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Related Documents

This document describes the main APIs for JavaBeans. However the JavaBeans APIs are also
closely related to other new Java core APIs which are described in separate documents.

For example, JavaBeans uses the new Java Object Serialization API as its main persistence
mechanism, and that mechanism has been designed to work well with beans. Similarly, Java-
Beans makes heavy use of the new Java Core Reflection API, etc.

For the current status and pointers to on-line copies, check the “Related APIs” link on our Java-
Beans home page or go to:

http://java.sun.com/beans/related.html

• “The Java Core Reflection API”. This describes the low-level reflection API that is
used to provide the Introspection information described in Section 8.

• “Java Object Serialization”. This describes the automatic Java Object Serialization
mechanism that is the default mechanism for JavaBeans persistence (see Section 5).

• “JDK 1.1 - AWT Enhancements”. Changes to AWT, including support for drag-and-
drop and cut-and-paste (see Section 4).

• “JAR file specification”. This is the standard packaging mechanism for JavaBeans.
(See Section 11.)

• “Remote Method Invocation”. This specifies the Java RMI distributed programming
mechanism.

• “Java IDL” . This describes the Java mapping to the industry standard CORBA IDL
system.
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1 Introduction

The goal of the JavaBeans APIs is to define asoftware component modelfor Java, so that third
party ISVs can create and ship Java components that can be composed together into applica-
tions by end users.

1.1  Component granularity

There are a range of different kinds of JavaBeans components:

1. Some JavaBean components will be used as building blocks in composing applications.
So a user may be using some kind of builder tool to connect together and customize a
set of JavaBean components s to act as an application. Thus for example, an AWT
button would be a Bean.

2. Some JavaBean components will be more like regular applications, which may then be
composed together into compound documents. So a spreadsheet Nean might be
embedded inside a Web page.

These two aspects overlap. For example a spreadsheet might live within a composite applica-
tion as well as within a more normal compound document. So there is more of a continuum
than a sharp cutoff between “composite applications” and “compound documents”.

The design centre for beans ranges from small controls up through simple compound docu-
ments such as Web pages. However we are not currently trying to provide the kind of high-end
document integration that is typical of full function document systems such as ClarisWorks or
Microsoft Office. Thus we provide APIs that are analogous to (say) the OLE Control or Ac-
tiveX APIs, but we to do not try to provide the full range of high-end document APIs provided
by (for example) OpenDoc. However, we do intend to allow beans to be embedded as compo-
nents in high-end compound documents, and we also expect that some key document suite
components (such as word processors and spreadsheets) will also be supported as JavaBean
components.

In general we expect that most JavaBeans components will be small to medium sized controls
and that we should make the simple cases easy and provide reasonable defaults for as much
behaviour as possible.

1.2  Portability

One of the main goals of the JavaBeans architecture is to provide a platform neutral component
architecture. When a ean is nested inside another Bean then we will provide a full functionality
implementation on all platforms. However, at the top level when the root Bean is embedded in
some platform specific container (such as Word or Visual Basic or ClarisWorks or Netscape
Navigator) then the JavaBeans APIs should be integrated into the platform’s local component
architecture.

For example, this means that on the Microsoft platforms the JavaBeans APIs will be bridged
through into COM and ActiveX. Similarly, it will be possible to treat a bean as a Live Object
(née OpenDoc) part, or to integrate a bean with LiveConnect inside Netscape Navigator.
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So a single Bean should be capable of running in a wide range of different environments. With-
in each target environment it should be able to fire events, service method invocations, etc., just
like any other component.

We do not specifically discuss the different bridges as part of this document. The existence of
the bridges is transparent to JavaBeans developers and it is the bridges’ responsibility to take
the JavaBeans APIs defined in this document and bridge them through to the platform specific
component architecture.

However the need to bridge to these other component models (notably OpenDoc, OLE/COM/
ActiveX, and LiveConnect) has been one of the constraints in designing the JavaBeans APIs.
We have been careful to ensure that the various beans APIs can be cleanly converted to these
three main component models.

1.3  A uniform, high-quality API

Different platforms will vary in their ability to support the full JavaBean APIs. However when-
ever a platform is unable to provide the full functionality it must provide some reasonable,
harmless default instead.

So for example, if a platform doesn’t support menubar-merging then when a Bean provides a
menubar it may pop up above the component, rather than being merged into the containing doc-
ument’s menubar.

This means that JavaBeans component writers can program to a consistent set of APIs and trust
them to work everywhere. We don’t want bean implementors to have to do checks to discover
which facilities are supported on their current platform.

1.4  Simplicity

We would like to keep the JavaBeans APIs relatively simple. We will focus on making small
lightweight components easy to implement and use, while making heavyweight components
possible.

As a general rule we don’t want to invent an enormous java.beans.Everything class that people
have to inherit from. Instead we’d like the JavaBeans runtimes to provide default behaviour for
“normal” objects, but to allow objects to override a given piece of default behaviour by inher-
iting from some specific java.beans.something interface.

One of our goals is that people should be able to learn the basic JavaBeans concepts very quick-
ly so that they can start writing and using simple components with very little effort and then
slowly progress to using the more sophisticated features of the API.
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2 Fundamentals

2.1 What is a Bean?

Let's start with an initial definition and then refine it:

“A Java Bean is a reusable software component that can be manipulated visually
in a builder tool.”

This covers a wide range of different possibilities.

The builder tools may include web page builders, visual application builders, GUI layout build-
ers, or even server application builders. Sometimes the “builder tool” may simply be a docu-
ment editor that is including some beans as part of a compound document.

Some Java Beans may be simple GUI elements such as buttons and sliders. Other Java Beans
may be sophisticated visual software components such as database viewers, or data feeds.
Some Java Beans may have no GUI appearance of their own, but may still be composed togeth-
er visually using an application builder.

Some builder tools may operate entirely visually, allowing the direct plugging together of Java
Beans. Other builders may enable users to conveniently write Java classes that interact with and
control a set of beans. Other builders may provide a simple scripting language to allow easy
high-level scripting of a set of beans.

Individual Java Beans will vary in the functionality they support, but the typical unifying fea-
tures that distinguish a Java Bean are:

• Support for “introspection” so that a builder tool can analyze how a bean works

• Support for “customization” so that when using an application builder a user can
customize the appearance and behaviour of a bean.

• Support for “events” as a simple communication metaphor than can be used to connect
up beans.

• Support for “properties”, both for customization and for programmatic use.

