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Abstract

We study the problem of finding shortest tours/paths for “lawn mowing” and “milling” problems:
Given a region in the plane, and given the shape of a “cutter” (typically, a circle or a square), find a
shortest tour/path for the cutter such that every point within the region is covered by the cutter at some
position along the tour/path. In the milling version of the problem, the cutter is constrained to stay
within the region. The milling problem arises naturally in the area of automatic tool path generation
for NC pocket machining. The lawn mowing problem arises in optical inspection, spray painting, and
optimal search planning.
Both problems are NP-hard in general. We give efficient constant-factor approximation algorithms for

both problems. In particular, we give a (3+ε)-approximation algorithm for the lawn mowing problem and
a 2.5-approximation algorithm for the milling problem. Furthermore, we give a simple 65 -approximation
algorithm for the TSP problem in simple grid graphs, which leads to an 115 -approximation algorithm for
milling simple rectilinear polygons.
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1 Introduction

Consider the following problem: For a given region covered by grass, find a short path along which to move a
lawn mower, such that all the grass is cut. This lawn mowing problem arises in several practical applications.
Motivations from manufacturing include:

• (Process Planning) Plan the motion of the nozzle of a spray painting device in order to coat the entire
surface of an object.

• (Quality Control) Plan the movement of a sensor (camera, detector) in order to check an entire part
for imperfections.

Motivations also arise in the planning of geographic surveys, search-and-rescue operations, etc.

Figure 1: The lawn mowing problem

A closely related problem is that of automatically generating tool paths for NC (Numerically Controlled)
pocket machining: Given a workpiece, a cutter head, and the shape of a “pocket” to be milled in the
workpiece, determine a route for the cutter such that the cutter removes exactly the material that lies within
the pocket. The difference between this milling problem and the lawn mowing problem is that in the milling
problem we do not allow the cutter to exit the region (pocket) that it must cover, while in the lawn mowing
problem it is permitted for the cutter to “mow” over non-grass regions (e.g., one may push the lawn mower
over the sidewalk while cutting the grass).

Related Work. The lawn mowing problem is closely related to the geometric Traveling Salesman Problem
(TSP) with “mobile clients”: Find a shortest tour for a salesman who must visit a given set of clients, each
of which is willing to travel up to distance d in order to meet the salesman. It is easy to see that this problem
can be modeled as that of “mowing” a given (discrete) set of points (at the locations of the clients), using a
“mower” of radius d. This special case of the lawn mowing problem, with a finite (discrete) set of points to
be mowed, has been studied by Arkin and Hassin [2], who obtained constant-factor approximation methods
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Figure 2: The milling problem

for this and other variants of the “TSP with Neighborhoods” problem (see also [15]). (These problems are
clearly NP-hard, from the fact that the Euclidean TSP is NP-hard.)
The lawn mowing problem is also closely related to the “watchman route problem” with limited visibility

(or “d-sweeper problem”), which has been studied by Ntafos [19]: How does one “sweep” the floor of a given
(polygonal) room, using a circular broom of radius d, so that the total travel of the broom is minimized?
By studying the problem of approximating TSP tours on simple grid graphs, Ntafos gives an approximation
algorithm (with approximation factor 43 ) for the d-sweeper problem in a simple polygon, provided that d is
sufficiently “small” in comparison with the dimensions of the polygon.
In the CAD community, there is a tremendous amount of literature on the subject of automatic tool path

generation. We refer the reader to the book of Held [11] for a survey. Held was the first author to start a
mathematical examination of the algorithmic questions that arise in pocket machining. He was primarily
concerned with generating feasible tool paths for milling, and gave efficient algorithms, based on the methods
of computational geometry, for implementing some standard heuristics that are used in practice. Aspects
of complexity in the optimization problem are only mentioned very briefly in the book; the question of
polynomiality or NP-hardness of the milling problem is stated as an open problem, and the question of
obtaining approximation algorithms is not discussed.
Recently, Arkin et al. [3] have examined the problem of minimizing the number of retractions for the

“zig-zag” pocket machining problem, subject to the constraint that one is not allowed to “re-mill”; they show
the problem to be NP-complete and obtain constant factor approximation algorithms. (The milling problem
addressed here can be thought of as a dual: minimize the amount of re-milling, subject to no retractions of
the cutter.)
In [1], we showed that the milling and lawn mower problems are NP-hard, in general. We also provided

existence proofs of constant-factor approximation algorithms for these problems. Iwano et al. [13] indepen-
dently obtained an approximation algorithm for a version of the lawn mower problem; they provide, for any
fixed ε > 0, a (9 + ε)-approximation for the case of rectilinear grass regions.

Main Results This paper represents a continuation and extension of our earlier work [1], with several
substantial new results:

• For the lawnmowing problem, we give improved approximation algorithms that not only cut the pre-
vious best factor by up to a factor of 2, but also substantially improve the running time. Further, our
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method greatly simplifies the proof of [13].

• For the milling problem, we give a 2.5-approximation algorithm, with worst-case time O(n logn), for
a (possibly multiply-connected) pocket whose boundary complexity is n.

• We give new results for the TSP on grid graphs, and applications of these results to related instances
of the milling problem:

– For the case of simple grid graphs having no cut vertices (i.e., the removal of a node does not
disconnect the graph), we show how to construct efficiently a tour whose length is at most (6/5)N ,
where N is the number of grid points (nodes). This improves upon the best previous bound of
(4/3)N [19].

– We apply this result to obtain a 6/5-approximation algorithm for the milling problem in the case of
a unit square cutter, with rectilinear motion, in an integer-coordinate rectilinear simple polygon.
The result also extends to arbitrary rectilinear simple n-gons, yielding an 11/5-approximation
that runs in linear (O(n)) time.

– For the case of arbitrary connected grid graphs, having no local cut vertices (i.e., the removal
of a node does not reduce the genus), we obtain the first nontrivial upper bounds, showing that
the length of an optimal tour is at most 1.325N . (The trivial bound is 2N − 2, from doubling
a spanning tree.) This result also applies to yield improved approximation factors for milling
rectilinear polygons with holes.

Note that recent results of Grigni et al. [10] provide a polynomial-time approximation scheme for TSP
in grid graphs, allowing one to approximate the optimal tour within a factor (1 + ε) for any ε > 0, in
NO(1/ε) time. For comparison, our results establish bounds not just on the ratio of the length A of the
approximation to the length of optimal, L∗, but on the ratio of A to N . We are able to show that our
bound of 6/5 is best possible for this ratio. Furthermore, our approximation algorithm is relatively
simple and much more efficient (O(N)).

