connector.jar file and select all files to add. Click Add and OK.

19.Go to File -> Save As and save the application archive as
Redbook_Sample.ear.

10.3.8 Deploying and starting the application
After the enterprise application has been successfully assembled and the ear file
is produced, the application can be deployed using the Application Server’s
Management interface. (In the WebSphere Application Server product, this is the
Administrative Console.) Application Deployment or the role of an application
deployer in J2EE is a subject that has no well-defined counterpart in the DCE
application development process. Whereas J2EE application deployment is all
about tool-based configuration, deploying a DCE application would be a
combination of DCE configuration, script programming, and system management
tasks. Due to the specialities of the Java programming language (reflection,
dynamic class loading), in the J2EE deployment phase there are configuration
options, which correspond to the application programming phase in a DCE
environment. For example, in J2EE, it is possible to modify access right to
enterprise bean methods even in the deployment phase.
 Chapter 10. Scenario 3: Secure RPC application #1 227

General tasks
These important tasks are carried out in the deployment phase:

� Generating default bindings (containing EJB JNDI names, EJB references,
resource reference bindings, connection factory bindings, and data source
bindings) or specifying a bindings file.

� Setting JNDI name and type of resource authorization for default data
sources (DB access) used by entity beans with container managed
persistence.

� Enabling enterprise application options such as using JSP precompilation
and class reloading.

� Mapping user registry objects such as users and groups to enterprise
application security roles. This can also be done during the assembly phase.

� Managing mappings of deployed modules or applications to a server or a
server cluster.

� Most important, generating deployment code and installing an Enterprise
Application once all the settings are specified.

After all necessary configuration information is entered, the deployment tool
saves the configuration and installs the enterprise application accordingly on the
participating J2EE Application Servers.

Deploying the sample application
These steps deploy and start the scenario application, the sample enterprise
used in this scenario. As a prerequisite, be sure that the Enterprise Application
Archive file Redbook_Sample.ear is accessible, then open the WebSphere
Administrative Console. Perform the following steps to deploy the application
Redbook_Sample:

1. The left side of the Administrative Console displays a list of subjects that can
be configured for each Application Server. In our example there is only one
instance of an Application Server. Expand the ‘+’ on Applications and click
Install New Application.

2. On the right side of the console window, enter the local or remote path to
Redbook_Samplw.ear and click Next.

3. Check Generate general bindings in the current page and click Next.

4. On this panel, check Deploy EJBs. Click Next.

5. No further deployment options are necessary in this panel. Click Next.

6. This panel should already contain the JNDI Name for Directory,
com/ibm/redbook/scenario3/EJB/DirectoryHome. Leave it unchanged and
click Next.
228 DCE Replacement Strategies

7. In this step, multiple EJB modules could be dispersed over available
Application Servers. As we have only one EJB module, we leave this page
unchanged and click Next.

8. This panel should show the group to role mapping defined during the
application assembly. No changes are necessary, so click Next.

9. The current panel allows for apply general access rules to all bean methods
that have not been protected during application assembly. You may consider
attaching one of the available roles (and group) to all unprotected mean
methods. After this, click Next.

10.In the last step, examine the summary and click Finish if you are satisfied.

The deployment tool then goes through several steps, which it logs on the
screen, to install the application. After successful completion the configuration
has to be saved. The ear file will be installed in the location you specify during
installation. If nothing is specified, it is installed in the default location <install
root of WebSphere>/AppServer/installedApps.

11.Go to Applications -> Redbook_Sample -> Redbook_Sample_EJB ->
Connector Modules -> Redbook_Sample_Connector.rar -> J2C
Connection Factories. Enter redbook_jni_connection for the name and
redbook_jni_connection for the JNDI name. Click OK.

12.As the final step, go back to Applications on the left side of the console
window, expand the ‘+’ and click on Enterprise Applications. In the list of the
deployed applications that appears in the right part of the console window,
you will see Redbook_Sample. Check its checkbox and click the start button
on top of the list. If the application starts successfully, it is ready to be used.

Before running the application, copy the shared library directory_jni into a
suitable location. Usually this is a directory in the PATH for Windows platforms or
in a directory on the LIBPATH for AIX. Refer to section 10.4.5, “Java Native
Interface” on page 238 for details about creating the shared library.

10.3.9 Running the application client
The application client is run like any other CORBA C++ client. Refer to section
10.3.4, “Configuring the application client” on page 222 for configuration
details.The corba_client program takes up to two optional parameters, employee
name and function code. For example: corba_client -function 0 -employee
john_doe looks up the department name of the employee john_doe.
 Chapter 10. Scenario 3: Secure RPC application #1 229

10.4 Revised application discussion
This section explains the revised application and some new concepts that are
incorporated. Among other differences to be explained, the most important new
concepts are:

� The use of enterprise bean wrappers for enclosing the application code in C

� The lack of authentication and authorization code (because this is done by
WebSphere security)

� The use of JCA and JNI

10.4.1 Enterprise bean wrappers
The first task in the migration is to create an enterprise bean wrapper that
encloses the server-side C program. This wrapper is needed to enable the
C-based server business logic to execute within a Java based application server.

The wrapper is composed of a stateless session bean. For any basic enterprise
bean, two Java interface classes must be specified for the enterprise bean: the
home interface and the enterprise bean remote interface.

The requirements for the enterprise bean home interface are specified in the
J2EE 1.3 specifications. However, we will be using the simplest form of
enterprise bean, a stateless session bean. As a result the simple home interface
will look like Example 10-6.

Example 10-6 Enterprise bean home interface

public interface DirectorySessionHome extends javax.ejb.EJBHome {
 public com.ibm.redbook.scenario3.EJB.DirectorySessionBean create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
}

The enterprise bean remote interface is based on the business logic and
performs the same function as the DCE IDL file. The remote interface to be used
in this scenario is shown in Example 10-7.

Example 10-7 Enterprise bean remote interface

package com.ibm.redbook.scenario3.EJB;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
230 DCE Replacement Strategies

public interface DirectorySessionBean extends EJBObject {
 String getDepartment(String emp_name) throws RemoteException;
 int getGrade(String emp_name)throws RemoteException;
 double getSalary(String emp_name) throws RemoteException;
}

In the next section we use these two interfaces to develop a CORBA client that
calls the application server inside the WebSphere Application Server. The actual
implementation of the remote interface is then discussed in section 10.4.4,
“Application server” on page 236.

10.4.2 CORBA IDL file
From the definition of the two enterprise bean interface classes in the previous
section, it is now possible to create two CORBA IDL files for use by the CORBA
client. This is done with the rmic command using the idl option. For example, in
the case of this example, these commands are:

rmic -idl DirectorySessionHome and
rmic -idl -classpath <was install root>/appserver/lib/j2ee.jar \
 DirectorySessionBean

For the case of the DirectorySessionBean, you may specify an optional
classpath for the command as the Java class DirectorySessionBean imports the
enterprise object class, which is located in the j2ee.jar archive.

The output of these commands is two header IDL files and two C++ program files
named:

� DirectorySessionHome.idl
� DirectorySessionBean.idl
� DirectorySessionHome_C_stub.cpp
� DirectorySessionBean_C_stub.cpp

10.4.3 Application client
The two IDL files created in the previous step are used to build the application
client. First, the IDL files must be converted into C program code. This is done
with the idlc compiler.

One useful syntax for the idlc compiler command is:

idlc -euc:hh -I <include files> -d <target directory> <input file>

For this scenario, the idl commands used were:

idlc -euc:hh -I <was install root>/appserver/include DirectoryServerHome.idl
idlc -euc:hh -I <was install root>/appserver/include DirectoryServerBean.idl
 Chapter 10. Scenario 3: Secure RPC application #1 231

These commands create four files: two C++ header files and and two C++
program files:

� DirectorySessionHome.hh
� DirectorySessionBean.hh
� DirectorySessionHome_C.cpp
� DirectorySessionBean_C.cpp.

A minor inconvenience in this process is that the generated C++ code for the
home interface refers to the header file for the remote interface. However, the idlc
compiler qualifies the reference with the full package name, if any, of the Java
interface classes. As most Java programmers use a well-defined package
structure during development, you may need to copy the header files from the
idlc compiler to appropriate directories before compiling the C++ code, or else
the idlc command for the remote idl can be re-executed with a target directory of
com/ibm/redbook/sceanrio3/ejb.

The final step to completing the application client is to implement the application
client business logic. As in the initial application, the application client will be split
into two parts: initialization and business/presentation logic. The initialization
code is completely different, as shown in Example 10-8.

Example 10-8 Client initialization code

int main(int argc, char *argv[]) {
 CORBA::Object_ptr objPtr;
 com::ibm::redbook::scenario3::EJB::DirectorySessionHome_ptr liptr;
 CORBA::ORB_ptr orbPtr = CORBA::ORB_init (argc, argv, "DSOM");
 if (CORBA::is_nil(orbPtr))
 {
 cerr << "Error initializing the ORB!" << endl;
 return -1;
 }
 try
 {
 Properties *props = CORBA::ORB::get_properties();
 const char *boothost = props->getProperty(
 "com.ibm.CORBA.bootstrapHostName"
);
 const char *bootport=props->getProperty(
 "com.ibm.CORBA.bootstrapPort"
);
 const char *servername=props->getProperty(
 "com.ibm.websphere.serverName"
);
 const char *ejbname=props->getProperty("com.ibm.websphere.EJBName");
 char *home_url=(char *)malloc(512);
 strcpy(home_url,"corbaname::");
232 DCE Replacement Strategies

 if(boothost==NULL||bootport==NULL||servername==NULL||ejbname==NULL) {
 printf("Missing property in WASPROPS file\n");
 exit(1);
 }
 strcat(home_url,boothost);
 strcat(home_url,":");
 strcat(home_url,bootport);
 strcat(home_url,"/NameService#nodes/");
 strcat(home_url,boothost);
 strcat(home_url,"/servers/");
 strcat(home_url,servername);
 strcat(home_url,"/");
 strcat(home_url,ejbname);
 objPtr = orbPtr->string_to_object(home_url);
 liptr=com::ibm::redbook::scenario3::EJB::DirectorySessionHome\
 ::_narrow(objPtr);
 bptr=liptr->create();
 }
 catch (CORBA::UserException &ue)
 {
 cerr << "Caught a User Exception: " << ue.id() << endl;
 return -1;
 }
 catch (CORBA::SystemException &se)
 {
 cerr<<"Caught a System Exception: "<<se.id()<< ": "<<se.minor()<<endl;
 return -1;
 }
 execute_query(argc,argv);
 CORBA::release (bptr);
 CORBA::release (orbPtr);
 return(0);
}

The differences arise because the coding language has changed from C to C++
and because the CORBA client object request broker does most of the system
initialization work for us.

The business and presentation logic is shown in Example 10-9.

Example 10-9 Business and presentation logic

com::ibm::redbook::scenario3::EJB::DirectorySessionBean_ptr bptr;
void show_usage(int argc, char *argv[]) {
 printf("Usage is: %s <-function {0|1|2}> <-employee emp_name>",argv[0]);
 exit(1);
}
void execute_query(int argc, char **argv) {
 int i=0;
 Chapter 10. Scenario 3: Secure RPC application #1 233

 int query_type=0;
 enum query_type {DEPT,GRADE,SALARY};
 CORBA::WStringValue *corba_name=com::ibm::ws::VtlUtil::toWStringValue("");
 char *emp_name="";
 CORBA::Long grade;
 CORBA::Double salary;
 CORBA::WStringValue *dept_name;
 for(i=0;i<argc;i++) {
 if(strcmp(argv[i],"-function")==0) {
 if(i<argc-1) {
 query_type=atoi(argv[i+1]);
 i++;
 }
 }
 if(strcmp(argv[i],"-employee")==0) {
 if(i<argc-1) {
 emp_name=argv[i+1];
 corba_name=com::ibm::ws::VtlUtil::toWStringValue(argv[i+1]);
 i++;
 }
 }
 if(strcmp(argv[i],"-?")==0) show_usage(argc,argv);
 }
 switch(query_type) {
 case DEPT: {
 dept_name=bptr->getDepartment(corba_name);
 printf (
 "Department for %s is: %s\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 com::ibm::ws::VtlUtil::WStringValueToString(dept_name)
);
 break;
 }
 case GRADE: {
 grade=bptr->getGrade(corba_name);
 if(grade<0) {
 printf (
 "Grade for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
 else {
 printf (
 "Grade for %s is: %i\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
234 DCE Replacement Strategies

 break;
 }
 case SALARY:{
 salary=bptr->getSalary(corba_name);
 if(salary<0) {
 printf (
 "Salary for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 else {
 printf (
 "Salary for %s is: %8.2f\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 break;
 }
 default: {
 printf("Invalid query type %d\n",query_type);
 show_usage(argc,argv);
 break;
 }
 }
}

The program flow is almost identical to the DCE example. The differences that
exist arise from the change in programming language from C to C++ and in the
mapping of data types between C++ and CORBA.

The mapping complexity is the mapping of data types between CORBA and C++.
CORBA supplies obvious mappings for simple types such as CORBA::Double for
a C++ double type. However, more-complex objects such as C++ character
strings or custom objects need special treatment and may require implementing
a custom value type. In particular, the C++ character string type is mapped to the
CORBA WStringValue type. Conversion from this type to something that can be
manipulated with C++ string functions is done with the IBM VtlUtil utility class. In
our example we use this class to create WStringValue and convert them to C++
strings. A more complete description of this process can be found in the IBM
WebSphere Application Server Enterprise Edition Version 5 document collection
book IBM WebSphere Application Server Enterprise, Version 5, Common Object
Request Broker Architecture (CORBA).
 Chapter 10. Scenario 3: Secure RPC application #1 235

10.4.4 Application server
Finally, we come to the implementation of the replacement server. As discussed
previously, the application server now is a stateless session bean hosted inside a
WebSphere Application Server. The remote interface definition for the enterprise
bean was described in section 10.4.1, “Enterprise bean wrappers” on page 230,
and obviously is the basis for this code. The goal of this enterprise bean is to
wrap the calls to our DCE application server code. This wrapper is relatively
straightforward, and the Java code to implement the interface is shown in
Example 10-14 on page 243.

Most of this code uses a default implementation of the empty method. The
interesting thing in this code is that it uses a special class called Connection to
bridge between the JNI Java and C worlds. The purpose of this class is
discussed in sections 10.4.5, “Java Native Interface” on page 238 and 10.4.6,
“J2EE Connector Architecture” on page 241.

With every enterprise bean there comes a deployment descriptor, which is used
to inform the application server of the requirements of the bean. In particular, it is
used to set the security policy. Example 10-10 shows the deployment descriptor
for our bean that implements our security policy.

Example 10-10 Deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar id="ejb-jar_ID">
 <display-name>Redbook Sample EJB</display-name>
 <enterprise-beans>
 <session id="Directory">
 <ejb-name>Directory</ejb-name>
 <home>com.ibm.redbook.scenario3.EJB.DirectorySessionHome</home>
 <remote>com.ibm.redbook.scenario3.EJB.DirectorySessionBean</remote>
<ejb-class>com.ibm.redbook.scenario3.EJB.DirectorySessionBeanImpl</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref id="ResourceRef_1054820836658">
 <description></description>
 <res-ref-name>redbook_jni_connection</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
236 DCE Replacement Strategies

 <security-role>
 <description>Directory Manager</description>
 <role-name>manager</role-name>
 </security-role>
 <security-role>
 <description>Directory Employee</description>
 <role-name>employee</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getGrade</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getSalary</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <role-name>employee</role-name>
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getGrade</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <unchecked />
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getDepartment</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 Chapter 10. Scenario 3: Secure RPC application #1 237

 </assembly-descriptor>
</ejb-jar>

10.4.5 Java Native Interface
The J2SE specification describes the Java Native Interface (JNI), which is a
mechanism to execute code from other languages inside the Java Virtual
Machine (JVM). JNI consists of two parts: a special class that describes the calls
in the other language in terms of Java and a library that implements the calls.

Implementing the required Java class is fairly obvious and follows from the
definition of the call in the native language. Example 10-11 shows a portion of
the JNIConnection class of the resource adapter.

Example 10-11 Java specifying class

package com.ibm.redbook.scenario3.RA;
public class JNIConnection implements Connection,Serializable {

 static public native String getDepartmentJNI(String emp_name);
 static public native int getGradeJNI(String emp_name);
 static public native double getSalaryJNI(String emp_name);
 static {
 System.loadLibrary("directory_jni");
 }

 private JNIManagedConnection manconn;
 public String getDepartment(String emp_name) {
 return getDepartmentJNI(emp_name);
 }
 public int getGrade(String emp_name) {
 return getGradeJNI(emp_name);
 }
 public double getSalary(String emp_name) {
 return getSalaryJNI(emp_name);
 }
 public JNIConnection(JNIManagedConnection mc) {
 manconn = mc;
 }
 public Interaction createInteraction() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public void close() {
 }
 public LocalTransaction getLocalTransaction()
 throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
238 DCE Replacement Strategies

 public ConnectionMetaData getMetaData() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public ResultSetInfo getResultSetInfo() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
}

In this case we tell Java that we will use three native functions:
getDepartmentJNI, getGradeJNI, and getSalaryJNI. The names of these
functions are not the same as those used in the DCE application server business
logic and contained inside the shared library. Instead, these are pseudo function
names constructed by Java.

The Java code System.loadLibrary("directory_jni") instructs the JVM to look for
these special functions in a shared library called directory_jni.

From this class definition we can generate a C header file to be used in our
implementation of these functions. This is done with the javah utility in the Java
Development Kit. For this scenario, the javah command used was:

javah com.ibm.redbook.scenario3.RA.JNIConnection

This produced a single header file with the name
com_ibm_redbook_scenario3_RA_JNIConnection.h

Example 10-12 shows the contents of this file.

Example 10-12 JNI Connection header file

#include <jni.h>
/* Header for class com_ibm_redbook_scenario3_RA_JNIConnection */
#ifndef _Included_com_ibm_redbook_scenario3_RA_JNIConnection
#define _Included_com_ibm_redbook_scenario3_RA_JNIConnection
#ifdef __cplusplusextern "C" {
#endif
JNIEXPORT jstring
 JNICALL Java_com_ibm_redbook_scenario3_RA_JNIConnection_getDepartmentJNI
 (
 JNIEnv *,
 jclass,
 jstring
);
JNIEXPORT jint JNICALL
 Java_com_ibm_redbook_scenario3_RA_JNIConnection_getGradeJNI
 (
 JNIEnv *,
 jclass,
 jstring
 Chapter 10. Scenario 3: Secure RPC application #1 239

);
JNIEXPORT jdouble JNICALL
 Java_com_ibm_redbook_scenario3_RA_JNIConnection_getSalaryJNI
 (
 JNIEnv *,
 jclass,
 jstring
);
#ifdef __cplusplus
}
#endif
#endif

The important details in this file are the names and prototypes for the C functions
that will be called by the JVM.

To connect the native C business logic from the DCE example with this file, we
must implement these functions in the directory_ini shared library, as shown in
Example 10-13.

Example 10-13 Connection to C business logic

#include <stdio.h>
#include <string.h>
#include "com_ibm_redbook_scenario3_RA_JNIConnection.h"
JNIEXPORT jstring JNICALL
 Java_com_ibm_redbook_scenario3_RA_JNIConnection_getDepartmentJNI
 (
 JNIEnv *env,
 jobject obj,
 jstring s
)
{
 const char *name;
 char *n;
 printf("In JNI Impl\n");
 name=(*env)->GetStringUTFChars(env,s,0);
 printf("In JNI Impl\n");
 n=getDepartmentImpl((char *)name);
 (*env)->ReleaseStringUTFChars(env,s,name);
 return (*env)->NewStringUTF(env,n);
}
JNIEXPORT jint
 JNICALL Java_com_ibm_redbook_scenario3_RA_JNIConnection_getGradeJNI(
 JNIEnv *env,
 jobject obj,
 jstring s
)

240 DCE Replacement Strategies

{
 const char *name=(*env)->GetStringUTFChars(env,s,0);
 const int g=getGradeImpl((char *)name);
 (*env)->ReleaseStringUTFChars(env,s,name);
 return (jint) g;
}
JNIEXPORT jdouble
 JNICALL Java_com_ibm_redbook_scenario3_RA_JNIConnection_getSalaryJNI(
 JNIEnv *env,
 jobject obj,
 jstring s
)
{
 const char *name=(*env)->GetStringUTFChars(env,s,0);
 const double sal=getSalaryImpl((char *)name);
 (*env)->ReleaseStringUTFChars(env,s,name);
 return (jdouble) sal;
}

As with the CORBA client, the complexity with the implementation comes with
the mapping of Java objects to C data types. Like CORBA, Java provides
mapping for simple types, for example jdouble for C’s double. In the case of the
Java string types the conversion requires methods from the Java JNIEnv object.

The next step for the application server is to compile the code in
directory_jni_impl.c into a shared library called directory_jni.

The last step is to create a J2EE Enterprise Archive (EAR) with an EJB Archive
containing the class DirectorySessionHome, DirectorySessionBean, and
DirectorySessionBeanImpl, along with a deployment descriptor for deployment
into a WebSphere Application Server.

At last we have arrived at the original C server business logic from the DCE
example. However, if you put all of this code together, follow the WebSphere
configuration steps and run the application client, the application server JVM will
probably crash.

The reason for this is that enterprise beans cannot directly execute native code
using JNI. To complete the solution requires exploring one more piece of the
J2EE architecture landscape: the J2EE Connector Architecture (JCA).

10.4.6 J2EE Connector Architecture
The J2EE Connector Architecture is described in the specification document
from Sun Microsystems. JCA is an attempt to standardize the way in which a
J2EE Application Server communicates with resources such as database
 Chapter 10. Scenario 3: Secure RPC application #1 241

managers, e-mail, messaging systems, and mainframe applications, known as
Enterprise Information Systems (EIS). These systems typically are
connection-oriented, and they operate by sending and receiving records in a
well-scripted dialog. However, creating and destroying the connections to an EIS
may take a long time and use a lot of other resources. Therefore, JCA enables
EIS connections to be pooled, allowing their re-use, and shared, allowing many
users of the connection simultaneously.

The JCA describes five main interfaces that must be implemented: Connection,
ConnectionFactory, ManagedConnection, ManagedConnectionFactory, and
ConnectionManager. The first two interfaces represent the end-user view of the
EIS connection, and the next two represent the physical implementation of the
connection. The ConnectionManager interface is usually implemented by an
application server and is the interface responsible for pooling connections. This
collection of classes is collectively known as a resource adapter.

To an end user, using JCA involves locating a suitable ConnectionFactory and
calling the getConnection method to get the connection. All communication with
an EIS then takes place through the methods defined by the Connection object.

For our needs, the JCA provides many features. Our immediate problem,
however, is to allow Java Native Interface code to be executed by an enterprise
bean. The JCA enables us to do this because it makes very few rules about the
nature of the enterprise systems it is communicating with. One of the
requirements is that classes in a resource adapter should be able to make a call
involving JNI. Therefore, to make our server-side C code work through JNI, we
must make it look like a JCA resource adapter.

The JCA specification requires eight classes to be implemented:

� JNIConnectionFactory (implements ConnectionFactory)

� JNIConnectionManager (implements ConnectionManager)

� JNIConnectionMetaData (implements ConnectionMetaData)

� JNIManagedConnectionFactory (implements ManagedConnectionFactory)

� JNIManagedConnection (implements ManagedConnection)

� JNIManagedConnectionMetaData (implements
ManagedConnectionMetaData)

� JNIResourceAdapterMetaData (implements ResourceAdapterMetaData)

� JNIConnection (implements Connection)

Appendix C, “Scenario 3: Source code listings” on page 363 contains all of the
code that is required to implement a simple resource adapter for our scenario.
The JNIConnection class, shown in Example 10-14 on page 243, is of most
242 DCE Replacement Strategies

interest because it is responsible for making the calls to our server-side business
logic. Compare the new implementation with the code from section 10.4.5, “Java
Native Interface” on page 238.

Example 10-14 JNIConnection class

package com.ibm.redbook.scenario3.RA;

import java.io.PrintWriter;
import java.io.Serializable;
import java.util.Vector;

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionMetaData;
import javax.resource.cci.Interaction;
import javax.resource.cci.LocalTransaction;
import javax.resource.cci.ResultSetInfo;
import javax.security.auth.Subject;

public class JNIConnection implements Connection,Serializable {
 static public native String getDepartmentJNI(String emp_name);
 static public native int getGradeJNI(String emp_name);
 static public native double getSalaryJNI(String emp_name);
 static {
 System.loadLibrary("directory_jni");
 }

 private JNIManagedConnection manconn;
 public String getDepartment(String emp_name) {
 return getDepartmentJNI(emp_name);
 }
 public int getGrade(String emp_name) {
 return getGradeJNI(emp_name);
 }
 public double getSalary(String emp_name) {
 return getSalaryJNI(emp_name);
 }
 public JNIConnection(JNIManagedConnection mc) {
 manconn = mc;
 }
 public Interaction createInteraction() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public void close() {
 }
 public LocalTransaction getLocalTransaction()
 throws NotSupportedException {
 Chapter 10. Scenario 3: Secure RPC application #1 243

 throw new NotSupportedException("JNIConnection");
 }
 public ConnectionMetaData getMetaData() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public ResultSetInfo getResultSetInfo() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
}

If you were to implement a resource adapter for your specific code, the only class
that you should need to change is JNIConnection.

Note several points about this class. First, the enterprise bean wrapper
DirectorySessionBeanImpl locates the Connection object through a
ConnectionFactory class that is registered in JNDI and located through standard
J2EE methods. The wrapper, as a stateless session bean, cannot cache a copy
of the factory class, therefore it must rely on the capability of WebSphere to
cache JNDI lookups to improve performance. Second, the JCA describes the
communication flow between application server and enterprise information
system in terms of records and an interaction. However, the specification also
permits the development of custom methods in addition to the Connection
interface to implement the interaction. We have done this for our example.

The final aspect of using a resource adapter is the way it gets deployed.
Custom-purpose resource adapters, such as ours, usually are deployed as part
of the same EAR that was used in section 10.4.4, “Application server” on
page 236. The resource adapter is packaged as a separate module with its own
deployment descriptor. Because it is bundled in the EAR, the resource adapter
will be deployed along with EJB module.

Before the application is started, the JNDI name of the resource adapter used in
the enterprise bean and the name used in the resource adapter module must be
tied together. For the enterprise bean, the name that is looked up in JNDI gets
mapped to a real name at deployment time. The name to be used for that is the
one selected when the J2C ConnectionFactory for the resource adapter is
configured.

The name is configured by using the Administrative Console and going to
Enterprise Applications -> (your application name) -> Connector Modules>
-> (your connector name) -> Resource Adapter -> J2C Connection Factories
-> (your connection factory). Some additional properties, such as Native Path
for the resource adapter, can also be set.
244 DCE Replacement Strategies

10.5 Administration considerations and interfaces
The sample scenario in this chapter uses user and group information for
authentication and authorization, where users and groups are migrated from
DCE to the LDAP directory. Using an SSL certificate, a user in the revised
application is authenticated by a comparison of the Common Name (CN) in the
subject field of the certificate with an entry in the LDAP directory during the
authentication procedure. On the other side, authorization decisions are
proceeded due to the group membership of the client.

Administration tasks for the scenario include creation and deletion of user entries
and modifying group membership information. In the migration environment, the
user and group management can be done with well-known DCE administration
tools, such as dcecp or rgy_edit. In addition, and after the removal of DCE, other
LDAP directory administrative tools can be used. In the case of the IBM Directory
Server, a Directory Management Tool (DMT) can be used.

Passwords needed for system administration accounts for IBM WebSphere
Application Server are also kept in the LDAP directory. Password management
can use the same administrative tools as for the J2EE application user. After the
completion of the migration process, all administrative tasks concerning user and
group management are done via LDAP directory management tools.

Two administration interfaces exist for managing deployed applications in IBM
WebSphere Application Server and the IBM WebSphere Application Server:

� The WebSphere Administrative Console is a Web-based administration tool
that provides the necessary functionality to deploy and manage applications,
configure the security, and manage users and groups.

� wsadmin is a command line interface tool that can be used for scripting.

Besides the administrative console and the wsadmin tool, several scripts are
provided to start, stop, and monitor IBM WebSphere Application Server
processes.

Items of the Administrative console needed for the scenario
Mainly three items are used for the scenario:

� Applications: Use to install the example application or to stop and start
deployed applications. To install new applications, navigate on the
administrative console to Applications -> Install New Application. The
installation procedure is described in detail in section 10.3.8, “Deploying and
starting the application” on page 227. Navigate on the administrative console
to Applications -> Enterprise Applications to administrate the applications.
 Chapter 10. Scenario 3: Secure RPC application #1 245

� Security: Used to set up the global security configuration of the IBM
WebSphere Application Server. The security configuration comprises the
authentication mechanism configuration, settings for SSL, configuration of
access to the LDAP directory, and the CSIv2 protocol configuration. The
necessary steps are described in detail in “Configuring WebSphere
Application Server security” on page 212.

� System Administration: Assigns user and groups to administrative roles, as
described in the Administration interface section of “Installing and configuring
IBM WebSphere Application Server” on page 211. If the user registry resides
in an LDAP directory, provide the Distinguished Name for the administrative
account, instead of its common name, while assigning a user to an
administrative role.

10.6 Discussion and conclusions
This scenario showed an application that uses DCE's secure remote procedure
calls and how it could be moved to a Java-based application server with a
significant re-use of the legacy C code. Although in this scenario the proportion
of new code was relatively high in relation to existing DCE code, most real-life
applications can be revised with considerably less new code.

The scenario also demonstrated both an easy path to enable legacy DCE
applications for the Web, and an easy path for legacy DCE applications to
migrate an entire application to Java. In the first situation we used a CORBA
client to replace an existing DCE client, but we could have used a Web client
such as a browser or applet. In the second situation, we wrote the enterprise
bean wrapper layer to route calls either into newly written code or to our existing
C code with little extra effort.
246 DCE Replacement Strategies

Chapter 11. Scenario 4: Secure RPC
application #2

This chapter presents scenario 4, which demonstrates Java strategies for an
application that directly depends on the DCE RPC basics, RPC naming, RPC
endpoint, RPC security, login, authorization, and PAC services. The strategies
are:

� Re-code the entire application in Java.

� Replace DCE with the following services provided by WebSphere: RMI over
IIOP, JNDI, LTPA, role-based authorization, CORBA CSIv2, and SSL with
client certificates.

� Migrate the DCE registry database to IBM Directory Server, and configure
WebSphere to use the migrated data.

Before reading this chapter, be sure to read Chapter 7, “Common replacement
considerations” on page 111.

11
© Copyright IBM Corp. 2003. All rights reserved. 247

11.1 Scenario description
This scenario shows how an application that uses secure DCE RPC can be
replaced by an application that uses IBM WebSphere Application Server. The
description emphasizes how DCE security features and RPC services can be
mapped to the corresponding mechanisms in a WebSphere environment. The
chapter contents is as follows:

� The first section includes a discussion of the initial application with its DCE
dependencies and how these dependencies are removed.

� The initial application with its DCE dependencies is detailed in section 11.2,
“DCE application” on page 251.

� Section 11.3, “Replacement roadmap” on page 251 contains a description of
the steps that are necessary to build and run the revised application.

� Section 11.4, “Revised application discussion” on page 259 explains and
discusses the revised application.

� Some consideration for the management of the new environment is contained
in section 11.5, “Administration considerations and interfaces” on page 262.

� Section 11.6, “Discussion and conclusions” on page 262 concludes the
chapter.

11.1.1 Initial application with DCE dependencies
This sample uses the same DCE application that is used in Chapter 10,
“Scenario 3: Secure RPC application #1” on page 195, which includes more
details. For the application business logic to be migrated, refer to the DCE
example in Chapter 9, “Scenario 2: Non-secure RPC application” on page 171.

11.1.2 Revised application without DCE dependencies
The revised application is a J2EE application without DCE dependencies. It
consists of a Java client accessing an enterprise application inside the IBM
WebSphere Application Server. The enterprise application in this case comprises
a single enterprise bean (a stateless session bean) that implements the
application logic. The communication between the J2EE client and the enterprise
application takes place in a secured manner, using RMI over IIOP secured with
CSIv2 together with SSL.

The J2EE client connects to the enterprise bean by looking up the enterprise
bean’s home interface through the JNDI interface of the WebSphere Application
Server Naming Service. Using the object reference to the home interface, the
248 DCE Replacement Strategies

J2EE client can obtain the object reference to the enterprise bean’s remote
interface, which contains the bean’s actual business methods.

IBM Directory Server is employed as the user registry to store the user
information. It holds user and group data migrated from the DCE registry that is
being reused in this scenario. Figure 11-1 shows the revised application in the
J2EE environment as it relates to the replacement scenario.

Figure 11-1 The revised application in the J2EE environment

The DCE application’s login, authentication, authorization, RPC, and naming
services have been replaced with their counterparts in J2EE environment.
Upcoming sections describe each of them.

Application Server

Client Container

J2EE Client
N

am
es

pa
ce

E
nt

er
pr

is
e

B
ea

n
S

ec
ur

ity
 C

ol
la

bo
ra

to
r

LTPA
Module

(Authentication Module)

Authorization Engine
EJB Container

sas.client.props

Security Server

1
2

3

4

5

6

RMI/IIOP

RMI/IIOP

RMI/IIOP with
CSIv2 & SSL transport

Simple

LDAP
user

registry

IBM Directory
Server

binding

Enterprise
Bean

Enterprise
Bean
 Chapter 11. Scenario 4: Secure RPC application #2 249

The steps involved when a J2EE client tries to access a secured enterprise
application follow (numbers correspond to Figure 11-1 on page 249):

1. The J2EE client performs a JNDI lookup and receives the Interoperable
Object Reference (IOR) of the enterprise bean.

2. The J2EE client sends authentication information (the client certificate sent
via SSL) and requests access to the enterprise bean.

3. The enterprise bean Security Collaborator in the EJB Container sends
authentication data to the Security Server and requests authentication.

4. The Security Server performs authentication by looking up the user in the
LDAP user registry. In this scenario, this directory has been migrated from the
DCE registry.

5. The Security Server returns the user credentials if this is a valid user.

6. The enterprise bean Security Collaborator performs authorization with the
help of the Authorization Engine.

The Java client must be configured to access secured applications. Certain
properties, such as the security settings of the client ORB, must be provided in a
file called sas.client.props. The JVM (Java Virtual Machine) in which the
WebSphere Application Client will run should be set to use this property file by
adding the directive:

com.ibm.CORBA.ConfigURL=<location of the properties file>

WebSphere can also be configured to use external authorization systems such
as IBM Tivoli Access Manager. For more information, refer to the IBM Redbook
IBM WebSphere V5.0 Security, SG24-6573.

Authentication in the revised application
Authentication in this scenario uses client certificates, as in the previous
scenario. See “Authentication in the revised application” on page 200.

Authorization in the revised application
In the revised application, authorization decisions are made in two places: first
while accessing the EJB Container in order to invoke the enterprise bean
instance, and second with the aid of user-written authorization code within the
enterprise bean. To achieve this, two roles with different authorization options are
defined. The authorization roles are labeled as users and managers. The
execution path of the code depends on the security role of the user. During the
deployment phase of the enterprise application, a mapping between the roles of
the enterprise application and existing groups in IBM Directory Server is done.
Hence it is possible to control the access to the application with the aid of group
memberships equivalent to access control mechanisms in DCE.
250 DCE Replacement Strategies

Naming in the revised application
In the revised application, a single server configuration is used (one Application
Server running on a single node) because this reflects many DCE applications.
The J2EE client bootstraps to the host on which the Application Server is
running. It uses the default initial context of the server root to bind to the name
space of the Application Server. The JNDI binding used is a simple name,
MirrorHome. The JNDI operations are performed with java: URL names. Names
bound under these names are bound to a completely different name space,
which is local to the calling process.

11.2 DCE application
The secure RPC portion of the application used in this scenario is the same as in
the application used in the previous scenario (section 10.2, “DCE application” on
page 203). The application logic used in the current scenario is identical to the
application logic used and explained in section 9.2, “DCE application” on
page 177. Refer to these sections, as the code and explanations are not
repeated here.