• Support for persistence, so that a bean can be customized in an application builder and
then have its customized state saved away and reloaded later.

A bean is not required to inherit from any particular base class or interface. Visible beans must
inherit from java.awt.Component so that they can be added to visual containers, but invisible
beans (see 2.7 below) aren’t required to do this.

Note that while beans are primarily targeted at builder tools they are also entirely usable by hu-
man programmers. All the key APIs such as events, properties, and persistence, have been de-
signed to work well both for human programmers and for builder tools.

Many beans will have a strong visual aspect, in both the application builder and in the final con-
structed application, but while this is common it is not required.
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2.1.1 Beans v. Class Libraries

Not all useful software modules should necessarily turn into beans. Beans are appropriate for
software components that can be visually manipulated and customized to achieve some effect.
Class libraries are an appropriate way of providing functionality that is useful to programmers,
but which doesn't benefit from visual manipulation.

So for example it makes sense to provide the JDBC database access API as a class library rather
than as a bean, because JDBC is essentially a programmatic API and not something that can be
directly presented for visual manipulation. However it does make sense to write database ac-
cess beans on top of JDBC. So for example you might write a “select” bean that at customiza-
tion time helped a user to compose a select statement, and then when the application is run uses
JDBC to run the select statement and display the results.

2.2 Properties, events, and methods

The three most important features of a Java Bean are the set ofproperties it exposes, the set of
methods it allows other components to call, and the set ofevents it fires.

Properties are described in more detail in Section 7. Basically properties are named attributes
associated with a bean that can be read or written by calling appropriate methods on the bean.
Thus for example, a bean might have a “foreground” property that represents its foreground
color. This property might be read by calling a “Color getForeground()” method and updated
by calling a “void setForeground(Color c)” method.

Themethods a Java Bean exports are just normal Java methods which can be called from other
components or from a scripting environment. By default all of a bean’s public methods will be
exported, but a bean can choose to export only a subset of its public methods (see Section 8.5).

Events are described in more detail in Section 6. Events provide a way for one component to
notify other components that something interesting has happened. Under the new AWT event
model an event listener object can be registered with an event source. When the event source
detects that something interesting happens it will call an appropriate method on the event lis-
tener object.

2.3 Design time v. run-time

Each Java Bean component has to be capable of running in a range of different environments.
There are really a continuum of different possibilities, but two points are particularly worth not-
ing.

First a bean must be capable of running inside a builder tool. This is often referred to as the
design environment. Within this design environment it is very important that the bean should
provide design information to the application builder and allow the end-user tocustomize the
appearance and behaviour of the bean.

Second, each bean must be usable at run-time within the generated application. In this environ-
ment there is much less need for design information or customization.

The design time information and the design time customization code for a component may po-
tentially be quite large. For example, if a component writer provides a “wizard” style custom-
izer that guides a user through a series of choices, then the customization code may easily dwarf
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the run-time code for the bean. We therefore wanted to make sure that we have a clear split
between the design-time aspects of a bean and the run-time aspects, so that it should be possible
to deploy a bean at run-time without needing to download all its design time code.

So, for example, we allow the design time interfaces (described in chapters 8 and 9) to be sup-
ported in a separate class from the run-time interfaces (described in the other chapters).

2.4 Security Issues

Java Beans are subject to the standard Java security model. We have neither extended nor re-
laxed the standard Java security model for Java Beans.

Specifically, when a Java Bean runs as part of an untrusted applet then it will be subject to the
standard applet security restrictions and won’t be allowed to read or write arbitrary files, or to
connect to arbitrary network hosts. However when a Java Bean runs as part of a stand-alone
Java application, or as part of a trusted (signed) applet, then it will be treated as a normal Java
application and allowed normal access to files and network hosts.

In general we advise Java Bean developers to design their beans so that they can be run as part
of untrusted applets. The main areas where this shows up in the beans APIs are:

• Introspection. Bean developers should assume that they have unlimited access to the
high level Introspection APIs (Section 8) and the low-level reflection APIs in the
design-time environment, but more limited access in the run-time environment. For
example, the standard JDK security manager will allow trusted applications access to
even private field and methods, but will allow untrusted applets access to only public
fields and methods. (This shouldn’t be too constraining - the high-level Introspection
APIs only expose “public” information anyway.)

• Persistence.Beans should expect to be serialized or deserialized (See Section 5) in both
the design-time and the run-time environments. However in the run-time environment,
the bean should expect the serialization stream to be created and controlled by their
parent application and should not assume that they can control where serialized data is
read from or written to. Thus a browser might use serialization to read in the initial state
for an untrusted applet, but the applet should not assume that it can access random files.

• GUI Merging.In general untrusted applets will not be permitted to perform any kind of
GUI merging with their parent application. So for example, menubar merging might
occur between nested beans inside an untrusted applet, but the top level menubar for
the untrusted applet will be kept separate from the browser’s menubar.

None of these restrictions apply to beans running as parts of full-fledged Java applications,
where the beans will have full unrestricted access to the entire Java platform API.

2.5 Local activation

The basic run-time model for Java Bean components is that they run within the same address
space as their container.

So for example, if the container is a Java application, then the contained bean is run in the same
Java virtual machine as its container. If the container is a non-Java application, then the Java
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Bean will run in a Java virtual machine that is directly associated with the application. (Nor-
mally this virtual machine will be running in the same address space as the application.)

2.6 Java Beans as links to remote state

The Java Beans architecture is being designed to work well in a distributed world-wide-web
environment.

A key part of designing distributed systems is engineering a good split between local and re-
mote processing. Local processing can benefit from rapid communication with a single ma-
chine, while remote accesses may have long latencies and suffer a variety of communication
failures. Designers of distributed systems tend to design their remote interfaces very carefully,
to minimize the number of remote interactions and to use various kinds of data caching and
update batching to reduce remote traffic.

Therefore, we recommend that distributed system implementors design beans to act as intelli-
gent front-ends to talk back to their network servers. So rather than designing all beans APIs
to work over the network, we are primarily targeting the beans APIs for use within a virtual
machine, where interactions are cheap, and we provide several alternative mechanisms to allow
beans developers to connect back to network servers.