2 Preliminaries

We are given a planar region, R, that describes the grass to be mowed or the pocket to be machined.
In general, R may consist of several connected components, each having “holes”. We assume here that
each component of R is a (multiply connected) polygon; our results extend to more general regions whose
boundaries are described by a discrete set of simple curved arcs (straight segments, circular arcs, etc). We
let n denote the total number of vertices of R, and δR denote the boundary of R.
We are also given a cutter, χ. Throughout this paper, we assume that χ is either a circle or an axis-aligned

square. Without loss of generality, we scale our problem instance so that the χ is a unit circle (radius 1) or
a unit square (side length 1). The reference point for the cutter χ is its centerpoint. We let χ(p) denote the
placement of χ at the point p ∈ IR2 (i.e., the unit circle/square with centerpoint at p).
A lawn mower path/tour π is a path/tour such that every point of the region R is covered by some

placement of χ along π; i.e., R ⊆ ∪p∈πχ(p). A milling path/tour π is a path/tour such that every point of
R is covered by some placement of χ along π, and no placement of χ along π ever hits a point outside of R;
i.e., R = ∪p∈πχ(p).
We consider two cases of allowed motions (translations) of the cutter: rectilinear (axis-parallel) and

unrestricted (arbitrary translation). We measure the length of a path/tour of the cutter as its Euclidean
(L2) length. In the case of rectilinear motion, measuring the Euclidean length amounts to the same thing
as measuring the L1 length of the path/tour. (By the isometry that exists between the L1 and L∞ metrics,
we are able to handle the L∞ case as well.)
The points (x, y) ∈ IN 2 having integer coordinates define the grid points in the plane. The integer grid

graph refers to the (infinite) graph whose nodes are the grid points and whose edges join two points at
distance 1; thus, in the integer grid graph, each grid point has degree exactly 4. A pixel is a unit square
whose center is determined by integer coordinates.
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It is easy to see that, for any region R, there always exists a lawn mower path/tour; however, it may be
that there exists no milling path/tour for a (connected) region R, as the cutter may not be able to fit into
the “corners” of R or the pass through the “bottlenecks” of R.
We note that even if the input size is combinatorially very small (e.g., a rectangular region, R, with

n = 4), a lawn mower tour may require a combinatorially very large description if it is described as a
polygonal walk. See Figure 3.
In fact, the number of bends in the output tour may be exponential as a function of the magnitudes of

the input coordinates of R. We can address this issue in at least a couple different ways:

1. We can consider the input complexity to depend on the magnitude (e.g., bit complexity) of the numbers
describing the coordinates of R, rather than on the combinatorial size, n, of the input. This leads to
algorithms whose complexity is pseudopolynomial in the input size.

2. We can consider tours that consist of a polynomial number of pieces each having a regular structure,
allowing a succinct representation even if the number of bends in the tour is quite high. For example,
in his book, Held [11] concentrates on two natural strategies that are used for milling in practice –
“contour-parallel” milling and “axis-parallel” (“zig-zag”) milling. (See Figure 4.) It seems reasonable
to assume that partial tours following one of these two strategies can be encoded efficiently. Of course
this does not resolve the problem of getting closed tours of short length that cover the complete area
to be milled. We will show in Section 5 how the above strategies can be used to find a closed tour of
bounded length.

Figure 3: A lawn mower tour may require a large number of bends, even for a very simple input region
shape, R.

Figure 4: Left: Contour-parallel milling. Right: Axis-parallel milling.
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3 NP-Hardness Proofs

Theorem 1 The lawn mowing problem for a connected polygonal region is NP-hard for the case of an aligned
unit square cutter χ.

Proof. Our proof makes use of the reduction from the (NP-hard) problem Hamiltonian Circuit in
Planar Bipartite Graphs with Maximum Degree 3 to the problem Hamiltonian Circuit in Grid
Graphs, as used by Johnson and Papadimitriou [14] in their proof of hardness of Hamiltonian Circuit
in Grid Graphs. (See also Itai, Papadimitriou and Swarcfiter [12].)
First, a planar bipartite graph G with n vertices (each of maximum degree 3) is represented by a grid

graph G having m = O(n) vertices, such that G has a Hamiltonian circuit if and only if G has a Hamiltonian
circuit. Next, we define the (polygonal) region R to be the union of all placements of χ (a unit square) at
the (grid) vertices of G. Figure 6 shows an example of this construction that corresponds to the bipartite
graph shown in Figure 5.

X 1

X 2

X3

Y1

Y2

Y3

Figure 5: A planar bipartite graph G, with maximum vertex degree 3.

It is easy to see that the existence of a tour of length m on the grid vertices of G implies the existence of
a lawn mower tour of length m. On the other hand, a lawn mower tour of length m can mow all of R (which
has area m) only if no point in the region is mowed more than once. This means that the tour partitions the
region R into nonoverlapping strips (rectangles) of width 1; clearly, these strips must have integer length.
Since traveling a strip corresponds to traveling the associated grid vertices, this implies that a lawn mower
tour of length m induces a tour of length at most m in the grid graph. (See Figure 6.) %&

Corollary 1 The lawn mowing problem is NP-hard even for simple polygonal regions R.

Proof. We can modify the region R used in the proof of Theorem 1 to make it a simple polygonal region R ′,
by making very narrow “slits” that interconnect the holes of R. See Figure 7.
As in the proof of Theorem 1, a Hamiltonian tour (of length m) on the grid graph G yields a lawn mower

tour of length m for R, and hence for R′. Conversely, if the slits in R′ have been made sufficiently narrow
(e.g., less than width δ/n, for a small constant δ), then an optimal lawn mower tour, of length L∗, for R′ can
be slightly perturbed into a lawn mower tour of length L∗ + ε for R, where ε < 1. Then, if L∗ + ε < m+ 1,
we can conclude that G has a Hamiltonian cycle. %&
Observing that the optimal lawn mower tours for the construction given in the proof of Theorem 1 are

also feasible milling tours, we obtain
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X1 Y1 X3

X2

Y2

Y3

Figure 6: The construction used in proving the NP-hardness of the lawn mowing problem.

Figure 7: NP-hardness of the lawn mowing problem for simple polygonal regions.
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Corollary 2 The milling problem is NP-hard for the case of an aligned unit square cutter χ and a multiply-
connected polygonal region R (with holes).

We do not know how to extend the NP-hardness result for the milling problem to show hardness of the
case with simple polygonal regions R (i.e., with no holes). In fact, it is an outstanding open question if the
Hamiltonian circuit problem can be solved in polynomial time in a “simple grid graph” (without holes); a
polynomial-time solution to this problem would imply a polynomial-time solution to the milling problem in
integer rectilinear simple polygons (for the case of an aligned unit square cutter χ).