11.3 Replacement roadmap
The roadmap for this replacement scenario includes:

� Meeting the software requirements

� Installing and configuring IBM WebSphere Application Server, which includes
the security configuration and specifying LDAP filter rules

� Configuring WebSphere Application Server security

� Configuring the application client

� Developing the application

� Configuring IBM Directory Server

� Assembling, deploying, and starting the application

� Running the application client

Refer to section 10.3, “Replacement roadmap” on page 210 for the general
roadmap that is common to the previous scenario and this scenario. The
following sections only describe the tasks that are specific to the current
scenario.
 Chapter 11. Scenario 4: Secure RPC application #2 251

11.3.1 Software requirements
The software requirements for running the revised application run time are:

� IBM WebSphere Application Server, Version 5 (any edition)
� IBM Directory Server 3.2.2
� IBM Java JDK 1.3.1 (included with IBM WebSphere Application Server)

The software requirements for the revised application development are:

� IBM WebSphere Studio Application Developer 5.01 or other Java
development tool

11.3.2 Installing and configuring IBM WebSphere Application Server
Refer to section 10.3.2, “Installing and configuring IBM WebSphere Application
Server” on page 211, as the process in the previous scenario is the same for this
scenario.

11.3.3 Configuring WebSphere Application Server security
Login, authentication, and authorization of the revised application are performed
by WebSphere Application Server, whose security configuration is very similar
with the one used in the previous scenario (section 10.3.3, “Configuring
WebSphere Application Server security” on page 212), except that, to
demonstrate more practical situation, this scenario uses certificates that are
created by a third-party Certificate Authority (CA). For this reason, the
preparation of the SSL key and trust files and the configuration of the LDAP filter
rules differ from the previous scenario. For the LDAP filter rules, the subject CN
in the certificates in this scenario exactly matches the krbPrincipalName attribute
in the LDAP directory.

Prepare SSL key and trust files
The current scenario uses certificates created by a trusted Certificate Authority
(CA), as described in section 7.7.7, “Using certificates from a Certificate
Authority (CA)” on page 121. In brief, the following must be done:

1. Copy the default key and trust files provided with WebSphere to files that are
used for the scenario. For example:

– Copy DummyServerKeyFile.jks to ITSOSrvKeyFile.jks

– Copy DummyServerTrustFile.jks to ITSOSrvTrustFile.jks

– Copy DummyClientKeyFile.jks to ITSOClientKeyFile.jks

– Copy DummyClientTrustFile.jks to ITSOClientTrustFile.jks
252 DCE Replacement Strategies

(On AIX, these default key files are in the /usr/WebSphere/AppServer/etc
directory.)

2. With the ikeyman utility, import the root certificate of the CA into the
application server’s and client’s trust files (ITSOSrvTrustFile.jks and
ITSOClientTrustFile.jks).

3. Create certificate requests for the application client and server with the
ikeyman utility using the key files for each. The subject CN of the application
client’s certificate in this scenario exactly matches the Kerberos principal
name in the LDAP directory (cn=john_doe@realm1.austin.ibm.com, for
example).

Note that this is different from the previous scenario where the subject CN
only included the DCE principal name (john_doe). In this scenario, the subject
CN includes the DCE principal name and the realm name
(john_doe@realm1.austin.ibm.com).

4. Send the certificate requests from the previous step to the CA in order to
request the application client’s and server’s certificates.

5. Once issued by the CA, the certificates must be received (imported), with the
application client’s and server’s ikeyman utilities, into their respective key files.

Configure LDAP filter rules
In the current scenario, the client certificates created by the CA are created in
such a way that their subject CNs contain exactly the names as they are stored in
the krbPrincipalName attributes of the LDAP directory. For example, the subject
CN in a certificate is john_doe@realm1.austin.ibm.com and the
krbPrincipalName is exactly the same, john_doe@realm1.austin.ibm.com. This
differs from the previous scenario where the subject CN was only a part of the
krbPrincipalName.

The LDAP filters for users and groups remain the same as in the previous
scenario (refer to “Configure LDAP filter rules” on page 218), except that the
Certificate Filter differs and is set to:

krbPrincipalName=${SubjectCN}

11.3.4 Configuring the application client
Apart from developing and assembling the application client as described in
sections 11.3.5, “Developing the application” on page 254 and 11.3.7,

Note: For these steps, use the ikeyman utility that is provided with
WebSphere Application Server because it supports the jks file format. On
AIX, launch ikeyman with /usr/WebSphere/AppServer/bin/ikeyman.sh
 Chapter 11. Scenario 4: Secure RPC application #2 253

“Assembling the scenario application” on page 255, the only configuration
required is to configure the sas.client.props file to supply authentication
information for the user and to configure it to use client certificate and SSL. Here,
we assume that you have already procured the client certificate and that the
keystore and truststore files have been created. Refer to section 7.7, “SSL
implementation hints” on page 116 for details on SSL and certificates. In the
sas.client.props file, be sure the following properties are set to the values
mentioned, as in Example 11-1. The remaining properties can keep the default
values.

Example 11-1 Application client properties file (excerpt)

com.ibm.CORBA.securityEnabled=true
com.ibm.CSI.protocol=csiv2
com.ibm.CSI.performTLClientAuthenticationSupported=true
com.ibm.ssl.protocol=SSL
com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStore=C:/Program Files/WebSphere/AppClient/etc/
 ITSOClientKeyFile.jks
com.ibm.ssl.keyStorePassword=WebAS
com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStore=C:/Program Files/WebSphere/AppClient/etc/
 ITSOClientTrustFile.jks
com.ibm.ssl.trustStorePassword=WebAS
com.ibm.ssl.keyStoreClientAlias=<client certificate alias in the keystore file>

Note that some lines in Example 11-1 are too long to fit the column of this text, so
they are shown in two lines. Refer to Appendix D, “Scenario 4: Source code
listings” on page 403 for the properties file of the revised application client.

11.3.5 Developing the application
Read the general comments in the previous scenario on application development
in section 10.3.5, “Developing the application” on page 223, where some
differences between application development in a legacy DCE and a J2EE
environments are briefly discussed. Another difference is the absence of IDL
interface definitions in a pure J2EE environment. The home and remote
interfaces of enterprise beans define the interfaces used for client/server
communications. Java objects as method parameters or method results can be
transferred by value as long as they are serializable objects. Only when
interfacing with CORBA clients (see Chapter 10, “Scenario 3: Secure RPC
application #1” on page 195) can an IDL definition be generated from the
enterprise bean interfaces.

The output of the enterprise application development process for this scenario is
two jar files, which in turn are input for the enterprise application assembling
254 DCE Replacement Strategies

process as described in section 11.3.7, “Assembling the scenario application” on
page 255. The two jar files are:

� MirrorServer.jar: This contains the stateless session bean MirrorBean
together with home (MirrorHome) and remote (Mirror) interface class files, as
well as the class file for the MirrorException.

� MirrorClient.jar: This contains the J2EE application client’s class file
MirrorClient.

11.3.6 Configuring IBM Directory Server
This scenario uses the same prerequisites for the IBM Directory Server and its
configuration as in the previous scenario. (See section 10.3.6, “Configuring IBM
Directory Server” on page 223.)

11.3.7 Assembling the scenario application
The following steps assemble the scenario application, called Mirror. For a
general description of the application assembly process, read section 10.3.7,
“Assembling the scenario application” on page 223.

On a system that has WebSphere Application Server installed and that has
access to the jar files for the J2EE client and Mirror enterprise beans, do the
following to assemble the application:

1. On Windows, start the WebSphere Application Server Application Assembly
Tool by selecting Start -> Programs -> IBM WebSphere -> Application
Server v5.0 -> Application Assembly Tool.

On Unix, start the Application Assembly Tool using this shell script:

<install root of WebSphere>/AppServer/bin/assembly.sh

2. Select Application from the choice of subjects that can be created.

3. In the panel for the new enterprise application, enter the name of the
application (MirrorApp) and click Apply.

4. On the left side of the Assembly Tools window, select EJB Modules and
right-click to select New.

5. Enter the common configuration information for the enterprise beans:

a. Replace the default jar file name with MirrorBean.jar

b. Enter the Display Name MirrorBean

c. Click Browse to find the jar file for the J2EE client MirrorClient.jar provided
by the application development process. Select the jar file and click Open.
 Chapter 11. Scenario 4: Secure RPC application #2 255

6. Add the enterprise bean Mirrorbean to the created EJB Module and configure
it:

a. Under EJB Modules, expand the ‘+’ on the entry MirrorBean, select
Session Beans and right-click to select New.

b. In the General tab of the New Session Bean window, enter MirrorBean as
EJB Name, and browse and enter the EJB class, EJB home, and remote
interface, by accessing the MirrorServer.jar file for the MirrorBean provided
by the application development process. Enter MirrorBean.class for EJB
Class, MirrorHome.class for Home and Mirror for Interface.

c. Select the Advanced tab, and be sure that stateless is selected for
Session Type.

d. Select the Bindings tab and enter the JNDI name for MirrorBean, which in
this case is MirrorHome.

e. After this, select OK in the General tab.

7. On the left part of the assembly tool’s main window, go back to application
level MirrorApp and select Files. Right-click to select Add Files. Browse to
find the jar file for MirrorBean, select MirrorException.class, and click Add.
This makes the MirrorException class visible for the whole application.

8. Next, configure the J2EE client application for the MirrorBean enterprise
application. For that purpose, select Application Clients in the left part of the
assembly tool’s main window and right-click to select New.

9. In the General tab of the New Application Clients window, enter
MirrorClt.jar as Filename and MirrorClient as Display name. Click
Browse to find and select the J2EE client’s main class MirrorClient.class
from the application client’s jar file provided by the development process. Click
OK in the Select file for Main class window to create the envelope for the
J2EE client.

10.In the left part of the main window of the assembly tool, select Application
Clients, expand the ‘+’ on the entry of MirrorClient and select EJB
References. Right-click on it and select New.

11.In the General tab of the New EJB Reference window, enter the name
MirrorHome, which must map the JNDI name entered later. Then browse twice
to access the MirrorBean’s jar file to enter references to the enterprise beans
home- and remote interface class files.

12.In the Bindings tab of the New EJB Reference window, enter the JNDI name
to be used, which is MirrorHome.

13.Now, that the application client is assembled, return to the enterprise bean
part to complete the security part of the application assembly. For this
purpose, return to the application level on the left side of the main window,
select Security roles, right-click to select New.
256 DCE Replacement Strategies

14.Create two new roles, manager and user. In the Bindings tab of the New
Security Role window, bind the manager role with the MirrorManagers registry
group and the user role with the MirrorUsers registry group. In the scenario
example, these groups have been created by DCE and migrated to the LDAP
directory. Please note that you must use the full Distinguished Name of the
groups with the assembly tool. When this is done, the manager and user roles
are known globally for the MirrorApp enterprise application and are ready to
be used for further configuration.

15.Next, specify for the EJB Module MirrorBean which roles to use locally: Under
EJB Modules, expand the ‘+’ on MirrorBean, and right-click Security roles
to select New twice, to create the roles manager and user here as well.

16.After this, a link has to be made from the local role definitions, which the
MirrorBean will use, to the definitions known to the whole application. This is
done on the level MirrorApp -> MirrorBean -> Session Beans ->
MirrorBean -> Security Role References. Right-click to create two new
links. Use the same name for name and link each time. The local role
manager now maps to global role manager, and the local role user maps to
global role user.

17.The configuration is ready to annotate enterprise bean methods with
role-based permissions: From MirrorApp -> MirrorBean -> Session Beans,
select Method Permissions, and right-click to create new permissions.

18.In the New Method Permission window, enter a method permission name.
Click Add for Methods and select the method to be annotated. In our
scenario, this is the reflect method of the enterprise bean MirrorBean. This
method contains the business logic of our example. Add reflect and click
OK. Next, click Add for Roles, and select the roles that shall have access to
reflect. Click OK.

19.Go to File -> Save As and save the application archive as MirrorApp.ear.

20.Optional: As the next step of the application assembling process, go to File ->
Generate Code for Deployment in the main window of the assembly tool to
make the tool create the ear file needed for the application deployment.

21.Optional: In the Generate Code for Deployment window, click Generate now.
The tool performs and logs several steps to create the ear file. If no error
occurs, a file named Deployed_MirrorApp.ear is generated.

The last two steps are optional, as the deployment code can be generated during
application deployment phase.

Exit the tool and continue with deployment as explained in the next section.
 Chapter 11. Scenario 4: Secure RPC application #2 257

11.3.8 Deploying and starting the application
These steps deploy and start the Mirror enterprise application, the sample
enterprise used in this scenario. A general description of the application
deployment process can be found in section 10.3.8, “Deploying and starting the
application” on page 227.

As a prerequisite, be sure that the Enterprise Application Archive file
MirrorApp.ear is accessible, then open the WebSphere Administrative Console.
Perform the following steps to deploy the MirrorApp application:

1. The left side of the Administrative Console shows a list of subjects that can be
configured for each Application Server. In our example there is only one
instance of an Application Server. Expand the ‘+’ on Applications and click
Install New Application.

2. On the right side of the console panel, enter the local or remote path to
MirrorApp.ear and click Next.

3. Check Generate general bindings in the current panel and click Next.

4. Check Deploy EJBs. You may consider checking Enable class reloading,
but this feature is not needed for the sample scenario. Click Next.

5. No further deployment options are necessary in the current panel. Click Next.

6. The current panel should already contain the JNDI Name MirrorHome for
MirrorBean. Leave it unchanged and click Next.

7. In this step multiple EJB modules could be dispersed over available
Application Servers. As we have only one EJB module, we leave this panel
unchanged and click Next.

8. This panel should show the group to role mapping, which was defined during
the application assembly. No changes are necessary, so click Next.

9. The current panel would allow for applying general access rules to all bean
methods that have not been protected during application assembly. You may
consider attaching one of the available roles (manager and group) to all
unprotected mean methods. After this, click Next.

10.In the last step, examine the summary and click Finish if you are satisfied.

The deployment tool then goes through several steps, which it logs on the
screen, to install the application. After successful completion, save the
configuration. The ear file will be installed in the location you specify during
installation. If nothing is specified, it is installed in the default location <install
root of WebSphere>/AppServer/installedApps.

11.As a last step, return to Applications on the left part of the console page,
expand the ‘+’ and click Enterprise Applications. In the list of the deployed
applications, which then appears on the right side of the console window, you
258 DCE Replacement Strategies

should find MirrorApp. Check its checkbox and click the start button on top of
the list. If the application starts successfully, it is ready to be used.

11.3.9 Running the application client
The J2EE client example is started using the launchClient tool that is included in
the distribution of the WebSphere Application Server and WebSphere Application
client product. The launchClient tool starts the J2EE client application in a
WebSphere client container. The command is:

$ launchClient Deployed_MirrorApp.ear

If a different WebSphere Application Server should be used, the option
-CCBootstrapHost=<server hostname> can be specified. For problem
determination, the option -CCTrace=true turns out to be useful. Refer to
WebSphere Application Server product documentation for more available
options. During startup, the J2EE client application accesses the
sas.client.properties file to obtain the security settings to be used. The property
file used in this scenario can be found in Appendix D, “Scenario 4: Source code
listings” on page 403. Using this property file and the key files the property file
points to will let the J2EE client assume the identity of john_doe, which exists in
the LDAP user registry. In this scenario john_doe is a DCE principal that has
been migrated to the LDAP directory using the steps as described in section
8.3.2, “Migration of DCE security registry to IBM Directory Server” on page 139.

11.4 Revised application discussion
This section describes the Java code that makes up the application client and
server in the new environment. It shows that only small portions of code are
necessary to achieve this, a major reason being that almost all code for
authentication, authorization, RPC, and naming, which had to be coded in DCE,
is left to configuration in J2EE. (See section 11.3, “Replacement roadmap” on
page 251.) An exception to this is the piece of programmatic authorization, which
this example includes. (See “Programmatic security” on page 42.)

The application logic remains unchanged; the application server returns a string
passed by the application client in reverse character order.

Note: Declarative authorization should be preferred whenever possible,
because it is achieved by configuration (during application assembling and
deployment) instead of by programming. This results in more flexibility for the
application with regard to authorization policy changes.
 Chapter 11. Scenario 4: Secure RPC application #2 259

11.4.1 Application client
The MirrorClient Java application client gains access to the MirrorBean
enterprise bean’s remote interface. It then invokes the reflect method of this
interface, passing a string that it had previously read from user input. After
successful completion of the call, the MirrorClient prints out the returned result
string. If the method call fails, the application client catches the raised exceptions
and prints the information carried by them.

Example 11-2 details the code necessary for the application client to gain access
to the MirrorBean’s remote interface. To get access to MirrorBean’s remote
interface, the Mirror application client looks up the object reference to the home
interface, MirrorHome, of the enterprise bean MirrorBean, using the JNDI
interface to the WebSphere Application Server Name Service. This object
reference is then narrowed down by the application client to a reference to the
MirrorBean’s home interface. PortableRemoteObject indicates that the CORBA
mechanism is used to load the home object.

Example 11-2 Getting access to the remote interface of the enterprise bean

Context initial = new InitialContext();
Object obj = initial.lookup("java:comp/env/MirrorHome");
home = (MirrorHome)PortableRemoteObject.narrow(obj, MirrorHome.class);
mirror = home.create()

The J2EE client then calls the method create, which is exposed by the
MirrorHome interface. After successful completion, this call returns a reference to
the remote interface of the MirrorBean.

Once the application client has obtained an object reference to the MirrorBean’s
remote interface, it can begin to exchange application data with the application
server. Note that no more security coding is necessary for authentication or
authorization. The application client is aware of possible authentication or
authorization problems only through exception handling.

11.4.2 Application server
Concerning the application server, the Java application programmer can
concentrate on developing the business logic. The business logic in
Example 11-3 on page 261 consists of reversing a string delivered by the
application client and returning the string as a method result back to the
application client.

As this example uses a stateless session bean, no further code for state
preservation has to be provided. Little additional code is added to demonstrate
programmatic authorization.
260 DCE Replacement Strategies

Example 11-3 Authorization in application code

public String reflect(String message) throws MirrorException {

 System.out.println("received message: " + message);
 //
 // example how authz can be performed in code
 //
 java.security.Principal principal = sessionContext.getCallerPrincipal();
 java.lang.String callerId = principal.getName();
 System.out.println("received call from: " + callerId);
 boolean isMgr = sessionContext.isCallerInRole("manager");
 boolean isUser = sessionContext.isCallerInRole("user");
 if(!isMgr) {
 if (isUser) {
 System.out.println("Sorry, " + callerId + " you are just a user");
 throw new MirrorException
 ("Sorry, " + callerId + " you are just a user");
 }
 //
 // Allow access for other roles, to keep security configurable
 //
 }
 //
 // perform the actual 'business logic'
 //
 StringBuffer tmp = new StringBuffer(message);
 return (tmp.reverse()).toString();
 }
}

This presents a simple example of the way authorization code in the application
could look. In this example, it is assumed that the container where MirrorBean is
deployed enables the reflect method to be called by the user and manager roles.
However, inside the method implementation, the access rights are refined to
enable access only through the manager role. User access is denied, and the
denial is signaled back to the application client with MirrorException.

Note: In the Mirror example, the application programmer actually will write
only the code just presented. All of the rest, including a template for the
enterprise bean, the code for the home and remote interface, as well as the
templates for the declared exceptions, are usually generated by an integrated
development environment that is used for J2EE development. For
WebSphere, this is WebSphere Studio Application Developer Version 5.
 Chapter 11. Scenario 4: Secure RPC application #2 261

11.5 Administration considerations and interfaces
This scenario uses the same WebSphere security and configuration features as
the previous scenario. Thus, the administration considerations and interfaces of
the scenario described in section 10.5, “Administration considerations and
interfaces” on page 245, are applicable to the scenario in this chapter.

11.6 Discussion and conclusions
Among the middleware products available today, J2EE Application Servers come
closest to replacing DCE with a single technology. (See section 2.3.3, “DCE
services that can be replaced by J2EE” on page 37.) DCE RPC, naming,
security, failover, and workload balancing find powerful counterparts in the J2EE
Application Server technology. However, moving from DCE to J2EE cannot be
just a one-by-one replacement; rather, it involves a change of paradigm. The
J2EE paradigm takes away the burden of middleware programming by
introducing an extra layer between an application and the middleware, called a
container. Figure 11-2 depicts that difference.

Figure 11-2 Traditional and J2EE application layering

In the J2EE model, the handling of the middleware technology is moved to the
vendor of the Application Server. This has the advantage of greater productivity
(at a high quality level) of the application’s development process because the
middleware functionality is carried out underneath. A potential downside of this
model is that J2EE Application Servers from different vendors may not be
compatible at the middleware level. For example, clustering of enterprise beans
may not be possible between application servers from different vendors. With
DCE, vendor-independence is ensured as DCE is built on one common source
code base by every vendor. Another downside may be a performance impact
caused by the additional layer and the nature of the Java technology.

Container

Operating System

Middleware

Operating System

Application

Middleware

Legacy model

J2EE model

Application
262 DCE Replacement Strategies

Where DCE primarily relies on the Kerberos security standard with fine-grained
access control capabilities built on top, J2EE Application Servers today come
with a diverse set of security protocols and features, which are either integrated
with the product or pluggable. An example is the integration with public key
technology, such as SSL, which has become a widely used industry standard.
With the support for SSL, application servers also can be deployed as Web
servers, exposed to intranets and the Internet.

Although securing a distributed application in J2EE is mostly achieved by
configuration (rather than programming), the task is nevertheless not trivial. The
available security features must be deployed in a proper way, such that the
distributed applications get the security they really need. For this, it is important
to understand the available security mechanisms and their configuration. Some
J2EE Application Server environment might even support proprietary security
mechanisms.

Given the advancements in security technology that are available to J2EE
Application Servers, many concepts and features of DCE security can be found
in the new technology as well. For example, the DCE security delegation
impersonation feature can be compared with the J2EE run-as feature.

As an alternative to the strategy used in this scenario, Web services could serve
as another replacement strategy for environments that use or migrate to
Web-based clients. Web services is a fast-evolving technology that is worth
evaluating in many replacement environments. Some versions of IBM
WebSphere support Web services.
 Chapter 11. Scenario 4: Secure RPC application #2 263

264 DCE Replacement Strategies

Part 3 Appendixes

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 265

266 DCE Replacement Strategies

Appendix A. Scenario 1: Source code
listings

This appendix lists the complete source code that was explained in pieces in
Chapter 8, “Scenario 1: GSS-API application” on page 125. Specifically, this
appendix contains:

� The source code of the client and server programs with DCE dependencies

� The source code of the revised client and server program without DCE
dependencies

� The makefiles used for these programs

� Additional source code modules for authorization

� Header files

� Application configuration files

Refer to Appendix E, “Additional material” on page 417 for instructions for
downloading the source code samples included in this appendix.

A

© Copyright IBM Corp. 2003. All rights reserved. 267

Application with DCE dependencies
We start with the source code for an application with DCE dependencies:

� s1.mak contains information about how the application is compiled and linked
on the Windows operating system.

� Makefile contains information about how the application is compiled and
linked on the AIX operating system.

� client_s1.c contains the client code. After acquiring an initial login context, the
application client establishes a common security context with the server. Then
the client exchanges application messages with the application server via
socket communication.

� server_s1.c contains the server code. The application server registers itself
and listens for connections. Then it accept a common security context with
the client. If this is successful, it can exchange application messages with
clients. Furthermore, it uses the dce_authz.c module to authorize the client in
case of a request.

� dce_authz.c contains the code for the authorization module. The module has
two major tasks: To set up an ACL on an object and to provide functions to
handle requests for authorization decisions initiated by the server.

� utils_s1.c provides functions for socket communication. Furthermore, the task
of encryption and decryption is handled in this module.

� utils_s1.h represents the header file for utils_s1.c.

Makefile for application client
Description: Makefile for Windows application client
File name: s1.mak

!include <NTWIN32.MAK>
!if "$(CPU)" == "ALPHA"
TARGET=alpha
SWITCHES=-DALPHA
!else
TARGET=intel
SWITCHES=-D_X86=1 -DM_I86
!endif

LIBS= \
libdce.lib \
pthreads.lib \
wsock32.lib \
$(conlibsdll)
268 DCE Replacement Strategies

CFLAGS= -I. $(cflags:-W3=) $(cvarsdll) $(SWITCHES) -Zi -Od -Gz -nologo

LINK = link $(ldebug) $(conlflags)

all: client_s1.exe

client : client_s1.exe

client_s1.exe : client_s1.obj utils_s1.obj dce_authz.obj
$(LINK) /out:$@ $** $(_LIBS_)

dce_authz.obj: dce_authz.c
$(CC) $(CFLAGS) dce_authz.c

client_s1.obj: client_s1.c
$(CC) $(CFLAGS) client_s1.c

utils_s1.obj: utils_s1.c
$(CC) $(CFLAGS) utils_s1.c

clean :
del *.obj

clobber :
del *.obj
del *.exe

Makefile for application server
Description: Makefile for AIX application server
File name: Makefile

CC=/usr/vacpp/bin/xlC_r4

CFLAGS -I. -g -o

all: server

server : server_s1.o utils_s1.o dce_authz.o
 $(CC) ${CFLAGS} server_s1 server_s1.o utils_s1.o dce_authz.o -ldce

server_s1.o :
 $(CC) -c server_s1.c

utils_s1.o :
 $(CC) -c utils_s1.c
 Appendix A. Scenario 1: Source code listings 269

dce_authz.o :
 $(CC) -c dce_authz.c

clean :
rm -f *.o

clobber :
rm -f server_s1 *.o

DCE dependent application client
Description: Application client with DCE dependencies
File name: client_s1.c

#include <dce/sec_login.h>
#include <dce/gssapi.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include "utils_s1.h"

#undef write
#define write(fd, bufptr, buflen) send(fd, bufptr, buflen, 0)
#undef read
#define read(fd, bufptr, buflen) recv(fd, bufptr, buflen, 0)
#undef close
#define close(fd) closesocket(fd)

#define SERVICE_SECURE 2
#define value(x) (((x>='0') && (x<='9'))?x-'0':-1)
#define MAX_HOST_LENGTH 64

char * port_param = NULL;
char * host_param = NULL;
int port;
char port_name[512];
unsigned host_addr;
struct hostent * host_entry = NULL;

gss_ctx_id_t security_context;

/*************************/
/* function login_to_dce */
int login_to_dce(
 unsigned_char_p_t prin_name, /* server principal name.*/
 unsigned_char_p_t keytab){ /* keytab file */

 sec_passwd_rec_t *keydata;
270 DCE Replacement Strategies

 sec_login_auth_src_t auth_src;
 boolean32 reset_pwd;
 sec_login_handle_t login_context;
 unsigned32 status = error_status_ok;

 /* create a context and get the login context */
 sec_login_setup_identity(
 prin_name,
 sec_login_no_flags,
 &login_context,
 &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_login_setup_identity(), status: %d\n",status);
 return -1;
 }

 /* get secret key from the keytab file */
 sec_key_mgmt_get_key(
 rpc_c_authn_dce_secret,
 keytab,
 prin_name,
 0,
 (void**)&keydata,
 &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_key_mgmt_get_key(), status: %d\n",status);
 return -1;
 }

 /* validate the login context */
 sec_login_validate_identity(
 login_context,
 keydata,
 &reset_pwd,
 &auth_src,
 &status);
 if (status != error_status_ok){
 fprintf(stderr,
 "Error - sec_login_validate_identity(), status: %d\n",status);
 return -1;
 }

 /* finally, set the context */
 sec_login_set_context(
 login_context,
 &status);
 if (status != error_status_ok){
 Appendix A. Scenario 1: Source code listings 271

 fprintf(stderr, "Error - sec_login_set_context(), status: %d\n",status);
 return -1;
 }

 printf("DCE login successfull\n");
 return 0;
}

/***************************/
/* function define_service */
/* exchanges authentication token with server for mutual authentication */

int define_service(
 int socket,
 gss_ctx_id_t * sec_ctx,
 char * server_name){

 OM_uint32 maj_stat, min_stat;
 gss_name_t server;
 gss_buffer_desc name;
 gss_buffer_desc snd_token;
 gss_buffer_desc rcv_token;
 int done;
 unsigned char length_low, length_high;
 int length;
 name.length = strlen(server_name);
 name.value = server_name;

 maj_stat = gss_import_name(
 &min_stat,
 &name,
 GSS_C_NULL_OID,
 &server);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_import_name",
 maj_stat,
 min_stat);
 return -1;
 };
 *sec_ctx = GSS_C_NO_CONTEXT;
 rcv_token.length = 0;
 rcv_token.value = NULL;
 snd_token.length = 0;
 snd_token.value = NULL;
 done = 0;

 while (!done) {

 maj_stat = gss_init_sec_context(
272 DCE Replacement Strategies

 &min_stat,
 GSS_C_NO_CREDENTIAL, /* Default cred */
 sec_ctx,
 server,
 GSSDCE_C_OID_DCE_KRBV5_DES,
 GSS_C_MUTUAL_FLAG | GSS_C_INTEG_FLAG |GSS_C_INTEG_FLAG,
 24*60*60,
 GSS_C_NO_CHANNEL_BINDINGS,
 &rcv_token,
 NULL,
 &snd_token,
 NULL,
 NULL);

 if (GSS_ERROR(maj_stat)) {
 display_error("gss_init_sec_context",
 maj_stat,
 min_stat);
 return -1;
 };

 if (snd_token.length != 0) {
 length_low = snd_token.length & 0xff;
 length_high = snd_token.length >> 8;
 if (write(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error - EOF when sending token\n");
 return -1;
 };

 if (write(socket, &length_high, 1) != 1) {
 fprintf(stderr, "Error - EOF when sending token\n");
 return -1;
 };

 if (write_token(socket, &snd_token) != snd_token.length) {
 fprintf(stderr, "Error - EOF when sending token\n");
 return -1;
 };
 };

 if (maj_stat & GSS_S_CONTINUE_NEEDED) {
 if (read(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error - EOF when waiting for token\n");
 return -1;
 };
 if (read(socket, &length_high, 1) != 1) {
 fprintf(stderr, "Error - EOF when waiting for token\n");
 return -1;
 };
 Appendix A. Scenario 1: Source code listings 273

 length = length_low + length_high * 256;
 rcv_token.value = realloc(rcv_token.value, length);
 rcv_token.length = length;
 if (read_token(socket, &rcv_token) != rcv_token.length) {
 fprintf(stderr, "Error - EOF when waiting for token\n");
 return -1;
 };
 } else {
 done = 1;
 }
 };
};

/******************/
/* function main */

int main(int argc, char * argv[]) {
 int sockfd;
 struct sockaddr_inserv_addr;
 struct servent * server;
 struct hostvent * host;
 int i, c;
 int errflg = 0;
 int service_level;
 char * server_name = "scenario1_server_princ"; /* set server name */
 const char * clientname = "scenario1_princ"; /* set client name */
 const char * keytab = "./scenario1_tab"; /* set keytab file */
 const char * host_param = "tivdce1"; /* set hostname */
 const char * port_param = "12345"; /* set port number */

/* get initial dce credential for client application */
if (login_to_dce(
 (unsigned_char_p_t)clientname,
 (unsigned_char_p_t)keytab)) {
 fprintf(stderr, "Error - login_to_dce() \n");
 return -1;
}

/* prepare socket creation */
for (i=0; isdigit(port_param[i]); i++);
 if (port_param[i]) {
 if ((server = getservbyname(port_param, "tcp")) == NULL) {
 fprintf(stderr, "Couldn't locate %s\n",port_param);
 return EXIT_FAILURE;
 };
 port = server->s_port;
 strncpy(port_name, server->s_name, sizeof(port_name));
 } else {
 port = 0;
274 DCE Replacement Strategies

 for (i=0; port_param[i]; i++) {
 port = port * 10 + value(port_param[i]);
 };
 if ((server = getservbyport(port, "tcp")) == NULL) {
 strncpy(port_name, "<unnamed service>", sizeof(port_name));
 } else {
 strncpy(port_name, server->s_name, sizeof(port_name));
 };
 };

 /* Now to translate host_param to numeric form */
 for (i=0; host_param[i] != '\0'; i++) {
 if (!isdigit(host_param[i]) && (host_param[i] != '.')) break;
 };

 host_entry = gethostbyname(host_param);
 memset((unsigned char *)&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 memcpy((unsigned char *)&serv_addr.sin_addr.s_addr,
 (unsigned char *)host_entry->h_addr,4);
 serv_addr.sin_port = htons((short) port);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 err_dump("client: can't open stream socket");

 if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 err_sys("client: Can't connect to server ");

 /* initialize communication, by authenticating with server */
 if (define_service(
 sockfd,
 &security_context,
 server_name)) {
 exit (EXIT_FAILURE);
 };

 fprintf(stdout, "Connection open...\n");
 fflush(stdout);

 /* call str_cli to exchange protected application data with server */
 str_cli(stdin, sockfd, SERVICE_SECURE, security_context);
 close(sockfd);
 return EXIT_SUCCESS;
}

 Appendix A. Scenario 1: Source code listings 275

DCE dependent application server
Description: Server application with DCE dependencies
File name: server_s1.c

#include <stdio.h>
#include <stdlib.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <dce/gssapi.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include "utils_s1.h"

#define value(x) (((x>='0')&&(x<='9'))?x-'0':-1)

const char * port_param = "12345"; /* set port number */
const char * keytab = "./scenario1_tab"; /* set keytab file */
const char * server_name = "scenario1_server_princ"; /* set server principal */

char port_name[512];
int port;

/***************************/
/* function accept_service */

int accept_service(
 int socket,
 gss_ctx_id_t * sec_ctx,
 gss_cred_id_t cred_handle) {

 int done;
 unsigned char length_low, length_high;
 unsigned length;
 gss_buffer_desc snd_token;
 gss_buffer_desc rcv_token;
 gss_name_t client;
 gss_buffer_desc client_name;
 OM_uint32 maj_stat, min_stat;

 *sec_ctx = GSS_C_NO_CONTEXT;
 rcv_token.length = 0;
 rcv_token.value = NULL;
 snd_token.length = 0;
 snd_token.value = NULL;
 done = 0;

 while (!done) {
276 DCE Replacement Strategies

 if (read(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 return -1;
 };

 if (read(socket, &length_high, 1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 return -1;
 };

 length = length_low + length_high * 256;
 rcv_token.value = realloc(rcv_token.value, length);
 rcv_token.length = length;

 if (read_token(socket, &rcv_token) != rcv_token.length) {
 fprintf(stderr, "Error - EOF when waiting for token\n");
 return -1;
 };

 maj_stat = gss_accept_sec_context(
 &min_stat,
 sec_ctx,
 cred_handle,
 &rcv_token,
 GSS_C_NO_CHANNEL_BINDINGS,
 &client,
 NULL,
 &snd_token,
 NULL,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_accept_sec_context", maj_stat, min_stat);
 return -1;
 };

 if (!(maj_stat & GSS_S_CONTINUE_NEEDED)) done = 1;

 if (snd_token.length != 0) {
 length_low = snd_token.length & 0xff;
 length_high = snd_token.length >> 8;

 if (write(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error - EOF when writing token length\n");
 return -1;
 };

 if (write(socket, &length_high, 1) != 1) {
 Appendix A. Scenario 1: Source code listings 277

 fprintf(stderr, "Error - EOF when writing token length\n");
 return -1;
 };

 if (write_token(socket, &snd_token) != snd_token.length) {
 fprintf(stderr, "Error - EOF when sending token\n");
 return -1;
 };
 };

 }; /* end while (!done) */

 maj_stat = gss_display_name(
 &min_stat,
 client,
 &client_name,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_display_name", maj_stat, min_stat);
 return -1;
 };

 fprintf(
 stdout,
 "Accepted authenticated connection from %.*s\n",
 client_name.length,
 client_name.value);