The three primary network access mechanisms that will be available to Java Beans developers
on all Java platforms are:

Java
Bean

Java
Bean

Java
Bean

Database
Server

CORBA
Server

Java
Server

Java Beans Application

Database
protocol

IIOP

RMI

J
D
B
C
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• Java RMI. The Java Remote Method Invocation facility makes it very easy to develop
distributed Java applications. The distributed system interfaces can be designed in Java
and clients and servers can be implemented against those interfaces. Java RMI calls will
be automatically and transparently delivered from the client to the server. We expect
that the use of Java RMI will be a very common way for writing Java Beans within
networked systems.

• Java IDL. The Java IDL system implements the industry standard OMG CORBA
distributed object model. All the system interfaces are defined in the CORBA IDL
interface definition language. Java stubs can be generated from these IDL interfaces,
allowing Java Bean clients to call into IDL servers, and vice versa. CORBA IDL
provides a multi-language, multi-vendor distributed computing environment, and the
use of Java IDL allows Java Bean clients to talk to both Java IDL servers and other non-
Java IDL servers.

• JDBC. The Java database API, JDBC, allows Java Bean components access to SQL
databases. These database can either be on the same machine as the client, or on remote
database servers. Individual Java Beans can be written to provide tailored access to
particular database tables.

Another solution to distributed computing is to migrate objects around the network. Thus an
expense voucher bean might be created on one user’s workstation and then get forwarded
around the network to various interim severs and to various other workstations for review, and
then get forwarded to an accounts payable server to be processed for final payment. In this sce-
nario, the bean will show a GUI appearance at some points in its life, but also be run invisibly
within server applications at other times.

2.7 Invisible beans

Many Java Beans will have a GUI representation. When composing beans with a GUI applica-
tion builder it may often be this GUI representation that is the most obvious and compelling
part of the beans architecture.

However it is also possible to implement invisible beans that have no GUI representation.
These beans are still able to call methods, fire events, save persistent state, etc. They will also
be editable in a GUI builder using either standard property sheets or customizers (see Chapter
9). They simply happen to have no screen appearance of their own.

Such invisible beans can be used either as shared resources within GUI applications, or as com-
ponents in building server applications that have no GUI appearance at all.

These invisible beans may still be represented visually in an application builder tool, and they
may have a GUI customizer that configures the bean.

Some beans may be able to run either with or without a GUI appearance depending where they
are instantiated. So if a given bean is run in a server it may be invisible, but if it is run on a
user’s desktop it may have a GUI appearance.
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2.8 Multi-Threading

Java Beans should assume that they are running in a multi-threaded environment and that sev-
eral different threads may be simultaneously delivering events and/or calling methods and/or
setting properties.

It is the responsibility of each java bean developer to make sure that their bean behaves prop-
erly under multi-threaded access. For simple beans this can generally be handled by simply
making all the methods “synchronized”.

2.9 Internationalization

As part of the JDK 1.1, various internationalization APIs are being added to the core Java API
set. These internalization APIs can be used by individual Java Beans.

In general the Java internationalization model is that individual packages are responsible for
internally localizing any appropriate strings using the current default locale (from java.util.Lo-
cale.getDefault) and that appropriately localized strings are passed across public APIs. For ex-
ample it would be the Color.toString() method’s responsibility to generate a localized color
name such as “rouge” in the French locale, rather than it being a client’s responsibility to take
a locale independent string “red” and then try to localize it.

One particular issue for Java Beans is the naming of events, methods, and properties. In general
we expect Java programs to work programmatically in terms of locale-independent program-
maticnames.

The two main exceptions to this are the “display name” and “short help” strings supported by
the FeatureDescriptor class. These should be set to localized strings.

So for example, a Java Bean might export a method whose locale-independent name is “hello”
but whose display name is localized in the glaswegian locale as “heyJimmie”. Builder tools
may present this locale-dependent display name “heyJimmie” to human users and this name
may be usable from scripting environments. However any generated Java code must use the
locale-independent programmatic method name “hello”.

Similarly, a property may have the locale-independent programmatic name “cursorColour”
and be accessed by methods getCursorColour and setCursorColour, but may be localized in the
U.S to have display name “cursorColor”. When the property is presented to humans via prop-
erty sheets, etc., it may be named as “cursorColor”, but the getter/setter methods are still ac-
cessed via their locale-independent names getCursorColour and setCursorColour.

2.10 Alternate type views of a bean.

In the first release of the JavaBeans architecture, each bean is a single Java object. However,
in future releases of JavaBeans we plan to add support for beans that are implemented as a set
of cooperating objects.

One particular reason for supporting beans as sets of cooperating objects is to allow a bean to use several
different classes as part of its implementation. Because the Java language only supports single imple-
mentation inheritance, any given Java object can only “extend” a single Java class. However, some-
times when constructing a bean it may be useful to be able to exploit several existing classes.
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We therefore provide a notion of a “type view” that represents a view of a bean as a given type.
In JavaBeans 1.0 all type views of a given bean simply represent different casts of the same
object to different Java types. However, in future releases of JavaBeans, different type views
of a bean may be implemented by different Java objects.

The rules included here are designed to ensure that Beans and containers written today will mi-
grate smoothly to future JavaBeans implementations.

At the Java language level, type views are represented as Java interfaces or classes, but you
must use the Beans.getInstanceOf and Beans.isInstanceOf methods (see Section 10.4) to nav-
igate between different type views of a bean.

You should never use Java casts to access different type views of a Java bean.

For example, if you had a bean x of type X, and you wanted to view it as of type “ja-
va.awt.Component”, then you should do:

java.awt.Component c = (java.awt.Component)
Beans.getInstanceOf(x, java.awt.Component.class);

This allow for future evolution where the “java.awt.Component” type view of a bean may be
implemented by a different Java object from the “X” type view.

Programmers must note that:

• they should never use Java “instanceof” or Java casts to navigate between different type
views of a bean.

• they should not assume that the result object of a beans.getInstanceOf call is the same
object as the input object.

• they should not assume that the result object of a beans.getInstanceOf call supports the
same properties, events, or methods supported by the original type view.
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3 Scenarios

To help illustrate how beans are intended to function this section walks through two sample
scenarios of bean use.

Note that this section is intended to be illustrative rather than prescriptive.

It is intended to show some ways beans may be used, but not to describe all possibilities. In
particular different application builder tools are likely to offer very different application build-
ing scenarios.

The two scenarios involve constructing applets, but the same steps apply to building full-scale
Java applications.

3.1  Using an application builder to construct an Applet

In this scenario a user uses an application builder to create an applet. The application builder
generates various pieces of source code and provides the user with templates into which the
user can add their own source code.