4 Approximation Methods for the Lawnmowing Problem

In [1], two different approximation methods for the lawn mowing problem were given, depending on the
connectedness of the region of grass. In the following, we show that one method is sufficient to achieve a
better approximation factor for both cases.
We begin by assuming that the cutter χ is a unit square, aligned with the axes; at the end of this

section, we will consider the case of a circular cutter. We consider both the case of rectilinear motion and of
unrestricted motion. Let T ∗ denote an optimal lawn mower tour, of length %∗.
Let S be the set of (integer grid) centerpoints for the pixels, P, that intersect the given polygonal region

R. Let N = |S|. We can identify S in time O(N + n logn) from a given description of R as a polygonal
region with n vertices.
Our approximation algorithm is remarkably simple: Construct an approximate TSP tour on the set of

points S.
The length of a tour is measured in terms of L1 length (for rectilinear motion case) or L2 length (for

unrestricted motion case). Let αTSP denote the approximation factor for the TSP for points in the plane.
One can achieve αTSP = 2 by simply doubling a minimum spanning tree, or one can achieve αTSP = 1.5 by
applying the Christofides heuristic (or achieve αTSP = 1.5+ε, using an efficient approximation thereof [22]).
Furthermore, we can use the approximation schemes by Arora [5] or Mitchell [16, 17] to get αTSP = 1+ ε in
polynomial time (with an exponent of O( 1ε )).
The following lemma establishes the feasibility of our approximation tour; its proof is immediate.

Lemma 1 Any tour of the point set S is a feasible lawn mower tour for a (unit square) cutter χ.

The goal of the next lemma is to establish the sufficiency of searching for tours on the integer grid graph
(whose vertices contain the centerpoints S). We refer to the unit square faces in the embedding of this
(planar) grid graph as the “dual pixels” (with the word “dual” being suggestive of the plana dual of the
integer grid graph). The corners of the dual pixels lie at half-integer coordinates.

Lemma 2 For a unit square cutter, restricted to axis-parallel motions, there exists a tour, TG, of length %G,
that lies on the integer grid graph, such that TG intersects the same set of (closed) dual pixels as does T ∗,
and such that %G ≤ %∗.

Proof. If T ∗ lies fully within a block of four dual pixels that share a common corner, then we can simply
define TG to be the (degenerate) tour consisting of the single point at the shared corner.
Now assume that T ∗ does not lie fully within a block of four dual pixels sharing a common corner. We

claim that, without loss of generality, we can assume that all bend points of the (rectilinear) tour T ∗ lie
on the edges of the integer grid graph (i.e., on the boundaries of dual pixels). To see this, assume to the
contrary that there is a bend point p in the tour T ∗, with p interior to some dual pixel, P . Let a ∈ δP (resp.,
b ∈ δP ) be the last point of P encountered by traversing T ∗ forward (resp., backward). (Such points exist,
since T ∗ does not lie fully within P .) Now, we simply replace the subpath of T ∗ that goes from a to b with
an “L-shaped” path whose single bend point lies on the boundary of P . (In case a and b have a common
x-coordinate or y-coordinate, the path linking a and b may in fact be a single vertical or horizontal segment,
having no bend points.) The new subpath is no longer than the original subpath; further, the modified tour,
T ′, intersects the same set of dual pixels as the original tour, T ∗.
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Now, all of the bend points of the modified tour T ′ lie on the edges of the integer grid graph. Our goal
now is to transform T ′ into a tour, TG, that lies entirely on the integer grid graph (i.e., that has all of its
bend points at grid points), while TG intersects the same set of dual pixels as does T ′.
There are two possible kinds of bend points in T ′: 90-degree bends and 180-degree bends (turn-abouts).

If all of the bend points of T ′ already lie at integer grid points, we are done (TG = T ′). Thus, consider an
arbitrary bend point, b, on T ′, such that b does not lie at an integer grid point. Without loss of generality,
assume that b lies on a vertical grid line. We now describe an adjustment procedure to convert T ′ into TG.
There are two cases:

1. If b is a 90-degree bend point, then b lies at the intersection of two segments of T ′ — a horizontal segment,
call it ab, having the other endpoint a also lying on a vertical grid line different from that containing
b, and a vertical segment, call it bc, having the other endpoint c lying on the same vertical grid line as
b. There are two subcases, depending on whether the vertical segments incident at a and b are (a) on
opposite sides of the horizontal line through ab, or (b) on the same side of ab; refer to Figure 8.

a b a b

(a) (b)

Figure 8: Two cases for adjusting a rectilinear tour to obtain a tour, TG, on the integer grid.

(a) In case (a), we can translate ab vertically upwards or downwards, without changing the length of
T ′, until one of the endpoints of ab hits (i) a grid point, or (ii) another bend point of T ′. This
translation does not change the set of dual pixels intersected by the tour. In subcase (i), both a
and b hit grid points, so we have succeeded in moving b (as well as a) to a grid point. In subcase
(ii), we have decreased the total number of bend points, and, in particular, we have decreased the
number of bend points that do not lie at grid points.

(b) In case (b), we can translate ab vertically in the direction that decreases the length of T ′, again
until one of the endpoints of ab hits (i) a grid point, or (ii) another bend point of T ′, exactly as
in case (a).

2. If b is a turn-about, then there are two subcases:

(a) If the two edges of T ′ incident at b lie on the grid line containing b, then both edges can be
shortened, either until b coincides with a grid point or until b coincides with another bend point.

(b) If the two edges of T ′ incident at b are orthogonal to the grid line containing b, then then these
two edges (call them ab and cb) can be translated until a or c coincides with a grid point (so that
b also coincides with a grid point), or until a or c coincide with another bend point.
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When this adjustment procedure terminates, we have all bend points lying at grid points, and the resulting
tour is the desired TG. %&
Consider a tour, TG, of length %G ≤ %∗, obtained from T ∗, as in the above lemma. Let SG denote the

set of integer grid points (pixel centerpoints) visited by TG. While TG intersects the same set of dual pixels
as does T ∗, it is not necessarily a lawn mowing tour, since the “rounding” onto the integer grid may have
made it infeasible. (If, by chance, we have SG ⊇ S, then TG is in fact a lawn mowing tour.) The purpose of
the next lemma is to show that we can convert TG into a lawn mowing tour (in particular, a tour visiting
all points of S), at a cost of increasing its length by at most a factor of 3.
First, let Π be the path obtained from TG by cutting it open, by removing one grid edge, of length 1.

(We assume that TG has at least two grid edges; otherwise, the problem is trivial.) Let F denote the (open)
region obtained by offsetting Π, convolving it with an (open) L∞ disk of radius 1 (i.e., F is obtained by
sweeping an axis-aligned square of side length 2, with its center following path Π).

Lemma 3 Each centerpoint of S is either visited by the path Π or is within L∞ distance 1 from some
centerpoint that is; i.e., S ⊆ Π ∪ δF .

Proof. Let p ∈ S be a centerpoint of a grass pixel, and let P be any one of the four dual pixels having corner
p. Let π denote that portion of T ∗ that lies within dual pixel, P . (Note that π need not be connected.) The
total region mowed by π must lie within the union of the four grass (non-dual) pixels whose centerpoints are
the four corners of the dual pixel P . Since TG (and, hence, Π) visits the same set of dual pixels as does T ∗,
we know that at least one corner of P lies in SG. Thus, all four corners of P lie in the set Π ∪ δF , which
includes SG, together with all centerpoints within L∞ distance 1 from some point of SG. %&
Let S′G = S ∩ (Π ∪ δF ) be the subset of S that lie on TG, or within L∞ distance 1 of some point of TG.