} /* end accept_service */

/******************/
/* function main */

int main(int argc, char * argv[]) {
 int c,i,sockfd,newsockfd,clilen,childpid;
 int service_level = 2;
 int errflg = 0;
 struct sockaddr_in cli_addr, serv_addr;
 struct servent * server;
 gss_ctx_id_t security_context;

 OM_uint32 min_stat, maj_stat;
 gss_cred_id_t cred_handle = GSS_C_NO_CREDENTIAL;
 gss_name_t server_name_t;
 gss_buffer_desc name_buffer;

 extern int optind, opterr;
 extern char * optarg;
278 DCE Replacement Strategies

 for (i=0; isdigit(port_param[i]); i++);
 if (port_param[i]) {
 if ((server = getservbyname(port_param, "tcp")) == NULL) {
 fprintf(stderr, "Couldn't locate %s\n",port_param);
 exit (EXIT_FAILURE);
 };

 port = server->s_port;
 strncpy(port_name, server->s_name, sizeof(port_name));
 } else {
 port = 0;
 for (i=0; port_param[i]; i++) {
 port = port * 10 + value(port_param[i]);
 };

 if ((server = getservbyport(port, "tcp")) == NULL) {
 strncpy(port_name, "<unnamed service>", sizeof(port_name));
 } else {
 strncpy(port_name, server->s_name, sizeof(port_name));
 };
 };

 if (server_name != NULL) {

 name_buffer.length = strlen(server_name);
 name_buffer.value = (char *) server_name;

 maj_stat = gss_import_name(
 &min_stat,
 &name_buffer,
 GSS_C_NULL_OID,
 &server_name_t);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_import_name", maj_stat, min_stat);
 exit(EXIT_FAILURE);
 };

 if (keytab != NULL) {
 maj_stat = gssdce_register_acceptor_identity(
 &min_stat,
 server_name_t,
 NULL,
 (char *)keytab);
 if (GSS_ERROR(maj_stat)) {
 display_error("gssdce_register_identity", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 Appendix A. Scenario 1: Source code listings 279

 };
 };

 maj_stat = gss_acquire_cred(
 &min_stat,
 server_name_t,
 24*60*60,
 GSS_C_NULL_OID_SET,
 GSS_C_ACCEPT,
 &cred_handle,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_acquire_cred", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };
 };

 fprintf(
 stdout,
 "Mirror server started on port %d, %s\n",
 port,
 port_name);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 err_dump("server: can't open stream socket");

 memset((unsigned char *)&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons((short) port);

 if (bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 err_dump("server: Can't bind local address");

 listen(sockfd, 5);

 for (;;) {
 clilen = sizeof(cli_addr);
 newsockfd =
 accept(sockfd, (struct sockaddr *)&cli_addr, (unsigned long *)&clilen);
 if (newsockfd < 0) err_dump("server: accept error");
 if ((childpid = fork()) < 0) {
 err_dump("server: fork error");
 } else if (childpid == 0) {
 close(sockfd);

/* authenticate client */
 accept_service(
280 DCE Replacement Strategies

 newsockfd,
 &security_context,
 cred_handle);

 fprintf(stdout, "Accepted connection from host %d.%d.%d.%d\n",
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[0],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[1],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[2],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[3]);

/* call str_s1 to exchange protected application data with client */
 str_s1(newsockfd, service_level, security_context);
 exit(0);
 }
 close(newsockfd);
 }
} /* end main */

Authorization module with DCE dependencies
Description: Authorization module with DCE dependencies
File name: dce_authz.c

#include <stdio.h>
#include <string.h>
#include <dce/gssapi.h>
#include <dce/aclbase.h>
#include <dce/uuid.h>
#include <dce/aclif.h>
#include <dce/pgo.h>

/* The name of a sample object,used */
#define SAMPLE_GROUP_NAME "scenario1_clients"

/* The permissions of the sample user that will be stored in a
 sample ACL */
#define OBJ_USER_PERMS sec_acl_perm_read | sec_acl_perm_write \
 | sec_acl_perm_delete | sec_acl_perm_test \
 | sec_acl_perm_execute \
 | sec_acl_perm_control

/**/
/* ANSI-C style prototypes for functions private to this module... */

void server_get_uuids(
 unsigned_char_t *,
 uuid_t *,
 Appendix A. Scenario 1: Source code listings 281

 uuid_t *,
 unsigned32 *);

void setup_sample_acl (
 sec_acl_t **,
 unsigned32 *);

/**/

/* The UUID of the sample ACL: */
uuid_t sample_acl_uuid = { /* d56f71da-a012-11ce-92fb-000000806635 */
 0xd56f71da,
 0xa012,
 0x11ce,
 0x92,
 0xfb,
 0x00,
 0x00,
 0x00,
 0x80,
 0x66,
 0x35};

/* The UUID of the sample ACL manager for the sample ACL:*/
uuid_t sample_acl_mgr_uuid = { /* 8091da9a-a012-11ce-9e9d-000000806635 */
 0x8091da9a,
 0xa012,
 0x11ce,
 0x9e,
 0x9d,
 0x00,
 0x00,
 0x00,
 0x80,
 0x66,
 0x35};

void setup_sample_acl(
 sec_acl_t **sample_acl, /* To return sample ACL */
 unsigned32 *status){

 uuid_t realm_uuid; /* For the realm's UUID (from the registry) */
 uuid_t group_uuid; /* For the group's UUID (from the registry) */
 sec_acl_entry_t sample_entry;
 *status = error_status_ok;

 /* Initialize sample ACL with one sample entry*/
282 DCE Replacement Strategies

 (*sample_acl) = (sec_acl_t *)malloc(sizeof(sec_acl_t));
 (*sample_acl)->sec_acl_entries =
 (sec_acl_entry_t *) malloc(sizeof(sec_acl_entry_t));
 (*sample_acl)->num_entries = 1;

 /* Get UUIDs that will be stored in the sample ACL and sample entry */
 server_get_uuids(
 (unsigned_char_t *) SAMPLE_GROUP_NAME,
 &group_uuid,
 &realm_uuid,
 status);
 if (*status != error_status_ok){
 fprintf(
 stderr,
 "Error - server_get_uuids(), status: %d\n",*status);
 return;
 }

 /* Fill values in the sample ACL */
 (*sample_acl)->default_realm.uuid = realm_uuid;
 (*sample_acl)->sec_acl_manager_type = sample_acl_mgr_uuid;

 /* Fill values in the sample entry */
 sample_entry.perms = OBJ_USER_PERMS;
 sample_entry.entry_info.entry_type = sec_acl_e_type_group;
 sample_entry.entry_info.tagged_union.id.uuid = group_uuid;
 sample_entry.entry_info.tagged_union.id.name = NULL;

 (*sample_acl)->sec_acl_entries[0] = sample_entry;
}

void server_get_uuids(
 unsigned_char_t *g_name, /* Simple group name.*/
 uuid_t *g_id, /* group UUID returned here.*/
 uuid_t *c_id, /* cell (realm) UUID returned here */
 unsigned32 *status){
 char *cell_name; /* For local cell name. */
 sec_rgy_handle_t rhandle; /* For registry server handle. */

 /* Get the cell name */
 dce_cf_get_cell_name(
 &cell_name,
 status);
 if (*status != error_status_ok){
 fprintf(
 stderr,
 "Error - dce_cf_get_cell_name(), status: %d\n",*status);
 return;
 }
 Appendix A. Scenario 1: Source code listings 283

 /* Bind to the cell's registry */
 sec_rgy_site_open(cell_name, &rhandle, status);
 if (*status != error_status_ok){
 fprintf(
 stderr,
 "Error - sec_rgy_site_open(), status: %d\n",*status);
 return;
 }

 /* Get the cell (realm) UUID */
 sec_id_parse_name(
 rhandle,
 cell_name,
 NULL,
 c_id,
 NULL,
 NULL,
 status);

 /* Free the cell name */
 free(cell_name);

 /* Get the user UUID */
 sec_rgy_pgo_name_to_id(
 rhandle,
 sec_rgy_domain_group,
 g_name,
 g_id,
 status);

 if (*status != error_status_ok){
 fprintf(
 stderr,
 "Error - dsec_rgy_pgo_name_to_id(), status: %d\n",*status);
 return;
 }
}

/* service is_client_authorized, used by external moduls */

boolean32 is_client_authorized(
 gss_ctx_id_t security_context,
 sec_acl_permset_t desired_perms){

 rpc_authz_cred_handle_t cred_h;
 sec_acl_t *sample_acl;
 rpc_authz_cred_handle_t output_cred;
 OM_uint32 maj_stat, min_stat;
284 DCE Replacement Strategies

 error_status_t status;
 sec_acl_permset_t perms = dce_acl_c_no_permissions;

 /* Set up sample a ACL */
 setup_sample_acl(&sample_acl, &status);
 if (status != error_status_ok){
 fprintf(
 stderr,
 "Error - setup_sample_acl(), status: %d\n",status);
 return false;
 }

/* get PAC of caller */
maj_stat = gssdce_extract_creds_from_sec_context(

 &min_stat,
 security_context,
 &output_cred);
 if (GSS_ERROR(maj_stat)) {
 display_error(
 "gssdce_extract_creds_from_sec_context", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };

/* get permission of caller */
 dce_acl_inq_permset_for_creds(
 output_cred,
 sample_acl,
 NULL,
 NULL,
 sec_acl_posix_no_semantics,
 &perms,
 &status);

 if (status != error_status_ok){
 fprintf(
 stderr,
 "Error - dce_acl_inq_permset_for_creds(), status: %d\n",status);
 return false;
 }
 printf("granted perms: %x\n",perms);

 /* If desired permissions are included in caller permissions,
 caller is authorized */
 if ((desired_perms & perms) == desired_perms){
 printf("access granted.\n");
 return true;
 }
 return false;
}

 Appendix A. Scenario 1: Source code listings 285

Utility source of the DCE dependent application
Description: Utility module with DCE dependencies
File name: utils_s1.c

#include <stdio.h>
#include <dce/gssapi.h>
#include <dce/daclif.h>
#include "utils_s1.h"
#include <sys/types.h>
#ifdef WIN32
include <winsock.h>
undef write
define write(fd, bufptr, buflen) send(fd, bufptr, buflen, 0)
undef read
define read(fd, bufptr, buflen) recv(fd, bufptr, buflen, 0)
undef close
define close(fd) closesocket(fd)
#else
include <sys/socket.h>
include <netinet/in.h>
include <arpa/inet.h>
include <netdb.h>
#endif
#ifndef ECHO_INET_H_
#define ECHO_INET_H_
#endif
#define DEFAULT_ECHO_PORT "12345"
#define SERVICE_INSECURE 1
#define SERVICE_SECURE 2

#ifndef WIN32
#define min(a,b) (((a)<(b))?(a):(b))
#endif

#include <dce/daclif.h>

/* defined in dce_authz */
extern boolean32 is_client_authorized(
 gss_ctx_id_t security_context,
 sec_acl_permset_t desired_perms);

/* function READN - Read nbytes from file descriptor FD */
int readn(
 register int fd,
 register char * ptr,
 register int nbytes) {

 int nleft, nread;
286 DCE Replacement Strategies

 nleft = nbytes;
 while (nleft > 0) {
 nread = read(fd, ptr, nleft);
 if (nread < 0) return nread;
 else if (nread == 0) break; /* EOF */
 nleft -= nread;
 ptr += nread;
 }
 return (nbytes - nleft);
}

/* function WRITEN - Write nbytes to file descriptor FD */
int writen(
 register int fd,
 register char * ptr,
 register int nbytes) {

 int nleft, nwritten;
 nleft = nbytes;
 while (nleft > 0) {
 nwritten = write(fd, ptr, nleft);
 if (nwritten <= 0) return nwritten;
 nleft -= nwritten;
 ptr += nwritten;
 }
 return (nbytes - nleft);
}

/* function READLINE - Read from nbytes to file descriptor FD */
int readline(
 register int fd,
 register char * ptr,
 register int maxlen) {

 int n, rc;
 char c;
 for (n=1; n<maxlen; n++) {
 if ((rc=read(fd, &c, 1)) == 1) {
 *ptr++ = c;
 if (c == '\n') break;
 } else if (rc == 0) {
 if (n == 1) return 0; /* EOF, no data read */
 else break; /* EOF, some data was read */
 } else return -1; /* error */
 }
 *ptr = 0;
 return n;
}

 Appendix A. Scenario 1: Source code listings 287

#define MAXLINE 512

/* function str_s1 - receive message on server side, decrypt message and */
/* authorize */

void str_s1(
 int sockfd,
 int service_level,
 gss_ctx_id_t security_context) {

 int n,i;
 char line[MAXLINE];
 char enil[MAXLINE]; /* string for mirror*/
 OM_uint32 maj_stat, min_stat;
 gss_buffer_desc token, message;
 unsigned char length_low, length_high;

 for (;;) {
 if (service_level == SERVICE_SECURE) {
 n = read(sockfd, &length_low,1);
 if (n == 0) return; /* Connection closed */
 if (n != 1) {
 fprintf(stderr, "Error reading token length\n");
 exit(EXIT_FAILURE);
 };
 if (read(sockfd, &length_high,1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 exit(EXIT_FAILURE);
 };
 token.length = length_high * 256 + length_low;
 token.value = malloc(token.length);
 if (read_token(sockfd, &token) != token.length) {
 fprintf(stderr, "Error reading token\n");
 exit(EXIT_FAILURE);
 };
 maj_stat = gss_unseal(&min_stat,
 security_context,
 &token,
 &message,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_unseal", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };

 if (!is_client_authorized(security_context, sec_acl_perm_control)) {
 fprintf(stderr, "Error, Client not autorized\n");
 strncpy(enil, "Sorry, no bonus.\n\0", MAXLINE);
288 DCE Replacement Strategies

 n=strlen(enil);
 }else {
 n = min(MAXLINE, message.length);
 strncpy(line, message.value, MAXLINE);
 for (i=0; i<n; enil[i++]=line[n-i-2]); /*fill enil*/
 enil[n-1]='\n';
 }
 } else {
 n = readline(sockfd, line, MAXLINE);
 };
 if (n == 0) return; /* Connection terminated */
 else if (n < 0)
 err_dump("str_s1: readline error");
 if (writen(sockfd, enil, n) != n)
 err_dump("str_s1: writen error");
 }
}

/* function str_cli */
/* get input message from stdin, encrypt message, and send to server */

void str_cli(
 register FILE *fp,
 register int sockfd,
 int service_level,
 gss_ctx_id_t security_context) {

 int n;
 char sendline[MAXLINE];
 char recvline[MAXLINE+1];
 gss_buffer_desc token;
 gss_buffer_desc message;
 OM_uint32 maj_stat, min_stat;
 unsigned char length_low;
 unsigned char length_high;

 while (fgets(sendline, MAXLINE, fp) != NULL) {
 n = strlen(sendline);
 if (service_level == SERVICE_SECURE) {
 message.length = n;
 message.value = sendline;
 maj_stat = gss_seal(
 &min_stat,
 security_context,
 1, /* encryption turned on */
 GSS_C_QOP_DEFAULT,
 &message,
 NULL,
 &token);
 Appendix A. Scenario 1: Source code listings 289

 if (GSS_ERROR(maj_stat)) {
 display_error("gss_seal", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };
 length_low = token.length & 0xff;
 length_high = token.length >> 8;
 if (write(sockfd, &length_low, 1) != 1) {
 fprintf(stderr, "Error writing length\n");
 exit(EXIT_FAILURE);
 };
 if (write(sockfd, &length_high, 1) != 1) {
 fprintf(stderr, "Error writing length\n");
 exit(EXIT_FAILURE);
 };
 write_token(sockfd, &token);
 gss_release_buffer(&min_stat, &token);
 } else {
 if (writen(sockfd, sendline, n) != n)
 err_sys("str_cli: writen error on socket");
 }
 n = readline(sockfd, recvline, MAXLINE);
 if (n < 0) err_dump("str_cli: readline error");
 recvline[n] = 0;
 fputs(recvline, stdout);
 }
 if (ferror(fp)) err_sys("str_cli: error reading file");
}

int read_token(
 int socket,
 gss_buffer_t token) {
 return readn(socket, (char *)token->value, token->length);
}

int write_token(
 int socket,
 gss_buffer_t token) {
 return writen(socket, (char *)token->value, token->length);
}

void display_error(
 char * where,
 OM_uint32 maj,
 OM_uint32 min) {
 OM_uint32 maj_stat, min_stat;
 gss_buffer_desc status_buffer;
 int ctx = 0;
 fprintf(stderr, "Errors detected in %s\n", where);
 do {
290 DCE Replacement Strategies

 if (GSS_ERROR(gss_display_status(
 &min_stat,
 maj,
 GSS_C_GSS_CODE,
 GSS_C_NULL_OID,
 &ctx,
 &status_buffer))) {
 fprintf(stderr, "Error translating major status code (%X)\n", maj);
 ctx = 0;
 } else {
 fprintf(stderr, "%.*s\n", status_buffer.length, status_buffer.value);
 gss_release_buffer(&min_stat, &status_buffer);
 };
 } while (ctx != 0);
 if (GSS_ERROR(gss_display_status(
 &min_stat,
 min,
 GSS_C_MECH_CODE,
 GSS_C_NULL_OID,
 &ctx,
 &status_buffer))) {
 fprintf(stderr, "Error translating minor status code (%X)\n", min);
 } else {
 fprintf(stderr, "%.*s\n", status_buffer.length, status_buffer.value);
 gss_release_buffer(&min_stat, &status_buffer);
 };
}

Header file for utility source
Description: Utility module with DCE dependencies
File name: utils_s1.h

#ifdef WIN32
#include <dce/rpcexc.h>
#endif
#ifndef _ECHO_UTILS_
#define _ECHO_UTILS_
#include <dce/gssapi.h>
#include <stdio.h>

#define err_sys(x) {perror(x); exit (1);}
#define err_dump(x) {fprintf(stderr, x); exit (1);}

int readn(register int fd,
 register char * ptr,
 register int nbytes);
 Appendix A. Scenario 1: Source code listings 291

int writen(register int fd,
 register char * ptr,
 register int nbytes);

int readline(register int fd,
 register char * ptr,
 register int maxlen);

void str_s1(int sockfd, int service_level, gss_ctx_id_t security_context);

void str_cli(register FILE *fp,
 register int sockfd,
 int service_level,
 gss_ctx_id_t security_context);

int read_token(int socket, gss_buffer_t tok);

int write_token(int socket, gss_buffer_t tok);

void display_error(char * where, OM_uint32 maj, OM_uint32 min);
#endif

Revised application without DCE dependencies
The files are:

� s1.mak contains information about how the application is compiled and linked
on the Windows operating system.

� Makefile contains information about how the application is compiled and
linked on the AIX operating system.

� client_s1.c contains the client code. After acquiring initial credentials and
creating a shared security context with the server, the application client
exchanges messages with the application server via socket communication.

� server_s1.c contains the server code. The application server acquires initial
credentials and accepts a shared security context with the client. Then it
listens for application messages from the client. Furthermore, it uses the
azn_authz.c module to authorize the client in case of a request.

� azn_authz.c contains the code for the authorization module. Upon a client
request, the client principal’s credentials are looked up and compared with the
desired permissions. Additionally, initialization and shutdown services for
aznAPI are provided.

� utils_s1.c provides common functions for socket communication, and
encryption and decryption are handled in this module.
292 DCE Replacement Strategies

� utils_s1.h represents the header file for utils_s1.c.

� remote.conf configuration file tells the application how to communicate with
IBM Tivoli Access Manager.

Makefile for application client
Description: Makefile for Windows application client
File name: s1.mak

!include <NTWIN32.MAK>

!if "$(CPU)" == "ALPHA"
TARGET=alpha
SWITCHES=-DALPHA
!else
TARGET=intel
SWITCHES=-D_X86=1 -DM_I86
!endif

LIBS= \
 wsock32.lib \
 $(conlibsdll) secur32.lib

CFLAGS= -I. $(cflags:-W3=) $(cvarsdll) $(SWITCHES) -Zi -Od -Gz -nologo

LINK = link $(ldebug) $(conlflags)

all: client_s1.exe

client : client_s1.exe

client_s1.exe : client_s1.obj utils_s1.obj
 $(LINK) /out:$@ $** $(_LIBS_)

client_s1.obj: client_s1.c
 $(CC) $(CFLAGS) client_s1.c

utils_s1.obj: utils_s1.c
 $(CC) $(CFLAGS) utils_s1.c

clean :
 del *.obj

clobber :
 del *.obj
 del *.exe
 Appendix A. Scenario 1: Source code listings 293

Makefile for application server
Description: Makefile for AIX application server
File name: Makefile

CC=/usr/vacpp/bin/xlC_r4

CFLAGS= -I. -g -o

all : server

server : server_s1.o utils_s1.o azn_authz.o
 $(CC) ${CFLAGS} server_s1 server_s1.o utils_s1.o azn_authz.o -lgssapi_krb5
-lpdauthzn

server_s1.o :
 $(CC) -c server_s1.c

utils_s1.o :
 $(CC) -c utils_s1.c

azn_authz.o :
 $(CC) -I/usr/include/PolicyDirector -c azn_authz.c

clean :
 rm -f *.o

clobber :
 rm -f server_s1 *.o

Revised application client
Description: Revised client program without DCE dependencies
File name: client_s1.c

#include "utils_s1.h"

#define value(x) (((x>='0') && (x<='9'))?x-'0':-1)
#define MAX_HOST_LENGTH 64

char * port_param = NULL;
char * host_param = NULL;
int port;
char port_name[512];
unsigned host_addr;
struct hostent * host_entry = NULL;
294 DCE Replacement Strategies

/*##*
/
/* function define_service */
/* exchanges authentication token with server for mutual authentication */

int define_service(
 int s,
 const char * server_name,
 CtxtHandle *gss_context) {

 SecBuffer send_tok, recv_tok;
 SecBufferDesc input_desc, output_desc;
 OM_uint32 maj_stat;
 CredHandle cred_handle;
 TimeStamp expiry;
 OM_uint32 ret_flags;
 PCtxtHandle context_handle = NULL;

 OM_uint32 deleg_flag = (ISC_REQ_MUTUAL_AUTH |
 ISC_REQ_ALLOCATE_MEMORY |
 ISC_REQ_CONFIDENTIALITY |
 ISC_REQ_REPLAY_DETECT);

 input_desc.cBuffers = 1;
 input_desc.pBuffers = &recv_tok;
 input_desc.ulVersion = SECBUFFER_VERSION;

 recv_tok.BufferType = SECBUFFER_TOKEN;
 recv_tok.cbBuffer = 0;
 recv_tok.pvBuffer = NULL;

 output_desc.cBuffers = 1;
 output_desc.pBuffers = &send_tok;
 output_desc.ulVersion = SECBUFFER_VERSION;

 send_tok.BufferType = SECBUFFER_TOKEN;
 send_tok.cbBuffer = 0;
 send_tok.pvBuffer = NULL;

 cred_handle.dwLower = 0;
 cred_handle.dwUpper = 0;

 maj_stat = AcquireCredentialsHandle(
 NULL, // no principal name
 "Kerberos", // package name
 SECPKG_CRED_OUTBOUND,
 NULL, // no logon id
 NULL, // no auth data
 Appendix A. Scenario 1: Source code listings 295

 NULL, // no get key fn
 NULL, // noget key arg
 &cred_handle,
 &expiry);
 if (maj_stat != SEC_E_OK) {
 fprintf(stderr,"error acquiring credentials",maj_stat);
 return (-1);
 }

 /*
 * Perform the context-establishement loop.
 */
 gss_context->dwLower = 0;
 gss_context->dwUpper = 0;

 do
 {
 maj_stat = InitializeSecurityContext(
 &cred_handle,
 context_handle,
 (char *)server_name,
 deleg_flag,
 0, // reserved
 SECURITY_NATIVE_DREP,
 &input_desc,
 0, // reserved
 gss_context,
 &output_desc,
 &ret_flags,
 &expiry);

 if (recv_tok.pvBuffer) {
 free(recv_tok.pvBuffer);
 recv_tok.pvBuffer = NULL;
 recv_tok.cbBuffer = 0;

 }

 context_handle = gss_context;

 if (maj_stat!=SEC_E_OK && maj_stat!=SEC_I_CONTINUE_NEEDED) {
 fprintf(stderr, "error initializing context %d", maj_stat);
 FreeCredentialsHandle(&cred_handle);
 return -1;
 }

 if (send_tok.cbBuffer != 0) {
 printf("Sending init_sec_context token (size=%d)...",
 send_tok.cbBuffer);
296 DCE Replacement Strategies

 if (send_token(s, &send_tok) < 0) {
 FreeContextBuffer(send_tok.pvBuffer);
 FreeCredentialsHandle(&cred_handle);
 return -1;
 }
 }

 FreeContextBuffer(send_tok.pvBuffer);
 send_tok.pvBuffer = NULL;
 send_tok.cbBuffer = 0;

 if (maj_stat == SEC_I_CONTINUE_NEEDED) {
 printf("continue needed...");
 if (recv_token(s, &recv_tok) < 0) {
 printf("last token not received...");
 FreeCredentialsHandle(&cred_handle);
 return -1;
 }
 }
 printf("\n");

 } while (maj_stat == SEC_I_CONTINUE_NEEDED);

 FreeCredentialsHandle(&cred_handle);
 return 0;
};

/*##*
/
/* function main */

int main(int argc, char * argv[]) {
 int sockfd;
 struct sockaddr_in serv_addr;
 struct servent * server;
 //struct hostvent * host;
 int i;
 int errflg = 0;
 CtxtHandle security_context;
 WSADATA socket_data;
 USHORT version_required = 0x0101;
 int err;
 const char * server_name = "scenario1_server_princ"; /* set server name */
 const char * host_param = "tivdce3"; /* set hostname */
 const char * port_param = "12345"; /* set port number */

/* The WSAStartup function initiates use of WS2_32.DLL by a process.*/
 Appendix A. Scenario 1: Source code listings 297

err = WSAStartup(version_required, &socket_data);
if (err) {
 fprintf(stderr,"Failed to initailize WSA: %d\n",err);
 return (-1);
}

/* prepare socket creation */

for (i=0; isdigit(port_param[i]); i++);
 if (port_param[i]) {
 if ((server = getservbyname(port_param, "tcp")) == NULL) {
 fprintf(stderr, "Couldn't locate %s\n",port_param);
 return EXIT_FAILURE;
 };
 port = server->s_port;
 strncpy(port_name, server->s_name, sizeof(port_name));
 } else {
 port = 0;
 for (i=0; port_param[i]; i++) {
 port = port * 10 + value(port_param[i]);
 };
 if ((server = getservbyport(port, "tcp")) == NULL) {
 strncpy(port_name, "<unnamed service>", sizeof(port_name));
 } else {
 strncpy(port_name, server->s_name, sizeof(port_name));
 };
 };

 /* Now to translate host_param to numeric form */
 for (i=0; host_param[i] != '\0'; i++) {
 if (!isdigit(host_param[i]) && (host_param[i] != '.')) break;
 };

 host_entry = gethostbyname(host_param);
 memset((unsigned char *)&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;

 memcpy((unsigned char *)&serv_addr.sin_addr.s_addr,
 (unsigned char *)host_entry->h_addr,4);
 serv_addr.sin_port = htons((short) port);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 err_dump("client: can't open stream socket");

 if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 err_sys("client: Can't connect to server ");
298 DCE Replacement Strategies

 /* initialize secure communication, by authenticating with server*/
 if (define_service(
 sockfd,
 server_name,
 &security_context)) {
 exit (EXIT_FAILURE);
 };

 fprintf(stdout, "Connection open...\n");
 fflush(stdout);

 /* start exchanging protected application data with server */
 str_cli(stdin,sockfd,&security_context);

 close(sockfd);
 return EXIT_SUCCESS;
}

Revised application server
Description: Revised server program without DCE dependencies
File name: server_s1.c

#include "utils_s1.h"

#define value(x) (((x>='0')&&(x<='9'))?x-'0':-1)

const char * port_param = "12345"; /* set port number */
const char * server_name = "scenario1_server_princ"; /* set server principal */

char port_name[512];
int port;

void init_authz(char *);

/***************************/
/* function accept_service */

int accept_service(
 int socket,
 gss_ctx_id_t * sec_ctx,
 gss_cred_id_t cred_handle) {

 int done;
 unsigned char length_low, length_high;
 unsigned length;
 gss_buffer_desc snd_token;
 Appendix A. Scenario 1: Source code listings 299

 gss_buffer_desc rcv_token;
 gss_name_t client;
 gss_buffer_desc client_name;
 OM_uint32 maj_stat, min_stat;

 *sec_ctx = GSS_C_NO_CONTEXT;
 rcv_token.length = 0;
 rcv_token.value = NULL;
 snd_token.length = 0;
 snd_token.value = NULL;
 done = 0;

 while (!done){

 if (read(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 return -1;
 };

 if (read(socket, &length_high, 1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 return -1;
 };

 length = length_low + length_high * 256;
 rcv_token.value = realloc(rcv_token.value, length);
 rcv_token.length = length;

 if (read_token(socket, &rcv_token) != rcv_token.length) {
 fprintf(stderr, "Error - EOF when waiting for token\n");
 return -1;
 };

 maj_stat = gss_accept_sec_context(&min_stat,
 sec_ctx,
 cred_handle,
 &rcv_token,
 GSS_C_NO_CHANNEL_BINDINGS,
 &client,
 NULL,
 &snd_token,
 NULL,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_accept_sec_context", maj_stat, min_stat);
 return -1;
 };
300 DCE Replacement Strategies

 if (!(maj_stat & GSS_S_CONTINUE_NEEDED)) done = 1;

 if (snd_token.length != 0) {
 length_low = snd_token.length & 0xff;
 length_high = snd_token.length >> 8;

 if (write(socket, &length_low, 1) != 1) {
 fprintf(stderr, "Error - EOF when writing token length\n");
 return -1;
 };

 if (write(socket, &length_high, 1) != 1) {
 fprintf(stderr, "Error - EOF when writing token length\n");
 return -1;
 };

 if (write_token(socket, &snd_token) != snd_token.length) {
 fprintf(stderr, "Error - EOF when sending token\n");
 return -1;
 };
 };

 }; /* end while (!done) */

 maj_stat = gss_display_name(
 &min_stat,
 client,
 &client_name,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_display_name", maj_stat, min_stat);
 return -1;
 };

 fprintf(
 stdout,
 "Accepted authenticated connection from %.*s\n",
 client_name.length,
 client_name.value);

} /* end accept_service */

/******************/
/* function main */

int main(int argc, char * argv[]) {
 int c,i,sockfd,newsockfd,clilen,childpid;
 int errflg = 0;
 Appendix A. Scenario 1: Source code listings 301

 struct sockaddr_in cli_addr, serv_addr;
 struct servent * server;
 gss_ctx_id_t security_context;

 OM_uint32 min_stat, maj_stat;
 gss_cred_id_t cred_handle = GSS_C_NO_CREDENTIAL;
 gss_name_t server_name_t;
 gss_buffer_desc name_buffer;

 extern int optind, opterr;
 extern char * optarg;

 init_authz("scenario1_princ"); /* Initialize authorization module */

 for (i=0; isdigit(port_param[i]); i++);
 if (port_param[i]) {
 if ((server = getservbyname(port_param, "tcp")) == NULL) {
 fprintf(stderr, "Couldn't locate %s\n",port_param);
 exit (EXIT_FAILURE);
 };

 port = server->s_port;
 strncpy(port_name, server->s_name, sizeof(port_name));
 } else {
 port = 0;
 for (i=0; port_param[i]; i++) {
 port = port * 10 + value(port_param[i]);
 };

 if ((server = getservbyport(port, "tcp")) == NULL) {
 strncpy(port_name, "<unnamed service>", sizeof(port_name));
 } else {
 strncpy(port_name, server->s_name, sizeof(port_name));
 };
 };

 if (server_name != NULL) {

 name_buffer.length = strlen(server_name);
 name_buffer.value = (char *) server_name;

 maj_stat = gss_import_name(
 &min_stat,
 &name_buffer,
 GSS_C_NULL_OID,
 &server_name_t);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_import_name", maj_stat, min_stat);
302 DCE Replacement Strategies

 exit(EXIT_FAILURE);
 };

 maj_stat = gss_acquire_cred(
 &min_stat,
 server_name_t,
 24*60*60,
 GSS_C_NULL_OID_SET,
 GSS_C_ACCEPT,
 &cred_handle,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_acquire_cred", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };
 };

 fprintf(
 stdout,
 "Mirror server started on port %d, %s\n",
 port,
 port_name);

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 err_dump("server: can't open stream socket");

 memset((unsigned char *)&serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons((short) port);

 if (bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 err_dump("server: Can't bind local address");

 listen(sockfd, 5);

 for (;;) {
 clilen = sizeof(cli_addr);
 newsockfd =
 accept(sockfd, (struct sockaddr *)&cli_addr, (unsigned long *)&clilen);
 if (newsockfd < 0) err_dump("server: accept error");
 if ((childpid = fork()) < 0) {
 err_dump("server: fork error");
 } else if (childpid == 0) {
 close(sockfd);

/* authenticate with client */
 accept_service(
 Appendix A. Scenario 1: Source code listings 303

 newsockfd,
 &security_context,
 cred_handle);

 fprintf(stdout, "Accepted connection from host %d.%d.%d.%d\n",
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[0],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[1],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[2],
 ((unsigned char *)&cli_addr.sin_addr.s_addr)[3]);

/* call str_s1 to exchange protected application data with client */
 str_s1(newsockfd, security_context);
 exit(0);
 }
 close(newsockfd);
 }

} /* end main */

Authorization module using aznAPI
Description: Revised authorization module without DCE dependencies
File name: azn_authz.c

#include <stdlib.h>
#include <stdio.h>
#include <strings.h>
#include <ctype.h>
#include <ogauthzn.h>
#include <aznutils.h>
#include <pdbaclmsg.h>

#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif

#define LINELEN 128

char prin_name[LINELEN];

/* check status and print a message. */
void
check_status(
 char *info,
 unsigned status){
304 DCE Replacement Strategies

 azn_string_t errstr = NULL;
 unsigned majerr, minerr;
 azn_status_t rc;

 if (status == AZN_S_COMPLETE)
 return;

 majerr = azn_error_major(status);
 minerr = azn_error_minor(status);

 printf("\n%s: ", info);

 rc = azn_error_get_string(status, &errstr);
 if (rc == AZN_S_COMPLETE && errstr) {
 printf("%s (0x%08x/0x%08x)\n\n", errstr, majerr, minerr);
 azn_release_string(&errstr);
 }
 else
 printf("API failure (0x%08x/0x%08x)\n\n", majerr, minerr);
}

/* Initialization of the znAPI */
void init_authz(char * principal_name){

 azn_status_t status;
 int permitted;
 int i,x;
 azn_attrlist_h_t initdata = AZN_C_INVALID_HANDLE;
 azn_attrlist_h_t initinfo = AZN_C_INVALID_HANDLE;
 azn_string_t *attrnames;

 printf("** Using remote replica (ivacld) **\n");

 for(i=1;i<sizeof(prin_name);i++)
 prin_name[i] = '\0';

 strcpy(prin_name,principal_name);

 /* Create handles to attribute lists */
 azn_attrlist_create(&initdata);

 /* Don't use a local replica, use the authorization server */

 status = azn_attrlist_add_entry(
 initdata,
 azn_init_mode,
 "remote");
 check_status("add attribute azn_init_mode", status);
 if (status != AZN_S_COMPLETE){
 Appendix A. Scenario 1: Source code listings 305

 exit(status);
 }

 status = azn_attrlist_add_entry(
 initdata,
 azn_init_cfg_file,
 "./remote.conf");
 check_status("add attribute azn_init_cfg_file", status);
 if (status != AZN_S_COMPLETE)
 exit(status);

 /* view the attribute list before initializing */
 status = azn_attrlist_get_names(initdata, &attrnames);
 if (status != AZN_S_COMPLETE){
 check_status("azn_attrlist_get_names", status);
 exit (status);
 }

 printf("\n[[Init attribute list]]\n");
 for (x=0; attrnames[x] != NULL; x++)
 printf(" [%02d]: %s\n", x, attrnames[x]);
 printf("\n");

 azn_release_strings(&attrnames);