1. Buying the tools.

1.a) The user buys and installs the WombatBuilder Java application builder.

1.b) The user buys some JavaBeans components from Al’s Discount Component Store.
They get a win32 floppy containing the beans in a JAR file. This includes a
“Button” component and a “DatabaseViewer” component.

1.c) The user inserts the floppy into the machine and uses the WombatBuilder “Add
bean...” dialog to tell WombatBuilder about the beans. WombatBuilder copies the
beans off to its bean collection. (WombatBuilder may either introspect on the
beans at this point to learn about their attributes or it may wait until the beans are
actually used.)

2. Laying out the applet

2.a) The user starts to create a new custom applet called “Foobaz” in WombatBuilder.
Initially they start with a blank applet template. WombatBuilder creates a
Foobaz.java file to represent the state of this applet.

2.b) The user selects a “button” from the WombatBuilder beans menu and drops it onto
the applet template. WombatBuilder uses “Beans.instantiate” to allocate a new
Button instance. WombatBuilder then adds the new button as a member field to the
Foobaz class.

2.c)  The user selects a “database viewer” from the WombatBuilder beans menu and
drops it onto the applet template. Because the database viewer is a fairly complex
bean it comes with some serialized state to pre-initialize itself. The
WombatBuilder tool again uses the “Beans.instantiate” method to create a
database viewer bean, and Beans.instantiate handles reading in the serialized
object instance. WombatBuilder then adds this new database viewer object as a
member field to the Foobaz class.
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3. Customizing the beans.

3.a) The user selects the button and asks WombatBuilder to edit it. WombatBuilder
uses Introspector.getBeanInfo to obtain a BeanInfo object describing the bean and
discovers that this bean doesn’t have a Customizer. So it uses the BeanInfo
information to learn the names of the bean’s read-write properties and generates a
simple property sheet containing the names of the properties and their current
values. The user then interacts with the property sheet to customize the button’s
appearance. The updates are applied back to the bean as they happen.

3.b) The user selects the database viewer and asks WombatBuilder to edit it. Using
Introspector.getBeanInfo, WombatBuilder discovers that the database viewer
comes with its own bean Customizer class. WombatBuilder instantiates an object
of the customizer class and asks it to customize the component. The database
viewer customizer brings up a series of dialogs that guide the user through the steps
of selecting a target database and identifying tables and records to display. The
database viewer customizer uses a set of package private methods to setup the state
of the database viewer bean.

4. Connecting up the beans

4.a) The user now decides that they want to hook-up the button to prod the database
viewer. They select the button on the screen and pull-down the WombatBuilder
“events” menu to discover its events and then select the “action” event.
WombatBuilder creates a template method “Foobaz.button1Action” and brings up
a text editor so that the user can type in the text of the method.

4.b) The user types in the text of the method. In this case they simply call the database
viewer component’s “update” method. So now the automatically generated Foobaz
looks like:

class Foobaz extends WombatBuilderApplet {
public Button button1;
public DatabaseViewer databaseViewer1;
void button1Action(java.awt.event.ActionEvent evt) {

databaseViewer1.update();
}

}

4.c)  In addition, behind the scenes, WombatBuilder creates an adaptor class to connect
the button to the Foobaz. This looks something like:

class Hookup1234 implements java.awt.event.ActionListener {
public Foobaz target;
public void actionPerformed(java.awt.event.ActionEvent evt) {

target.button1Action(evt);
}

}

4.d)  WombatBuilder creates a new instance of the Hookup1234 class and fills in its
“target” field with the target applet. It then takes the hookup object and registers it
with the button1 “addActionListener” method. This completes the hookup.
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5. Packaging up the applet

5.a)  The user decides they are done and pushes “make it so”. WombatBuilder uses Java
serialization to store away the Foobaz object in a Foobaz.ser pickle file. As part of
storing away the Foobaz object, the two beans instances (the button1 and
databaseViewer1 members) also get stored away. The WombatBuilder also
generates some initialization code to reconstruct the event hookup.

5.b)  WombatBuilder creates a Foobaz.jar file holding the pickle and the .class files
needed by the applet including the hookup1234 .class file and the .class files for
the beans themselves.

5.c)  WombatBuilder also generates a sample HTML page that uses the applet tag to
load the pickled Foobaz.ser from the Foobaz.jar file.

6. Trying it out

6.a)  The user then tests out the applet in their SpaceWars web browser. When they visit
the html page, the applet is initialized by reading in its serialized state from the
Foobaz.ser inside of the Foobaz.jar file. As part of doing this various classes are
also loaded from the .class files inside the Foobaz.jar file.

6.b)  The result is a running applet with a working event hookup from the button to the
database viewer, and with its state setup in the way that the user customized it in
the WombatBuilder tool.

6.c)  Joy, Happiness, and Banana Mochas1 all round.

3.2  Using beans in a hand-written Applet

In this scenario we use some Java beans components in a hand-written Applet. This scenario is
fairly similar to building an Applet with simple AWT components today, and is intended to il-
lustrate how beans can be used without special tools.

1. Loading the tools.

1.a) The user downloads and installs the JDK, including the javac compiler.

1.b) The user notices some useful Java Bean components on Dave’s Freeware
Components Page. They ftp over a beans jar file.

1.c) The user uses the “jar” command to extract the contents of the jar file and put them
in the user’s normal “class” directory. This includes a “Button” component and a
“DatabaseViewer” component.

2. Laying out the applet

2.a) The user starts to type in the code for a new applet. In the Applet’s “init” method
they create a dave.Button and a dave.DatabaseViewer by calling the standard
Beans.instantiate method. Behind the scenes, the Beans.instantiate handles reading
in any serialized object state for either of these two beans.

1. Check out the reference implementation at Printers Inc. Cafe, California Avenue, Palo Alto, CA.
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class MyApplet extends java.awt.Applet {

public void init() {
try {

ClassLoader cl = this.getClass().getClassLoader();
btn = (Button)Beans.instantiate(cl, “dave.Button”);
add(btn);
dbViewer = (DatabaseViewer)Beans.instantiate(cl,

“dave.DatabaseViewer”);
add(dbViewer);

} catch (Exception ex) {
throw new Error(“Couldn’t create bean “ + ex);

}
}

private DatabaseViewer dbViewer;
private Button btn;

}

3. Customizing the beans.

3.a) The user decides they want to tweak the appearance and behaviour of the
components a little, so in their MyApplet.init method they add some calls on the
beans’ property accessor methods:

btn.setBackground(java.awt.Color.red);
dbViewer.setURL(“jdbc:msql://aardvark.eng/stuff”);

4. Connecting up the beans

4.a) The user now decides that they want to hook-up the button to prod the database
viewer. The button fires its events at the java.awt.event.ActionListener interface.
Since they only have a simple applet with a single button, they decide to make their
MyApplet class implement the ActionListener directly and they add an
“actionPerformed” method as required by the ActionListener interface:

void actionPerformed(java.awt.event.ActionEvent) {
dbViewer.update();// prod the DB viewer.