The following lemma shows that there exists a relatively short tour that covers S ′G, and, hence, by Lemma 3,
that covers S, thereby making it a lawn mowing tour.

Lemma 4 There exists a tour that covers S′G (and hence S) with length at most 3%G+6 (and hence at most
3%∗ + 6).

Proof. For a path of length % and a disk of circumference c, it is known (see [8, 13]) that there exists a tour
of length at most 2% + c that covers the boundary of the Minkowski sum of the path and the disk. Thus,
since the L∞ disk of radius 1 has circumference 8, we know that there exists a tour, T ′, covering δF of length
at most 2%Π + 8 = 2%G − 2 + 8 = 2%G + 6.; But the tour T ′ must cross TG, at a point within distance 1 of
the edge of TG that was removed to obtain Π. Thus, we can concatenate the tour T ′ with the tour TG to
obtain a tour T ′′ of length at most 3%G + 6 that covers all of Π and δF , and hence all of S′G and S. %&
Thus, we can conclude that there exists a rectilinear tour of length at most 3%∗ + 6 that covers S, and

hence is a lawn mowing tour, implying the following theorem:

Theorem 2 Finding a rectilinear TSP approximation (with factor αTSP ) on the set of centerpoints S yields
a lawn mowing tour of length at most αTSP (3%∗+6), where %∗ is the length of an optimal lawn mowing tour.

Running time. The complexity of our approximation algorithm is simply the time, f(N), required to
approximate the TSP on the N nodes S. By using one of the approximation schemes of Arora [5] or
Mitchell [16, 17], we can achieve 3αTSP = 3(1 + ε) in a running time of O(NO(

1
ε )). If we use the

Christofides heuristic, we obtain an overall approximation factor of 3αTSP = 4.5, at a running time of
f(N) = O(N2.5 log4N) (the bottleneck being the computation of the minimum-weight matching [21]). Al-
ternatively, we can apply the approximate matching result of Vaidya [22], within the Christofides heuristic, to
achieve a factor of 4.5+ ε at a time complexity of f(N) = O(N 1.5 log2.5N). Finally, by simply doubling the
minimum spanning tree, we obtain a factor of 6, with a simple algorithm of complexity f(N) = O(N logN).
We can also obtain time bounds for computing an approximate length of an optimal tour, as well as an

implicit representation of an approximating tour, in time that depends on n (the combinatorial size of the
input) rather than on N (which depends on the numerical size of the input data). For this discussion, we
restrict attention to the case of a rectilinear region R, having all of its edges parallel to the coordinate axes.
Our strategy will be to compute a minimum spanning tree of S, and then double it (so that αTSP = 2).
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First, we decompose the region R into rectangles; this takes time O(n), if R is simply connected ([6]),
or time O(n logn), if R is multiply connected (e.g., by standard plane sweep). Next, we compute the L1
Voronoi diagram of the set of rectangles, treating them as the sources, and using the L1 (rectilinear) metric.
This gives a planar subdivision, of size O(n), of the complement of R, which allows us to compute the nearest
neighbor information for each rectangle. Thus, for each rectangle τ , we know which other rectangles are
Voronoi neighbors (as well as which ones share edges with τ).
For rectangle τ , we let S′τ denote the set of pixel centerpoints for the set of pixels intersected by τ . With

this definition, notice that a centerpoint can belong to more than one set S ′τ . In order to obtain a partition
of the centerpoints S, we define sets Sτ ⊆ S′τ by assigning centerpoints uniquely to rectangles. For pixels
that intersect more than one rectangle, we determine which set Sτ should “own” the centerpoint, based on a
convention, such as the following: Sweep a vertical line across the pixel, stopping at the first instant that one
or more rectangles is intersected (this instant may, in fact, be at the left boundary of the pixel); we assign
the pixel to the rectangle that is topmost in the intersection with the sweepline. An implicit representation
of the sets Sτ can be determined using the Voronoi neighbor information for rectangles. Further, each set
Sτ has an O(1)-size implicit description of its minimum spanning tree; e.g., we can simply link up the points
Sτ , row by row, and then link the rows together.
We now want to compute a minimum spanning tree (MST) of all of S, by linking together the spanning

trees of the sets Sτ . (Note that, by standard properties of minimum spanning trees, we know that the
(unit-length) edges in the spanning trees of the sets Sτ are in an MST of S.)
To link together the resulting connected components, we apply a Kruskal-like greedy algorithm, starting

with a forest consisting of the spanning trees of the sets Sτ , and, at each stage, linking a pair of components
with an edge whose L1 length is minimum among edges linking centerpoints from different components.
Such edges can be identified using Voronoi neighbor information for the rectangles. (Note too that if two
rectangles are touching, then their trees can be linked easily, with a unit-length edge, which is clearly of
minimum length.) These edges are used in the Kruskal algorithm to link up the components to obtain the
overall minimum spanning tree of S. (The fact that we can restrict attention to Voronoi neighbors follows
from standard properties of minimum spanning trees.)
Finally, we remark that the method sketched above should be applicable to more general regions than

just rectilinear ones; e.g., if the region R has edges from some small fixed set of rational slopes, then a
trapezoidal decomposition can be used, with an implicit representation of the pixel centerpoints associated
with each. Then, by approximating arbitrary regions with such polygonal regions, it should be possible to
obtain similar O(n logn) time bounds for approximating any region R.

Removing the additive term. The above approximation bound includes both a multiplicative and an
additive error term. We now give a second approximation method that can be applied in cases in which the
length of an optimal lawn mower tour is small. Then, by selecting the shorter of the two tours obtained by
our two methods, we can give an error bound based on a purely multiplicative approximation factor.
Our second approach begins by finding the axis-aligned bounding box (rectangle) of R; assume this

rectangle is of size a-by-b, with a ≤ b.
If a ≤ 1, mowing this rectangle trivially yields an optimal solution.
If 1 < a ≤ 2, then we can again obtain an optimal tour easily, by noting that the mower must travel at

least distance 2(a+ b− 2) in order to touch all four edges of the bounding rectangle with the boundary of
the lawn mower. Thus, by simply mowing the rectangle with a rectangular tour of length 2(a + b − 2), we
obtain an optimal tour.
If a > 2, then, as can be seen from Figure 9, we can mow the rectangle by concatenating a series of

concentric rectangular subtours. For all except possibly for the innermost subtour, these concatenations can
be performed without extra cost by swapping edges as shown in Figure 9. Joining the innermost subtour
may cost an extra two unit edges if b − 1− 2* a2+ < 1. Therefore, we can mow the rectangle by traveling a
total length of no more than

2 +

* a2 +∑

i=0

2(b− 1− 2i) + 2((a− 1− 2i)

11
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Figure 9: Mowing a rectangle
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This guarantees an approximation factor better than 3αTSP , as long as we only consider
(⌊
a
2

⌋
+ 1
)
≤ 3αTSP .