 /* Start the service */
 status = azn_initialize(initdata, &initinfo);
 check_status("azn_initialize", status);
 if (status != AZN_S_COMPLETE){
 fprintf(
 stderr,
 "Could not initialise the authorization service!\n", status);
 exit(1);
 }

 /* View the returned initinfo attribute list including
 * the AZN API client lib version. */

 if (initinfo != AZN_C_INVALID_HANDLE){
 status = azn_attrlist_get_names(initinfo, &attrnames);
 if (status == AZN_S_COMPLETE) {
 printf("\n[[Attribute list returned from azn_initialize]]\n");
 for (x=0; attrnames[x] != NULL; x++)
 printf(" [%02d]: %s\n", x, attrnames[x]);
 printf("\n");
 azn_release_strings(&attrnames);
 } else
 check_status("azn_attrlist_get_names", status);
 }
306 DCE Replacement Strategies

 /* delete handles to attribute lists */
 azn_attrlist_delete(&initdata);
 azn_attrlist_delete(&initinfo);
} /* end init_autz */

/* service is_client_authorized, used by external moduls */
int is_client_authorized(
 char * permission){

 azn_status_t status;
 int permitted;
 char operation[LINELEN];
 char obj_name[LINELEN];
 azn_authdefault_t default_minfo;
 azn_creds_h_t creds = AZN_C_INVALID_HANDLE;

 azn_string_t mech = NULL;
 azn_buffer_desc buf = { 0, 0};

 /* terminate the input strings */
 operation[0] = (char)0;
 obj_name[0] = (char)0;

 /* Only the control flag on the ACL is checked */
 /* harcoded here, to keep the ptogram simple, and */
 /* other moduls independent from authz includes */
 strcpy(operation, azn_operation_control);

 /* protected AM resource, used for scenario1 */
 strcpy(obj_name, "/Scenario1/Resource1");

 /* default creds mechanism info */
 default_minfo.auth_method = "default_auth_method";
 default_minfo.authnmech_info = "default_authnmech_info";
 default_minfo.qop = "default_qop";
 default_minfo.user_info = "default_user_info";
 default_minfo.browser_info = "default_browser_info";
 default_minfo.ipaddr = 0x0a000002;

 /* Set mechanism ID to NULL so the aznAPI will determine
 * which registry (LDAP or URAF) that Policy Director is
 * configured to use. */
 mech = (char *)NULL;
 default_minfo.principal = prin_name;
 buf.length = sizeof(default_minfo);
 buf.value = (unsigned char *)&default_minfo;
 Appendix A. Scenario 1: Source code listings 307

 /* create a credential */
 status = azn_creds_create(&creds);
 check_status("azn_creds_create", status);
 if (status != AZN_S_COMPLETE) {
 fprintf(stderr, "Could not create a cred!\n");
 exit(1);
 }

 /* get a credential */
 status = azn_id_get_creds(NULL, mech, &buf, &creds);
 check_status("azn_id_get_creds", status);
 if (status != AZN_S_COMPLETE) {
 fprintf(stderr, "Could not get creds!\n\n");
 }

 /* "\nPlease build an action string from the following.\n"
 " [a] azn_operation_attach\n"
 " [b] azn_operation_browse\n"
 " [B] azn_operation_bypasstod\n"
 " [c] azn_operation_control\n"
 " [T] azn_operation_traverse\n"
 " [g] azn_operation_delegation\n"
 " [v] azn_operation_view\n"
 " [m] azn_operation_modify\n"
 " [d] azn_operation_delete\n"
 " [s] azn_operation_server_admin\n"
 " [r] azn_operation_read\n"
 " [x] azn_operation_execute\n"
 " [l] azn_operation_list_directory\n"
 " [W] azn_operation_password\n"
 " [N] azn_operation_create\n"
 " [A] azn_operation_add\n\n" */

 /* Perform standard authorization check */
 status = azn_decision_access_allowed(
 creds,
 obj_name,
 operation,
 &permitted);
 check_status("azn_decision_access_allowed", status);

 status = azn_creds_delete(&creds);

 if (permitted == AZN_C_PERMITTED) {
 printf("Permitted.\n\n");
 return TRUE;
 }
 else {
 printf("Not permitted.\n\n");
308 DCE Replacement Strategies

 return FALSE;
 }
} /* end is_client_authorized */

/* shutdown the aznAPI service */
void shutdown_authz(){
 azn_status_t status;
 status = azn_shutdown();
 check_status("azn_shutdown", status);

}

Utility source of the revised application
Description: Utility module without DCE dependencies
File name: utils_s1.c

#
/* Common client and server utils. client code intended for use on windows only
*/

#include "utils_s1.h"

#define MAXLINE 512

/* non DCE function READN - Read nbytes from file descriptor FD */

int readn(register int fd,
 register char * ptr,
 register int nbytes) {
 int nleft, nread;

 nleft = nbytes;
 while (nleft > 0) {
 nread = read(fd, ptr, nleft);
 if (nread < 0) return nread;
 else if (nread == 0) break; /* EOF */

 nleft -= nread;
 ptr += nread;
 }
 return (nbytes - nleft);

}

/* non DCE function WRITEN - Write nbytes to file descriptor FD */
 Appendix A. Scenario 1: Source code listings 309

int writen(register int fd,
 register char * ptr,
 register int nbytes) {
 int nleft, nwritten;

 nleft = nbytes;

 while (nleft > 0) {
 nwritten = write(fd, ptr, nleft);
 if (nwritten <= 0) return nwritten;

 nleft -= nwritten;
 ptr += nwritten;
 }
 return (nbytes - nleft);

}

/* non DCE function READLINE - Read from nbytes to file descriptor FD */

int readline(register int fd,
 register char * ptr,
 register int maxlen) {
 int n, rc;
 char c;

 for (n=1; n<maxlen; n++) {
 if ((rc=read(fd, &c, 1)) == 1) {
 *ptr++ = c;
 if (c == '\n') break;
 } else if (rc == 0) {
 if (n == 1) return 0; /* EOF, no data read */
 else break; /* EOF, some data was read */
 } else return -1; /* error */
 }
 *ptr = 0;
 return n;
}

#ifndef WIN32
/* function str_s1 */
/* receive message on server side, decrypt message, and authorize */

void str_s1(int sockfd, gss_ctx_id_t security_context) {
 int n,i;
 char line[MAXLINE];
 char enil[MAXLINE]; /* string for mirror*/
 OM_uint32 maj_stat, min_stat;
310 DCE Replacement Strategies

 gss_buffer_desc token, message;
 unsigned char length_low, length_high;

 for (;;) {
 n = read(sockfd, &length_low,1);
 if (n == 0) return; /* Connection closed */
 if (n != 1) {
 fprintf(stderr, "Error reading token length\n");
 exit(EXIT_FAILURE);
 };
 if (read(sockfd, &length_high,1) != 1) {
 fprintf(stderr, "Error reading token length\n");
 exit(EXIT_FAILURE);
 };
 token.length = length_high * 256 + length_low;
 token.value = malloc(token.length);
 if (read_token(sockfd, &token) != token.length) {
 fprintf(stderr, "Error reading token\n");
 exit(EXIT_FAILURE);
 };
 maj_stat = gss_unseal(&min_stat,
 security_context,
 &token,
 &message,
 NULL,
 NULL);
 if (GSS_ERROR(maj_stat)) {
 display_error("gss_unseal", maj_stat, min_stat);
 exit (EXIT_FAILURE);
 };
 if (!is_client_authorized("azn_operation_control")) {
 fprintf(stderr, "Error, Client not autorized\n");
 strncpy(enil, "Sorry, no bonus.\n\0", MAXLINE);
 n=strlen(enil);
 }else {
 n = min(MAXLINE, message.length);
 strncpy(line, message.value, MAXLINE);
 for (i=0; i<n; enil[i++]=line[n-i-2]); /*fill enil*/
 enil[n-1]='\n';
 }
 if (n == 0) return; /* Connection terminated */
 else if (n < 0)
 err_dump("str_s1: readline error");
 if (writen(sockfd, enil, n) != n)
 err_dump("str_s1: writen error");
 }
}

 Appendix A. Scenario 1: Source code listings 311

void display_error(char * where, OM_uint32 maj, OM_uint32 min) {
 OM_uint32 maj_stat, min_stat;
 gss_buffer_desc status_buffer;
 int ctx = 0;

 fprintf(stderr, "Errors detected in %s\n", where);
 do {

 if (GSS_ERROR(gss_display_status(&min_stat,
 maj,
 GSS_C_GSS_CODE,
 GSS_C_NULL_OID,
 (unsigned int *) &ctx,
 &status_buffer))) {
 fprintf(stderr, "Error translating major status code (%X)\n", maj);
 ctx = 0;
 } else {
 fprintf(stderr, "%.*s\n", status_buffer.length, status_buffer.value);
 gss_release_buffer(&min_stat, &status_buffer);
 };
 } while (ctx != 0);

 if (GSS_ERROR(gss_display_status(&min_stat,
 min,
 GSS_C_MECH_CODE,
 GSS_C_NULL_OID,
 (unsigned int *) &ctx,
 &status_buffer))) {
 fprintf(stderr, "Error translating minor status code (%X)\n", min);
 } else {
 fprintf(stderr, "%.*s\n", status_buffer.length, status_buffer.value);
 gss_release_buffer(&min_stat, &status_buffer);
 };

}

int read_token(int socket, gss_buffer_t token) {
 return readn(socket, (char *)token->value, token->length);
}

int write_token(int socket, gss_buffer_t token) {
 return writen(socket, (char *)token->value, token->length);
}

#else /* WIN32, always a bit different */
/* function str_cli */
/* get input message, encrypt message and send to server */
312 DCE Replacement Strategies

void str_cli(
 register FILE *fp,
 register int sockfd,
 CtxtHandle * security_context) {

 int n;
 char sendline[MAXLINE];
 char recvline[MAXLINE+1];
 OM_uint32 maj_stat;
 SecBuffer in_buf, out_buf;
 SecBuffer wrap_bufs[3];
 SecBufferDesc in_buf_desc;
 SecPkgContext_Sizes sizes;
 gss_qop_t qop_state;

 maj_stat = QueryContextAttributes(
 security_context,
 SECPKG_ATTR_SIZES,
 &sizes
);
 if (maj_stat != SEC_E_OK) {
 fprintf(stderr, "error querying context attributes", maj_stat);
 exit (-1);
 }

 while (fgets(sendline, MAXLINE, stdin) != NULL) {
 n = strlen(sendline);

 in_buf.pvBuffer = sendline;
 in_buf.cbBuffer = n;

 //
 // Prepare to encrypt the message
 //
 in_buf_desc.cBuffers = 3;
 in_buf_desc.pBuffers = wrap_bufs;
 in_buf_desc.ulVersion = SECBUFFER_VERSION;

 wrap_bufs[0].cbBuffer = sizes.cbSecurityTrailer;
 wrap_bufs[0].BufferType = SECBUFFER_TOKEN;
 wrap_bufs[0].pvBuffer = malloc(sizes.cbSecurityTrailer);

 if (wrap_bufs[0].pvBuffer == NULL) {
 fprintf(stderr,"Failed to allocate space for security trailer\n");
 exit (-1);
 }

 wrap_bufs[1].BufferType = SECBUFFER_DATA;
 Appendix A. Scenario 1: Source code listings 313

 wrap_bufs[1].cbBuffer = in_buf.cbBuffer;
 wrap_bufs[1].pvBuffer = malloc(wrap_bufs[1].cbBuffer);

 if (wrap_bufs[1].pvBuffer == NULL) {
 fprintf(stderr,"Couldn't allocate space for wrap message\n");
 exit (-1);
 }

 memcpy(
 wrap_bufs[1].pvBuffer,
 in_buf.pvBuffer,
 in_buf.cbBuffer);

 wrap_bufs[2].BufferType = SECBUFFER_PADDING;
 wrap_bufs[2].cbBuffer = sizes.cbBlockSize;
 wrap_bufs[2].pvBuffer = malloc(wrap_bufs[2].cbBuffer);

 if (wrap_bufs[2].pvBuffer == NULL) {
 fprintf(stderr,"Couldn't allocate space for wrap message\n");
 exit (-1);
 }

 maj_stat = EncryptMessage(
 security_context,
 0,
 &in_buf_desc,
 0);

 if (maj_stat != SEC_E_OK) {
 fprintf(stderr,"Couldn't encrypt message %d\n", maj_stat);
 (void) closesocket(sockfd);
 (void) DeleteSecurityContext(security_context);
 exit (-1);
 }

 //
 // Create the message to send to server
 //

 out_buf.cbBuffer =
 wrap_bufs[0].cbBuffer +
 wrap_bufs[1].cbBuffer +
 wrap_bufs[2].cbBuffer;
 out_buf.pvBuffer = malloc(out_buf.cbBuffer);

 if (out_buf.pvBuffer == NULL) {
 fprintf(stderr,"Failed to allocate space for wrapepd message\n");
 exit (-1);
314 DCE Replacement Strategies

 }

 memcpy(
 out_buf.pvBuffer,
 wrap_bufs[0].pvBuffer,
 wrap_bufs[0].cbBuffer);
 memcpy(
 (PUCHAR) out_buf.pvBuffer + (int) wrap_bufs[0].cbBuffer,
 wrap_bufs[1].pvBuffer,
 wrap_bufs[1].cbBuffer);
 memcpy(
 (PUCHAR) out_buf.pvBuffer +
 wrap_bufs[0].cbBuffer +
 wrap_bufs[1].cbBuffer,
 wrap_bufs[2].pvBuffer,
 wrap_bufs[2].cbBuffer);

 /* Send to server */
 if (send_token(sockfd, &out_buf) < 0)
 {
 (void) closesocket(sockfd);
 (void) DeleteSecurityContext(security_context);
 exit (-1);
 }

 free(out_buf.pvBuffer);
 out_buf.pvBuffer = NULL;
 out_buf.cbBuffer = 0;
 free(wrap_bufs[0].pvBuffer);
 wrap_bufs[0].pvBuffer = NULL;
 free(wrap_bufs[1].pvBuffer);
 wrap_bufs[1].pvBuffer = NULL;

 /* read unencrypted server response */
 n = readline(sockfd, recvline, MAXLINE);
 if (n < 0) err_dump("str_cli: readline error");
 recvline[n] = 0;
 fputs(recvline, stdout);
 }
 if (ferror(stdin)) err_sys("str_cli: error reading file");

}

int send_token(int s, PSecBuffer tok) {
 ULONG len;
 ULONG ret;
 unsigned char length_low;
 unsigned char length_high;
 Appendix A. Scenario 1: Source code listings 315

 len = htonl(tok->cbBuffer);
 length_low = tok->cbBuffer & 0xff;
 length_high = tok->cbBuffer >> 8;

 ret = writen(s, (char *) &length_low, 1);
 if (ret < 0) {
 perror("sending token length");
 return -1;
 }
 ret = writen(s, (char *) &length_high, 1);
 if (ret < 0) {
 perror("sending token length");
 return -1;
 }

 ret = writen(s, tok->pvBuffer, tok->cbBuffer);
 if (ret < 0) {
 perror("sending token data");
 return -1;
 }
 else if (ret != tok->cbBuffer) {
 fprintf(stderr,
 "sending token data: %d of %d bytes written\n",
 ret, tok->cbBuffer);
 return -1;
 }

 return 0;
}

int recv_token(int s, PSecBuffer tok) {
 ULONG ret;
 unsigned char length_low;
 unsigned char length_high;

 ret = readn(s, (char *) &length_low, 1);
 if (ret < 0){
 perror("reading token length");
 return -1;
 }
 ret = readn(s, (char *) &length_high, 1);
 if (ret < 0) {
 perror("reading token length");
 return -1;
 }

 tok->cbBuffer = length_low + length_high * 256;
316 DCE Replacement Strategies

 tok->pvBuffer = (char *) malloc(tok->cbBuffer);
 if (tok->pvBuffer == NULL) {

 fprintf(stderr,
 "Out of memory allocating token data\n");
 return -1;
 }

 ret = readn(s, (char *) tok->pvBuffer, tok->cbBuffer);
 if (ret < 0) {
 perror("reading token data");
 free(tok->pvBuffer);
 return -1;
 }
 else if (ret != tok->cbBuffer) {
 fprintf(stderr,
 "sending token data: %d of %d bytes written\n",
 ret,
 tok->cbBuffer);
 free(tok->pvBuffer);
 return -1;
 }

 return 0;
}

#endif

Header file for utility source
Description: Utility module without DCE dependencies
File name: utils_s1.h

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>

#ifdef WIN32
#include <windows.h>
#include <io.h>
#include <fcntl.h>
#include <winsock2.h>
#define SECURITY_WIN32
#include <security.h>
#include <ntsecapi.h>
#include "gssapi/gssapi.h"

/* For some reason this is not visible through include, so we define it here */
 Appendix A. Scenario 1: Source code listings 317

define SECBUFFER_PADDING 9

undef write
define write(fd, bufptr, buflen) send(fd, bufptr, buflen, 0)
undef read
define read(fd, bufptr, buflen) recv(fd, bufptr, buflen, 0)
undef close
define close(fd) closesocket(fd)

#else
include <gssapi/gssapi.h>
include <sys/socket.h>
include <netinet/in.h>
include <arpa/inet.h>
include <netdb.h>
#define min(a,b) (((a)<(b))?(a):(b))
#endif

#define err_sys(x) {perror(x); exit (1);}
#define err_dump(x) {fprintf(stderr, x); exit (1);}

int readn(register int fd,
 register char * ptr,
 register int nbytes);

int writen(register int fd,
 register char * ptr,
 register int nbytes);

int readline(register int fd,
 register char * ptr,
 register int maxlen);
#ifdef WIN32
void str_cli(register FILE *fp,
 register int sockfd,
 CtxtHandle *security_context);
#else
void str_s1(int sockfd, gss_ctx_id_t security_context);
#endif
int read_token(int socket, gss_buffer_t tok);
int write_token(int socket, gss_buffer_t tok);
void display_error(char * where, OM_uint32 maj, OM_uint32 min);
318 DCE Replacement Strategies

Application configuration file
Description: Application configuration file for IBM Tivoli Access Manager access
File name: remote.conf

#
Licensed Materials - Property of IBM
5748-XX8
(c) Copyright International Business Machines Corp. 2001
All Rights Reserved
US Government Users Restricted Rights - Use, duplicaion or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
#
File Name: remote.conf
#***
#
Example configuration file for the aznAPI application.
#
#***
#
Each stanza in this file has a separate section for parameters
that apply for local, remote, or both modes of operation. The
section is omitted if the stanza in question does not have
parameters that apply only to it.
#
Parameters not specified as being set by svrsslcfg must be set by
editing this file and providing the required values.
#
[aznapi-configuration]

#***
#
aznAPI Configuration Settings -- Local Mode
#
#***
#
NOTE: The following parameters only apply for local mode.
For remote mode, these parameters will be ignored.
To enable the feature in question for remote mode, the corresponding
parameter needs to be set in the pdacld configuration file --
ivacld.conf.
#
#***
#
Audit and Logging parameters.
#
logsize (in bytes) The size at which the log files will
rollover to a new file. If set to 0 the log files
will not rollover. A negative number will roll
 Appendix A. Scenario 1: Source code listings 319

the logs over daily regardless of size.
logflush The interval in seconds at which the logs are
flushed. Maximum of 6 hours and a default of 20
seconds.
#
logsize = 2000000
logflush = 20

Audit logging configuration.
#
logaudit Boolean. To turn on/off auditing completely.
auditlog the name of the audit file.
auditcfg To disable or enable component specific audit
records you may add or remove the appropriate
'auditcfg' definition.
#
logaudit = no
auditlog = audit.log
auditcfg = azn
#auditcfg = authn

The set of attributes that the caller is interested in receiving
from the azn_decision_access_allowed_ext() call in the permission
info attribute list. By default there is no information returned
by this call. Adding an attribute name to this list will enable
the attribute to be returned as permission info if it is applicable
to the current decision call. This list may also include attributes
that are user defined. e.g. by setting an attribute on an ACL using
the "acl modify set attribute" command from "pdadmin".
#
The following string constants are recognised by the authzn engine
and equate to their corresponding permission info attribute
constants in ogauthzn.h. Refer to this file for more information on
these permission info attributes:
#
azn_perminfo_all_attrs Return all attributes.
azn_perminfo_al_new Audit level (uint).
azn_perminfo_qop Quality of Protection (string).
azn_perminfo_qop_uint_new Quality of Protection (uint).
azn_perminfo_wm_new Warning mode (bool).
azn_perminfo_wm_permitted_new Access permitted by warning
mode (bool).
#
e.g.:
permission-info-returned = azn_perminfo_qop_uint_new my_attribute
#
#permission-info-returned = azn_perminfo_qop azn_perminfo_qop_uint_new

#

320 DCE Replacement Strategies

The path for the ACL database cache file.
#
db-file = ./authzn_demo.db

Update poll interval. This is the interval, in seconds, between
checks for updates to the master authzn server. The local cache is
only rebuilt if an update is detected. Values can be "disable",
"default" or a time in seconds.
#
cache-refresh-interval = disable

#
Flags to enable the reception of policy cache update notifications.
Values can be one of: "disable", "enable"
A "disable" value the notification listener.
#
This parameter is set by the svrsslcfg utility.
#
listen-flags = disable

azn-app-host: This attribute is used to customize the host on which the
AZN application is listening. If this attribute is not
specified, the default hostname is used. To enable this
attribute, create a new line similar to the following:
azn-app-host = <other hostname>

#***

#***
#
aznAPI Configuration Settings -- Common
#
#***
#
NOTE: The following parameters apply for both local and remote mode.
#
#***
#
Start-up parameters. These are used for initialising the API.
Typically there is no need to change these from the defaults.
#

Operating mode for the AuthAPI. Values are
#
remote Uses ivacld.
local Starts an API client with a local policy cache.
#
This parameter is set by svrsslcfg utility
 Appendix A. Scenario 1: Source code listings 321

mode = remote

azn-server-name = authzn_remote-tivdce1.itsc.austin.ibm.com
pd-user-name = authzn_remote/tivdce1.itsc.austin.ibm.com
pd-user-pwd = chuy5
[ssl]

#***
#
ssl Configuration Settings -- Common
#
#***
#
NOTE: The following parameters apply for both local and remote mode.
#
#***
#
#
SSL configuration
The svrsslcfg utility will set most of these parameters.
#

#
Pathname on the local system for the keyfile used by SSL.
#
ssl-keyfile = /home/root/devel/keytab/authzn_remote.kdb

#
File containing the password used to protect private keys in the
keyfile. The password is obfuscated and stored in the stash file.
#
ssl-keyfile-stash = /home/root/devel/keytab/authzn_remote.sth

#
NOTE: The following parameter only applies for these scenarios:
* local mode when listen-flags are set to enable.
* local mode when aznapi-admin-services are registered.
* remote mode when aznapi-admin-services are registered.
For other cases, this parameter will be ignored.
#
Port on which the application will listen for requests and policy
cache update notifications.
#
ssl-listening-port = 7777

#

322 DCE Replacement Strategies

Maximum number of threads that will be created by the aznAPI's
internal server to handle incoming requests (range: >= 1, optimal
limits are system resource dependent).
#
ssl-maximum-worker-threads = 10

#
Session time-out in seconds for SSL v3 connections (range: 1-86400).
#
ssl-v3-timeout = 7200

#
Connection time-out for i/o in seconds
(range: >= 0, 0 = no time-out).
#
ssl-io-inactivity-timeout = 90

#
Key database file password lifetime in days.
#
ssl-pwd-life = 183

#
Enable (value of "yes") or disable (value of "no") automatic refresh
of the SSL certificate and key database file password. When
enabled, the certificate and password will be regenerated if either
is in danger of expiration.
#
ssl-auto-refresh = yes

#
Authentication type.
#
ssl-authn-type = certificate

[ldap]

#***
#
LDAP Configuration Settings -- Common
#
#***
#
NOTE: The following parameters apply for both local and remote mode.
#
#***
#
Configure the LDAP user registry interface if required.
#

 Appendix A. Scenario 1: Source code listings 323

If enabled then you will require an LDAP server host name, a port
to bind to the server on, a bind user DN and bind user password.
Optionally, you can specify that the aznAPI communicate with the
server using SSL. In this case you must set the enable parameter
and you must also specify an SSL keyfile name to use along with the
keyfile DN (if there are multiple keys in the file) and keyfile DN's
password.
#
#
LDAP config parameters.
#
enabled Enable LDAP user registry support? Yes/no.
This parameter will be set by svrsslcfg utility
depending on the configured Policy Director User
Registry type.
host The LDAP server host name.
This parameter will be set by svrsslcfg utility
if
the configured Policy Director User Registry is
LDAP.
port The IP port on which the LDAP server listens for
non-SSL
requests.
bind-dn An LDAP user DN to bind to the server with.
This parameter will be set by svrsslcfg utility
if
the configured Policy Director User Registry is
LDAP.
bind-pwd The pwd for the above LDAP user DN.
This parameter will be set by svrsslcfg utility
if
the configured Policy Director User Registry is
LDAP.
#
cache-enabled Enable LDAP client-side caching to improve
performance for similar LDAP queries. True/false.
#
ssl-enabled (optional) Enable SSL comms with the LDAP server.
Yes/no.
ssl-port The SSL IP port on which the LDAP server listens
for SSL requests. Required if ssl-enabled = yes
ssl-keyfile Path to an SSL key file containing the LDAP server
certificate. Required if ssl-enable = yes
ssl-keyfile-pwd Password for the key file.
Required if ssl-enable = yes
ssl-keyfile-dn Key file DN (for files with multiple keys).
#
max-search-size (optional) Limit for the maximum search buffer
size returned from the LDAP server in entries.
324 DCE Replacement Strategies

#
prefer-readwrite-server (optional) The client will attempt to query
the read/write LDAP server (see ldap-replica
config option below) before any read-only
servers configured in the domain.
#
auth-using-compare (optional) Choose whether ldap_compare() will
be used instead of the ldap_bind() call to
authenticate LDAP users. This option will
change the method used by these aznAPI calls:
#
- azn_util_client_authenticate()
- azn_util_password_authenticate()
#

enabled = yes
host = tivdce1.itsc.austin.ibm.com
port = 389
bind-dn =
cn=authzn_remote/tivdce1.itsc.austin.ibm.com,cn=SecurityDaemons,secAuthority=De
fault
bind-pwd = chuy5
cache-enabled = true

#ssl-enabled = yes
#ssl-port = 636
#ssl-keyfile = <key file>
#ssl-keyfile-pwd = <key file password>
#max-search-size = 2048
#prefer-readwrite-server = true
#auth-using-compare = true

Define the LDAP user registry replicas in the domain.
#
Each string is of the format:
ldap-replica = <ldap-server>,<port>,<type>,<pref>
#
Where:
<ldap-server> is the network name of the server.
<port> is the port on the ldap server.
<type> is one of "readonly" or "readwrite"
<pref> is a level from 1 to 10. 10 is the highest preference.
#
#ldap-replica = freddy,390,readonly,1
#ldap-replica = barney,391,readwrite,2
#ldap-replica = benny,392,readwrite,3
 Appendix A. Scenario 1: Source code listings 325

[uraf-ad]

#***
#
Active Directory Configuration Settings
#
#***

ad-server-config = <Active Directory registry configuration file for PD>
bind-id = <server identity for bind>
bind-pwd = <server password for bind>

[uraf-domino]

#***
#
Domino Configuration Settings
#
#***

domino-server-config = <Domino registry configuration file for PD>
bind-id = <server identity for bind>
bind-pwd = <server password for bind>

#***
#
aznAPI Service Definitions - Common
#
#***
#
NOTE: The following aznAPI service definitions apply for both local
and remote mode.
#
#***
#
aznAPI service definitions.
#
Each stanza entry defines different types of aznAPI service.
For more information refer to the Authorization API programmers
guide.
#
Each entry is of the format:
#
<service-id> = <path-to-dll> [& <params> ...]
#
e.g.
AZN_ENT_SVC_USER = /usr/lib/libazn_ent_user.so & -param 1
#
The <service-id> is the string by which the service can be
326 DCE Replacement Strategies

identified by the aznAPI client. The <path-to-dll> is the
path to the DLL which contains the service executable code.
If the DLL resides in a directory that is normally searched
by the system for DLLs e.g. /usr/lib on Unix platforms and
%PATH% on Windows-NT then you need not specify the full path
to the DLL, simply the DLL name. If you want the DLL name
to be platform independent so that it may be loaded on any
supported Policy Director platform then you may provide a
short form library name. The short name will be prepended
and appended with known library prefixes and suffixes for
each platform and each possibility searched for in turn.
e.g. with an example short form library name of "azn_ent_user"
then the following names will be automatically searched for
on each platform:
#
NT: azn_ent_user.dll
AIX: libazn_ent_user.so, libazn_ent_user.a
Solaris: libazn_ent_user.so
HP/UX: libazn_ent_user.sl
#
Optionally you can specify parameters to pass to the service
when it is initialised by the aznAPI. The parameters are
considered to be all data following the '&' symbol in the
service definition.
#
Refer to the Authorization Programmer's Guide for any
differences in the way that the service definition for each
particular service type may vary from that above.
#

[aznapi-entitlement-services]

[aznapi-pac-services]

[aznapi-cred-modification-services]

[aznapi-external-authzn-services]

[aznapi-admin-services]
 Appendix A. Scenario 1: Source code listings 327

#
Sample AZN Admin. Service Definitions
#
plugin w/ pobj parameter, and with plugin parameters
#AZN_ADMIN_SVC_DEMO1 = azn_admin_svc_demo -pobj
/aznadminsvc/authzn_demo_server1 & -server authzn_demo_server1
#
plugin w/ no pobj parameter, and with plugin parameters
#AZN_ADMIN_SVC_DEMO2 = azn_admin_svc_demo & -server authzn_demo_server2
#

AZN_ADMIN_SVC_TRACE = pdtraceadmin

[manager]

#***
#
manager Configuration Settings -- Remote
#
#***
#
NOTE: The following parameters apply only for remote mode.
For local mode, this parameter will be ignored.
#
#***
#
#
Authorization server replicas
#
Use svrsslcfg utility -add_replica to add replica entries to this
file.
#
replica = \
<ivacld replica hostname>:<port>:<preference>:<replica cert dn>
#
For example,
replica = \
rep1.acme.com:7137:5:cn=ivacld/rep1.acme.com,o=Policy Director,C=US

#***
#
manager Configuration Settings -- Common
#
#***
#
NOTE: The following parameters apply for both local and remote mode.
328 DCE Replacement Strategies

#
#***
#
#
PD Management server configuration
svrsslcfg utility will set parameters in this section
#

Hostname of the Management server
master-host = tivdce2.itsc.austin.ibm.com

TCP Port number on which the server is listening for requests.
master-port = 7135

master-dn = CN=ivmgrd/master,O=Policy Director,C=US
replica =
tivdce1.itsc.austin.ibm.com:7136:10:CN=ivacld/tivdce1.itsc.austin.ibm.com,O=Pol
icy Director,C=US
[authentication-mechanisms]

#***
#
authentication-mechanisms Configuration Settings -- Common
#
#***
#
NOTE: The following parameters apply for both local and remote mode.
#
#***
#
#
Authentication mechanisms
Entries in this stanza are managed by svrsslcfg utility
passwd-ldap = /opt/PolicyDirector/lib/libldapauthn.a
cert-ldap = /opt/PolicyDirector/lib/libcertauthn.a
 Appendix A. Scenario 1: Source code listings 329

330 DCE Replacement Strategies

Appendix B. Scenario 2: Source code
listings

This appendix lists the complete source code that was explained in pieces in
Chapter 9, “Scenario 2: Non-secure RPC application” on page 171. Specifically,
this appendix contains:

� The source code of the client and server programs with DCE dependencies

� The source code of the revised client and server program without DCE
dependencies

� The makefiles used for these programs

� Header files

� Application properties files

Please refer to Appendix E, “Additional material” on page 417 for instructions
about downloading the source code samples included in this appendix.

B

© Copyright IBM Corp. 2003. All rights reserved. 331

Application with DCE dependencies
The files are:

� Makefile contains information about how the application is compiled and
linked on the AIX operating system.

� client_s2.mak contains information about how the application is compiled and
linked on the Windows operating system.

� greet.idl contains the interface definition shared by the client and server
programs. It contains a single service: greet_rpc()

� client_s2.c contains the client code. After acquiring a partial binding to the
server from the DCE CDS naming service, the client program invokes an RPC
to the server and prints the server’s response to the screen.

� server_s2.c contains the server code. The server creates and registers its
binding information with DCE CDS Naming Service and DCE RPC endpoint
mapper. Then it starts listening for client calls.

� server_manager.c contains the actual application logic of the server program.
Upon client requests, it prints the client’s string message to the screen and
returns another string to the client.

The source files greet_cstub.c, greet_sstub.c, and greet.h are generated by the
DCE IDL compiler so are not listed here.

Makefile for the AIX platform
Description: Makefile for application client and server
File name: Makefile.aix

SOURCE = server_s2.c client_s2.c server_manager.c

SOBJS = server_s2.o server_manager.o greet_sstub.o
COBJS = client_s2.o greet_cstub.o

IDL = /usr/bin/idl

IDL_INCDIRS = -I..

IDL_FLAGS = ${IDL_INCDIRS} -keep c_source

INCDIRS = -I.

LIBDIRS = -L/usr/lib -L.