}

4.b)  In order to make the event hookup at run-time they also have to add a line to their
MyApplet.init method:

btn.addActionListener(this);

5. Packaging up the applet

5.a)  The user decides they are done. They compile their MyApplet.java file and make
sure that the MyApplet.class file gets added to their class directory.

5.b) They create a test HTML page that uses the applet tag to reference MyApplet with
a suitable codebase.

6. Trying it out
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6.a)  The user then tests out the applet in their SpaceWars web browser. When they visit
the html page, the applet is initialized by running its MyApplet.init method.

6.b) The MyApplet.init method calls Beans.instantiate for a button and a database
viewer. Behind the scenes, beans.instantiate does a “new” of a Button bean and
uses Java serialization to read in an initialized DatabaseViewer bean.

6.c) The init method then calls various setXXX methods to customize the beans and
then the button addActionListener to hookup the button events.

6.d) The result is a running applet with a working event hookup from the button to the
database viewer.

6.e) Restrained Joy, Limited Happiness, and decaffe coffee all round.

Here’s the complete sample code for the hand-written applet:

class MyApplet extends java.awt.Applet implements
java.awt.event.ActionListener {

// Applet initialization.
public void init() {

try {
ClassLoader cl = this.getClass().getClassLoader();
btn = (Button)Beans.instantiate(cl, “dave.Button”);
add(btn);
dbViewer = (DatabaseViewer)Beans.instantiate(cl,

“dave.DatabaseViewer”);
add(dbViewer);

} catch (Exception ex) {
throw new Error(“Couldn’t make bean ” + ex);

}
}

btn.setBackground(java.awt.Color.Red);
dbViewer.setURL(“jdbc:msql://aardvark.eng/stuff”);

// Hookup the button to fire action events at us.
btn.addActionListener(this);

}

// Method that catches action events from the button.
void actionPerformed(java.awt.event.ActionEvent evt) {

dbViewer.update(); // prod the DB viewer.
}

private DatabaseViewer dbViewer;
private Button btn;

}
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4 Windowing Environment Issues

A number of new features are being added to AWT in JDK 1.1 These features are described in
the “JDK 1.1- AWT Enhancements” web pages (see “Related Documents” on page 6). How-
ever because some features are likely to be important to beans developers, we provide a short
overview of key new AWT features in this section.

4.1  Uniform Data Transfer mechanism

The uniform data transfer mechanism proposed for inclusion into AWT is intended to provide
the fundamental mechanisms to enable the interchange of structured data between objects, ap-
plets or applications using higher level, user oriented facilities such as Cut, Copy and Paste, or
Drag and Drop. In particular, the UDT mechanisms design goals are:

• provide a simple conceptual framework for the encapsulation and interchange of data.

• provide a general API that can support current and future data interchange models.

• enable the efficient, dynamic creation, registration, and interchange of rich and diverse
data types.

• enable data interchange across process boundaries.

• enable the interchange of data between Java-based and platform-native applications.

The facilities are based around an interface,Transferable,that defines abstractions both for the
transferable data itself and a namespace, based on the classDataFlavor, for identifying and ne-
gotiating the type, or types, of data that may be exchanged.

Objects wishing to provide a structured representation of some aspect of the information they
encapsulate will implement theTransferableinterface, and possibly introduce additional data
types identifying new types of structured data by creating newDataFlavors.

Objects wishing to obtain such structured data will obtain references to a particularTransfer-
able interface and will compare theDataFlavors available to determine if the source offers a
type, or types, that are familiar to the destination.

The current proposal, at the time of writing, is that the MIME namespace for data types shall
be used byDataFlavors.

4.2  Clipboard/Selection services

Clipboard, or Selection services build upon the abstractions provided by the Uniform Data
Transfer mechanisms to enable objects, applets, or applications to exchange structured data be-
tween each other, by introducing the concept of aClipboard class, or named Selection, that
provides a rendezvous for the interchange between the source and destination, and aClipboar-
dOwner interface that provides data sources with notifications of clipboard state changes.
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5 Persistent Storage

5.1  Goals

Java Beans need to support a very wide range of storage behaviour. We want them to be able
to use existing data formats and plug into OLE or OpenDoc documents. For example, we want
them to be able to pretend to be an Excel document inside a Word document.

We’d also like it to be “trivial” for the common case of a tiny Bean that simply wants to have
its internal state saved and doesn’t want to think about it.

5.2  A composite solution

To meet these different goals we support a composite solution where a Bean can either choose
to use the automatic Java serialization mechanism or where it can choose to use an “external-
ization” stream mechanism that provides it with full control over the resulting data layout.

As part of Java Beans 1.0 we support the Java Object Serialization mechanism which provides
an automatic way of storing out and restoring the internal state of a collection of Java objects.
For further information see the Java Serialization specification. (See “Related Documents” on
page 6.)

“Externalization” is an option within Serialization which allows a class complete control over
the writing of its state, so that it can choose to mimic arbitrary existing data formats.

5.3  What should be saved

When a bean is made persistent it should store away appropriate parts of its internal state so
that it can be resurrected later with a similar appearance and similar behaviour. Normally a
bean will store away persistent state for all its exposed properties. It may also store away addi-
tional internal state that is not directly accessible via properties. This might include (for exam-
ple) additional design choices that were made while running a bean Customizer (see Section 5)
or internal state that was created by the bean developer.

A bean may contain other beans, in which case it should store away these beans as part of its
internal state.

However a bean should not normally store away pointers to external beans (either peers or a
parent container) but should rather expect these connections to be rebuilt by higher-level soft-
ware. So normally it should use the “transient” keyword to mark pointers to other beans or to
event listeners. In general it is a container’s responsibility to keep track of any inter-bean wiring
it creates and to store and resurrect it as needed.

For the same reasons, normally event adaptors should mark their internal fields as “transient”.