Therefore we can assume a ≥ 6, hence %∗ ≥ 20. This means that we can drop the additive term in our
approximation estimates by adding no more than θ = 3

10 to the multiplicative estimates. (This estimate for
θ can be improved; we omit a tighter analysis in the interest of brevity.)

Unrestricted motion of a square cutter. If we consider a unit square cutter that is allowed to translate
arbitrarily (while not rotating), rather than only in a rectilinear fashion, then we can apply our same approach
as before, with a slight modification to the perturbation scheme used in the proof of Lemma 2. In particular,
we argue that we can perturb an optimal tour T ∗ onto a grid with diagonals determined by centerpoints of
pixels. In the grid with diagonals, we join two centerpoints with a horizontal or vertical edge if they are
separated by distance 1, and by a diagonal (45-degree) edge if they are separated by distance

√
2. A simple

calculation shows that any straight segment, of length %, joining a pair of centerpoints can be replaced by a
path of length at most β · %, in the grid with diagonals, where β = 2√

2+
√
2
≈ 1.08. The results go through

as before, but with an additional factor β in the approximation ratio.

Circular cutters. We can further extend the method to the case of circular cutters. Assume that χ is a
unit-radius disk that is allowed to move arbitrarily in the plane. In this case, we use another form of “pixel”
— instead of tiling the plane with unit squares, we tile the plane with regular hexagons, each of diameter
2. The centerpoints of these hexagons lie on a regular lattice. We join two centerpoints by an edge if they
lie at distance

√
3; this results in a planar graph whose faces are equilateral triangles of side length

√
3. See

Figure 10. Any straight segment of length % between two centerpoints can be approximated by a path in the
graph of length at most γ · %, where γ = 2

√
3
3 ≈ 1.15.

As in the case of a mowing square, we can remove the additive term from the approximation bound by
considering the smallest disk of radius ρ ≥ 1 that contains R. Mowing that disk can be done with a tour of
no longer than

!ρ−1#
2∑

i=0

2π(ρ− 1− 2i) + 2/ρ− 20 ≈ ρ2π

2
+ 2(ρ− 2),

while an optimum tour must have a length of at least 4(ρ− 1).
In summary, we have

12



Figure 10: Approximation for the case of a circular cutter χ.

Theorem 3 The lawn mowing problem has a constant-factor approximation algorithm that runs in polyno-
mial time (dependent on the TSP heuristic employed). For the case of an aligned unit square cutter, the
approximation factor is 3αTSP for rectilinear motion, and is 3βαTSP for arbitrary translational motion.
For the case of a unit circular cutter, with arbitrary motion, the approximation factor is 3γαTSP . Here,

β = 2√
2+
√
2
≈ 1.08, and γ = 2

√
3
3 ≈ 1.15.

5 Approximation Methods for the Milling Problem

We consider now the problem of pocket machining, in which we must compute a milling tour with the cutting
tool required to stay within the region (pocket) R that is to be milled.

Theorem 4 In time O(n logn), one can decide whether a (multiply) connected region with n sides (straight
or circular arc) can be milled by a unit disk or unit square, and, within the same time bound, one can
construct a tour of length at most 2 12 times the length of an optimal milling tour.

Proof. One can check for millability in O(n logn) time using a medial axis to compute offsets based on the
cutter χ. (Offset the boundary inward, then offset this outward, and compare to the original region.)
So assume that R can be milled. Let B ⊂ R denote the inward offset region of all points within R that

are feasible placements for the center point of the milling cutter. B is connected. The length LδB of the
boundary δB of B is a lower bound for length LOPT of an optimal milling tour. We write RδB for the region
milled by moving along δB. Note that δB may consist of several pieces if R is not simple. In the following,
we will refer to these pieces as δBi. If Rint := R \RδB is nonempty, we can cover it by a set of s horizontal
strips Si of vertical width 1 and disjoint interior, as shown in Figure 11: The vertical coordinates of the
center lines of any two strips differ by a multiple of 2. (In the following, we will refer to the center line of a
strip as a “strip line”.) Each strip lies completely inside of R, so there may be several strips that have the
same vertical coordinate. By a simple area argument, we need at least the length Lstr =

∑s
i=1 LSi to mill

R, so we conclude that Lstr ≤ LOPT .
By the choice of the strips, every δBi contains an even number of endpoints of strip lines. This means

that these endpoints partition every δBi into two sets of pairwise disjoint subportions. We will refer to these
two sets as the two “matchings” M1(δBi) and M2(δBi) of δBi. For every δBi, let M∗(δBi) be the shorter
matching. Clearly, the combined length of all M ∗(δBi) is at most

LδB
2 ≤

LOPT
2 .
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Figure 11: Approximating a milling tour

Now consider the graph formed by the endpoints of strip lines, plus the points where a strip line touches
a δBi. These vertices are canonically connected by the center lines of the strips, the δBi and the M∗(δBi).
Clearly, this graph is connected and every vertex has degree 4. This means that it has a Eulerian tour, which
forms a feasible milling tour of length no longer than 52LOPT . %&

6 TSP on Simple Grid Graphs

Consider the special case of the milling problem with a unit square cutter, under rectilinear motion, and a
region R given by a simple rectilinear polygon having vertices with integer coordinates. It is easy to see that
the milling problem in this case is equivalent to the problem of finding an optimal TSP tour on the simple
grid graph, G, induced by the centerpoints of the pixels that comprise R. Specifically, G is the graph whose
node set is the set of centerpoints of pixels within R, and two nodes are joined by an edge if and only if
the corresponding centerpoints are at distance 1 from each other. (It is “simple” in the sense of having no
“holes”; i.e., all grid points interior to any simple cycle in G must also be nodes of G.) Here, since G may
not be Hamiltonian (e.g., G may consist of a single horizontal row of centerpoints), by a “tour” we mean a
closed walk that visits every node at least once (possibly revisiting some nodes).
A node v is a cut vertex if its removal disconnects G. If G has a cut vertex v, then we can consider

separately the approximation problem in each of the components obtained by removing v, and then splice
the tours back together at the vertex v to obtain a tour in the entire graph G. Thus, we concentrate on the
case in which G has no cut vertices.
The problem was considered by Ntafos [19], who showed (constructively) that, provided there are no cut

vertices, there exists a tour of length at most (4/3)N , where N is the number of grid points in the graph.
This immediately gives a 4/3-approximation algorithm (since N is a trivial lower bound on the length of any
tour), thereby improving, in this special case, on the Christofides bound of 3/2. In this section, we improve
the result of Ntafos by giving a method to obtain a tour of length at most 65 times the length of an optimal
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TSP tour, and this result is tight for the case of no cut vertices. Note that it is still open whether an exact
solution for TSP instances on simple grid graphs can be found in polynomial time. Grigni et al. [10] have
given a polynomial approximation scheme for arbitrary grid graphs, as did Arora [5] and Mitchell [16, 17] for
the general Euclidean case; however, the algorithms from those approximation schemes are not very practical
for small approximation factors, whereas our method achieves optimal running time of O(n).