LIBS = ${LIBDIRS} -ldce
332 DCE Replacement Strategies

CDEFS = -Dunix -qlanglvl=extended -D_ALL_SOURCE
CFLAGS = -g -w ${CDEFS} ${INCDIRS}

CC = /bin/xlc_r4

.c.o:
${CC} ${CFLAGS} -c $<

all:server_s2 client_s2

server_s2.o: server_s2.c greet.h
${CC} ${CFLAGS} -c server_s2.c

client_s2.o: client_s2.c greet.h
${CC} ${CFLAGS} -c client_s2.c

server_manager.o: server_manager.c greet.h
${CC} ${CFLAGS} -c server_manager.c

greet_sstub.o: greet_sstub.c greet.h
${CC} ${CFLAGS} -c greet_sstub.c

greet_cstub.o: greet_cstub.c greet.h
${CC} ${CFLAGS} -c greet_cstub.c

greet_cstub.c greet_sstub.c greet.h: greet.idl
${IDL} greet.idl ${IDL_FLAGS}

server_s2: ${SOBJS}
${CC} -o server_s2 ${SOBJS} ${LIBS}

client_s2: ${COBJS}
${CC} -o client_s2 ${COBJS} ${LIBS}

clean:
rm -f greet.h greet_sstub.c greet_cstub.c ${SOBJS} ${COBJS}

rmtarget:
rm -f server_s2 client_s2

clobber: clean rmtarget
 Appendix B. Scenario 2: Source code listings 333

Makefile for the Windows platform
Description: Makefile for application client
File name: greet.mak

!include <NTWIN32.MAK>

!if "$(CPU)" == "ALPHA"
TARGET=alpha
SWITCHES=-DALPHA
!else
TARGET=intel
SWITCHES=-D_X86=1 -DM_I86
!endif

LIBS = \
 libdce.lib \
 pthreads.lib \
 $(conlibsdll)

IDL = idl -keep c_source -v

CFLAGS = -I. $(cflags:-W3=) $(cvarsdll) $(SWITCHES) -Zi -Od -Gz -nologo

LINK = link $(ldebug) $(conlflags)

all: client_s2.exe server_s2.exe

clean :
 -del *.obj
 -del *.exe
 -del greet_cstub.c
 -del greet_sstub.c
 -del greet.h

client_s2.exe : client_s2.obj greet_cstub.obj
 $(LINK) /out:$@ $** $(_LIBS_)

server_s2.exe : server_s2.obj server_manager.obj greet_sstub.obj
 $(LINK) /out:$@ $** $(_LIBS_)

greet_cstub.obj : greet_cstub.c greet.h
 $(CC) $(CFLAGS) greet_cstub.c

server_s2.obj : server_s2.c greet.h
 $(CC) $(CFLAGS) server_s2.c

server_manager.obj : server_manager.c greet.h
 $(CC) $(CFLAGS) server_manager.c
334 DCE Replacement Strategies

client_s2.obj : client_s2.c greet.h
 $(CC) $(CFLAGS) client_s2.c

greet_sstub.obj : greet_sstub.c greet.h
 $(CC) $(CFLAGS) greet_sstub.c

greet_cstub.c greet_sstub.c greet.h : greet.idl
 $(IDL) -client stub -server stub -cstub greet_cstub.c \
 -sstub greet_sstub.c greet.idl

IDL source
Description: Interface definition
File name: greet.idl

 [
 uuid(d58ab008-b3c6-11ca-891c-c9c2d4ff3b52),
 version(1.0)
]

 interface greet
 {
 const long int STR_SZ = 128;

 void greet_rpc (
 [in] handle_t h,
 [in,string] char client_greeting[STR_SZ],
 [out,string] char server_reply[STR_SZ]
);
 }

DCE dependent application client
Description: Application client with DCE dependencies
File name: client_s2.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <dce/dce_error.h>
#include "greet.h"

int main(int ac, char*av[]) {
 handle_t h;
 error_status_t st;
 Appendix B. Scenario 2: Source code listings 335

 idl_char *string_binding;
 int i, MAX_PASS, error_inq_st;
 char reply[STR_SZ], error_string[1024],
 *name_to_greet;
 rpc_ns_import_handle_t import_context;

 if (ac != 3) {
 fprintf(stderr, "Usage: %s message passes\n", av[0]);
 exit (1);
 }

 name_to_greet = av[1];
 printf("Name to greet: %s\n",name_to_greet);

 /* import compatible server bindings from the namespace */

 rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
 "/.:/servers/greet", greet_v1_0_c_ifspec,
 (uuid_t *)NULL, &import_context, &st);

 if (st != error_status_ok) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot begin importing binding - %s\n", error_string);
 exit(1);
 }

 /* sift through bindings and choose the first one over udp */

 while (1) {
 rpc_ns_binding_import_next(import_context, &h, &st);
 if (st == rpc_s_no_more_bindings) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot find binding over udp: %s\n", error_string);
 exit(1);
 }

 rpc_binding_to_string_binding(h, &string_binding, &st);
 if (st != error_status_ok) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot convert binding to string binding: %s\n",
 error_string);
 exit(1);
 }

 /* out of curiosity, print the binding */

 if (strstr(string_binding, "ncadg_ip_udp") != 0) {
 fprintf(stdout, "Client bound to server at %s\n", string_binding);
 rpc_string_free(&string_binding, &st);
336 DCE Replacement Strategies

 break;
 }

 }
 /* end the binding import lookup loop */

 rpc_ns_binding_import_done(&import_context, &st);
 if (st != error_status_ok) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot end binding import: %s\n", error_string);
 exit(1);
 }

 fprintf(stdout, "\n");

 MAX_PASS= atoi(av [2]);

 for (i=1; i <= MAX_PASS; i++) {
 greet_rpc(h, name_to_greet, reply);
 printf("The Greet Server said: %s\n", reply);
 fflush(stdout);
 }
 return(0);
}

DCE dependent application server
Description: Application server with DCE dependencies
File name: server_s2.c

#include <stdio.h>
#include <stdlib.h>
#include <dce/pthread_exc.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>
#include "greet.h"

#define MAX_CONCURRENT_CALLS 5

/* The server declares nil UUID which it supplies
 in registrations as an object UUID and object type UUID. */

#ifdef __BORLANDC__
extern uuid_t _pascal uuid_nil;
#else
extern uuid_t uuid_nil;
#endif
 Appendix B. Scenario 2: Source code listings 337

/* In the first part of the main function, the server calls
 the rpc_network_is_protseq_valid to check that its argument
 specifies a protocol sequence that is supported on its host
 both by the runtime library and the operating system. */

int main () {
 rpc_binding_vector_p_t bvec;
 error_status_t st;
 boolean32 validfamily;
 idl_char *string_binding;
 char *entry_name, error_string[1024];
 int i, error_inq_st;

 entry_name = "/.:/servers/greet";

 validfamily = rpc_network_is_protseq_valid("ncadg_ip_udp", &st);
 if (st != error_status_ok) {
 dce_error_inq_text (st, error_string, &error_inq_st);
 fprintf (stderr,
 "Cannot check protocol sequence - %s\n",
 error_string);
 exit(1);
 }

 if (!validfamily) {
 fprintf(stderr, "Protocol sequence is not valid\n");
 exit (1);
 }

 /* Calling rpc_server_use_protseq to obtain an endpoint
 on which to listen */

 rpc_server_use_protseq("ncadg_ip_udp", MAX_CONCURRENT_CALLS, &st);
 if (st != error_status_ok) {
 dce_error_inq_text (st, error_string, &error_inq_st);
 fprintf (stderr, "Cannot use protocol sequence - %s\n", error_string);
 fflush(stdout);
 exit(1);
 }

 /* Calling rpc_server_register_if to register its interface with
 the RPC runtime by supplying its interface specifier */

 rpc_server_register_if(greet_v1_0_s_ifspec, (uuid_p_t)NULL, NULL, &st);
 if (st != error_status_ok) {
 dce_error_inq_text (st, error_string, &error_inq_st);
 fprintf (stderr, "Cannot register interface - %s\n", error_string);
338 DCE Replacement Strategies

 fflush(stdout);
 exit(1);
 }

 /* Calling rpc_server_inq_bindings to obtain a vector of
 binding handles that can be used to register the server's
 endpoint. The server then obtains, prints, and frees a
 string binding */

 rpc_server_inq_bindings(&bvec, &st);
 if (st != error_status_ok) {
 dce_error_inq_text (st, error_string, &error_inq_st);
 fprintf (stderr, "Cannot inquire bindings - %s\n", error_string);
 fflush(stdout);
 exit(1);
 }

 printf("Server %s bindings:\n", entry_name);
 fflush(stdout);

 for (i = 0; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

 printf("%s\n", (char *)string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);

 }

 /* The server endpoint is registered in the local Endpoint Map */

 rpc_ep_register(greet_v1_0_s_ifspec, bvec,
 (uuid_vector_p_t) NULL,
 (unsigned_char_p_t) "greet version 1.0 server",
 &st);
 if (st != error_status_ok) {
 dce_error_inq_text (st, error_string, &error_inq_st);
 fprintf (stderr, "Cannot register end point: %s\n", error_string);
 fflush(stdout);
 exit(1);
 }

 /* export the binding vector the runtime gave us to the namespace */

 rpc_ns_binding_export(rpc_c_ns_syntax_dce,
 (unsigned_char_p_t) "/.:/servers/greet",
 greet_v1_0_s_ifspec, bvec,
 Appendix B. Scenario 2: Source code listings 339

 (uuid_vector_t *)NULL, &st);

 if (st != error_status_ok) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot export binding vector: %s\n",error_string);
 fflush(stdout);
 exit(1);
 }

 /* To begin listening for RPC requests, the server calls
 rpc_server_listen. This call is placed within the TRY of a
 TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
 a signal while it is listening, it can unregister its interface
 and its endpoint before it exits. */

 TRY {
 printf("Listening...\n");
 fflush(stdout);
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);
 if (st != error_status_ok){
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Error: %s\n", error_string);
 }
 }

 CATCH_ALL {

 /* unexport binding vector from namespace --
 not usually done for a persistent server */

 fprintf(stdout, "Server %s unexporting\n", entry_name);
 fflush(stdout);

 rpc_ns_binding_unexport(rpc_c_ns_syntax_dce,
 "/.:/servers/greet", greet_v1_0_s_ifspec,
 (uuid_vector_t *)NULL, &st);

 if (st != error_status_ok) {
 dce_error_inq_text(st, error_string, &error_inq_st);
 fprintf(stderr, "Cannot unexport binding vector - %s\n",
 error_string);
 fflush(stdout);
 /* don't exit here */
 }

 printf("Unregistering endpoint \n");
 fflush(stdout);

 rpc_ep_unregister(greet_v1_0_s_ifspec, bvec,
340 DCE Replacement Strategies

 (uuid_vector_p_t) NULL, &st);
 }
 ENDTRY;
 return (0);
}

Application server logic
Description: Application server logic
File name: server_manager.c

#include <stdio.h>
#include <string.h>
#include "greet.h"

#ifndef IBMOS2
#define DCEAPI
#endif

/* server application logic :-) */
void greet_mirror(char * client_greeting, char * server_reply) {
 char tmp[STR_SZ];
 int i,msglen;

 msglen = strlen(client_greeting);
 printf("The client says: %s\n", client_greeting);
 for (i=0;i<msglen;i++) {
 tmp[i] = client_greeting[msglen-i-1];
 }
 tmp[i] = '\0';
 printf("This I turn around into %s\n",tmp);
 fflush(stdout);
 strncpy(server_reply,tmp,msglen+1);

}

void DCEAPI greet_rpc(
/* [in] */ handle_t h,
/* [in] */ idl_char client_greeting[128],
/* [out] */ idl_char server_reply[128]) {

 greet_mirror(client_greeting, server_reply);

}

 Appendix B. Scenario 2: Source code listings 341

Revised application without DCE dependencies
The files are:

� GreetAix.mak contains information about how the application is compiled and
linked on the AIX operating system.

� GreetNt.mak contains information about how the application is compiled and
linked on the Windows operating system.

� greet.idl contains the interface defintion shared by the client and server
programs. It contains a single service: greet_CORBA()

� CWrapper.h contains the function prototypes for all of the C wrapper
functions.

� client_CORBA.cpp contains the CORBA C++ client code. It initializes the
client environment, gets a pointer to the root naming context, accesses the
servant object, calls methods on the servant object, and stops the client and
releases resources used.

� client_s2.c contains the C client code. After intializing the CORBA
environment by invoking a C wrapper function defined in the CORBA C++
client, it invokes another C wrapper function to access the servant method
and prints the server’s response to the screen.

� greet.ih is the header file for the servant implementation class. It has the class
variables and methods declaration. This contains the modifications made to
the header file after it is generated by the CORBA IDL compiler.

� greet_I.cpp is the servant implementation class. It has method definitions for
the declarations in the greet.ih file. This contains the modifications made to
the implementation file after it is generated by the CORBA IDL compiler.

� server_CORBA.cpp contains the CORBA C++ server code. It initializes the
server environment, accesses naming contexts, binds a servant object,
creates a server shutdown object, and then starts listening for client calls to
service client requests.

� server_manager.c contains the actual application logic of the server program.
Upon client requests, it prints the client’s string message to the screen and
places the reserved message in the reply.

� WSServer.props contains the run-time properties for the CORBA C++ server.

� WSClient.props contains the run-time properties for the CORBA C++ client.

The source files greet_C.cpp, greet_S.cpp, and greet.hh are generated by the
CORBA IDL compiler and therefore not listed here.
342 DCE Replacement Strategies

Makefile for the AIX platform
Description: Makefile for the revised application client and server
File name: GreetAix.mak

#AIX-Specific Variables
IDLC = $(WAS_HOME)/bin/idlc
REMOVE= /bin/rm
REMOVEDIR= /bin/rm -rf
COPY = /bin/cp
CCC = /usr/vacpp/bin/xlC_r

#WAS-Specific Variables
LIBPATH= $(WAS_HOME)/lib
INCDIRS= $(WAS_HOME)/include

#OLT Debug Specific variables
LOCAL_CCFLAGS_DEBUG = -g
LOCAL_LDFLAGS_DEBUG = -g

#Other Variables
WSLOGDIR = .
LOCAL_INCDIRS= -I$(WSLOGDIR)

LIBS = $(LIBPATH) -L$(WSLOGDIR) -L/usr/vacpp/lib
INCS = $(INCDIRS) $(LOCAL_INCDIRS) -I/usr/vacpp/include

LOCAL_CCFLAGS = -c $(LOCAL_CCFLAGS_DEBUG) -M -DEXCL_IRTC -D_USE_NAMESPACE
-D_UNIX
LOCAL_LDFLAGS = $(LOCAL_LDFLAGS_DEBUG) -T512 -H512 -lwasoror -lwasosa1
-lwassrvs -lC

.SUFFIXES: .o .c .cpp .java .class

all: GreetServer GreetClient

GreetServer: Server_CORBA.o server_manager.o greet_I.o greet_S.o
$(CCC) -o $@ $? -L$(LIBS) $(LOCAL_LDFLAGS)

GreetClient: client_s2.o client_CORBA.o
$(CCC) -o $@ $? -L$(LIBS) $(LOCAL_LDFLAGS)

Server_CORBA.o: server_manager.c Server_CORBA.cpp greet_S.cpp greet_I.cpp
$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

client_s2.o: client_s2.c
$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

client_CORBA.o: client_CORBA.cpp greet_C.cpp
 Appendix B. Scenario 2: Source code listings 343

$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

greet_S.o: greet_S.cpp
$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

greet_I.o: server_manager.c greet_I.cpp
$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

greet_C.o: greet_C.cpp
$(CCC) $(LOCAL_CCFLAGS) -I$(INCS) $?

greet_S.cpp: greet.idl
$(IDLC) -J"-Djava.ext.dirs=$(EXTDIRS)" -mcpponly \
-shh:uc:sc greet.idl

clean:
-$(REMOVE) GreetServer GreetClient \
*.o *.u \
greet_C.cpp greet_S.cpp \
greet.hh

Makefile for the Windows platform
Description: Makefile for the revised application client and server
File name: GreetNt.mak

#Windows-Specific Variables
IDLC = idlc
ILIB = lib
REMOVE= del
COPY = copy
CCC = cl
LINK = link

#WAS-Specific Variables
LIBPATH= $(WAS_HOME)\lib
INCDIRS= $(WAS_HOME)\include

#OLT Debug Specific Variables
!ifdef DEBUG_ON
LOCAL_CCFLAGS_DEBUG = /Z7
LOCAL_LDFLAGS_DEBUG = /DEBUG /PDB:NONE
!else
LOCAL_CCFLAGS_DEBUG =
LOCAL_LDFLAGS_DEBUG =
!endif
344 DCE Replacement Strategies

#Other Variables
WSLOGDIR= .
EXTDIRS= $(WSLOGDIR);$(WAS_HOME)\lib
LOCAL_INCDIRS= $(WSLOGDIR)
LOCAL_CCFLAGS= -DEXCL_IRTC -D_USE_NAMESPACE \

 -GX $(LOCAL_CCFLAGS_DEBUG) /c /nologo /MD /Od /Fm
LOCAL_LDFLAGS= /NOLOGO $(LOCAL_LDFLAGS_DEBUG) /LIBPATH:$(LIBS) \

 wasororm.lib wasosa1m.lib wassrvsm.lib

LIBS = $(LIBPATH)
INCS = $(INCDIRS) /I$(LOCAL_INCDIRS)
SOBJS = Server_CORBA.obj server_manager.obj greet_I.obj greet_S.obj
COBJS = client_CORBA.obj client_s2.obj greet_C.obj

.SUFFIXES: .obj .c .cpp .java .class

all: GreetServer1.exe GreetClient.exe

GreetServer1.exe: Server_CORBA.obj server_manager.obj greet_I.obj greet_S.obj
$(LINK) $(LOCAL_LDFLAGS) /OUT:GreetServer1.exe $(SOBJS)

GreetClient.exe: client_s2.obj client_CORBA.obj greet_C.obj
$(LINK) $(LOCAL_LDFLAGS) /OUT:GreetClient.exe $(COBJS)

Server_CORBA.obj: server_manager.c Server_CORBA.cpp greet_S.cpp greet_I.cpp
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

client_s2.obj: client_s2.c
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

client_CORBA.obj: client_CORBA.cpp greet_C.cpp
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

greet_S.obj: greet_S.cpp
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

greet_I.obj: server_manager.c greet_I.cpp
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

greet_C.obj: greet_C.cpp
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?

greet_S.cpp: greet.idl
$(IDLC) -J"-Djava.ext.dirs=$(EXTDIRS)" -mcpponly \
-shh:uc:sc greet.idl

server_manager.obj: server_manager.c
$(CCC) /I$(INCS) $(LOCAL_CCFLAGS) $?
 Appendix B. Scenario 2: Source code listings 345

clean:
-$(REMOVE) GreetServer1.exe GreetClient.exe \
Server_CORBA.obj client_s2.obj server_manager.obj client_CORBA.obj \
greet_I.obj greet_C.obj greet_S.obj \
greet_C.cpp greet_S.cpp \
greet.hh

CORBA IDL file
Description: CORBA interface definition
File name: greet.idl

interface Greet {
 void greet_CORBA(in string client_greeting, out string server_reply);
};

Header file for C wrapper functions
Description: Header file containing the function prototype of all the C wrapper

functions
File name: CWrapper.h

#ifdef __cplusplus
extern "C"{
#endif
 int initialize(int argc, char* argv[]);
 void finalize();
 void greet_CORBA(char* client_greeting, char** reply);
 void greet_mirror(const char * client_greeting, char * server_reply);
#ifdef __cplusplus
}
#endif

define STR_SZ 20

C++ client for the revised application
Description: CORBA C++ client code
File name: client_CORBA.cpp

#ifndef lint
static const char *sccsid = "@(#) 1.0 GreetClient.cpp, 11/5/03";
#endif

#include <stdlib.h>
#include <stdio.h>
346 DCE Replacement Strategies

#include <string.h>
#include <malloc.h>

#include <CosNaming.hh>

/* Local includes follow */
#include "greet.hh"
#include "CWrapper.h"

// Global declarations:
static ::CORBA::ORB_ptr op;
Greet_var greet_Impl, liptr = NULL;

// This function deallocates resources used throughout the program.

void release_resources(::CORBA::ORB_ptr op) {
 // Deallocate the various resources we have allocated.
 ::CORBA::release(op);
}

// This function initializes the ORB.

int perform_initialization(int argc, char *argv[]) {
 // Initialize the ORB.
 op = ::CORBA::ORB_init(argc, argv, "DSOM");
 cout << "Initialized ORB" << endl;

 return(0);
}

// This function accesses the Name Service and then gets
// the root naming context, which it returns;
// the Greet context.

::CosNaming::NamingContext_ptr get_naming_context() {
 ::CosNaming::NamingContext_ptr rootNameContext = NULL;
 ::CORBA::Object_ptr objPtr;

 // Get access to the Naming Service.
 try {
 objPtr = op->resolve_initial_references("NameService");
 }
 catch(::CORBA::ORB::InvalidName e) {
 cerr << "ERROR: resolve_initial_references threw InvalidName" << endl;
 release_resources(op);
 return(NULL);
 }
 catch(::CORBA::SystemException e) {
 cerr << "ERROR: resolve_initial_references threw SystemException"
 Appendix B. Scenario 2: Source code listings 347

 << endl;
 release_resources(op);
 return(NULL);
 }
 if (objPtr == NULL) {
 cerr << "ERROR: resolve_initial_references returned NULL" << endl;
 release_resources(op);
 return(NULL);
 }
 else
 cout << "resolve_initial_references returned = " << objPtr << endl;

 // Get the root naming context.
 rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
 if (::CORBA::is_nil(rootNameContext)) {
 cerr << "ERROR: rootNameContext narrowed to nil" << endl;
 release_resources(op);
 return(NULL);
 }
 else
 cout << "rootNameContext = " << rootNameContext << endl;
 // Release the temporary pointer.
 ::CORBA::release(objPtr);

 return(rootNameContext);
}

int initialize(int argc, char* argv[]) {
 int rc;
 ::CORBA::Object_ptr objPtr;
 ::CosNaming::NamingContext_var rootNameContext = NULL;

 if ((rc = perform_initialization(argc, argv)) != 0)
 return rc;

 cout << "Before getting naming context " << endl;

 // Get the root naming context.
 rootNameContext = get_naming_context();
 if (::CORBA::is_nil(rootNameContext))
 return -1;

 // Find the Greet_Impl created by the server. Look up the
 // object using the complex name of domain.GreetContext.GreetObject1,
 // which is its full name from the root naming context, as created
 // by GreetServer.

 cout << "Before CosNaming" << endl ;
 try {
348 DCE Replacement Strategies

 // Create a new ::CosNaming::Name to pass to resolve().
 // Construct it as the full three-part complex name starting at legacyRoot.
 ::CosNaming::Name *greetName = new ::CosNaming::Name;
 greetName->length(3);
 (*greetName)[0].id = ::CORBA::string_dup("legacyRoot");
 (*greetName)[0].kind = ::CORBA::string_dup("");
 (*greetName)[1].id = ::CORBA::string_dup("GreetContext");
 (*greetName)[1].kind = ::CORBA::string_dup("");
 (*greetName)[2].id = ::CORBA::string_dup("GreetObject1");
 (*greetName)[2].kind = ::CORBA::string_dup("");
 ::CORBA::Object_ptr objPtr = rootNameContext->resolve(*greetName);
 delete greetName;
 liptr = Greet::_narrow(objPtr);
 cout << "After narrow, liptr = " << liptr << endl;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 cerr << "ERROR: resolve threw NotFound" << endl;
 release_resources(op);
 return 0;
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: resolve threw CannotProceed" << endl;
 release_resources(op);
 return 0;
 }
 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: resolve threw InvalidName" << endl;
 release_resources(op);
 return 0;
 }
 catch(::CORBA::SystemException e) {
 cerr << "ERROR: resolve rootNameContext threw SystemException"
 << endl;
 release_resources(op);
 return(0);
 }

 return 0;
}

void finalize() {
 release_resources(op);
}

void greet_CORBA(char* client_greeting, char** reply) {
char* server_reply;

 liptr->greet_CORBA(client_greeting, server_reply);
*reply=server_reply;

}

 Appendix B. Scenario 2: Source code listings 349

C client for the revised application
Description: The revised C client code
File name: client_s2.c

#include <stdio.h>
#include "CWrapper.h"

int main (int ac, char* av[]) {
 int i, MAX_PASS;
 char *name_to_greet, *reply;

 if (ac !=3){
 fprintf(stderr, "Usage: %s message passes \n",av[0]);
 exit(1);
 }

 /* A call to the CORBA C++ client to initialize the client,
 get naming context and to access the servant object */
 initialize(ac,av);
 printf("after initialize \n");

 name_to_greet = av[1];
 MAX_PASS = atoi(av[2]);
 for (i=1; i<=MAX_PASS; i++){
 /* Access the servant object method.
 In the DCE applciation, the function call was :
 greet_RPC(name_to_greet,reply); */
 greet_CORBA(name_to_greet, &reply);
 printf("The Greet Server said : %s\n", reply);
 fflush(stdout);
 }

 /* A call to the CORBA C++ client to deallocate the resources */
 finalize();
 return 0;
}

Header file for CORBA servant
Description: Header file for servant implementation class
File name: greet.ih

//--
//
// Generated from greet.idl
// On Thursday, May 15, 2003 12:08:57 PM CDT
// by IBM CORBA 2.3 (ih) C++ emitter 2.30
350 DCE Replacement Strategies

//
//--

#ifndef _greet_ih_included
#define _greet_ih_included
 //==//
 // DEVELOPER_NOTE: //
 // The classes and code emitted in this file are //
 // provided to assist you in the development of your //
 // implementation objects, valuetypes, and valuetype //
 // factories. It is your responsibility to provide //
 // the method implementations (see the corresponding //
 // <name>_I.cpp file). There are alternative //
 // ways to design the implementation classes. //
 // The following code represents one design approach. //
 // //
 // Please search for DEVELOPER_NOTE in this file //
 // to locate all of the places where you //
 // may need to examine, add, or modify code. //
 //==//

#ifdef SOMCBNOLOCALINCLUDES
#else
#endif
#ifdef SOMCBNOLOCALINCLUDES
#include <greet.hh>
#else
#include "greet.hh"
#endif

class Greet_Impl : public virtual ::Greet_Skeleton {

 public:
 ::CORBA::Void greet_CORBA(const char* client_greeting,
 ::CORBA::String_out server_reply);

/* The following declarations for the constructor and destructor have been
 added to this generated file */
 public:
 Greet_Impl();
 virtual ~Greet_Impl();
};

#endif /* _greet_ih_included */
 Appendix B. Scenario 2: Source code listings 351

Servant implemention
Description: Servant implementation code
File name: greet_I.cpp

//--
//
// Generated from greet.idl
// On Thursday, May 15, 2003 12:08:57 PM CDT
// by IBM CORBA 2.3 (ic) C++ emitter 2.30
//
//--

 //==//
 // DEVELOPER_NOTE: //
 // The classes and code emitted in this file are //
 // provided to assist you in the development of your //
 // implementation objects, valuetypes, and valuetype //
 // factories. It is your responsibility to provide //
 // the method implementations and ensure correctness //
 // (see the corresponding <name>.ih file). There are //
 // alternative ways to design the implementation //
 // classes. The following code represents one //
 // design approach. //
 // //
 // Please search for DEVELOPER_NOTE in this file //
 // to locate all of the places where you //
 // may need to examine, add, or modify code. //
 //==//

#ifdef SOMCBNOLOCALINCLUDES
#include <greet.ih>
#else
#include "greet.ih"
#endif

#include "CWrapper.h"

::CORBA::Void Greet_Impl::greet_CORBA(const char* client_greeting,
 ::CORBA::String_out server_reply) {
 // DEVELOPER_NOTE: Provide method implementation
 char reply[STR_SZ];
 greet_mirror(client_greeting, reply);
 server_reply=::CORBA::string_dup(reply);
}

// Constructor for class Greet_Impl.
Greet_Impl::Greet_Impl() { }
352 DCE Replacement Strategies

// Destructor for class Greet_Impl.
Greet_Impl::~Greet_Impl() { }

Revised application server
Description: CORBA C++ server code
File name: server_CORBA.cpp

#ifndef lint
static const char *sccsid = "@(#) 1.0 GreetServer.cpp, 11/5/03 ";
#endif

#include <locale.h>
#include <CosNaming.hh>
#include <greet.ih>
#include <WSServerShutdown.h>

#if defined(minor)
#undef minor
#endif

// Global declarations:
static ::CORBA::ORB_ptr op;
static ::CORBA::BOA_ptr bp;
::CORBA::ImplementationDef_ptr imp ;
Greet_var greet_Impl;

// This function deallocates resources used throughout the program.

void release_resources(::CORBA::BOA_ptr bp, ::CORBA::ImplementationDef_ptr
 imp, ::CORBA::ORB_ptr op) {

 // Deallocate the various resources we have allocated.
 bp->deactivate_impl(imp);
 ::CORBA::release(bp);
 ::CORBA::release(op);
 ::CORBA::release(imp);
}

// This function performs general initializtion, including retrieval
// of the appropriate ImplementationDef and initalization of the ORB and BOA.

int perform_initialization(int argc, char *argv[]) {
 // Initialize the server's Implementation Repository.
 ::CORBA::ImplRepository_ptr implrep = new ::CORBA::ImplRepository();
 // Retrieve the appropriate ImplementationDef by using the server alias.
 try {
 imp = implrep->find_impldef_by_alias(argv[1]);
 Appendix B. Scenario 2: Source code listings 353

 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when calling find_impldef_by_alias()" << endl;
 return(-1);
 }
 cout << "Retrieved ImplementationDef" << endl;

 // Initialize the ORB.
 op = ::CORBA::ORB_init(argc, argv, "DSOM");

 // Initialize the BOA.
 try {
 bp = op->BOA_init(argc, argv, "DSOM_BOA");
 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when calling BOA_init()" << endl;
 return(-1);
 }
 cout << "Initialized ORB" << endl;

 // Initialize this application as a server, allow it to accept
 // incoming request messages, but do not register it with the somorbd
 // daemon (because this is a lightweight server of transient objects).
 try {
 bp->impl_is_ready(imp, 0);
 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when searching for the server" << endl;
 return(-1);
 }
 cout << "Finished initialization of implementation" << endl;

 return(0);
}

// This function accesses the Name Service and then gets or creates
// the desired naming contexts. It returns the naming context for
// the Greet context.

::CosNaming::NamingContext_ptr get_naming_context() {
 ::CosNaming::NamingContext_var rootNameContext = NULL;
 ::CosNaming::NamingContext_var domainNameContext = NULL;
 ::CosNaming::NamingContext_ptr greetNameContext = NULL;
354 DCE Replacement Strategies

 ::CORBA::Object_ptr objPtr;

 // Get access to the Naming Service.
 try {
 objPtr = op->resolve_initial_references("NameService");
 }
 catch(::CORBA::ORB::InvalidName e) {
 cerr << "ERROR: resolve_initial_references threw InvalidName" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CORBA::SystemException e) {
 cerr << "ERROR: resolve_initial_references threw SystemException"
 << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 if (objPtr == NULL) {
 cerr << "ERROR: resolve_initial_references returned NULL" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 else
 cout << "resolve_initial_references returned = " << objPtr << endl;

 // Get a root naming context.
 rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
 if (::CORBA::is_nil(rootNameContext)) {
 cerr << "ERROR: rootNameContext narrowed to nil" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 else
 cout << "rootNameContext = " << rootNameContext << endl;
 // Release the temporary pointer.
 ::CORBA::release(objPtr);

 // Create a ::CosNaming::Name for legacyRoot, to get to the cell persistent
root.
 ::CosNaming::NameComponent nc;
 nc.kind = CORBA::string_dup("");
 nc.id = CORBA::string_dup("legacyRoot");
 ::CosNaming::Name_var name = new ::CosNaming::Name(1, 1, &nc, 0);
 // Get the legacyRoot naming context.
 try {
 objPtr = rootNameContext->resolve(name);
 cout << "objPtr from nameContext resolve = " << objPtr << endl;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 Appendix B. Scenario 2: Source code listings 355

 cerr << "ERROR: resolve threw NotFound" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: resolve threw CannotProceed" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: resolve threw InvalidName" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CORBA::SystemException e) {
 cerr << "ERROR: resolve_initial_references threw SystemException"
 << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 cout << "Resolved legacyRoot in root name context" << endl;

 domainNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
 if (::CORBA::is_nil(domainNameContext)) {
 cerr << "ERROR: domainNameContext narrowed to null" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 cout << "domainNameContext = " << domainNameContext << endl;
 // Release the temporary pointer.
 ::CORBA::release(objPtr);

 // Get a new Greet naming context for our objects.
 ::CosNaming::NameComponent nc2;
 nc2.kind = CORBA::string_dup("");
 nc2.id = CORBA::string_dup("GreetContext");
 ::CosNaming::Name_var name2 = new ::CosNaming::Name(1, 1, &nc2, 0);
 try {
 greetNameContext = domainNameContext->bind_new_context(name2);
 cout << "bind_new_context, greetNameContext = " << greetNameContext <<
endl;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 cerr << "ERROR: bind_new_context threw NotFound" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: bind_new_context threw CannotProceed" << endl;
356 DCE Replacement Strategies

 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: bind_new_context threw InvalidName" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when trying to bind_new_context" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::AlreadyBound e) {
 cerr << "ERROR: bind_new_context threw AlreadyBound" << endl;
 cout << "Trying to resolve the context" << endl;
 try {
 ::CosNaming::Name *greetName = new ::CosNaming::Name;
 greetName->length(1);
 (*greetName)[0].id = ::CORBA::string_dup("GreetContext");
 (*greetName)[0].kind = ::CORBA::string_dup("");
 ::CORBA::Object_ptr objPtr = domainNameContext->resolve(*greetName);

cout << "Before greetNameContext = " << greetNameContext << endl;
 greetNameContext = ::CosNaming::NamingContext::_narrow(objPtr);

cout << "AFter greetNameContext = " << greetNameContext << endl;
 delete greetName;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 cerr << "ERROR: resolve threw NotFound" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: resolve threw CannotProceed" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: resolve threw InvalidName" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 catch(::CosNaming::NamingContext::AlreadyBound e) {
 cerr << "ERROR: resolve threw AlreadyBound" << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }
 Appendix B. Scenario 2: Source code listings 357

 }
 catch(...) {
 cerr << "Unknow Exception thrown..." << endl;
 release_resources(bp, imp, op);
 return(NULL);
 }

 return(greetNameContext);
}

int create_and_bind(::CosNaming::Name *nc, ::CosNaming::NamingContext_var
 greetNameContext) {
 // Create a Greet object and a "stringified" IOR version of it.
 greet_Impl = new Greet_Impl();

 // Bind the object to this name in the greet naming context.
 try {
 greetNameContext->rebind(*nc, greet_Impl);
 cout << "bind of greetNameContext succeeded" << endl;
 }
 catch(::CosNaming::NamingContext::NotFound e) {
 cerr << "ERROR: bind threw NotFound" << endl;
 release_resources(bp, imp, op);
 return(-1);
 }
 catch(::CosNaming::NamingContext::CannotProceed e) {
 cerr << "ERROR: bind threw CannotProceed" << endl;
 release_resources(bp, imp, op);
 return(-1);
 }
 catch(::CosNaming::NamingContext::InvalidName e) {
 cerr << "ERROR: bind threw InvalidName" << endl;
 release_resources(bp, imp, op);
 return(-1);
 }
 catch(::CosNaming::NamingContext::AlreadyBound e) {
 cerr << "ERROR: bind threw AlreadyBound" << endl;
 release_resources(bp, imp, op);
 return(-1);
 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when trying to bind greet naming context" << endl;
 release_resources(bp, imp, op);
 return(-1);
 }
 return(0);
}

358 DCE Replacement Strategies

int main(int argc, char *argv[]) {
 ::CORBA::Object_ptr objPtr;
 ::CORBA::Status stat;
 int rc = 0;

 setlocale(LC_ALL, "");

 // Validate the input parameters.
 if (argc != 2) {
 cerr << "Usage: GreetServer <server_alias>" << endl;
 exit(-1);
 }

 if ((rc = perform_initialization(argc, argv)) != 0)
 exit(rc);

 // Get the various naming contexts.
 ::CosNaming::NamingContext_var greetNameContext = NULL;
 greetNameContext = get_naming_context();
 if (::CORBA::is_nil(greetNameContext))
 exit(-1);

 // Get a new ::CosNaming::Name for our Greet_Impl object.
 // This is done here rather than in create_and_bind() so that the
 // name can be reused later, when terminating the server.
 ::CosNaming::Name *nc = new ::CosNaming::Name;
 nc->length(1);
 (*nc)[0].id = ::CORBA::string_dup("GreetObject1");
 (*nc)[0].kind = ::CORBA::string_dup("");

 // Create a new Greet_Impl object and bind it to the greetNameContext.
 if ((rc = create_and_bind(nc, greetNameContext)) != 0)
 exit(-1);

 // Create a WSServerShutdown object that can break the server out of the
 // method execute_request_loop() when we are ready to terminate
 // the server. The WSStopServer command will make the subsequent
 // invocation of execute_request_loop() return to the server.
 WSServerShutdown *shutdownObj = new WSServerShutdown(argv[1], bp);
 cout << "Created WSServerShutdown object" << endl;

 cout << endl;
 cout << "server listening...." << endl << endl;
 cout.flush();

 // Go into an infinite loop, servicing ORB requests as they are
 // received. execute_request_loop() will return when an external command,
 // WSStopServer, is executed.
 Appendix B. Scenario 2: Source code listings 359

 stat = bp->execute_request_loop(::CORBA::BOA::SOMD_WAIT);

 cout << "execute_request_loop has returned!" << endl;

 // Terminate the server.