5.4  Persistence though generated initialization code

Builder tools typically allow users to configure beans at design time both by editing beans
properties and by running bean specific customizers (see Section 9.3). The builder tool then has
the responsibility for making sure that at run-time the beans are resurrected with the same state.
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A builder tool may use Java serialization to save and restore the state of all its initialized beans.
However, alternatively, builder tools may chose to generate source code to reinitialize each of
the beans to the correct state.

So for example a builder tool might check for properties which have changed since the bean
was created and generate code that allocates a similar bean and then calls property setter meth-
ods to set the state of the bean. For example:

Wombat b = new Wombat();
w.setBackground(new java.awt.Color(120,120,120));
w.setWeight(15);

Note that the PropertyEditor.getJavaInitializationString() method can be used to obtain a Java
string to act as the initialization value for the property (see Section 9.2.5).

5.4.1 Limitations on generated initialization code

There is one important limitation to the use of generated code to restore the state of a bean.
Some beans may have internal state that is not accessible as properties. For example, a database
accessor bean may allow itself to be configured via a bean customizer, but it may not expose
all of its configuration information as properties. Or a spreadsheet bean may allow a user to
enter cell values at design-time but may not wish to expose all these cell values as properties.

In these cases the bean designer may specify that the bean cannot be restored by simply saving
and restoring its properties. This can be done by using the FeatureDescriptor’s attribute/value
mechanism to specify in the bean’s BeanDescriptor an attribute named “hidden-state” to be
Boolean true.

So in your BeanInfo class you might do:

public BeanDescriptor getBeanDescriptor() {
BeanDescriptor bd = new BeanDescriptor(a.b.MyBean.class);
bd.setName(“SecretiveBean”);
bd.setValue(“hidden-state”, Boolean.TRUE);
return bd;

}

Tools that wish to generate source code to restore the state of a bean must check the BeanInfo
for the bean to see if the BeanDescriptor has the “hidden-state” attribute set true. If so then they
must use object serialization and/or externalization to save and restore the state of the bean.

5.5 Summary of persistence

All beans must support either Serialization or Externalization.

It is always valid for an application to save and restore the state of a bean using the Java Seri-
alization APIs. (The serialization APIs handle both Serializable and Externalizable objects.)

A tool may also use generated code to restore the state of a bean unless the bean has specified
the “hidden-state” attribute, in which case the bean must be saved and restored with serializa-
tion and/or externalization.
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6 Events

Events are one of the core features of the Java Beans architecture. Events provide a convenient
mechanism for allowing components to be plugged together in an application builder, by al-
lowing some components to act as sources for event notifications that can then be caught and
processed by either scripting environments or by other components.

6.1  Goals

Conceptually, events are a mechanism for propagating state change notifications between a
source object and one or more targetlistener objects.

Events have many different uses, but a common example is their use in window system toolkits
for delivering notifications of mouse actions, widget updates, keyboard actions, etc.

For Java, and Java Beans in particular, we require a generic, extensible event mechanism, that:

1. Provides a common framework for the definition and application of an extensible set of
event types and propagation models, suitable for a broad range of applications.

2. Integrates well with, and leverages the strengths of, the features of the Java language
and environment.

3. Allows events to be caught (and fired) by scripting environments.

4. Facilitates the use of application builder technology to directly manipulate events and
the relationships between event sources and event listeners at design time.

5. Does not rely on the use of sophisticated application development tools.

In particular, the design should:

6. Enable the discovery of the events that a particular object’s class may generate.

7. Enable the discovery of the events that a particular object’s class may observe.

8. Provide a common event registration mechanism that permits the dynamic
manipulation of the relationships between event sources and event listeners.

9. Be implementable without requiring changes to the VM or the language.

10. Promote high performance propagation of events between sources and listeners.

11. Enable a natural mapping between Java Beans events and event models associated with
other common component architectures.

6.2  Overview

The details of the event model are described in the following sections, but in outline:

• Event notifications are propagated from sources to listeners by Java method
invocations on the target listener objects.

• Each distinct kind of event notification is defined as a distinct Java method. These
methods are then grouped inEventListener interfaces that inherit from
java.util.EventListener.
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• Event listener classes identify themselves as interested in a particular set of events by
implementing some set ofEventListener interfaces.

• The state associated with an event notification is normally encapsulated in an event
state object that inherits fromjava.util.EventObject and which is passed as the sole
argument to the event method.

• Event sources identify themselves as sourcing particular events by defining registration
methods that conform to a specific design pattern (see Sections 8.2 and 8.4) and accept
references to instances of particularEventListener interfaces.

• In circumstances where listeners cannot directly implement a particular interface, or
when some additional behavior is required, an instance of a custom adaptor class may
be interposed between a source and one or more listeners in order to establish the
relationship or to augment behavior.

6.3  Event State Objects

Information associated with a particular event notification is normally encapsulated in an
“event state” object that is a subclass ofjava.util.EventObject.By convention these event state
classes are given names ending in “Event”. For example:

Event Source Event Listener

public synchronized
FooListener   addFooListener(FooListener fel);

FooEvent

eListener

Overview of Event Model.

class Fooey implements FooListener {
       void fooBarHappened(FooEvent fe) {
                // ...
        }
       void fooBazOccurred(FooEvent fe) {
                // ...
       }
}

register Listener

fire
Event

interface reference
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public class MouseMovedExampleEvent extends java.util.EventObject {
protected int x, y;

// constructs a new MouseMovedExampleEvent
MouseMovedExampleEvent(java.awt.Component source, Point location) {

super(source);
x = location.x;
y = location.y;

}

// Access method for location
public Point getLocation() {

return new Point(x, y);
}

// translates coords, for use when propagating up view hierarchy.
public void translateLocation(int dx, int dy) {

x += dx;
y += dy;

}
}

As with java.lang.Exception, new subclasses of java.util.EventObject may be created simply
to allow logical distinctions between event state objects of different types, even if they share
all the same data. So another example might be:

public class ControlExampleEvent extends java.util.EventObject {
// Simple “logical” event. The significant information is the type
// of the event subclass.
ControlExampleEvent(Control source) {

super(source);
}

}

Typically, event state objects should be considered immutable. Therefore it is strongly recom-
mended that direct public access to fields be denied, and that accessor methods be used to ex-
pose details of event state objects. However where some aspects of an event state object require
modification (e.g translating view relative coordinates when propagating an event through a
view hierarchy, as in the example above) it is recommended that such modifications be encap-
sulated by an appropriate method that effects the required modification (as in the sample code
above), or alternatively a new event state object should be instantiated reflecting the appropri-
ate modifications.