Theorem 5 Let G be a simple grid graph, having N nodes at the centerpoints, V , of pixels within a simple
rectilinear polygon, R, having n (integer-coordinate) sides. Assume that G has no cut vertices. Then, in
time O(n), one can find a representation of a tour, T , that visits all N nodes of G, of length at most 6N−45 .

Proof. Let VB ⊆ V denote the set of centerpoints of pixels on the boundary of R (i.e., one or more sides of
the pixel are shared with the boundary of R). Let VI ⊂ V denote the set of centerpoints of non-boundary
(“internal”) pixels. Thus, the node set for the grid graph G is partitioned into boundary nodes (VB) and
internal nodes (VI ).
As defined, the points VB and VI lie at half-integer coordinates in the plane (since they are centers of

pixels). However, for simplicity of exposition, we can translate the points VB ∪ VI by (12 ,
1
2 ), and work from

now on with the assumption that G is a subgraph of the integer grid graph.
The fact that G has no cut vertices implies that there exists a simple cycle, C, through only boundary

nodes VB , visiting each boundary node exactly once; we call C the contour of G. Figure 12 shows an
example of a contour C (shown as a bold outline) through the nodes VB ; the internal nodes VI are indicated
by (hollow) circles.

f’

fe

e’

Figure 12: A contour C (shown bold) surrounding the internal nodes VI of a simple grid graph that has no
cut vertex.

We say that two edges, e and f , of C form a bottleneck if

1. e and f are parallel, separated by distance 1, and

2. there does not exist an edge g of C such that e, g, and f form a subpath of C of length 3.

(An alternative definition is to say that e and f form a bottleneck if they are opposite sides of a unit
square, such that neither of the other two sides of the square is an edge of C.) For example, in Figure 12,
the pair (e, f) of edges forms a bottleneck, while the pair (e′, f ′) does not.
The following lemma shows that it will suffice to consider the case in which C has no bottlenecks.
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Lemma 5 Consider a simple grid graph G with N vertices that does not have any cut vertices. Suppose we
can find a tour of length at most 6N−45 for any simple grid graph without bottlenecks, such that any degree 2
vertex is connected to both of its neighbors. Then we can find a tour of length at most 6N−45 for any simple
grid graph without cut vertices, such that any degree 2 vertex is connected to both of its neighbors.

Proof. We proceed by induction over the number of bottlenecks. Let e = (v1, v2) and f = (v3, v4) form a
bottleneck, separating the pieces G1 and G2, consisting of N1 and N2 vertices, resp., so N = N1 +N2 + 4.
(See Figure 13.) Then we can decompose G into two pieces, H1 induced by G1, v1, v2, v3, v4, and H2 induced
by G2, v1, v2, v3, v4. In H1, v2 and v4 are vertices of degree 2, as are v1 and v3 in H2. Therefore we have a
tour of length at most 6N1+205 of H1 that consists of a path p1 from v1 to v3 and the edges (v2, v4), e, f ;

similarly, we have a tour ofH2 which is no longer than
6N2+20
5 and consists of a path p2 from v2 to v4 and the

edges (v1, v3), e, f . Therefore, the union of p1, f , p2, e forms a tour of G in which all degree 2 vertices are

connected to their neighbors. Its length is at most (6N1+20)+(6N2+20)+5+55 = 6(N1+N2+4)−4
5 = 6N−4

5 . %&

G1 v1

v2 v4

v3

v1

v2 v4

v3

G2

v1

v2 v4

v3

e f

1H

e f

2H

e f

Figure 13: How to deal with bottlenecks

So, for the remainder of the proof of Theorem 5, let us assume that C has no bottlenecks.
To construct the tour T , we begin with the contour C through the boundary nodes VB . We will then

argue that we can modify C, through a series of detours, into a tour that also visits every internal node, in
such a way that whenever the detour causes us to “waste” an edge (by going to a node that has been visited
already), we can “charge” this wasted edge off to some group of at least 5 nodes. No node will ever belong
to more than one group, and no group will be charged more than once for a wasted edge; thus, in all, there
will be at most 65N edges in the final tour T .
We can assume, without loss of generality, that the internal nodes VI have (integer) y-coordinates

1, 2, . . . , k. In order to define the “groups” of nodes that will be charged with wasted edges when we
make modifications to C, we begin by partitioning VI into doublerows obtained by pairing up the rows, y = 1
with y = 2, y = 3 with y = 4, etc.
Consider the internal nodes that lie in a doublerow defined by y = j and y = j + 1; i.e., consider those

points of VI whose y-coordinate is either j or j+1, for an odd positive integer j. These internal nodes induce
a grid graph, whose edges are defined by pairs of nodes at distance 1 from each other. For each (integer) i,
this graph has 0, 1, or 2 (internal) nodes that lie in the column determined by the vertical grid line x = i;
we refer to these columns as being an empty column, a singleton column, or a doubleton column. Note that
in a singleton column, there must be exactly one internal node and one boundary node.
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We describe a set of possible modifications (“detours”) that we will apply to the contour C. Let C ′

denote the modified contour at any particular stage of the modifications; we maintain the invariant that
C ′ is a closed walk within the grid graph G that visits every boundary node (VB) at least once. Initially,
C ′ = C; once C ′ visits all nodes (VB ∪ VI), we will be done, and we will take T to be the tour C ′. Our
modifications are “monotone” in that each modification will result in C ′ visiting a superset of the nodes
that it previously visited. We let V ′I ⊆ VI denote the set of internal nodes not yet visited by C ′, and we let
GjI denote the grid graph induced by those nodes of V

′
I that lie in the doublerow determined by y = j and

y = j + 1.
We say that a modification to the contour C ′ is free if it results in no wasted edges; i.e., the net increase

in the number of edges of C ′ exactly equals the number of (internal) nodes that are newly visited by the
modified contour.
We consider two types of free modifications to C ′. These are done within a doublerow (say, defined by

y = j and y = j + 1). Both modifications are based on finding an edge of C ′ that is parallel to (and at
distance 1 from) an edge of GjI, and then modifying the edge of C

′ to detour through the two (internal)

nodes that define the edge of GjI .

I. If a doubleton column (at, say x = i) is adjacent to an empty column (at, say x = i − 1) that has a
(vertical) edge (u, v) = ((i − 1, j), (i− 1, j + 1)) of C ′, then a Type I detour replaces edge (u, v) with
the path that goes from u to (i, j) to (i, j + 1) to v. Such a detour can be repeated, “pushing” the
vertical edge of C ′ rightwards, until we run out of doubleton columns. See Figure 14.

II. If two singleton columns (at, say x = i and x = i + 1) have their internal nodes in the same row (at,
say y = j)1 and C ′ includes the (horizontal) edge (u, v) = ((i, j + 1), (i+ 1, j + 1)) joining the other
two nodes in these columns, then a Type II detour replaces edge (u, v) with the path that goes from
u to (i, j) to (i+ 1, j) to v. Such a detour can be repeated if there is a path of horizontal edges of C ′

opposite a row of internal nodes, resulting in a “zig-zag” detour that visits all but one of the internal
nodes in the row. See Figure 14.