 // Unbind the Greet object from the greet naming context.
 cout << "Unbinding the Greet object" << endl;
 try {
 greetNameContext->unbind(*nc);
 }
 catch(::CORBA::SystemException &ex) {
 cerr << "ERROR: SystemException minor = " << ex.minor() <<
 " and id = " << ex.id();
 cerr << " was received when calling unbind()" << endl;
 }
 // Remove the greet naming context.
 try {
 greetNameContext->destroy();
 }
 catch(::CosNaming::NamingContext::NotEmpty e) {
 cerr << "ERROR: destroy threw NotEmpty" << endl;
 }

 release_resources(bp, imp, op);
 delete shutdownObj;
 delete nc;

 cout << "Exiting GreetServer..." << endl;
 cout.flush();
 return 0;
}

Revised application logic
Description: The C code for the application logic part revised to remove DCE

dependencies
File name: server_manager.c

#include <stdio.h>
#include "CWrapper.h"

void greet_mirror(const char * client_greeting, char * server_reply) {
 char tmp[STR_SZ];
 int i,msglen;

 msglen = strlen(client_greeting);
 printf("The client says: %s\n", client_greeting);
360 DCE Replacement Strategies

 for (i=0;i<msglen;i++) {
 tmp[i] = client_greeting[msglen-i-1];
 }
 tmp[i] = '\0';
 printf("This I turn around into %s\n",tmp);
 fflush(stdout);
 strncpy(server_reply,tmp,msglen);
}

Properties file for client
Description: Properties file for the CORBA C++ client
File name: WSClient.props

WebSphere Application Server Enterprise 5.0 props file
#
The setting for com.ibm.CORBA.TCPIP.lsdport is the number
of the port used by the location service daemon.
(If not specified, ASV's default value for lsdPort is 9000.)
#
com.ibm.CORBA.TCPIP.lsdPort=9000

The setting for com.ibm.CORBA.bootstrapHostName is the full name
of the machine on which the name server (i.e., ASV) is running.
#
com.ibm.CORBA.bootstrapHostName=9.3.4.230

The setting for com.ibm.CORBA.bootstrapPort is the number of the port
that the name server uses to communicate with clients and servers.
(If not specified, ASV's default value for bootstrapPort is 2809.)
#
com.ibm.CORBA.bootstrapPort=2809

Properties file for server
Description: Properties file for the CORBA C++ server
File name: WSServer.props

WebSphere Application Server Enterprise 5.0 props file
#
The setting for com.ibm.CORBA.hostName is the full name of the
system that is running the server code.
#
com.ibm.CORBA.hostName=tivdce3.itsc.austin.ibm.com
The setting for com.ibm.CORBA.TCPIP.lsdport is the number
of the port used by the location service daemon.
(If not specified, ASV's default value for lsdPort is 9000.)
 Appendix B. Scenario 2: Source code listings 361

#
com.ibm.CORBA.TCPIP.lsdPort=9000
com.ibm.CORBA.serverListenPort=1111

The setting for com.ibm.CORBA.bootstrapHostName is the full name
of the machine on which the name server (i.e., ASV) is running.
#
com.ibm.CORBA.bootstrapHostName=tivdce3.itsc.austin.ibm.com

The setting for com.ibm.CORBA.bootstrapPort is the number of the port
that the name server uses to communicate with clients and servers.
(If not specified, ASV's default value for bootstrapPort is 2809.)
#
com.ibm.CORBA.bootstrapPort=2809
362 DCE Replacement Strategies

Appendix C. Scenario 3: Source code
listings

This appendix lists the complete source code as that was explained in pieces in
Chapter 10, “Scenario 3: Secure RPC application #1” on page 195. Specifically,
this appendix contains:

� The source code of the client and server programs with DCE dependencies

� The source code of the revised client and server programs without DCE
dependencies

� The makefiles used for these programs

� Additional source code modules for authorization

� Header files

� Application configuration files

Refer to Appendix E, “Additional material” on page 417 for instructions for
downloading the source code samples included in this appendix.

C

© Copyright IBM Corp. 2003. All rights reserved. 363

Application with DCE dependencies
The files are:

� Makefile contains information about how the application is compiled and
linked on the AIX operating system.

� Directory.mak contains information about how the application is compiled and
linked on the Windows operating system.

� Directory.idl contains the interface definition shared by client and server
programs.

� client_s3.c contains the client code. The application client looks up a binding
to the application server via DCE CDS and extracts the server’s principal
name from that binding. It then tests whether the server is a member of the
security group it requests. If the test is OK, the client annotates the binding
handle with its security information and starts sending application data to the
server.

� server_s3.c contains the server code. First, the server performs a login to
DCE and creates threads in which its credentials and key are periodically
renewed. Then the server creates and registers its binding information with
DCE CDS Naming Service and DCE RPC endpoint mapper. If this is OK, the
server starts listening for client calls.

� directory_mgr.c implements the DCE authorization part. For every client
request, the server enforces the right level of protection and tests for correct
group membership of the calling principal. If access is allowed, the client
requests are forwarded to the actual business logic in directory_impl.c

� directory_impl.h provides forward declarations of the business services of
directory_impl.c

� directory_impl.c contains the application code of the server application. The
application consists of three services that return employee information.

� checks_status.h provides common error-handling code.

Makefile for the AIX platform
Description: Makefile for AIX application client and server
File name: Makefile

SOURCE = server_s3.c client_s3.c directory_mgr.c directory_impl.c
SOBJS = server_s3.o directory_mgr.o directory_impl.o Directory_sstub.o
COBJS = client_s3.o Directory_cstub.o
IDL = /usr/bin/idl
IDL_INCDIRS = -I..
IDL_FLAGS = ${IDL_INCDIRS} -keep c_source
364 DCE Replacement Strategies

INCDIRS = -I/usr/include/dce -I.
LIBDIRS = -L/usr/lib -L.
LIBS = ${LIBDIRS} -ldce -ldcepthreads -lpthreads
CDEFS = -Dunix -qlanglvl=extended -D_ALL_SOURCE -D _DCE_PTHREADS
CFLAGS = -g -w ${CDEFS} ${INCDIRS}
CC = cc
.c.o:

${CC} ${CFLAGS} -c $<

all:server_s3 client_s3

server_s3.o: server_s3.c Directory.h
${CC} ${CFLAGS} -c server_s3.c

client_s3.o: client_s3.c Directory.h
${CC} ${CFLAGS} -c client_s3.c

directory_impl.o: directory_impl.c Directory.h
${CC} ${CFLAGS} -c directory_impl.c

directory_mgr.o: directory_mgr.c Directory.h
${CC} ${CFLAGS} -c directory_mgr.c

Directory_sstub.o: Directory_sstub.c Directory.h
${CC} ${CFLAGS} -c Directory_sstub.c

Directory_cstub.o: Directory_cstub.c Directory.h
${CC} ${CFLAGS} -c Directory_cstub.c

Directory_cstub.c Directory_sstub.c Directory.h: Directory.idl
${IDL} Directory.idl ${IDL_FLAGS}

server_s3: ${SOBJS}
${CC} -o server_s3 ${SOBJS} ${LIBS}

client_s3: ${COBJS}
${CC} -o client_s3 ${COBJS} ${LIBS}

clean:
rm -f Directory.h Directory_sstub.c Directory_cstub.c ${SOBJS} ${COBJS}

rmtarget:
rm -f server_s3 client_s3

clobber: clean rmtarget
 Appendix C. Scenario 3: Source code listings 365

Makefile for the Windows platform
Description: Makefile for Windows application client and server
File name: Directory.mak

!include <NTWIN32.MAK>

!if "$(CPU)" == "ALPHA"
TARGET=alpha
SWITCHES=-DALPHA
!else
TARGET=intel
SWITCHES=-D_X86=1 -DM_I86
!endif

LIBS = \
libdce.lib \
pthreads.lib \
$(conlibsdll)

IDL = idl -keep c_source -v

CFLAGS= -I. $(cflags:-W3=) $(cvarsdll) $(SWITCHES) -Zi -Od -Gz -nologo

LINK = link $(ldebug) $(conlflags)

all: client_s3.exe server_s3.exe

clean :
-del *.obj
-del *.exe
-del Directory_cstub.c
-del Directory_sstub.c
-del Directory.h

client_s3.exe : client_s3.obj Directory_cstub.obj directory_impl.obj
$(LINK) /out:$@ $** $(_LIBS_)

server_s3.exe : server_s3.obj directory_mgr.obj directory_impl.obj
Directory_sstub.obj

$(LINK) /out:$@ $** $(_LIBS_)

directory_cstub.obj : Directory_cstub.c Directory.h
$(CC) $(CFLAGS) Directory_cstub.c

server_s3.obj : server_s3.c Directory.h
$(CC) $(CFLAGS) server_s3.c

directory_mgr.obj : Directory_mgr.c Directory.h
366 DCE Replacement Strategies

$(CC) $(CFLAGS) Directory_mgr.c

directory_impl.obj : Directory_impl.c directory_impl.h Directory.h
$(CC) $(CFLAGS) Directory_impl.c

client_s3.obj : client_s3.c Directory.h
$(CC) $(CFLAGS) client_s3.c

Directory_sstub.obj : Directory_sstub.c Directory.h
$(CC) $(CFLAGS) Directory_sstub.c

Directory_cstub.c Directory_sstub.c Directory.h : Directory.idl
$(IDL) -client stub -server stub -cstub Directory_cstub.c \
-sstub Directory_sstub.c Directory.idl

IDL source
Description: Interface definition
File name: Directory.idl

[
 uuid(e2f98da0-8a19-11d7-8a68-00609437fb07),
 version(1.0),
 pointer_default(ptr)
]
interface Directory
{
 typedef [string] char *dept_name_t;
 void get_dept(
 [in] handle_t handle,
 [in,string] char *emp_name,
 [out] dept_name_t *dept_name
);
 void get_grade(
 [in] handle_t handle,
 [in, string] char *emp_name,
 [out]long *grade
);
 void get_salary(
 [in] handle_t handle,
 [in, string] char *emp_name,
 [out] double *salary
);
}

 Appendix C. Scenario 3: Source code listings 367

DCE dependent application client
Description: DCE application client program
File name: client_s3.c

#include <stdio.h>
#include "Directory.h"
#include "check_status.h"
#include <string.h>
#include <dce/binding.h>
#include <dce/pgo.h>
#include <dce/secidmap.h>
#define SERVER_CDS "/.:/directory_server"
#define SERVER_GROUP "directory_server"
rpc_binding_handle_t binding_handle;
void show_usage(int argc, char *argv[]) {
 printf("Usage is: %s <-function {0|1|2}> <-employee emp_name>",argv[0]);
 exit(1);
}
void execute_query(int argc, char **argv) {
 int i=0;
 int query_type=0;
 enum query_type {DEPT,GRADE,SALARY};
 char *emp_name="";
 long grade;
 double salary;
 char *dept_name="";
 for(i=0;i<argc;i++) {
 if(strcmp(argv[i],"-function")==0) {
 if(i<argc-1) {
 query_type=atoi(argv[i+1]);
 i++;
 }
 }
 if(strcmp(argv[i],"-employee")==0) {
 if(i<argc-1) {
 emp_name=argv[i+1];
 i++;
 }
 }
 if(strcmp(argv[i],"-?")==0) show_usage(argc,argv);
 }
 switch(query_type) {
 case DEPT: {
 get_dept (binding_handle, emp_name, &dept_name);
 printf ("Department for %s is: %s\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 dept_name
);
368 DCE Replacement Strategies

 break;
 }
 case GRADE: {
 get_grade (binding_handle, emp_name, &grade);
 if(grade<0) {
 printf (
 "Grade for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user"
);
 }
 else {
 printf (
 "Grade for %s is: %i\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
 break;
 }
 case SALARY:{
 get_salary(binding_handle, emp_name, &salary);
 if(salary<0) {
 printf (
 "Salary for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user"
);
 }
 else {
 printf (
 "Salary for %s is: %f.2\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 break;
 }
 default: {
 printf("Invalid query type %d\n",query_type);
 show_usage(argc,argv);
 break;
 }
 }
}
void main(int argc,char *argv[]) {
 unsigned32 status;
 rpc_ns_handle_t import_context;
 sec_rgy_handle_t rgy_handle;
 sec_rgy_name_t princ_name;
 unsigned_char_t *server_princ_name;
 Appendix C. Scenario 3: Source code listings 369

 boolean32 is_member;
 /*
 * Get server binding from the name space.
 */
 rpc_ns_binding_import_begin(
 rpc_c_ns_syntax_dce,
 SERVER_CDS,
 Directory_v1_0_c_ifspec,
 NULL,
 &import_context,
 &status
);
 CHECK_STATUS (status, "Import begin failed", ABORT);
 rpc_ns_binding_import_next(import_context,&binding_handle, &status);
 CHECK_STATUS (status, "Import next failed", ABORT);
 rpc_ns_binding_import_done(&import_context, &status);
 CHECK_STATUS (status, "Import done failed", ABORT);
 rpc_ep_resolve_binding (
 binding_handle,
 Directory_v1_0_c_ifspec,
 &status
);
 CHECK_STATUS (status, "resolve_binding failed", ABORT);
 /*
 * Determine the server's principal name.
 */
 rpc_mgmt_inq_server_princ_name (
 binding_handle,
 rpc_c_authn_dce_secret,
 &server_princ_name,
 &status
);
 CHECK_STATUS (status, "inq_princ_name failed", ABORT);
 /*
 * Open a registry site for query
 */
 sec_rgy_site_open_query(NULL, &rgy_handle, &status);
 CHECK_STATUS (status, "rgy_site_open failed", ABORT);
 /*
 * Ask the Security registry to translate the global principal name into
 * a simple principal name.
 */
 sec_id_parse_name (
 rgy_handle,
 server_princ_name,
 NULL,
 NULL,
 princ_name,
 NULL,
370 DCE Replacement Strategies

 &status
);
 CHECK_STATUS (status, "sec_id_parse_name failed", ABORT);
 /*
 * Find out if the principal name that is returned by the server
 * is a member of the directory_server group.
 */
 is_member = sec_rgy_pgo_is_member (
 rgy_handle,
 sec_rgy_domain_group,
 SERVER_GROUP,
 princ_name,
 &status
);
 CHECK_STATUS (status, "is_member failed", ABORT);
 /*
 * We are done with the registry; we can release the rgy_handle now.
 */
 sec_rgy_site_close(rgy_handle, &status);
 CHECK_STATUS (status, "rgy_site_close failed", ABORT);
 if (! is_member) {
 printf ("Found an invalid directory server\n");
 exit(1);
 }
 /*
 * Annotate binding handle for authentication.
 */
 rpc_binding_set_auth_info(
 binding_handle,
 server_princ_name,
 rpc_c_protect_level_pkt_privacy,
 rpc_c_authn_dce_secret, NULL,
 rpc_c_authz_dce, &status
);
 CHECK_STATUS (status, "binding_set_auth_info failed", ABORT);
 execute_query(argc,argv);
 exit (0);
}

DCE dependent application server
Description: DCE application server program
File name: server_s3.c

#include <stdio.h>
#include <pthread.h>
#include "Directory.h"
#include "check_status.h"
 Appendix C. Scenario 3: Source code listings 371

#include <dce/keymgmt.h>
#include <dce/sec_login.h>
#define SERVER_PRINCIPAL_NAME "directory_server"
#define KEYTAB "directory_server_tab"
#define SERVER_CDS "/.:/directory_server"
#define ABORT 1
#define MINUTE 60
void establish_identity();

void main(int argc,char *argv[]) {
 rpc_binding_vector_t *bind_vector_p;
 unsigned32 status;
 /*
 * Register interface with rpc runtime.
 */
 rpc_server_register_if(Directory_v1_0_s_ifspec, NULL,NULL, &status);
 CHECK_STATUS (status,"unable to register i/f",ABORT);
 /*
 * We want to use all supported protocol sequences.
 */
 rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default, &status);
 CHECK_STATUS (status,"use_all_protseqs failed",ABORT);
 /*
 * Establish this server's identity by setting up the appropriate login
context.
 */
 establish_identity (&status);
 CHECK_STATUS (status,"Cannot establish server identity",ABORT);
 /*
 * Register authentication info with RPC.
 */
 rpc_server_register_auth_info(
 SERVER_PRINCIPAL_NAME,
 rpc_c_authn_dce_secret,
 NULL,
 KEYTAB,
 &status
);
 CHECK_STATUS (status,"server_register_auth_info failed",ABORT);
 /*
 * Continue with the normal initialization sequence. Get our bindings...
 */
 rpc_server_inq_bindings(&bind_vector_p, &status);
 CHECK_STATUS (status,"server_inq_bindings failed",ABORT);
 /*
 * Register binding information with the endpoint map.
 */
 rpc_ep_register(
 Directory_v1_0_s_ifspec,
372 DCE Replacement Strategies

 bind_vector_p,
 NULL,
 (unsigned_char_t *)"Directory server, version 1.0",
 &status
);
 CHECK_STATUS (status,"ep_register failed",ABORT);
 /*
 * Export binding information into the namespace.
 */
 rpc_ns_binding_export(
 rpc_c_ns_syntax_dce,
 SERVER_CDS,
 Directory_v1_0_s_ifspec,
 bind_vector_p,
 NULL,
 &status
);
 CHECK_STATUS (status,"export failed",ABORT);
 /*
 * Listen for remote calls.
 */
 printf("Server ready.\n");
 rpc_server_listen(rpc_c_listen_max_calls_default, &status);
 CHECK_STATUS (status,"server_listen failed",ABORT);
 /*
 * We don't expect to return from the listen loop.
 */
 printf("Unexpected return from rpc_server_listen\n");
 exit(1);
}
/*
 * Internal routine to establish this server as the
 * department_server principal.
 */
void establish_identity (error_status_t *o_status)
{
 sec_login_handle_t login_context;
 sec_login_auth_src_t auth_src;
 void *server_key;
 error_status_t status;
 boolean32 identity_valid;
 boolean32 reset_passwd;
 pthread_t refresh_login_context_thread;
 pthread_t key_mgmt_thread;
 void refresh_login_context_rtn ();
 void key_mgmt_rtn ();
 /*
 * Set up the network identity for this server principal.
 * The network credentials obtained are sealed and must be
 Appendix C. Scenario 3: Source code listings 373

 * unsealed with the server's secret key before they can
 * be used.
 */
 sec_login_setup_identity(
 SERVER_PRINCIPAL_NAME,
 sec_login_no_flags,
 &login_context,
 &status
);
 CHECK_STATUS (status,"unable to set up identity",ABORT);
 /*
 * Retrieve the server's secret key from the private keytab file.
 */
 sec_key_mgmt_get_key(
 rpc_c_authn_dce_secret,
 KEYTAB,SERVER_PRINCIPAL_NAME,
 0,
 &server_key,
 &status
);
 CHECK_STATUS (status,"unable to retrive key",ABORT);
 /*
 * Unseal the network identity using the server's secret key.
 */
 identity_valid = sec_login_validate_identity(
 login_context,
 server_key,
 &reset_passwd,
 &auth_src,
 &status
);
 /*
 * Free the secret key as soon as we are done with it.
 */
 sec_key_mgmt_free_key (server_key, &status);
 CHECK_STATUS (status,"unable to free key",ABORT);
 /*
 * Make sure that the server identity was validated by the network
 */
 if (identity_valid) {
 if (auth_src != sec_login_auth_src_network) {
 printf ("Server has no network credentials\n");
 exit (1);
 }
 /*
 * We make this login context the default for this process.
 */
 sec_login_set_context(login_context, &status);
 CHECK_STATUS (status,"unable to set login context",ABORT);
374 DCE Replacement Strategies

 /*
 * Start up a thread to refresh the login context when it expires.
 */
 if ((
 pthread_create (
 &refresh_login_context_thread,
 pthread_attr_default,
 (pthread_startroutine_t) refresh_login_context_rtn,
 (pthread_addr_t)login_context
)
) == -1) exit (1);
 /*
 * Start up a thread to manage our secret key.
 */
 if ((
 pthread_create (
 &key_mgmt_thread,
 pthread_attr_default,
 (pthread_startroutine_t) key_mgmt_rtn,
 (pthread_addr_t)NULL
)
) == -1) exit (1);
 *o_status=status;
 }
 else
 {
 error_status_t temp_status;
 CHECK_STATUS (status,"unable to validate network identity",0);
 /*
 * Reclaim the storage
 */
 sec_login_purge_context (&login_context, &temp_status);
 CHECK_STATUS (temp_status,"unable to purge login context",ABORT);
 *o_status = status;
 }
 return;
}
/*
 * A thread to periodically change the server's secret key.
 */
void key_mgmt_rtn ()
{
 error_status_t status;
 while (1)
 {
 sec_key_mgmt_manage_key (
 rpc_c_authn_dce_secret,
 KEYTAB,
 SERVER_PRINCIPAL_NAME,
 Appendix C. Scenario 3: Source code listings 375

 &status
);
 CHECK_STATUS (status,"key mgmt failure",ABORT);
 }
}
/*
 * A thread to periodically refresh the credentials contained
 * in a login context.
 */
void refresh_login_context_rtn (login_context)
sec_login_handle_t login_context;
{
 signed32 expiration;
 signed32 delay_time;
 boolean32 reset_passwd;
 boolean32 identity_valid;
 void *server_key;
 sec_login_auth_src_t auth_src;
 error_status_t status;
 while (1)
 {
 time_t current;
 time(¤t);
 sec_login_get_expiration (login_context, &expiration, &status);
 if ((status != rpc_s_ok) && (status != sec_login_s_not_certified))
 {
 printf ("Cannot get login context expiration time\n");
 exit (1);
 }
 /*
 * Wait until shortly before the login context expires...
 */
 delay_time = expiration - current - (10*MINUTE);
 if (delay_time > 0) {
 struct timespec delay;
 delay.tv_sec = delay_time;
 delay.tv_nsec = 0;
 pthread_delay_np (&delay);
 }
 sec_login_refresh_identity (login_context, &status);
 CHECK_STATUS (status, "cannot refresh identity", ABORT);
 /*
 * Retrieve the server's secret key from the private keytab file.
 */
 sec_key_mgmt_get_key(
 rpc_c_authn_dce_secret,
 KEYTAB,SERVER_PRINCIPAL_NAME,
 0,
 &server_key,
376 DCE Replacement Strategies

 &status
);
 CHECK_STATUS (status,"unable to retrive key",ABORT);
 /*
 * The refreshed login context still needs to be validated.
 */
 identity_valid = sec_login_validate_identity(
 login_context,
 server_key,
 &reset_passwd,
 &auth_src,
 &status);
 /*
 * Free the secret key as soon as we are done with it.
 */
 sec_key_mgmt_free_key (server_key, &status);
 CHECK_STATUS (status,"unable to free key",ABORT);
 if (! identity_valid)
 {
 error_status_t temp_status;
 sec_login_purge_context (&login_context, &temp_status);
 CHECK_STATUS (temp_status,"unable to purge login context",ABORT);
 CHECK_STATUS (status,"unable to validate network identity",ABORT);
 }
 }
}

Application server manager
Description: Application server manager and reference monitor
File name: directory_mgr.c

#include <stdio.h>
#include "Directory.h"
#include "check_status.h"
#include <dce/binding.h>
#include <dce/pgo.h>
#include <dce/secidmap.h>
#include <dce/id_base.h>
#include <string.h>
#include "directory_impl.h"
#define CONTINUE 0
#define UNAUTHENTICATED_USER "unauthenticated user"
int check_auth(
 rpc_binding_handle_t handle,
 char *type,
 char **client_name
) {
 Appendix C. Scenario 3: Source code listings 377

 sec_id_pac_t *pac;
 unsigned_char_t *server_principal_name;
 sec_rgy_name_t client_principal_name;
 unsigned32 protection_level;
 unsigned32 authn_svc;
 unsigned32 authz_svc;
 sec_rgy_handle_t rgy_handle;
 error_status_t status;
 int is_valid=TRUE;
 /*
 * Check the authentication parameters that the
 * client selected for this call.
 */
 rpc_binding_inq_auth_client (
 handle,
 (rpc_authz_handle_t *) &pac,
 &server_principal_name,
 &protection_level,
 &authn_svc,
 &authz_svc,
 &status
);
 CHECK_STATUS (status, "inq_auth_client failed",CONTINUE);
 /*
 * Make sure that the caller has specified the required
 * level of protection, authentication, and authorization.
 */
 if (! (
 (protection_level == rpc_c_protect_level_pkt_privacy) &&
 (authn_svc == rpc_c_authn_dce_secret) &&
 (authz_svc == rpc_c_authz_dce)
)) is_valid=FALSE;
 /*
 * Establish a binding to the registry interface of the
 * Security Server.
 */
 sec_rgy_site_open_query(NULL, &rgy_handle, &status);
 CHECK_STATUS (status, "rgy_site_open failed",CONTINUE);
 /*
 * Convert the UUID in the PAC into a name.
 */
 sec_rgy_pgo_id_to_name (
 rgy_handle,
 sec_rgy_domain_person,
 &(pac->principal.uuid),
 client_principal_name,
 &status
);
 CHECK_STATUS (status, "pgo_id_to_name failed",CONTINUE);
378 DCE Replacement Strategies

 /*
 * Check to see if the client principal is an employee
 */
 if(type!=NULL) {
 is_valid = sec_rgy_pgo_is_member (
 rgy_handle,
 sec_rgy_domain_group,
 type,
 client_principal_name,
 &status
);
 CHECK_STATUS (status, "is_member failed", CONTINUE);
 }
 /*
 * We are done with the Security registry; free the handle now.
 */
 sec_rgy_site_close(rgy_handle,&status);
 CHECK_STATUS (status, "rgy_site_close failed",CONTINUE);
 *client_name=client_principal_name;
 return is_valid;
}

void IDL_STD_STDCALL get_grade(
 rpc_binding_handle_t handle,
 idl_char *emp_name,
 long *grade
) {
 char *name;
 if(check_auth(handle,"directory_employee",&name)==TRUE) {
 if(emp_name==NULL) emp_name=name;
 *grade=getGradeImpl(emp_name);
 return;
 }
 *grade = -2;
 return;
}
void IDL_STD_STDCALL get_dept(
 handle_t handle,
 idl_char *emp_name,
 idl_char **dept
) {
 char *name;
 idl_char *the_dept;
 int size=0;
 if(check_auth(handle,NULL,&name)==TRUE) {
 if(emp_name==NULL) emp_name=name;
 the_dept=getDepartmentImpl(emp_name);
 size=strlen(the_dept);
 *dept=rpc_ss_allocate(size+1);
 Appendix C. Scenario 3: Source code listings 379

 strcpy(*dept,the_dept);
 return;
 }
 size=strlen(UNAUTHENTICATED_USER);
 *dept=rpc_ss_allocate(size+1);
 strcpy(*dept,UNAUTHENTICATED_USER);
 return;
}
void IDL_STD_STDCALL get_salary(
 rpc_binding_handle_t handle,
 idl_char *emp_name,
 double *salary
) {
 char *name;
 if(check_auth(handle,"directory_manager",&name)==TRUE) {
 if(emp_name==NULL) emp_name=name;
 *salary = getSalaryImpl(emp_name);
 return;
 }
 *salary = -2.0;
 return;
}

Application server logic header
Description: Header file for application server business logic
File name: directory_impl.h

#ifndef DIRECTORY_EXPORT
#define DIRECTORY_EXPORT
#endif
DIRECTORY_EXPORT char *getDepartmentImpl(char *name);
DIRECTORY_EXPORT double getSalaryImpl(char *name);
DIRECTORY_EXPORT long getGradeImpl(char *name);

Application server logic
Description: Application server business logic
File name: directory_impl.c

#include <stdio.h>
#include <string.h>
#include "directory_impl.h"
typedef struct {
 char *emp_name;
 char *dept_name;
 long grade_value;
380 DCE Replacement Strategies

 double salary_value;
} emp_entry_t;

emp_entry_t emp_table [] = {
 {"peter_morgan", "Accounting",1,24000.0},
 {"ruth_jones", "Marketing",2,38000.0},
 {"howard_stein","Finance",2,42000.0},
 {"fran_cooper", "Administration",1,27000.0},
 {"john_doe", "Training",1,18000.0},
 {NULL,NULL,-1,0}
};
DIRECTORY_EXPORT char *getDepartmentImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return "unknown";
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->dept_name;
 emp_table_p++;
 }
 return "unknown";
}
DIRECTORY_EXPORT long getGradeImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return -1;
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->grade_value;
 emp_table_p++;
 }
 return -1;
}
DIRECTORY_EXPORT double getSalaryImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return -1.0;
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->salary_value;
 emp_table_p++;
 }
 return -1.0;
}

 Appendix C. Scenario 3: Source code listings 381

Common error handling
Description: Common error handling for client and server.
File name: check_status.h

#include <stdio.h>
#include <dce/dce_error.h>
#define ABORT 1
#define CONTINUE 0
#define CHECK_STATUS(input_status,comment,type) \
{ \
 if(input_status != rpc_s_ok) { \
 dce_error_inq_text(input_status,error_string,&error_stat); \
 printf("%s %s\n", comment, error_string); \
 if(type==ABORT) exit(1); \
 } \
}

static int error_stat;
static unsigned char error_string[dce_c_error_string_len];

Revised application without DCE dependencies
The files are:

� JNIConnection.java implements the Connection interface, which calls
methods in the back-end server by using JNI wrappers for the native C
application server code.

� JNIConnectionFactory.java implements the ConnectionFactory interface for
the end-user to use to create objects of type JNIConnection.

� JNIConnectionManager.java implements ConnectionManager interface and is
responsible for pooling connections.

� JNIManagedConnection.java implements the ManagedConnection interface
for the physical implemention of the connection.

� JNIConnectionMetaData.java returns information (meta data) about the
JNIConnection class such as the product name, product version etc., of the
back-end C application server.

� JNIManagedConnectionFactory.java implements the
ManagedConnectionFactory interface to create objects of type
JNIManagedConnection.

� JNIManagedConnectionMetaData.java returns information (meta data) about
the JNIManagedConnection class such as the product name, product version
etc., of the back-end C application server.
382 DCE Replacement Strategies

� JNIResourceAdapterMetaData.java returns information (meta data) about
the resource adapter such as name of the resource adapter, vendor,
transaction support, etc.

� DirectorySessionBeanImpl.java is the Enterprise Bean wrapper that encloses
the back-end C application server code. It is a stateless session bean.

� DirectorySessionBean.java is the remote interface for the Enterprise Bean
wrapper class DirectorySessionBeanImpl.

� DirectorySessionHome.java is the home interface for the Enterprise Bean
wrapper class DirectorySessionBeanImpl.

� application.xml is the deployment descriptor for the whole enterprise
application.

� ejb-jar.xml is the deployment descriptor for the Enterprise Bean wrapper.

� ra.xml is the deployment descriptor for the JCA resource adapter.

� directory_impl.c is the back-end C application server where all the application
logic is handled.

� directory_jni_impl.c is the JNI wrapper around the back-end C application
server.

� directory_impl.h is the header file for the C server program.

� corba_client.cpp is the CORBA C++ client that looks up the Enterprise Bean
wrapper, which in turns talks to the JCA Connector.

� WSEJBClient.props is the client-side properties file for the CORBA client to
specify the bootstrap host, bootstrap port, the bean to look up, and other
run-time properties.

JNI connection
Description: JNI connection class which invokes the methods of the C

application server
File name: JNIConnection.java

package com.ibm.redbook.scenario3.RA;

import java.io.PrintWriter;
import java.io.Serializable;
import java.util.Vector;

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionMetaData;
import javax.resource.cci.Interaction;
 Appendix C. Scenario 3: Source code listings 383

import javax.resource.cci.LocalTransaction;
import javax.resource.cci.ResultSetInfo;
import javax.security.auth.Subject;

public class JNIConnection implements Connection,Serializable {

 static public native String getDepartmentJNI(String emp_name);
 static public native int getGradeJNI(String emp_name);
 static public native double getSalaryJNI(String emp_name);
 static {
 System.loadLibrary("directory_jni");
 }

 private JNIManagedConnection manconn;
 public String getDepartment(String emp_name) {
 return getDepartmentJNI(emp_name);
 }
 public int getGrade(String emp_name) {
 return getGradeJNI(emp_name);
 }
 public double getSalary(String emp_name) {
 return getSalaryJNI(emp_name);
 }
 public JNIConnection(JNIManagedConnection mc) {
 manconn = mc;
 }
 public Interaction createInteraction() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public void close() {
 }
 public LocalTransaction getLocalTransaction()
 throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public ConnectionMetaData getMetaData() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
 public ResultSetInfo getResultSetInfo() throws NotSupportedException {
 throw new NotSupportedException("JNIConnection");
 }
}

384 DCE Replacement Strategies

JNI connection factory class
Description: JNIConnection class to create objects of type JNIConnection
File name: JNIConnectionFactory.java

package com.ibm.redbook.scenario3.RA;

import java.io.Serializable;
import javax.naming.Reference;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.ConnectionSpec;
import javax.resource.cci.RecordFactory;
import javax.resource.cci.ResourceAdapterMetaData;
import javax.resource.spi.ConnectionManager;
import javax.resource.spi.ConnectionRequestInfo;
import javax.resource.spi.ManagedConnectionFactory;

public class JNIConnectionFactory implements ConnectionFactory,Serializable {
 private Reference ref;
 private ConnectionManager conManager;
 private ManagedConnectionFactory mconFactory;
 public JNIConnectionFactory() {
 }
 public JNIConnectionFactory(
 ManagedConnectionFactory mcf,
 ConnectionManager conm) {
 conManager = conm;
 mconFactory = mcf;
 }
 public RecordFactory getRecordFactory() throws ResourceException {
 throw new ResourceException("cannot get a record factory");
 }
 public Connection getConnection() throws ResourceException {
 return (Connection) conManager.allocateConnection(mconFactory, null);
 }
 public Connection getConnection(
 javax.resource.cci.ConnectionSpec properties)
 throws ResourceException {
 System.out.println("CF get connection");
 return (Connection) conManager.allocateConnection(mconFactory, null);
 }
 public ResourceAdapterMetaData getMetaData() throws ResourceException {
 return new JNIResourceAdapterMetaData();
 }
 public void setReference(Reference r) {
 ref = r;
 }
 Appendix C. Scenario 3: Source code listings 385

 public Reference getReference() {
 return ref;
 };
}

JNI connection manager
Description: Responsible for pooling connections
File name: JNIConnectionManager.java

package com.ibm.redbook.scenario3.RA;

import java.io.Serializable;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.spi.ConnectionManager;
import javax.resource.spi.ConnectionRequestInfo;
import javax.resource.spi.ManagedConnection;
import javax.resource.spi.ManagedConnectionFactory;
import javax.security.auth.Subject;

public class JNIConnectionManager implements ConnectionManager,Serializable {
 private Subject subject;
 public Object allocateConnection(
 ManagedConnectionFactory mcf,
 ConnectionRequestInfo cx) throws ResourceException {
 ManagedConnection mc = mcf.createManagedConnection(null, null);
 return mc.getConnection(null,null);
 }
}

JNI managed connection
Description: Implements the ManagedConnection class for the physical

implemention of the connection
File name: JNIManagedConnection.java

package com.ibm.redbook.scenario3.RA;

import java.io.PrintWriter;
import java.io.Serializable;
import java.util.Vector;

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.cci.Connection;
import javax.resource.spi.ConnectionEventListener;
386 DCE Replacement Strategies

import javax.resource.spi.ConnectionRequestInfo;
import javax.resource.spi.LocalTransaction;
import javax.resource.spi.ManagedConnection;
import javax.resource.spi.ManagedConnectionMetaData;
import javax.security.auth.Subject;
import javax.transaction.xa.XAException;
import javax.transaction.xa.XAResource;
import javax.transaction.xa.Xid;

public class JNIManagedConnection
 implements ManagedConnection,Serializable {
 private PrintWriter logWriter;
 private Vector conListeners = new Vector();
 private Object con;
 public JNIManagedConnection(
 Subject subject,
 ConnectionRequestInfo cxRequestInfo) {
 }
 public Object getConnection(
 Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException {
 return new JNIConnection(this);
 }
 public void destroy() throws ResourceException {
 }
 public void cleanup() throws ResourceException {
 }
 public void addConnectionEventListener(ConnectionEventListener listener) {
 conListeners.add(listener);
 }
 public void removeConnectionEventListener(ConnectionEventListener listener)
{
 conListeners.remove(listener);
 }
 public ManagedConnectionMetaData getMetaData() throws ResourceException {
 return new JNIManagedConnectionMetaData();
 }
 public LocalTransaction getLocalTransaction() throws NotSupportedException {
 throw new NotSupportedException("JNIManagedConnection");
 }
 public void setLogWriter(PrintWriter p) {
 logWriter = p;
 }
 public PrintWriter getLogWriter() {
 return logWriter;
 }
 public void associateConnection(Object o) {
 con = o;
 Appendix C. Scenario 3: Source code listings 387