These accessor methods should follow the appropriate design patterns for read-only, read/
write, or write-only properties as defined in Section 8.3. This is especially important as it en-
ables the framework to identify in-out event data when bridging events between Java and other
component architectures that encompass the ability to return state to the originator of an event,
through the event state object.
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6.4  EventListener Interfaces

Since the new Java event model is based on method invocation we need a way of defining and
grouping event handling methods. We require that event handling methods be defined in
EventListener interfaces that inherit from java.util.EventListener. By convention these
EventListenerinterfaces are given names ending in “Listener”.

A class that wants to handle any of the set of events defined in a givenEventListenerinterface
should implement that interface.

So for example one might have:

public class MouseMovedExampleEvent extends java.util.EventObject {
// This class defines the state object associated with the event
...

}

interface MouseMovedExampleListener extends java.util.EventListener {
// This interface defines the listener methods that any event
// listeners for “MouseMovedExample” events must support.
void mouseMoved(MouseMovedExampleEvent mme);

}

class ArbitraryObject implements MouseMovedExampleListener {
public void mouseMoved(MouseMovedExampleEvent mme) {

...
}

}

Event handling methods defined in EventListener interfaces should normally conform to a
standard design pattern. Requiring conformance to such a pattern aids in the utility and docu-
mentation of the event system, permits such interfaces to be determined by third parties pro-
grammatically, and allows the automatic construction of generic event adaptors.

The signature of this design pattern is:

void <eventOccurenceMethodName>(<EventStateObjectType> evt);

Where the <EventStateObjectType> is a subclass ofjava.util.EventObject.

It is also permissible for the event handling method to throw “checked” exceptions, which
should be declared in the normal way in a throws clause in the method signature. (See also Sec-
tion 6.6.3).

Typically, related event handling methods will be grouped into the sameEventListenerinter-
face. So for example, mouseEntered, mouseMoved, and mouseExited might be grouped in the
sameEventListener interface. (However someEventListener interfaces may only contain a sin-
gle method.) In addition, in situations where there are a large number of related kinds of events,
a hierarchy ofEventListeners may be defined such that the occurrences most commonly of in-
terest to the majority of potential listeners are exposed in their ownEventListenerinterface, and
the more complete set of occurrences are specified in subsequentEventListenerinterfaces per-
haps as part of an inheritance graph, thus reducing the implementation burden for the simple
case. For example:
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public class ControlEvent extends java.util.EventObject {
// ...

}

interface ControlListener extends java.util.EventListener {
void controlFired(ControlEvent ce);

}

interface ComplexControlListener extends ControlListener {
void controlHighlighted(ControlEvent ce);
void controlPreviewAction(ControlEvent ce);
void controlUnhighlighted(ControlEvent ce);
void controlHelpRequested(ControlEvent ce);

}

6.4.1 Event methods with arbitrary argument lists

As described above, normally event handling methods should have a single argument which is
a sub-type ofjava.util.EventObject.

However under certain specific and unusual applications or circumstances, conformance to this
standard method signature may not be appropriate. This may happen, for example, when for-
warding event notifications to external environments that are implemented in different lan-
guages or with different conventions. In these circumstances it may be necessary to express the
notification method signature in a style more in keeping with the target environment.

In these exceptional circumstances it is permissible to allow method signatures containing one
or more parameters of any arbitrary Java type.

The permitted signature is:

void <event_occurence_method_name>(<arbitrary-parameter-list>);

The method may also have a “throws” clause listing arbitrary exceptions.

Designers are strongly recommended to use considerable restraint in the application of this ar-
bitrary argument list in the design of their listener interfaces as there are several drawbacks to
its widespread application. Therefore it is recommended that its usage be confined to situations
where solutions utilizing the recommended pattern in conjunction with custom event adaptors
are not generally applicable, as in the examples mentioned above.

Although usage of this relaxation in the design pattern is strongly discouraged for general ap-
plication, there will be circumstances where it will be used to good effect. Applications builder
environments should support such relaxed event method signatures and in general should not
discriminate between such methods and those that strictly conform to the standard design pat-
tern.

6.5  Event Listener Registration

In order for potentialEventListeners to register themselves with appropriate event source in-
stances, thus establishing an event flow from the source to the listener, event source classes
must provide methods for registering and de-registering event listeners.
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The registration methods shall conform to a particular set of design patterns that aids in docu-
mentation and also enables programmatic introspection by the Java Beans introspection APIs
and by application builder tools.

The standard design pattern for EventListener registration is:

public void add< ListenerType >(< ListenerType > listener);
public void remove< ListenerType >(< ListenerType > listener);

The presence of this pattern identifies the implementor as a standard multicast event source for
the listener interface specified by <ListenerType>.

Invoking the add<ListenerType> method adds the given listener to the set of event listeners
registered for events associated with the <ListenerType>. Similarly invoking the remove<Lis-
tenerType> method removes the given listener from the set of event listeners registered for
events associated with the <ListenerType>.

The add<ListenerType> and remove<ListenerType> methods should normally be synchronizedmeth-
ods to avoid races in multi-threaded code.

The relationship between registration order and event delivery order is implementation de-
fined. In addition the effects of adding the same event listener object more than once on the
same event source, or of removing an event listener object more than once, or of removing an
event listener object that is not registered, are all implementation defined.

6.5.1 Event Registration Example

An example of event listener registration at a normal multicast event source:

public interface ModelChangedListener extends java.util.EventListener {
void modelChanged(EventObject e);

}

public abstract class Model {
private Vector listeners = new Vector(); // list of Listeners

public synchronized void
addModelChangedListener(ModelChangedListener mcl) {

listeners.addElement(mcl);
}

public synchronized void
removeModelChangedListener(ModelChangedListener mcl) {

listeners.removeElement(mcl);
}
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protected void notifyModelChanged() {
Vector l;
EventObject e = new EventObject(this);

// Must copy the Vector here in order to freeze the state of the
// set of EventListeners the event should be delivered to prior
// to delivery. This ensures that any changes made to the Vector
// from a target listener’s method, during the delivery of this
// event will not take effect until after the event is delivered

synchronized(this) { l = (Vector)listeners.clone(); }

for (int i = 0; i < l.size(); i++) { // deliver it!
((ModelChangedListener)l.elementAt(i)).modelChanged(e);

}
}

}

6.5.2 Unicast Event Listener Registration.

Wherever possible, event sources should support multicast event notification to arbitrary col-
lections of event listeners. However, for either semantic or implementation reasons it may
sometimes be inappropriate or impractical for some events to be multicast. We therefore also
permit a unicast design pattern for event registration.