(II)

(I)

Figure 14: Top: Type I detours allow C ′ to visit the internal nodes in a sequence of consecutive doubleton
columns. Bottom: Type II detours applied to a horizontal row of edges of C ′ allow C ′ to visit all but one of
the corresponding internal nodes.

We continue to perform the above free modifications until no longer possible. In the end, if we have
incorporated all internal nodes into the contour C ′, we are done (we use the tour T = C ′, and this tour
is necessarily optimal, since its length is N). Otherwise, we are left with a set of internal nodes, V ′I ⊆ VI
such that each connected component, H, of GjI, corresponding to the doublerow determined by y = j and
y = j + 1, must satisfy the following properties:

1. No doubleton column of H is adjacent to a vertical edge of C ′;

2. There are no three consecutive singleton columns of H having the internal nodes all in the same row;
and

1Hence, there is an edge, ((i, j), (i+ 1, j)), of Gj
I
joining these two nodes.
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3. The only way to have two consecutive singleton columns of H is if H consists of just one (horizontal)
edge joining the two nodes of the two singleton columns.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15: Six cases for incorporating internal nodes into the modified contour tour. Hollow circles denote
internal nodes, V ′I , and solid circles denote nodes of C

′. Solid edges are drawn where there must be edges
of C ′.

This leaves us with six possible cases for a component H, as illustrated in Figure 15. If H has no
doubleton columns, then H must either be a single node (case (a)) or a single horizontal edge joining two
nodes (case (b)). If H has at least one doubleton column, then we define the width of H to be the number
of doubleton columns of H. The resulting four cases are distinguished based on the number of singleton
columns of H: 0 (case (c)), 1 (case (d)), or 2 (cases (e) and (f)). If there are 2 singleton columns, we
distinguish between the case in which the two corresponding internal nodes lie in the same row (case (e)),
and the case in which they do not (case (f)).

(a) H consists of a single node. In this case, there must be five nodes of C ′ in the doublerow, in the
(singleton) column containing H, and the two neighboring columns, as shown in Figure 15(a).

In this case we waste one edge, but have six nodes to charge. We charge any five of them; since our
subdivision into doublerows forms a partition of the interior nodes, none of those five nodes will ever be
charged again. The remaining sixth node remains uncharged and may be referred to later, see below.

(b) H consists of two nodes, joined by a single horizontal edge. In this case, the two (boundary) nodes
that are in the same two singleton columns as H occupies must not be joined by an edge of C ′ (since,
otherwise, a Type II detour could be performed). Instead, there must be a vertical edge of C (not
just C ′) incident on each of these two boundary nodes, and, therefore, by our assumption about no
bottlenecks, there must also be an edge of C linking the other ends of these two vertical edges (i.e., a
horizontal edge at distance 2 from H).

None of the ten nodes that we charge will ever be charged again.

(c) H consists of only doubleton columns.

In this case we waste two edges, but have at least 10 nodes to charge. Again, it follows from our
partition that none of the ten nodes that we charge will ever be charged again.
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(d) H has one or more doubleton column, and exactly one singleton column.

In this case we waste one edge, but have at least 10 nodes to charge. None of the ten nodes that we
charge will ever be charged again.

(e) H has one or more doubleton column, and exactly two singleton columns, whose corresponding nodes lie
in the same row.

In this case we waste two edges, but have at least 10 nodes to charge. None of the ten nodes that we
charge will ever be charged again.

(f ) H has one or more doubleton column, and exactly two singleton columns, whose corresponding nodes lie
in different rows.

In this case we waste two edges, but have at least 10 nodes to charge. None of the ten nodes that we
charge will ever be charged again.

There is another technical detail needed in order to apply Lemma 5: We must argue that we can leave 4
vertices uncharged, after applying all of the above charging scheme, so that we get a bound of 6N−45 . Since
we are free to choose the parity of our subdivision into doublerows (i.e., have them at coordinates 2i−1 and
2i, or at 2i and 2i+1), we can make this choice in a way that leaves a “bottommost” or a “topmost” part of
C ′ (i.e., the set of boundary vertices that have y-coordinate smaller or larger than any interior vertex) out of
any doublerow. Clearly, any such piece will contain at least three vertices. If the bottommost part has only
three vertices, a doublerow containing it can only have one interior vertex – as in case (a) above. Therefore
we can either leave a part with more than three vertices uncharged, or leave three vertices uncharged on one
side, plus another vertex as described in case (a) above. In either case, we are done.
Finally, we remark that the running time of the algorithm to produce the claimed approximate tour

can be bounded by O(n), the time needed to partition R into horizontal trapezoids. Within each such
trapezoid we can perform the free modifications, in block, in O(1) time, after which we are left with only
O(n) doublerows to which we apply the above case analysis.
%&
It should be noted that the 6/5 bound is asymptotically tight – consider the class of examples shown in

Figure 16.

Figure 16: A tight class of examples

A direct corollary of Theorem 5 is a 65 -approximation bound for milling rectilinear simple polygons having
integer coordinates:

Corollary 3 The milling problem for a unit square cutter, rectilinear motion, and a simple rectilinear
polygon region R having integer coordinates can be approximated within a factor of 65 of optimal, in time
O(N), where N is the number of pixels contained within R. If the simple polygonal region has n edges, it is
straightforward to show that we can find such a tour in time O(n).
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A further corollary is a 115 -approximation bound for milling rectilinear simple polygons having arbitrary
coordinates:

Corollary 4 The milling problem for a unit square cutter, rectilinear motion, and a simple rectilinear
polygon region R can be approximated within a factor of 115 of optimal, in time O(n).

Proof. First, one can decide in time O(n) if R has a feasible milling tour, by doing an offset (e. g., using
recent linear-time algorithms for computing the medial axis of simple polygons [7]). This tells us if the
contour is feasible. Consider the union RIN of all integer pixels. By the above method, we can find a tour of
RIN that is within

6LOPT−4
5 of the length LOPT of an optimum milling tour for R. Combining this with a

tour that follows the contour δB of R and has length LδB ≤ LOPT , we get a tour no longer than 115 LOPT +
6
5 .

%&

7 TSP on Grid Graphs with Holes

We can extend the results of the previous section to grid graphs with holes that satisfy an additional condition
on the local structure.

Definition 6 We say that a vertex v in a grid graph G is a local cut vertex, if the removal of v disconnects
G or reduces the number of holes.

We show that all grid graphs without local cut vertices (but possibly with holes) allow a tour of short
length; our bound is better than the previously best known estimate of 43N for simple grid graphs without
cut vertices [19].

Theorem 7 Let G be a connected grid graph, having N nodes at the centerpoints, V , of pixels within a
(multiply connected) rectilinear polygon, R, having n (integer-coordinate) sides. Assume that G has no local
cut vertices. Then, in time O(n), one can find a representation of a tour, T , that visits all N nodes of G,
of length at most 1.325N .