 }
 public XAResource getXAResource() throws NotSupportedException {
 throw new NotSupportedException("JNIManagedConnection");
 }
}

JNI connection meta data
Description: Returns information (meta data) about the JNIConnection class
File name: JNIConnectionMetaData.java

package com.ibm.redbook.scenario3.RA;

import java.io.Serializable;
import javax.resource.ResourceException;
import javax.resource.cci.ConnectionMetaData;

public class JNIConnectionMetaData implements ConnectionMetaData,Serializable {
 public String getEISProductName() throws ResourceException {
 return (JNIManagedConnectionMetaData.PRODUCT_NAME);
 }
 public String getEISProductVersion() throws ResourceException {
 return (JNIManagedConnectionMetaData.PRODUCT_VERSION);
 }
 public String getUserName() throws ResourceException {
 throw new ResourceException("cannot get user name");
 }
}

JNI managed connection factory interface
Description: Implements the ManagedConnectionFactory interface
File name: JNIManagedConnectionFactory.java

package com.ibm.redbook.scenario3.RA;

import javax.resource.cci.ConnectionSpec;
import javax.resource.spi.ConnectionManager;
import javax.resource.spi.ConnectionRequestInfo;
import javax.resource.spi.ManagedConnection;
import javax.resource.spi.ManagedConnectionFactory;

import java.io.PrintWriter;
import java.io.Serializable;
import java.util.Iterator;

import javax.resource.ResourceException;
388 DCE Replacement Strategies

public class JNIManagedConnectionFactory implements
ManagedConnectionFactory,Serializable {
 private PrintWriter logWriter;
 private ConnectionManager conManager = new JNIConnectionManager();
 public JNIManagedConnectionFactory() {
 }
 public Object createConnectionFactory(ConnectionManager connectionManager)
 throws ResourceException {
 conManager = connectionManager;
 return new JNIConnectionFactory(this, conManager);
 }
 public void setUserName(String u) {
 }
 public void setPassword(String p) {
 }
 public String getUserName() {
 return null;
 }
 public String getPassword() {
 return null;
 }
 public Object createConnectionFactory() throws ResourceException {
 return new JNIConnectionFactory(this, conManager);
 }
 public ManagedConnection createManagedConnection(
 javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException {
 return new JNIManagedConnection(subject, cxRequestInfo);
 }
 public ManagedConnection matchManagedConnections(
 java.util.Set connectionSet,
 javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException {
 return null; //creates a new ManagedConnection
 }
 public void setLogWriter(PrintWriter p) {
 logWriter = p;
 }
 public PrintWriter getLogWriter() {
 return logWriter;
 }
}

 Appendix C. Scenario 3: Source code listings 389

JNI managed connection meta data
Description: JNIManagedConnection meta data
File name: JNIManagedConnectionMetaData.java

package com.ibm.redbook.scenario3.RA;

import java.io.Serializable;
import javax.resource.ResourceException;
import javax.resource.spi.ManagedConnectionMetaData;

public class JNIManagedConnectionMetaData
 implements ManagedConnectionMetaData,Serializable {
 public static final String PRODUCT_VERSION = "1.0";
 public static final String PRODUCT_NAME = "Department Server";
 public int getMaxConnections() throws ResourceException {
 throw new ResourceException("cannot get max connections");
 }
 public String getEISProductVersion() {
 return PRODUCT_VERSION;
 }
 public String getEISProductName() {
 return PRODUCT_NAME;
 }
 public String getUserName() throws ResourceException {
 throw new ResourceException("cannot get a user name");
 }
}

JNI resource adapter meta data
Description: JNI resource adapter meta data
File name: JNIResourceAdapterMetaData.java

package com.ibm.redbook.scenario3.RA;

import java.io.Serializable;
import javax.resource.cci.ResourceAdapterMetaData;

public class JNIResourceAdapterMetaData implements
ResourceAdapterMetaData,Serializable {

 public String getAdapterVersion() {
 return "1.0";
 }
 public String getAdapterVendorName() {
 return "IBM";
 }
390 DCE Replacement Strategies

 public String getAdapterName() {
 return "JNI Adapter without transaction and security support";
 }
 public String getAdapterShortDescription() {
 return "JNI Adapter";
 }
 public String getSpecVersion() {
 return "1.0";
 }
 public String[] getInteractionSpecsSupported() {
 return null;
 }
 public boolean supportsExecuteWithInputAndOutputRecord() {
 return false;
 }
 public boolean supportsExecuteWithInputRecordOnly() {
 return false;
 }
 public boolean supportsLocalTransactionDemarcation() {
 return false;
 }
}

Enterprise bean wrapper
Description: Enterprise bean wrapper for C application server
File name: DirectorySessionBeanImpl.java

package com.ibm.redbook.scenario3.EJB;

import javax.naming.InitialContext;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;

import com.ibm.redbook.scenario3.RA.*;
public class DirectorySessionBeanImpl implements javax.ejb.SessionBean {
 private javax.ejb.SessionContext mySessionCtx;
 private Connection dept = null;
 public javax.ejb.SessionContext getSessionContext() {
 return mySessionCtx;
 }
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 mySessionCtx = ctx;
 }
 public void ejbCreate() throws javax.ejb.CreateException {
 }
 public void ejbActivate() {
 }
 Appendix C. Scenario 3: Source code listings 391

 public void ejbPassivate() {
 }
 public void ejbRemove() {
 }
 public Connection getcon() throws Exception {
 try {
 InitialContext ic = new InitialContext();
 ConnectionFactory cf =(ConnectionFactory)
ic.lookup("java:comp/env/redbook_jni_connection");
 return cf.getConnection();
 } catch (Exception e) {
 System.out.println("Cannot get a connection "+e.getMessage());
 e.printStackTrace();
 throw e;
 }
 }
 public String getDepartment(String emp_name) {
 try {
 if (dept == null)
 dept = getcon();
 return ((JNIConnection) dept).getDepartment(emp_name);
 } catch (Exception e) {
 System.out.println("Couldn't create JNIConnection");
 }
 return null;
 }
 public int getGrade(String emp_name) {
 try {
 if (dept == null)
 dept = getcon();
 return ((JNIConnection) dept).getGrade(emp_name);
 } catch (Exception e) {
 System.out.println("Couldn't create JNIConnection");
 }
 return -1;
 }
 public double getSalary(String emp_name) {
 try {
 if (dept == null)
 dept = getcon();
 return ((JNIConnection) dept).getSalary(emp_name);
 } catch (Exception e) {
 System.out.println("Couldn't create JNIConnection");
 }
 return -1.0;
 }
}

392 DCE Replacement Strategies

Enterprise bean remote interface
Description: Remote interface for Enterprise Bean wrapper
File name: DirectorySessionBean.java

package com.ibm.redbook.scenario3.EJB;

import java.rmi.RemoteException;

import javax.ejb.EJBObject;

/**
 * Remote interface for Enterprise Bean: DirectorySessionBean
 */
public interface DirectorySessionBean extends EJBObject {
 String getDepartment(String emp_name) throws RemoteException;
 int getGrade(String emp_name)throws RemoteException;
 double getSalary(String emp_name) throws RemoteException;
}

Enterprise bean home interface
Description: Home interface for Enterprise Bean wrapper
File name: DirectorySessionHome.java

package com.ibm.redbook.scenario3.EJB;
/**
 * Home interface for Enterprise Bean: DirectorySessionBean
 */
public interface DirectorySessionHome extends javax.ejb.EJBHome {
 /**
 * Creates a default instance of Session Bean: DirectorySessionBean
 */
 public com.ibm.redbook.scenario3.EJB.DirectorySessionBean create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
}

Deployment descriptor for the application
Description: Deployment descriptor for the enterprise application
File name: application.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application id="Application_ID">
 <display-name>Redbook Sample</display-name>
 Appendix C. Scenario 3: Source code listings 393

 <module id="EjbModule_1053352417969">
 <ejb>Redbook_Sample_EJB.jar</ejb>
 </module>
 <module id="ConnectorModule_1053549528151">
 <connector>Redbook_Sample_Connector.rar</connector>
 </module>
</application>

Deployment descriptor for the enterprise bean
Description: Deployment descriptor for the Enterprise Bean
File name: ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar id="ejb-jar_ID">
 <display-name>Redbook Sample EJB</display-name>
 <enterprise-beans>
 <session id="Directory">
 <ejb-name>Directory</ejb-name>
 <home>com.ibm.redbook.scenario3.EJB.DirectorySessionHome</home>
 <remote>com.ibm.redbook.scenario3.EJB.DirectorySessionBean</remote>

<ejb-class>com.ibm.redbook.scenario3.EJB.DirectorySessionBeanImpl</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref id="ResourceRef_1054820836658">
 <description></description>
 <res-ref-name>redbook_jni_connection</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>Directory Manager</description>
 <role-name>manager</role-name>
 </security-role>
 <security-role>
 <description>Directory Employee</description>
 <role-name>employee</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <method>
394 DCE Replacement Strategies

 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getGrade</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getSalary</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <role-name>employee</role-name>
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getGrade</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <unchecked />
 <method>
 <ejb-name>Directory</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getDepartment</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 </assembly-descriptor>
</ejb-jar>
 Appendix C. Scenario 3: Source code listings 395

Deployment descriptor for the resource adapter
Description: Deployment descriptor for the JCA resource adapter
File name: ra.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC "-//Sun Microsystems, Inc.//DTD Connector 1.0//EN"
"http://java.sun.com/dtd/connector_1_0.dtd">
<connector>
 <display-name>Redbook Sample Connector</display-name>
 <description></description>
 <vendor-name>IBM</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type></eis-type>
 <version>1.0</version>
 <license>
 <description></description>
 <license-required>false</license-required>
 </license>
 <resourceadapter>

<managedconnectionfactory-class>com.ibm.redbook.scenario3.RA.JNIManagedConnecti
onFactory</managedconnectionfactory-class>

<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfa
ctory-interface>

<connectionfactory-impl-class>com.ibm.redbook.scenario3.RA.JNIConnectionFactory
</connectionfactory-impl-class>

<connection-interface>javax.resource.cci.Connection</connection-interface>

<connection-impl-class>com.ibm.redbook.scenario3.RA.JNIConnection</connection-i
mpl-class>
 <transaction-support>NoTransaction</transaction-support>
 <reauthentication-support>false</reauthentication-support>
 </resourceadapter>
</connector>

“C” application server
Description: C application server
File name: directory_impl.c

#include <stdio.h>
#include <string.h>
#include "directory_impl.h"
typedef struct {
396 DCE Replacement Strategies

 char *emp_name;
 char *dept_name;
 long grade_value;
 double salary_value;
} emp_entry_t;

emp_entry_t emp_table [] = {
 {"peter_morgan", "Accounting",1,24000.0},
 {"ruth_jones", "Marketing",2,38000.0},
 {"howard_stein","Finance",2,42000.0},
 {"fran_cooper", "Administration",1,27000.0},
 {"john_doe", "Training",1,18000.0},
 {NULL,NULL,-1,0}
};
DIRECTORY_EXPORT char *getDepartmentImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return "unknown";
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->dept_name;
 emp_table_p++;
 }
 return "unknown";
}
DIRECTORY_EXPORT long getGradeImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return -1;
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->grade_value;
 emp_table_p++;
 }
 return -1;
}
DIRECTORY_EXPORT double getSalaryImpl(char *name) {
 emp_entry_t *emp_table_p=emp_table;
 int i=0;
 for (i=0;; i++) {
 if(emp_table_p->emp_name==NULL) return -1.0;
 if (! strcmp (name, emp_table_p->emp_name))
 return emp_table_p->salary_value;
 emp_table_p++;
 }
 return -1.0;
}

 Appendix C. Scenario 3: Source code listings 397

JNI wrapper for the application server
Description: JNI wrapper for the C application server
File name: directory_jni_impl.c

#include <stdio.h>
#include <string.h>
#include <jni.h>
#include "com_ibm_redbook_scenario3_RA_JNIConnection.h"
#include "directory_impl.h"
JNIEXPORT jstring JNICALL
Java_com_ibm_redbook_scenario3_RA_JNIConnection_getDepartmentJNI(
 JNIEnv *env,
 jobject obj,
 jstring s
)
{
 const char *name;
 char *n;
 printf("In JNI Impl\n");
 name=(*env)->GetStringUTFChars(env,s,0);
 printf("In JNI Impl\n");
 n=getDepartmentImpl((char *)name);
 (*env)->ReleaseStringUTFChars(env,s,name);
 return (*env)->NewStringUTF(env,n);
}
JNIEXPORT jint
 JNICALL Java_com_ibm_redbook_scenario3_RA_JNIConnection_getGradeJNI(
 JNIEnv *env,
 jobject obj,
 jstring s
)
{
 const char *name=(*env)->GetStringUTFChars(env,s,0);
 const int g=getGradeImpl((char *)name);
 (*env)->ReleaseStringUTFChars(env,s,name);
 return (jint) g;
}
JNIEXPORT jdouble
 JNICALL Java_com_ibm_redbook_scenario3_RA_JNIConnection_getSalaryJNI(
 JNIEnv *env,
 jobject obj,
 jstring s
)
{
 const char *name=(*env)->GetStringUTFChars(env,s,0);
 const double sal=getSalaryImpl((char *)name);
398 DCE Replacement Strategies

 (*env)->ReleaseStringUTFChars(env,s,name);
 return (jdouble) sal;
}

Header file for application server
Description: Header file for application server
File name: directory_impl.h

#ifndef DIRECTORY_EXPORT
#define DIRECTORY_EXPORT
#endif
DIRECTORY_EXPORT char *getDepartmentImpl(char *name);
DIRECTORY_EXPORT double getSalaryImpl(char *name);
DIRECTORY_EXPORT long getGradeImpl(char *name);

CORBA C++ client
Description: The CORBA C++ client
File name: corba_client.cpp

#include <stdlib.h>
#include <stdio.h>
#include "DirectorySessionHome.hh"
#include <CosNaming.hh>
#include <corba.h>
#include <vtlib.h>
com::ibm::redbook::scenario3::EJB::DirectorySessionBean_ptr bptr;
void show_usage(int argc, char *argv[]) {
 printf("Usage is: %s <-function {0|1|2}> <-employee emp_name>",argv[0]);
 exit(1);
}
void execute_query(int argc, char **argv) {
 int i=0;
 int query_type=0;
 enum query_type {DEPT,GRADE,SALARY};
 CORBA::WStringValue *corba_name=com::ibm::ws::VtlUtil::toWStringValue("");
 char *emp_name="";
 CORBA::Long grade;
 CORBA::Double salary;
 CORBA::WStringValue *dept_name;
 for(i=0;i<argc;i++) {
 if(strcmp(argv[i],"-function")==0) {
 if(i<argc-1) {
 query_type=atoi(argv[i+1]);
 i++;
 }
 Appendix C. Scenario 3: Source code listings 399

 }
 if(strcmp(argv[i],"-employee")==0) {
 if(i<argc-1) {
 emp_name=argv[i+1];
 corba_name=com::ibm::ws::VtlUtil::toWStringValue(argv[i+1]);
 i++;
 }
 }
 if(strcmp(argv[i],"-?")==0) show_usage(argc,argv);
 }
 switch(query_type) {
 case DEPT: {
 dept_name=bptr->getDepartment(corba_name);
 printf (
 "Department for %s is: %s\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 com::ibm::ws::VtlUtil::WStringValueToString(dept_name)
);
 break;
 }
 case GRADE: {
 grade=bptr->getGrade(corba_name);
 if(grade<0) {
 printf (
 "Grade for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
 else {
 printf (
 "Grade for %s is: %i\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 grade
);
 }
 break;
 }
 case SALARY:{
 salary=bptr->getSalary(corba_name);
 if(salary<0) {
 printf (
 "Salary for %s is: unknown\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 else {
 printf (
400 DCE Replacement Strategies

 "Salary for %s is: %8.2f\n",
 strcmp(emp_name,"")!=0?emp_name:"current user",
 salary
);
 }
 break;
 }
 default: {
 printf("Invalid query type %d\n",query_type);
 show_usage(argc,argv);
 break;
 }
 }
}
int main(int argc, char *argv[]) {
 CORBA::Object_ptr objPtr;
 com::ibm::redbook::scenario3::EJB::DirectorySessionHome_ptr liptr;
 CORBA::ORB_ptr orbPtr = CORBA::ORB_init (argc, argv, "DSOM");
 if (CORBA::is_nil(orbPtr))
 {
 cerr << "Error initializing the ORB!" << endl;
 return -1;
 }
 try
 {
 Properties *props = CORBA::ORB::get_properties();
 const char *boothost = props->getProperty
("com.ibm.CORBA.bootstrapHostName");
 const char *bootport=props->getProperty("com.ibm.CORBA.bootstrapPort");
 const char
*servername=props->getProperty("com.ibm.websphere.serverName");
 const char *ejbname=props->getProperty("com.ibm.websphere.EJBName");
 char *home_url=(char *)malloc(512);
 strcpy(home_url,"corbaname::");
 if(boothost==NULL||bootport==NULL||servername==NULL||ejbname==NULL) {
 printf("Missing property in WASPROPS file\n");
 exit(1);
 }
 strcat(home_url,boothost);
 strcat(home_url,":");
 strcat(home_url,bootport);
 strcat(home_url,"/NameService#nodes/");
 strcat(home_url,boothost);
 strcat(home_url,"/servers/");
 strcat(home_url,servername);
 strcat(home_url,"/");
 strcat(home_url,ejbname);
 objPtr = orbPtr->string_to_object(home_url);
 liptr=com::ibm::redbook::scenario3::EJB::DirectorySessionHome\
 Appendix C. Scenario 3: Source code listings 401

 ::_narrow(objPtr);
 bptr=liptr->create();
 }
 catch (CORBA::UserException &ue)
 {
 cerr << "Caught a User Exception: " << ue.id() << endl;
 return -1;
 }
 catch (CORBA::SystemException &se)
 {
 cerr<<"Caught a System Exception: "<<se.id()<< ": "<<se.minor()<<endl;
 return -1;
 }
 execute_query(argc,argv);
 CORBA::release (bptr);
 CORBA::release (orbPtr);
 return(0);
}

Properties file for CORBA C++ client
Description: Properties file for the CORBA C++ client (AIX)
File name: WSEJBClient.props

com.ibm.CORBA.bootstrapPort=2809
com.ibm.CORBA.translationEnabled=1
com.ibm.CORBA.nativeWCharCodeset=UCS2
com.ibm.websphere.serverName=server1
com.ibm.websphere.EJBName=ejb/com/ibm/redbook/scenario3/EJB/DirectoryHome
com.ibm.CORBA.securityEnabled=yes
com.ibm.ssl.keyFile=/usr/WebSphere/AppServer/etc/ITSOKeyRingFile.KDB
com.ibm.ssl.keyPassword=WebAS
com.ibm.CSI.performTLClientAuthenticationSupported=yes
com.ibm.CSI.performTransportAssocSSLTLSSupported=yes
com.ibm.CORBA.initServices=security
com.ibm.CORBA.dllName=libwassccl.so
com.ibm.CORBA.securityTraceLevel=1
com.ibm.CSI.performMessageIntegritySupported=yes
402 DCE Replacement Strategies

Appendix D. Scenario 4: Source code
listings

This appendix lists the complete source code that was explained in pieces in
Chapter 11, “Scenario 4: Secure RPC application #2” on page 247. Specifically,
this appendix contains:

� The source code of the client and server programs with DCE dependencies

� The source code of the revised client and server programs without DCE
dependencies

� The makefiles used for these programs

� Additional source code modules for authorization

� Header files

� Application configuration files

Refer to Appendix E, “Additional material” on page 417 for instructions for
downloading the source code samples included in this appendix.

D

© Copyright IBM Corp. 2003. All rights reserved. 403

Application with DCE dependencies
The application with DCE dependencies in this scenario is the same as in the
previous scenario; refer to “Application with DCE dependencies” on page 364.
The application logic of the application in this scenario with DCE dependencies is
the same as in scenario 2. (See “Application server logic” on page 341.)

Revised application without DCE dependencies
The files are:

� build.bat contains information about how the Java code is compiled and the
jar files are built.

� MirrorClient.java contains the Java code of the application client. Connects to
an EJB and takes user input in a loop until ‘exit’ is entered.

� MirrorBean.java contains the Java code of the stateless session bean used in
this scenario.

� MirrorHome.java contains the Java defintion of MirrorBeans home interface.

� Mirror.java contains the Java defintion of MirrorBeans remote interface.

� MirrorException.java contains the Java code for the excpetion, that can be
thrown by the remote interface method of MirrorBean.

� ejb-jar.xml is the deployment descriptor for MirrorBean, like it is created by
the WebSphere Application Server’s application assembly tool.

� application-client.xml is the deployment descriptor for application client, like it
is created by the WebSphere Application Server’s application assembly tool.

� application.xml is the deployment descriptor for mirror application, like it is
created by the WebSphere Application Server’s application assembly tool.

� sas.client.props contains SAS (Secure Associatation Service) definitions to
be used by the J2EE client. Directory path for key files makes the current file
dependend on the Windows platform.

Build script to create class and jar files
Description: Build script for the mirror application jar files
File name: build.bat

set classpath=%classpath%;%JAVA_HOME%\lib\j2ee.jar
set classpath=%classpath%;\TI\SE-S001 DCE Replacement\Coding\scenario4\nondce
set path=%path%;%JAVA_HOME%\bin
404 DCE Replacement Strategies

javac .\mirrorClient*.java
javac .\mirrorServer*.java
del MirrorServer.jar
del MirrorClient.jar
jar -cvf MirrorServer.jar .\mirrorServer*.class
jar -cvf MirrorClient.jar .\mirrorClient*.class

Java client program
Description: Java application client that uses MirrorBean EJB
File name: MirrorClient.java

package mirrorClient;

import javax.ejb.*;
import javax.naming.*;
import java.rmi.*;
import javax.rmi.PortableRemoteObject;
import java.util.*;
import java.io.*;

import mirrorServer.*;

public class MirrorClient {

 public static void main(String[] args) throws Exception {

 MirrorHome home = null;
 String message = new String();
 String cmdArgs[] = null;
 Mirror mirror = null;

 /* Create input stream for reading terminal input from the user */

 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);

 try {

 Context initial = new InitialContext();
 Object obj = initial.lookup("java:comp/env/MirrorHome");

 home = (MirrorHome)PortableRemoteObject.narrow(obj, MirrorHome.class);

 mirror = home.create();

 } catch (java.rmi.AccessException ex) {
 System.err.println("Access Denied");
 Appendix D. Scenario 4: Source code listings 405

 return;
 } catch (NamingException ex) {
 System.err.println("Could not find Server");
 return;
 } catch (Exception ex) {
 System.err.println("Unexpected exception binding to server:");
 ex.printStackTrace();
 return;
 }

 while (true) {

 try {
 System.out.print("Ready> ");
 message = in.readLine();
 if (message.compareTo("exit") == 0) break;

 message = mirror.reflect(message);

 System.out.println("reflected string is: " + message);

 } catch (java.rmi.AccessException ex) {
 System.err.println("Access Denied");
 } catch (MirrorException ex) {
 System.err.println(ex.getMessage());
 } catch (Exception ex) {
 System.err.println("Unexpected exception processing request:");
 ex.printStackTrace();
 }
 }
 }
}

Java stateless session bean
Description: Java code for MirrorBean EJB
File name: MirrorBean.java

package mirrorServer;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public class MirrorBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext sessionContext;
406 DCE Replacement Strategies

 public MirrorBean() {}

 public void ejbCreate() {
 System.out.println("ejbCreate()");
 }

 public void ejbRemove() {
 System.out.println("ejbRemove()");
 }

 public void ejbActivate() {
 System.out.println("ejbActivate()");
 }

 public void ejbPassivate() {
 System.out.println("ejbPassivate()");
 }

 public void setSessionContext(javax.ejb.SessionContext sessionContext) {
 System.out.println("setSessionContext()");
 this.sessionContext = sessionContext;
 }

 public String reflect(String message) throws MirrorException {

 System.out.println("received message: " + message);

 //
 // example how authz can be performed in code
 //
 java.security.Principal principal = sessionContext.getCallerPrincipal();
 java.lang.String callerId = principal.getName();
 System.out.println("received call from: " + callerId);

 boolean isMgr = sessionContext.isCallerInRole("manager");
 boolean isUser = sessionContext.isCallerInRole("user");
 if(!isMgr) {
 if (isUser) {
 System.out.println("Sorry, " + callerId + " you are just a user");
 throw new MirrorException
 ("Sorry, " + callerId + " you are just a user");
 }
 //
 // Allow access for other roles, to keep security configurable
 //
 }
 //
 // perform the actual 'business logic'
 //
 Appendix D. Scenario 4: Source code listings 407

 StringBuffer tmp = new StringBuffer(message);

 return (tmp.reverse()).toString();
 }
}

Java EJB home interface
Description: Home Interface of MirrorBean EJB
File name: MirrorHome.java

package mirrorServer;

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface MirrorHome extends EJBHome
{
 Mirror create() throws RemoteException, CreateException;
}

Java EJB remote interface
Description: Remote Interface of MirrorBean EJB
File name: Mirror.java

package mirrorServer;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Mirror extends EJBObject
{
 public String reflect(String message)
 throws MirrorException, RemoteException;
}

408 DCE Replacement Strategies

Java application exception
Description: Exception, used by MirrorBean EJB
File name: MirrorException.java

package mirrorServer;

public class MirrorException extends Exception {

 public MirrorException() {}
 public MirrorException(String msg) {
 super(msg);
 }
}

EJB deployment descriptor
Description: Generated deployment descriptor for MirrorBean EJB
File name: ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

 <ejb-jar id="ejb-jar_ID">
 <display-name>MirrorBean</display-name>
 <enterprise-beans>
 <session id="Session_1054051282734">
 <display-name>MirrorBean</display-name>
 <ejb-name>MirrorBean</ejb-name>
 <home>mirrorServer.MirrorHome</home>
 <remote>mirrorServer.Mirror</remote>
 <ejb-class>mirrorServer.MirrorBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-role-ref id="SecurityRoleRef_1054051785469">
 <role-name>manager</role-name>
 <role-link>manager</role-link>
 </security-role-ref>
 <security-role-ref id="SecurityRoleRef_1054215739406">
 <role-name>user</role-name>
 <role-link>user</role-link>
 </security-role-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor id="AssemblyDescriptor_1054051282797">
 <security-role id="SecurityRole_1054051785469">
 <role-name>manager</role-name>
 Appendix D. Scenario 4: Source code listings 409

 </security-role>
 <security-role id="SecurityRole_1054215739406">
 <role-name>user</role-name>
 </security-role>
 <method-permission id="MethodPermission_1054054624016">
 <description>reflectAccess:+:</description>
 <role-name>manager</role-name>
 <role-name>user</role-name>
 <method id="MethodElement_1054215739406">
 <ejb-name>MirrorBean</ejb-name>
 <method-name>reflect</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission id="MethodPermission_1054215739406">
 <description>createAccess:+:</description>
 <role-name>user</role-name>
 <role-name>manager</role-name>
 <method id="MethodElement_1054215739407">
 <ejb-name>MirrorBean</ejb-name>
 <method-name>create</method-name>
 <method-params>
 </method-params>
 </method>
 </method-permission>
 </assembly-descriptor>
 <ejb-client-jar>C:\MirrorClient.jar</ejb-client-jar>
 </ejb-jar>

Application client deployment descriptor
Description: Generated deployment descriptor for application client
File name: application-client.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application Client 1.3//EN"
"http://java.sun.com/dtd/application-client_1_3.dtd">

 <application-client id="Application-client_ID">
 <display-name>MirrorClient</display-name>
 <ejb-ref id="EjbRef_1054051283203">
 <ejb-ref-name>MirrorHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>mirrorServer.MirrorHome</home>
 <remote>mirrorServer.Mirror</remote>
410 DCE Replacement Strategies

 </ejb-ref>
 </application-client>

Application deployment descriptor
Description: Generated deployment descriptor
File name: application.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

 <application id="Application_ID">
 <display-name>MirrorApp</display-name>
 <module id="EjbModule_1054051281578">
 <ejb>MirrorBean.jar</ejb>
 </module>
 <module id="JavaClientModule_1054051281688">
 <java>MirrorClt.jar</java>
 </module>
 <security-role id="SecurityRole_1054051281719">
 <role-name>manager</role-name>
 </security-role>
 <security-role id="SecurityRole_1054054623938">
 <role-name>user</role-name>
 </security-role>
 </application>

Application client security properties
Description: SAS settings to be used by Windows Java clients
File name: sas.client.props

###
#
SAS Properties File
#
This file contains properties that are used by the Secure Association
Services (SAS) component of the WebSphere Application Server product.
SAS executes on WebSphere java servers and client systems with java
applications that access WebSphere servers.
#
** SAS/CSIv2 Trace Instructions **
#
Note: To enable logging of trace on the application client, add the
following property to the startup script: -DtraceSettingsFile=filename.
Do not specify filename as a fully qualified path and filename, just
 Appendix D. Scenario 4: Source code listings 411

specify the filename. The file must exist in the classpath to be loaded.
A sample file is provided in <was_root>/properties/TraceSettings.properties.
#
There are two related functions provided by this file:
#
1.traceFileName property
This should be set to the fully qualified name of a file to which you
want
output written. For example, traceFileName=c:\\MyTraceFile.log. This
property must be specified, otherwise no visible output is generated.
2.Trace string
To enable SAS/CSIv2 trace, specify the trace string: SASRas=all=enabled
#
If you only want to trace specific classes, you can specify a trace filter
by adding the property com.ibm.CORBA.securityTraceFilter=<comma-separated
class names>
#
Example: com.ibm.CORBA.securityTraceFilter=SecurityConnectionInterceptor,
CSIClientRI, SessionManager
#
** Encoding Passwords in this File **
#
The PropFilePasswordEncoder utility may be used to encode passwords in a
properties file. To edit an encoded password, replace the whole password
string (including the encoding tag {...}) with the new password and then
encode the password with the PropFilePasswordEncoder utility. Refer to
product documentation for additional information.
#
###

#--
Client Security Enablement
#
- security enabled status (false, true [default])
#--
com.ibm.CORBA.securityEnabled=true

#--
RMI/IIOP Authentication Protocol (sas, csiv2, both [default])
#
Specify "both" when communicating with 5.0x and previous release servers.
Specify "csiv2" when communicating with only 5.0x servers.
Specify "sas" when communicating with only previous release servers.
#--
com.ibm.CSI.protocol=csiv2

#--
Authentication Configuration
#

412 DCE Replacement Strategies

- authenticationTarget (BasicAuth [default], this is the only supported
selection
on a pure client for this release. This is for
message
layer authentication only, SSL client
certificate authentication
is configured below under CSIv2 configuration.)
- authenticationRetryEnabled (enables authentication retries if login fails
when loginSource=prompt or stdin)
- authenticationRetryCount (the number of times to retry)
- source (prompt [default], properties, keyfile, stdin,
none)
- timeout (prompt timeout, specified in seconds, 0 min to
600 max [default 300])
- validateBasicAuth (determines if immediate authentication after
uid/pw login,
or wait for method request to send uid/pw
to server,
setting this to false gives the previous
release behavior.)
- securityServerHost (when validateBasicAuth=true, this property
might need to be set
in order for security code to lookup
SecurityServer. Needs to be set to
any running WebSphere server host in the cell
you are authenticating to.
- securityServerPort (when validateBasicAuth=true, this property
might need to be set
in order for security code to lookup
SecurityServer. Needs to be set to
the bootstrap port of the host chosen above.
- loginUserid (must be set if login source is "properties")
- loginPassword (must be set if login source is "properties")
- principalName (format: "realm/userid", only needed in cases
where realm
is required. Typically the realm is already
provided by the
server via the IOR and this property is not
necessary).
#
#--
com.ibm.CORBA.authenticationTarget=BasicAuth
com.ibm.CORBA.authenticationRetryEnabled=true
com.ibm.CORBA.authenticationRetryCount=3
com.ibm.CORBA.validateBasicAuth=true
com.ibm.CORBA.securityServerHost=
com.ibm.CORBA.securityServerPort=
com.ibm.CORBA.loginTimeout=300
com.ibm.CORBA.loginSource=prompt
 Appendix D. Scenario 4: Source code listings 413

RMI/IIOP user identity
com.ibm.CORBA.loginUserid=
com.ibm.CORBA.loginPassword=
com.ibm.CORBA.principalName=

#--
CSIv2 Configuration (see InfoCenter for more information on these
properties).
#
This is where you enable SSL client certificate authentication. Must also
specify a valid SSL keyStore below with a personal certificate in it.
#--

Does this client support stateful sessions?
com.ibm.CSI.performStateful=true

Does this client support/require BasicAuth (userid/password) client
authentication?
com.ibm.CSI.performClientAuthenticationRequired=false
com.ibm.CSI.performClientAuthenticationSupported=false

Does this client support/require SSL client authentication?
com.ibm.CSI.performTLClientAuthenticationRequired=false
com.ibm.CSI.performTLClientAuthenticationSupported=true

Note: You can perform BasicAuth (uid/pw) and SSL client authentication
(certificate)
simultaneously, however, the BasicAuth identity will always take
precedence at the server.

Does this client support/require SSL connections?
com.ibm.CSI.performTransportAssocSSLTLSRequired=false
com.ibm.CSI.performTransportAssocSSLTLSSupported=true

Does this client support/require 40-bit cipher suites when using SSL?
com.ibm.CSI.performMessageIntegrityRequired=false
com.ibm.CSI.performMessageIntegritySupported=true
Note: This property is only valid when SSL connections are supported or
required.

Does this client support/require 128-bit cipher suites when using SSL?
com.ibm.CSI.performMessageConfidentialityRequired=false
com.ibm.CSI.performMessageConfidentialitySupported=true
Note: This property is only valid when SSL connections are supported or
required.

#--
SSL Configuration
414 DCE Replacement Strategies

#
- protocol (SSL [default], SSLv2, SSLv3, TLS, TLSv1)
- keyStoreType (JKS [default], JCEK, PKCS12)
- trustStoreType (JKS [default], JCEK, PKCS12)
- keyStore and trustStore (fully qualified path to file)
- keyStoreClientAlias
(string specifying ssl certificate alias to use from keyStore)
- keyStorePassword and trustStorePassword
(string specifying password - encoded or not)
- cipher suites
(refer to InfoCenter for valid ciphers)
#
com.ibm.ssl.enabledCipherSuites=enabled_cipher_suites
#
Note: The com.ibm.ssl.enabledCipherSuites property defines the cipher
suites used for the SSL session. If this property is defined, it
overrides the default cipher suites defined for the specified QOP.
#
#--
com.ibm.ssl.protocol=SSL
com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStore=C:/Program
Files/WebSphere/AppClient/etc/ITSOClientKeyFile.jks
com.ibm.ssl.keyStorePassword=WebAS
com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStore=C:/Program
Files/WebSphere/AppClient/etc/ITSOClientTrustFile.jks
com.ibm.ssl.trustStorePassword=WebAS
com.ibm.ssl.keyStoreClientAlias=itso client
#--
Quality of Protection for the IBM protocol
#
- perform (high [default], medium, low)
#--
com.ibm.CORBA.standardPerformQOPModels=high

#--
CORBA Request Timeout (used when getting NO_RESPONSE exceptions, typically
during high-stress loads. Specify on all processes
involved in the communications.)
#
- timeout (specified in seconds [default 180], 0 implies no timeout)
#
com.ibm.CORBA.requestTimeout=180
#--
com.ibm.CORBA.requestTimeout=180
 Appendix D. Scenario 4: Source code listings 415

416 DCE Replacement Strategies

Appendix E. Additional material

This book contains program code examples for the DCE replacement example
scenario 1 through 4. The source code for these example scenarios is listed in
the previous appendixes, and it can be downloaded as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246935

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number SG246935.

E

© Copyright IBM Corp. 2003. All rights reserved. 417

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this book includes the following
four files:

File name Description
6935_Scenario1.zip Zipped code samples for scenario 1 of this book. (See

Chapter 8, “Scenario 1: GSS-API application” on
page 125 and Appendix A, “Scenario 1: Source code
listings” on page 267.)

6935_Scenario2.zip Zipped code samples for scenario 2 of this book. (See
Chapter 9, “Scenario 2: Non-secure RPC application” on
page 171 and Appendix B, “Scenario 2: Source code
listings” on page 331.)

6935_Scenario3.zip Zipped code samples for scenario 3 of this book. (See
Chapter 10, “Scenario 3: Secure RPC application #1” on
page 195 and Appendix C, “Scenario 3: Source code
listings” on page 363.)

6935_Scenario4.zip Zipped code samples for scenario 4 of this book. (See
Chapter 11, “Scenario 4: Secure RPC application #2” on
page 247 and Appendix D, “Scenario 4: Source code
listings” on page 403.)

Once unpacked, each of these files contains two subdirectories: dce and nondce.
The dce subdirectory contains the source code of the DCE dependent sample
application, while the nondce directory contains the application without DCE
dependencies. The filenames correspond to the filenames that are used in the
previous appendixes.

Each subdirectory contains a Readme.txt file that you should read, as it contains
additional information pertinent to the sample source code.

System requirements for downloading the Web material
The downloaded material consists of source code that requires only a few
kilobytes of disk space. For building and running the sample applications, refer to
the system requirements in the product documentation for the respective
development and deployment environments and products.

How to use the Web material
Create a subdirectory (folder) on your workstation and unzip the contents of the
Web material zip file into this folder. Then, follow the instructions in this book or in
the Readme.txt files to build and run the sample applications.
418 DCE Replacement Strategies

acronyms
AAT Application Assembly Tool

ACL Access Control List

API Application Programming
Interface

aznAPI Authorization API

BOA Basic Object Adapter

CDS Cell Directory Service

CLI Command Line Interface

CORBA Common Object Request
Broker Architecture

COSINE Cooperation for Open
Systems Interconnection
Networking in Europe

CRL Certificate Revocation List

CSIv2 Common Secure
Interoperability Version 2

DAP Directory Access Protocol

DCE Distributed Computing
Environment

DFS Distributed File System

DIT Directory Information Tree

DMT Directory Management Tool

DN Distinguished Name

DNS Domain Name Service

DTS Distributed Time Service

EIS Enterprise Information
Systems

EJB Enterprise JavaBeans

ERA Extended Registry Attributes

GDA Global Directory Agent

GINA Graphical Interface for
Network Access

GIOP General Inter-ORB
Protocol

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
GSS-API Generic Security Services
Application Programming
Interface

HPFS High Performance File
System

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IDL Interface Definition Language

IETF Internet Engineering Task
Force

IIOP Internet Inter-ORB Protocol

INS Interoperable Naming Service

IOR Interoperable Object
References

ITSO International Technical
Support Organization

J2EE Java 2, Enterprise Edition

J2SE Java 2, Standard Edition

JAAS Java Authentication and
Authorization Service

JAXP Java API for XML Processing

JCA Java Connector Architecture

JDBC Java Database Connectivity

JDK Java Development Kit

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JNI Java Naming Interface

JVM Java Virtual Machine

KDC Key Distribution Center

LDAP Lightweight Directory Access
Protocol
 419

LTPA Lightweight Third-Party
Authentication

NSA National Security Agency

NTP Network Time Protocol

OMG Open Management Group

ORB Object Request Broker

PAC Privilege Attribute Certificate

PAM Pluggable Authentication
Module

PKI Public Key Infrastructure

POP Protected Object Policies

PSSP Parallel System Support
Program

QoS Quality of Service

RDN Relative Distinguished Name

RMI Remote Method Invocation

RPC Remote Procedure Call

SAS Security Attribute Service

SNTP Simple Network Time
Protocol

SOAP Simple Object Access
Protocol

SSL Secure Sockets Layer

SSO Single Sign-On

SSPI Security Support Provider
Interface

SWAM Simple WebSphere
Authentication Mechanism

TGT Ticket-Granting Ticket

TLS Transport Layer Security

UDDI Universal Description
Discovery and Integration

UUID Unique Universal Identifier

WAS WebSphere Application
Server

XML eXtensible Markup Language
420 DCE Replacement Strategies

Related publications

The publications listed in this section are considered particularly suitable for a
more-detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 423. Note that some of the documents referenced here may
be available only in softcopy.

� Enterprise Business Portals with IBM Tivoli Access Manager, SG24-6556

� Enterprise Business Portals II with IBM Tivoli Access Manager, SG24-6885

� IBM Tivoli Access Manager for e-business, REDP3677

� IBM WebSphere Application Server V5.0 System Management and
Configuration, SG24-6195

� IBM WebSphere V5.0 Security, SG24-6573

� LDAP Implementation Cookbook, SG24-5110

� Understanding LDAP, SG24-4986

Other publications
These publications are relevant as further information sources:

� John Shirley, et al., Guide to Writing DCE Applications, O’Reilly & Associates,
Inc., 1994, ISBN 1565920457

� Michi Henning, et al., Advanced CORBA Programming with C++,
Addison-Wesley Longmann, Inc., 1999, ISBN 0201379279

� Wei Hu, DCE SECURITY Programming, O’Reilly & Associates, Inc., 1995,
ISBN 1565921348
© Copyright IBM Corp. 2003. All rights reserved. 421

Online resources
These Web sites and URLs are also relevant as further information sources:

� DCE Overview

http://www.opengroup.org

� IBM DCE Version 3.2 for AIX and Solaris: Introduction to DCE

http://www.ibm.com/software/network/dce/library/publications/dceintro/dcein
tro.pdf

� IBM DCE Version 3.2 for AIX and Solaris: DCE Security Registry and LDAP
Integration Guide

http://www.ibm.com/software/network/dce/library/publications/ldaprgy/ldaprg
y.pdf

� The Common Security Request Broker: Architecture and Specification

http://www.omg.org

� CORBA Naming Service Specification

http://www.omg.org/docs/formal/02-09-02.pdf

� IBM WebSphere Application Server Enterprise, Version 5, Common Object
Request Broker Architecture (CORBA)

ftp://ftp.software.ibm.com/software/webserver/appserv/library/corba.pdf

� IBM WebSphere Application Server Enterprise, Verson 5, Applications

ftp://ftp.software.ibm.com/software/webserver/appserv/library/wasv5ee_apps.
pdf

� The Common Security Interoperability Version 2 Specification

http://www.omg.org/docs/ptc/01-06-17.pdf

� C Language Mapping Specification

http://www.omg.org/technology/documents/formal/c_language_mapping.htm

� Java Language Mapping to OMG IDL

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg
_idl.htm

� Java Internationalization Tutorial

http://java.sun.com/docs/books/tutorial/i18n/index.html

� OMG IDL to Java Language Mapping

http://www.omg.org/technology/documents/formal/omg_idl_to_java_language_map
ping.htm
422 DCE Replacement Strategies

http://www.opengroup.org
http://www.ibm.com/software/network/dce/library/publications/dceintro/dceintro.pdf
http://www.ibm.com/software/network/dce/library/publications/ldaprgy/ldaprgy.pdf
http://www.omg.org
http://www.omg.org/docs/formal/02-09-02.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/library/corba.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/library/wasv5ee_apps.pdf
http://www.omg.org/docs/ptc/01-06-17.pdf
http://www.omg.org/technology/documents/formal/c_language_mapping.htm
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.omg.org/technology/documents/formal/omg_idl_to_java_language_mapping.htm
http://www.omg.org/technology/documents/formal/omg_idl_to_java_language_mapping.htm

� IBM Network Authentication Service Version 1.3 for AIX, Administrator’s and
User’s Guide

Available on the AIX 5L Expansion Pack CD-ROM

� IBM Network Authentication Service Version 1.3 for AIX, Application
Development Reference

Available on the AIX 5L Expansion Pack CD-ROM

� AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

� AIX 5L Version 5.1 Technical Reference: Base Operating System and
Extensions, Volume 2

http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX

� IBM Tivoli Access Manager Base Administrator’s Guide

http://publib.boulder.ibm.com/tividd/td/ITAME/GC23-4684-00/en_US/PDF/adminmst.pdf

� Solaris Internationalization Guide For Developers

http://docs.sun.com/db/doc/802-5878?q=catopen

� Sun Solaris Product Documentation, Basic Library Functions, syslog(3C)

http://docs.sun.com/db/doc/806-0627/6j9vhfn8g?a=view

� Writing Multilingual User Interface Applications

http://www.microsoft.com/globaldev/handson/dev/muiapp.mspx

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
 Related publications 423

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
http://publibn.boulder.ibm.com/cgi-bin/ds_form?lang=en_US&viewset=AIX
http://publib.boulder.ibm.com/tividd/td/ITAME/GC23-4684-00/en_US/PDF/adminmst.pdf
http://docs.sun.com/db/doc/802-5878?q=catopen
http://docs.sun.com/db/doc/806-0627/6j9vhfn8g?a=view
http://www.microsoft.com/globaldev/handson/dev/muiapp.mspx

424 DCE Replacement Strategies

Index

Numerics
3DES 169

A
AAT 224, 255
Access Control List, see ACL
ACL 7, 53, 94, 134, 159
ACL manager 136
AcquireCredentialsHandle 153
additional material 417
AIX 26–27, 30, 48, 60, 126, 144, 151
AIX Parallel System Support Program (PSSP) 4
applet 35, 38, 74
Application Assembly Tool (AAT) 224, 255
applications in C/C++ 21, 52, 74
auditing 8, 31, 49, 52
authentication 7, 37, 53, 126

basic 37, 40, 70
certificate 40, 70, 73, 114, 117, 119, 195, 247
credential token 40
form-based 71
strong 117

authorization 7, 37, 53, 126
role-based 195, 247

azn_creds_create 156
azn_decision_access_allowed 157
azn_id_get_creds 156
aznAPI 22, 48, 53, 128, 152, 168

B
backing store 38, 56
backing store service 10
basic authentication 37, 40, 70
BasicAuth 223
bean, see enterprise bean
binary structure of ERA 105
binding 6, 65, 173, 178

indirect 176
usage 184

binding handle 178, 364
bootstrap host 45
bootstrap port 45
© Copyright IBM Corp. 2003. All rights reserved.
bootstrapHostName 183
bootstrapPort 183

C
C/C++ applications 21, 52, 74
CDS 9, 136, 172, 176
cdsd 11
cell (WebSphere) 44
Cell Directory Service, see CDS
certificate 37, 63, 116–117, 119, 123, 201

client 40, 223
from a CA 121, 252
self-signed 120, 213
subject DN 253
test 124
validity period 124

certificate authentication 40, 70, 73, 114, 117, 119,
195, 247

Certificate Authority (CA) 119, 121
certificates

from a CA 252
channel binding 132, 135
cipher 123, 216
client certificate 40, 195, 223, 247
CN 245
common considerations 111
compound name 46
config.krb5 77, 166
configuration service 10, 56
conformant arrays 174
container 262
context handles 174
CORBA 23, 48, 63, 70, 174, 201

COSNaming 195
CosNaming 171
CSIv2 195, 247
GIOP 23
IDL 23, 171, 174, 195
IIOP 171, 195
IIOP, see IIOP
interoperability 73
ORB 23, 175
SDK 211
 425

standards 23
WStringValue 235

corbaloc 47
corbaname 46–47
COSINE 29
CosNaming 24–25, 36, 45, 171, 185, 195
cred_handle 135
credential token 40
CRL 116
CSIv2 24–25, 37, 40, 70, 72–73, 195, 247–248
CustomRegistry 41

D
DAP 28
data streaming 174
DB2 115
DCE

cell 4
environment 11
KDC 11, 126, 128
login 126, 130, 153, 168, 179
registry 76, 94
review 3

dce_acl_* 56
dce_acl_inq_permset_for_creds 137
dce_db_* 55
dcecp 142, 151, 159–160, 245
dced 173
dcegroup 93, 97
dcegroupname 93, 97
DCERealm 140
dceXattrValue 107
declarative security 41
delegation 7, 38, 42, 56, 224
dependencies 12

direct 12
indirect 13
none 15

deployment phase 228
DES 169
DFS 4
digital certificate, see certificate
directory 5, 9

replacement strategy 58
Directory Access Protocol (DAP) 28
Directory Information Tree (DIT) 28, 114, 140
Directory Server (IBM), see IBM Directory Server
directory_jni 239

Distinguished Name, see DN
Distributed File System (DFS) 4
Distributed Time Service (DTS) 9
DMT 245
DN 28, 86, 94–95, 102, 140
Document Type Definition (DTD) 35
download scenario sample code 417
DTD 35
DTS 9

E
EAR 241, 244
ear file 224, 227, 229, 257–258
EIS 242
EJB 36
EJB container 44
EJB Security Collaborator 40
encryption 196
encryption cipher 123
enterprise bean 25, 35, 40, 70, 199, 248, 250, 254,

262
method 42
wrapper 201, 230

Enterprise Information Systems (EIS) 242
Enterprise JavaBeans (EJB) 36
ERA 8, 58, 76, 105–106
ERA entry 106
error handling and recovery 113
event management 10, 59
exceptions (IDL) 174
Extended Registry Attributes, see ERA
eXtensible Markup Language (XML) 33

F
form-based authentication 71
full pointer 174

G
GDA 9
General Inter-ORB Protocol (GIOP) 23
Generic Security Services API, see GSS-API
getCallerPrincipal 38, 42
getUserPrincipal 38
GINA 60
GIOP 23
Global Directory Agent (GDA) 9
Graphical Identification and Authentication (GINA)
426 DCE Replacement Strategies

60
GSKit, see IBM GSKit
gss_accept_sec_context 135
gss_acquire_cred 135
gss_init_sec_context 57, 135
gss_seal 133
gss_unseal 133
gss_unwrap 133
gss_wrap 133
GSS-API 5, 9, 53, 56, 62, 125–126, 152, 168
gssdce_* 57
gssdce_extract_creds_from_sec_context 137
gssdce_register_acceptor_identity 134, 155

H
High Performance File System (HPFS) 4
host management 10, 59
hostName 183
HPFS 4
HTTP 35, 71

I
IBM Directory Server 30, 117, 211, 252

supported platforms 30
IBM GSKit 118
IBM Network Authentication Service 27, 75, 117,

125, 128, 138
KDC server 53
using with DCE data 75

IBM SecureWay Directory 30, 138
IBM Tivoli Access Manager 4, 22–23, 53, 85, 117,

125, 138
using with DCE data 85

IBM TXSeries 4
IBM WebSphere 39, 117

Application Assembly Tool 224, 255
Application Server 13, 69, 175, 180, 201
Authentication Module 40
Authorization Engine 200
cell 44
Deployment Manager 44
network deployment 44
Security Collaborator 40, 200
Studio Application Developer 211, 252

identity assertion 42
IDL 6, 24, 171, 174, 195, 204
idlc 189, 231
IETF 26, 36

IIOP 23, 39, 42, 70, 171, 195, 248
ikeyman 118, 213, 253
Implementation Repository 176, 182
indirect binding 176
inetOrgPerson 94, 99
InitializeSecurityContext 153
INS 47
integrated login 8, 59
Interface Definition Language, see IDL
Internet Engineering Task Force (IETF) 26, 36
Internet Inter-ORB Protocol, see IIOP
Interoperable Object References (IOR) 175
IOR 175, 199, 250
isCallerInRole 38, 42
isUserInRole 38

J
J2EE 25, 34, 37, 48, 70

application environment 34
standards 35

J2SE 36, 73, 238
JAAS 36, 40
JAF 36
jar file 223
Java 34

applet 35, 38, 74
authentication 37
authorization 37
enterprise bean 35
JDK 211, 252
JSPs 35
RPC 38
servlets 35
threads 39
URL names 251

Java 2 Standard Edition (J2SE) 36, 73
Java API for XML Parsing (JAXP) 36
Java Authentication and Authorization Service

(JAAS) 36
Java Connector Architecture (JCA) 35–36, 74
Java Database Connectivity (JDBC) 36
Java Message Service (JMS) 36
Java Naming and Directory Interface, see JNDI
Java Native Interface (JNI) 73
Java Remote Method Invocation (RMI) 70
Java Server Pages (JSP) 25, 36
Java Servlet Specification 36
Java Transaction API (JTA) 36
 Index 427

JavaBeans Activation Framework (JAF) 36
javah 239
JavaMail 36
JAXP 36
JCA 35–36, 74, 241
JCA connector 198
JCA container 44
JDBC 36, 38
JDK 211, 252
jdouble 241
JMS 36
JNDI 13, 30, 36, 38, 45, 70, 171, 195, 247
JNI 73, 198, 238
JNIConnection 242
JSP 36, 44, 224
JTA 36
JVM 238, 250

K
kadmin 149, 165–166
kadmin.local 162, 166
kadmind 166
kdb5_util 166
KDC 11, 53, 126, 128, 139, 165
kdestroy 166
Kerberos 26, 48, 125, 263
key database 120
key file 120
keytab 155
kinit 166
klist 166
kpasswd 167
krb5.conf 77
krb5_util 166
krb5kdc 165
krbdeletetype 101, 151, 163
krbKdcServiceObject 77, 79, 141
krbpolicy 103
krbprincipal 92, 96
krbprincipalname 92, 96
krbPrincSubtree 77, 93, 141
krbprolicyname 103
krbRealm 140
krbRealmName-v2 140
KrbRealm-v2 140
krbTrustedAdmObject 77, 79, 141
ksetup 150, 167
ktutil 167

L
launchClient 259
LDAP 28, 41, 49, 76, 85

ERA data 105
replication 115
standards 29

LDAP directory 20, 28, 58, 75, 86
availability 115
migrating DCE data 76
security 114
using and considerations 114

LDAP filter rules
scenario 3 218
scenario 4 253

ldapadd 140
ldapmodify 161
LDAPS 157, 167
LDIF 140
Lightweight Directory Access Protocol, see LDAP
Lightweight Third Party Authentication, see LTPA
Linux 48
LocalOS 41
logging 31, 49
login 7, 37, 126

integrated 8
LTPA 40, 72, 195, 247

M
master key 77
messaging 38, 60
messaging service 10
Microsoft Internet Explorer 114
Microsoft Platform SDK 138
multiple-master replication (LDAP) 115
multi-threaded 175
mutex 68

N
Naming Service (OMG) 24
National Security Assotiation (NSA) 31
Netscape 36, 114, 140
Network Authentication Service

see IBM Network Authentication Service
Network Time Protocol, see NTP
NTP 30, 49, 69
428 DCE Replacement Strategies

O
OASIS 34
Object Request Broker (ORB) 23
OMG 23, 36
OMG Naming Service 24
Open Management Group, see OMG
Open Software Foundation 4
OpenSSL 122
ORB 23, 25, 175
OS/390 27, 48
OS/400 27, 48

P
PAC 7, 38, 53, 72, 126, 247
packet privacy 196
PAM 60
Parallel System Support Program (PSSP) 4
password strength 8, 61
PD.Acld 138
PD.AuthADK 138
PD.Mgr 138
PD.RTE 138
pdadmin 165, 167
performance considerations 113
personal certificate (see also certificate) 118
PGO entry 106
Platform SDK (Microsoft) 138
Pluggable Authentication Module (PAM) 60
policy 159
Policy Director 4, 85
POP 159
POSIX 32
POSIX 1003.c 67
preface xix
priv_* 56
private key 117, 123
Privilege Attribute Certificate, see PAC 6
programmatic security 41
Protected Object Policies (POP) 159
protection 38, 62, 126
pthreads 32, 67
public certificate, see certificate
Public Key Infrastructure (PKI) 117

Q
QoS 193

R
rdacl 54, 136
RDN 28, 140
realm 76
realm entry 140
Redbooks Web site 423

contact us xxii
downloads 417

regimpl 176, 192
RegisterEventSource 32
registry 8, 41, 62
Relative Distinguished Name (RDN) 28
remote cache mode 152
remote procedure call (RPC) 5
replacement considerations 111
replacement roadmap

scenario 1 138
scenario 2 180
scenario 3 210
scenario 4 251

replacement scenarios
scenario 1 125
scenario 2 171
scenario 3 195
scenario 4 247

replacement strategies 51
auditing 52
authentication 53
authorization, PAC, UUID 53
backing store 56
C/C++ applications 52
configuration 56
delegation, GSS-API, login 56
directory 58
event management 59
extended registry attributes (ERA) 58
host management 59
integrated login 59
Java applications 69
messaging 60
mixed applications 73
password strength 61
registry 62
RPC services 63
serviceability 66
threads 67
time 69

replacement technologies 19
ReportEvent 32
 Index 429

Resource Adapter 242
rgy_edit 159, 203, 245
RMI 42, 70, 248
RMI over IIOP 247
rmic 231
RMI-IIOP 38
role-based authorization 195, 247
root certificate 119, 121, 123
root certificate (see also certificate) 118
root context 177
RPC 38, 53, 136, 196
RPC, see remote procedure call
rpc_*auth* 65
rpc_binding_*auth_* 56
rpc_ep_* 65, 178
rpc_ep_register 179
rpc_mgmt_ep_* 65
rpc_network_is_protseq_valid 179
rpc_ns_* 65, 178
rpc_ns_binding_export 179
rpc_ns_binding_import_begin 178
rpc_ns_binding_import_done 178
rpc_ns_binding_import_next 178
rpc_server_* 178
rpc_server_inq_bindings 179
rpc_server_listen 179
rpc_server_register_if 179
rpc_server_use_protseq 179
run-as 42, 263

S
SAS 40
sas.client.props 200, 250
scenario 1 125
scenario 2 171
scenario 3 195
scenario 4 247
SDK (CORBA) 211
sealed delegation 42
sec_acl_* 56
sec_attr_base.h 106
sec_cred_* 56
sec_ctx 135
sec_id_* 56
sec_login_* 57
secret key 117
Security Collaborator (WebSphere) 40
security considerations 113

security role mapping 41
Security Service Provider Interface (SSPI) 152
self-signed certificate 120
server alias 182
serviceability service 10, 66
servlet 25, 71, 74, 224

mappings 224
signer certificate (see also certificate) 118
Simple Network Time Protocol (SNTP) 30
Simple Object Access Protocol (SOAP) 33
simplifications in scenarios 112
Single SignOn 220
single-master replication (LDAP) 115
SNTP 30
SOAP 33
sockets 129
Solaris 48
source code listings

scenario 1 267
scenario 2 331
scenario 3 363
scenario 4 403

SQL 38
SSL 24, 36–37, 70, 72, 114, 116, 195, 247–248
SSL implementation hints 116
SSL key files

scenario 3 213
scenario 4 252

SSL, uses of 117
SSO 220
SSPI 153, 168
standards

for CORBA 23
for J2EE 35
for LDAP 29
for SSL and TLS 116
for threads 32
for Web services 33

start.krb5 167
stateless session bean 230, 248
stop.krb5 167
streaming 174
strong authentication 117
subject 119
svrsslcfg 153
SWAM 40
syslog 31
430 DCE Replacement Strategies

T
technologies

for C/C++ applications 21
for Java applications 34

test certificate 124
TGT 165
The Open Group 4, 22, 31, 55
threads 5, 32, 39, 67, 175
ticket refreshing 113
time 69
Tivoli Policy Director 4, 85
TLS 24, 36, 116
trust file 120

U
UDDI 33
uddi.org 33
unconfig.krb5 167
Universal Description Discovery and Integration

(UDDI) 33
usage binding 184
UUID 10, 26, 48, 53, 55, 69, 76, 177

V
validity period (certificate) 124
VeriSign 122
Visual Age for C++ 211
Visual C++ 211
VtlUtil 235

W
W3C 33
war file 224
WASPROPS 222
Web container 44
Web Portal Manager 149, 167
Web services 33, 49, 64, 263
Web services Description Language (WSDL) 33
WebSEAL 23
WebSphere Administrative Console 245, 258
WebSphere, see IBM WebSphere
Windows 48, 126, 128, 149–150
wrapper (enterprise bean) 230
wsadmin 245
WStringValue 235

X
X.500 29
X.509 117

see also certificate
XML 25, 33–34
xntpd 69

daemon 31
XPG4 32, 60
 Index 431

432 DCE Replacement Strategies

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

DCE Replacem
ent Strategies

®

SG24-6935-00 ISBN 0738453080

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DCE Replacement
Strategies

Replacement
technologies

Replacement
strategies

Best practice
scenarios and
coding examples

This IBM Redbook recommends strategies that you can use to
replace the Distributed Computing Environment (DCE)
dependencies in your environment and move to new
technologies. The following topics are covered:
- DCE overview and recap
- Replacement technologies
- Replacement strategies
- Replacement scenarios
- Replacement coding examples

This book is a valuable information source if you are an
executive, administrator, or developer of an IBM customer
environment that uses IBM DCE for a distributed systems and
application infrastructure.

Although strategies for replacing DCE are described, the book
does not cover strategies for replacing dependencies to IBM
products that use DCE, such as DFS and TXSeries.

Back cover

	Front cover
	Contents
	Tables
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Description of the DCE replacement strategies
	Chapter 1. DCE review
	1.1 Defining DCE
	1.2 Who uses DCE
	1.3 What DCE does
	1.3.1 Threads
	1.3.2 RPC
	1.3.3 Security core
	1.3.4 GSS-API
	1.3.5 Directory
	1.3.6 Time
	1.3.7 Cross component

	1.4 The DCE environment
	1.5 Application dependencies on DCE
	1.5.1 Direct dependencies
	1.5.2 Indirect dependencies
	1.5.3 No dependencies

	1.6 Summary of DCE review

	Chapter 2. Replacement technologies
	2.1 Criteria for selecting the technologies
	2.1.1 Compliance with industry standards
	2.1.2 Coverage of predominant DCE services
	2.1.3 Ease of migration
	2.1.4 Similarity to DCE services
	2.1.5 Technologies considered strategic
	2.1.6 Support of predominant platforms
	2.1.7 Support of predominant programming languages
	2.1.8 Availability of IBM implementations

	2.2 Technologies for C/C++ applications
	2.2.1 aznAPI
	2.2.2 CORBA
	2.2.3 DCE RPC
	2.2.4 DCE UUID
	2.2.5 Kerberos
	2.2.6 LDAP
	2.2.7 Network Time Protocol
	2.2.8 Platform auditing
	2.2.9 Platform logging and messaging
	2.2.10 POSIX 1003.1c threads
	2.2.11 Web services

	2.3 Technologies for Java applications
	2.3.1 J2EE application environment
	2.3.2 Standards for the J2EE
	2.3.3 DCE services that can be replaced by J2EE
	2.3.4 IBM implementation of J2EE: WebSphere Application Server
	2.3.5 Additional information on IBM WebSphere Application Server

	2.4 Summary

	Chapter 3. Replacement strategies
	3.1 Replacement strategies for C/C++ applications
	3.1.1 Auditing
	3.1.2 Authentication
	3.1.3 Authorization, PAC, and UUID
	3.1.4 Backing store
	3.1.5 Configuration
	3.1.6 Delegation, GSS-API, and login
	3.1.7 Directory
	3.1.8 Extended Registry Attributes
	3.1.9 Event management
	3.1.10 GSS-API
	3.1.11 Host management
	3.1.12 Integrated login
	3.1.13 Login
	3.1.14 Messaging
	3.1.15 PAC
	3.1.16 Password strength
	3.1.17 Protection
	3.1.18 Registry
	3.1.19 RPC services
	3.1.20 Serviceability
	3.1.21 Threads
	3.1.22 Time
	3.1.23 UUID

	3.2 Replacement strategy for Java applications
	3.2.1 Determining a new architecture
	3.2.2 Revising the application environment for the new architecture
	3.2.3 Rewriting the DCE applications to the new architecture

	3.3 Replacement strategies for mixed applications
	3.3.1 CORBA interoperability
	3.3.2 Java Native Interface
	3.3.3 JCA and JNI

	Chapter 4. Using DCE data with IBM Network Authentication Service
	4.1 Introduction
	4.2 Migrating DCE data to an LDAP directory
	4.3 Configuring IBM Network Authentication Service
	4.4 Managing the data in a shared environment
	4.5 Removing DCE-specific data
	4.6 Details about shared data
	4.7 Details about non-shared data

	Chapter 5. Using DCE objects with IBM Tivoli Access Manager
	5.1 Introduction
	5.2 Data representation
	5.3 Configuration scenarios
	5.3.1 Scenario 1
	5.3.2 Scenario 2
	5.3.3 Scenario 3

	5.4 Managing objects in a shared environment
	5.4.1 Creating a user with IBM Tivoli Access Manager
	5.4.2 Creating a group with IBM Tivoli Access Manager
	5.4.3 Adding a member to a group using IBM Tivoli Access Manager
	5.4.4 Deleting a user using IBM Tivoli Access Manager
	5.4.5 Deleting a group using IBM Tivoli Access Manager
	5.4.6 Removing a member from an IBM Tivoli Access Manager group
	5.4.7 Creating a principal with DCE
	5.4.8 Creating a DCE group
	5.4.9 Adding a member to a group using DCE
	5.4.10 Deleting a user using DCE
	5.4.11 Deleting a group using DCE commands
	5.4.12 Removing a member from a group with DCE commands
	5.4.13 Sharing policies
	5.4.14 Attaching a DCE policy
	5.4.15 Deleting a shared DCE policy

	Chapter 6. Binary structure of DCE ERA data in LDAP
	6.1 Recap: The DCE to LDAP migration process
	6.2 Reading binary DCE ERA data in LDAP

	Part 2 Replacement sample scenarios
	Chapter 7. Common replacement considerations
	7.1 How to read the example scenarios
	7.2 Common assumptions in the sample scenarios
	7.3 Simplifications in the sample scenarios
	7.4 Security considerations
	7.5 Performance considerations
	7.6 Using an LDAP directory
	7.6.1 LDAP security considerations
	7.6.2 Availability and performance considerations

	7.7 SSL implementation hints
	7.7.1 SSL and TLS overview
	7.7.2 Uses of SSL
	7.7.3 Using SSL in the replacement scenarios
	7.7.4 IBM GSKit
	7.7.5 Authentication with certificates
	7.7.6 Using self-signed certificates
	7.7.7 Using certificates from a Certificate Authority (CA)
	7.7.8 Additional hints and considerations

	Chapter 8. Scenario 1: GSS-API application
	8.1 Scenario description
	8.1.1 Initial application with DCE dependencies
	8.1.2 Revised application without DCE dependencies

	8.2 DCE application
	8.2.1 Configuring and running the DCE application
	8.2.2 Application client
	8.2.3 Application server

	8.3 Replacement roadmap
	8.3.1 Software requirements
	8.3.2 Migration of DCE security registry to IBM Directory Server
	8.3.3 Configuring IBM Network Authentication Service
	8.3.4 Configuring IBM Tivoli Access Manager
	8.3.5 Configuring the Windows Kerberos client
	8.3.6 Revising the application
	8.3.7 Cleaning up the DCE related information in the IBM Directory

	8.4 Revised application discussion
	8.4.1 Configuring and running the revised application
	8.4.2 Application client
	8.4.3 Application server

	8.5 Administration considerations and interfaces
	8.5.1 Administration during the migration process
	8.5.2 Administration after the migration process
	8.5.3 IBM Network Authentication Service administration interface
	8.5.4 IBM Tivoli Access Manager administration interface

	8.6 Discussion and conclusions

	Chapter 9. Scenario 2: Non-secure RPC application
	9.1 Scenario description
	9.1.1 Initial application with DCE dependencies
	9.1.2 Revised application without DCE dependencies

	9.2 DCE application
	9.2.1 Configuring and running the DCE application
	9.2.2 Application client
	9.2.3 Application server

	9.3 Replacement roadmap
	9.3.1 Software requirements
	9.3.2 Installing and configuring WebSphere Application Server
	9.3.3 Revising the application
	9.3.4 Removing DCE

	9.4 Revised application discussion
	9.4.1 Building, configuring, and running the revised application
	9.4.2 CORBA IDL file
	9.4.3 Application client
	9.4.4 Application server

	9.5 Administration considerations and interfaces
	9.6 Discussion and conclusions

	Chapter 10. Scenario 3: Secure RPC application #1
	10.1 Scenario description
	10.1.1 Initial application with DCE dependencies
	10.1.2 Revised application without DCE dependencies

	10.2 DCE application
	10.2.1 Configuring and running the DCE application
	10.2.2 Application interface definition
	10.2.3 Application client
	10.2.4 Application server

	10.3 Replacement roadmap
	10.3.1 Software requirements
	10.3.2 Installing and configuring IBM WebSphere Application Server
	10.3.3 Configuring WebSphere Application Server security
	10.3.4 Configuring the application client
	10.3.5 Developing the application
	10.3.6 Configuring IBM Directory Server
	10.3.7 Assembling the scenario application
	10.3.8 Deploying and starting the application
	10.3.9 Running the application client

	10.4 Revised application discussion
	10.4.1 Enterprise bean wrappers
	10.4.2 CORBA IDL file
	10.4.3 Application client
	10.4.4 Application server
	10.4.5 Java Native Interface
	10.4.6 J2EE Connector Architecture

	10.5 Administration considerations and interfaces
	10.6 Discussion and conclusions

	Chapter 11. Scenario 4: Secure RPC application #2
	11.1 Scenario description
	11.1.1 Initial application with DCE dependencies
	11.1.2 Revised application without DCE dependencies

	11.2 DCE application
	11.3 Replacement roadmap
	11.3.1 Software requirements
	11.3.2 Installing and configuring IBM WebSphere Application Server
	11.3.3 Configuring WebSphere Application Server security
	11.3.4 Configuring the application client
	11.3.5 Developing the application
	11.3.6 Configuring IBM Directory Server
	11.3.7 Assembling the scenario application
	11.3.8 Deploying and starting the application
	11.3.9 Running the application client

	11.4 Revised application discussion
	11.4.1 Application client
	11.4.2 Application server

	11.5 Administration considerations and interfaces
	11.6 Discussion and conclusions

	Part 3 Appendixes
	Appendix A. Scenario 1: Source code listings
	Application with DCE dependencies
	Makefile for application client
	Makefile for application server
	DCE dependent application client
	DCE dependent application server
	Authorization module with DCE dependencies
	Utility source of the DCE dependent application
	Header file for utility source

	Revised application without DCE dependencies
	Makefile for application client
	Makefile for application server
	Revised application client
	Revised application server
	Authorization module using aznAPI
	Utility source of the revised application
	Header file for utility source
	Application configuration file

	Appendix B. Scenario 2: Source code listings
	Application with DCE dependencies
	Makefile for the AIX platform
	Makefile for the Windows platform
	IDL source
	DCE dependent application client
	DCE dependent application server
	Application server logic

	Revised application without DCE dependencies
	Makefile for the AIX platform
	Makefile for the Windows platform
	CORBA IDL file
	Header file for C wrapper functions
	C++ client for the revised application
	C client for the revised application
	Header file for CORBA servant
	Servant implemention
	Revised application server
	Revised application logic
	Properties file for client
	Properties file for server

	Appendix C. Scenario 3: Source code listings
	Application with DCE dependencies
	Makefile for the AIX platform
	Makefile for the Windows platform
	IDL source
	DCE dependent application client
	DCE dependent application server
	Application server manager
	Application server logic header
	Application server logic
	Common error handling

	Revised application without DCE dependencies
	JNI connection
	JNI connection factory class
	JNI connection manager
	JNI managed connection
	JNI connection meta data
	JNI managed connection factory interface
	JNI managed connection meta data
	JNI resource adapter meta data
	Enterprise bean wrapper
	Enterprise bean remote interface
	Enterprise bean home interface
	Deployment descriptor for the application
	Deployment descriptor for the enterprise bean
	Deployment descriptor for the resource adapter
	“C” application server
	JNI wrapper for the application server
	Header file for application server
	CORBA C++ client
	Properties file for CORBA C++ client

	Appendix D. Scenario 4: Source code listings
	Application with DCE dependencies
	Revised application without DCE dependencies
	Build script to create class and jar files
	Java client program
	Java stateless session bean
	Java EJB home interface
	Java EJB remote interface
	Java application exception
	EJB deployment descriptor
	Application client deployment descriptor
	Application deployment descriptor
	Application client security properties

	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