Proof. Applying the method in the proof of the previous section, we can link internal grid vertices to
a boundary contour, at a cost of only roughly (1/5)N extra edges. But, if there are h holes in the grid
graph, then this linking process may result in h + 1 independent subtours that do not interconnect. We
build “bridges” between these subtours in order to link them into a single tour. First, we perform “free”
bridges, by identifying pairs of facing edges, from two distinct subtours, that bound a common pixel and
can therefore lead to a “swap” that interconnects the respective subtours. We are now left with h′ ≤ h+ 1
subtours Si. One of them (say, S0) contains the outside contour, each of the others is surrounded by S0
while surrounding at least one hole Hi.
Consider a subtour Si (i 2= 0) with the smallest number of vertices. (See Figure 17.) Let xa, xz, ya, zz

be the smallest and largest x- and y-coordinates of vertices in Si, and let xb, xw, yb, yw be the smallest and
largest x- and y-coordinates of vertices in Hi. Clearly, xa < xb ≤ xw < xz and ya < yb ≤ yw < yz.
Furthermore, any coordinate in the interval [xb, xw] must contain at least two vertices of Si and each of
the coordinates xb − 1, xw + 1 must contain at least three vertices of Si. This implies that the rectangle
[xb − 1, xw + 1]× [yb − 1, yw + 1] contains at least eight vertices of Si.
Consider the case (xa = xb−1) or (xz = xw+1) or (ya = yb−1) or (yz = yw+1), so w. l. o. g. (xa = xb−1).

There must be three vertices v1 = (xa, y1), v2 = (xa, y1 + 1), v3 = (xa, y1 + 2), such that v1 and v3 are
neighbors of v2 in Si. Now consider the u1 = (xa − 1, y1), u2 = (xa − 1, y1 + 1), u3 = (xa + 1, y1 + 2). Since
Si is surrounded by S0, u2 must be contained in some subtour Sj 2= Si. u2 cannot be adjacent to either
u1 or u3 in Sj , since this would allow a free bridge between Si and Sj . Therefore, Sj must enter and leave
u2 from the vertex t2 = (xa − 2, y1 + 1). Without any additional cost, we can replace the two unit edges
between t2 and u2 by two unit edges between u1 and u2. This allows a free bridge between the (modified)
subtour containing u1 and the subtour Si, since (u1, u2) and (v1, v2) are parallel edges bounding a common
pixel.
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Figure 17: A smallest subtour must contain 16 vertices

Now assume (xa < xb − 1), (xz > xw + 1), (ya < yb − 1), and (yz > yw + 1), and consider the set
U = {xw + 2}× [yb − 1, yw + 1] ∩ Si. (See Figure 17.) As in the previous paragraph, it is straighforward to
argue that we can create a free bridge and link Si to another subtour if |U | < 2. Therefore we may assume
|U | ≥ 2. Similarly, the (disjoint) sets {xb − 2} × [yb − 1, yw + 1] ∩ Si, {yb − 2} × [xb − 1, xw + 1] ∩ Si, and
{yw + 2} × [xb − 1, xw + 1] ∩ Si can all be assumed to contain at least two points. With the eight points
in the rectangle [xb − 1, xw + 1] × [yb − 1, yb + 1], this implies that Si contains at least 16 vertices; hence,
h′ ≤ N/16.
At a cost of at most 2 links per bridge, we can now construct (non-free) bridges to link up the remaining

subtours, resulting in a total tour length of not more than (6/5)N + 2(N/16) = (53/40)N = 1.325N . %&

8 Conclusion

In this paper, we have given a variety of algorithmic results on the most basic forms of “lawn mowing”
and “milling” problems. We have shown that many forms of the problems are NP-hard, and we have given
constant-factor approximation algorithms for most of these instances. There are several ways in which the
problems can be generalized:

1. We may consider a combination of the lawn mowing problem and the milling problem in which the
complement of the region R (the “grass”) is partitioned into two kinds of regions — a set X of points
over which the cutter may pass freely (e.g., the “sidewalk” and the “driveway”), and a set Y of points
over which the cutter is not allowed to pass (e.g., the “flowerbeds” and the “house”). The milling
problem is that in which Y = IR2 \R, while the lawn mowing problem is that in which X = IR2 \R.

2. When milling a pocket in practice, it is important to try not to allow the cutter to pass over a portion
of the region R that has already been milled, as such “over-milling” may lead to imperfections in the
smoothness of the cut on the bottom of the pocket. (See Held [11] for a more extensive discussion.)
Thus, one often wants to plan a cutter path that picks up the cutter (“retracts” it) and moves it to
a new position, in order to avoid passing back over a portion that has been milled already. In such
plans, however, one wants to minimize the number of retractions. For the special case of “zig-zag”
pocket machining, Arkin et al. [3] have recently obtained approximation algorithms for the problem of
minimizing the number of retractions. Ideally, one could combine our version of the “milling problem”
with more realistic models of how machining is actually done, and study problems that include both
the cutter path length and the number of retractions in the objective function.

3. We may also want to consider the issue of “over-milling” from a different point of view. In applications
to spray painting and material deposition, the goal may be to cover every point at least kmin times (to
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guarantee good coverage), and at most kmax times (to prevent overcoating, which may lead to “runs”),
for a fixed speed of moving the tool. (Alternatively, one may wish to control the speed of tool motion
or the flow rate of material through the nozzle.) In such problems, the goal may be to minimize wasted
(over-sprayed) material and/or maximize the uniformity of coverage.

4. Another important consideration from a practical point of view is the “shape” of a cutter path/tour. If
a path/tour has many sharp turns, it may require a slower processing speed, thus spoiling the benefits
of having a “short” path/tour. Thus, we may be motivated to study the problems of minimizing “link
distance”, possibly in conjunction with Euclidean length and “total turn” (the integral of the absolute
value of all changes in direction of motion). For “bicriteria” shortest path problems among obstacles
in the plane, see Arkin et al. [4] and Mitchell et al. [18], who consider combinations of link distance,
total turn, and Euclidean length. Held [11] has considered the issue of bounding the angles at turns in
cutter path planning. For a finite set of points in the plane, the existence of “angle-restricted tours”
has been studied by Fekete and Woeginger [9].

5. We may consider the case in which the cutter may move at different speeds through different portions of
the material (e.g., “grass” of different heights) or at different orientations with respect to the material
(e.g., “grain” effects in using a router in wood).

6. We may consider other allowed motions for cutters and other shapes of cutters.

7. We may consider the option to select different cutter sizes. For example, a large cutter may be used to
“rough out” the pocket (or a large tractor may be used to mow the open field), while a smaller cutter
is used to do fine details near the boundary of R.

8. We may consider the need to stop the cutting periodically, possibly several times during a single job,
in order to resharpen the tool or perform some other function (e.g., empty the bag of grass clippings),
which possibly involves sending the cutter to a particular location (depot). When mowing a lawn, one
often tries to schedule the cutting route so that one is close to the compost pile when the bag that
catches clippings becomes full.
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