The type signature for a unicast EventListener registration pattern is:

public void add <ListenerType> ( <ListenerType> listener)
throws java.util.TooManyListenersException;

public void remove< ListenerType >(< ListenerType > listener);

The presence of thethrows java.util.TooManyListenersException in the pattern identi-
fies the implementor as an event source with unicast event source semantics for the interface
specified by<ListenerType>.

Note that the unicast pattern is a special case of the multicast pattern and as such allows migra-
tion of a unicast event source to a multicast event source, without breaking existing client code

Invoking the add<ListenerType> method on a unicast source registers the specified<Listen-
erType> instance as the current listener only if no other listener is currently registered, other-
wise the value of the currently registered listener is unchanged and the method throws:

java.util.TooManyListenersException.

Passingnull as the value of the listener is illegal, and may result in either anIllegalArgument-
Exception or aNullPointerException.

6.6  Event Delivery Semantics

6.6.1 Unicast/Multicast

Normal event delivery is multicast. Each multicast event source is required to keep track of a
set of event listeners for each different kind of event it fires.

When an event is triggered, the event source shall call each eligible target listener. By default
all currently registered listeners shall be considered eligible for notification, however a partic-
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ular source may restrict the set of eligible listeners to a subset of those currently registered
based upon an implementation dependent selection criteria that may be based upon the current
state of the source, listeners, some arbitary part of the system or the nature of the event itself.

If any of the event listeners raise an exception (see 6.6.3 below) it is an implementation deci-
sion for the event source whether to continue and deliver the event to the remaining listeners.

As described in Section 6.5.2 some event sources may only support unicast. In this case the
event source is only required to keep track of a single event listener for each different unicast
event it fires. When a unicast event is triggered, the event source should call this single target
listener.

6.6.2 Synchronous delivery

Event delivery is synchronous with respect to the event source. When the event source calls a
target listener method, the call is a normal Java method invocation and is executed synchro-
nously, using the caller’s thread.

6.6.3 Exceptional Conditions.

Target listener methods are permitted to throw checked Exceptions. It is an implementation de-
cision for the event source object how to react when a listener method has raised an exception.

In general, listener methods should not throw unchecked exceptions (such as NullPointerEx-
ception), as these cannot be documented in throws clauses. However event sources should be
aware that target listeners may inadvertently throw such unchecked exceptions. Normally this
should be treated as a bug in the target listener.

6.6.4 Concurrency control

In multi-threaded systems event handling is a common cause of both races and deadlocks. This
is partly due to the inherently asynchronous nature of event handling and partly because event
handling often flows “upwards” against the normal program control flow, so that component
A may be delivering an event to component B at the same moment as component B is perform-
ing a normal method invocation into component A.

We recommend that event sources should use synchronized methods and synchronized blocks
to synchronize access to the data structures that describe event listeners.

In order to reduce the risk of deadlocks, we strongly recommend that event sources should
avoid holding their own internal locks when they call event listener methods. Specifically, as
in the example code in Section 6.5.1, we recommend they should avoid using a synchronized
method to fire an event and should instead merely use a synchronized block to locate the target
listeners and then call the event listeners from unsynchronized code.

6.6.5 Modifications to the Set of Event Listeners during Event Delivery.

While an event is being multicast it is possible that the set of event listeners may be updated,
either by one of the target event listener methods, or by some other thread.

The exact effects of such concurrent updates are implementation specific. Some event sources
may consult the currently registered listener set as they proceed and only deliver the event to
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listeners still on the current list. Other implementations may choose to make a copy of the event
target list when they start the event delivery and then deliver the event to that exact set.

Note that this means that an event listener may be removed from an event source and then still
receive subsequent event method calls from that source, because there were multicast events in
progress when it was removed.

6.7  Event Adaptors

Event adaptors are an extremely important part of the Java event model.

Particular applications or application builder tools may choose to use a standard set of event
adaptors to interpose between event sources and event listeners to provide additional policy on
event delivery .

6.7.1 Event Adaptor Overview

When additional behavior is required during event delivery, an intermediary “event adaptor”
class may be defined, and interposed between an event source and the real event listener.

EventSource Object

public synchronized
void addFooListener(FooListener fel);

FooEvent

EventAdaptor

FooEvent

class XyzListener implements FooListener {
     void fooHappened(FooEvent fe) {

void doIt(FooEvent fe) {
...
}

eListener

eDestination

         eDestination.doIt(fe);
}

Overview of Event Adaptor Model.

register Listener

fire
Event

forward
Event

reference to destination

interface
reference
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The primary role of an event adaptor is to conform to the particularEventListener interface ex-
pected by the event source, and to decouple the incoming event notifications on the interface
from the actual listener(s).

Some examples of the uses of such adaptors are

• Implementing an event queuing mechanism between sources and listeners.

• Acting as a filter.

• Demultiplexing multiple event sources onto a single event listener.

• Acting as a generic “wiring manager” between sources and listeners.

6.7.2 Security issues

Event adaptors that simply run as parts of downloaded applets add no new security issues. They
will be constrained by the standard applet security model.

However event adaptors that are added to the standard base system must be careful to enforce
the current Java security model. Many security checks within the current Java virtual machine
are enforced by scanning backwards through the current thread’s stack to see if any stack frame
belongs to an untrusted applet and if so denying access. Because the current event mechanism
delivers an event synchronously within the firing thread, this stack checking algorithm means
that actions by an event recipient are automatically limited if the event source was an untrusted
applet. This protects against certain security attacks where an applet fires bogus events to mis-
lead a component.

Any event adaptors that are potentially going to be installed on the local disk and which may
be used by downloaded applets must be careful to maintain this model. Thus an event-queueing
adaptor must be careful that its event delivery threads do not look more trustworthy than the
original event firer.

The only event adaptors that JavaSoft currently intends to deliver as part of the base JDK are
some simple utility base classes to make it easier to implement AWT event listeners. These
adaptors do not introduce any new security issues.

6.7.3 Demultiplexing Event Adaptors.

Demultiplexing is perhaps the most common expected use of the adaptor technique.

Any given event listener object may only implement a givenEventListener interface once.
Thus if a listener registers itself with multiple event sources for the same event, the listener has
to determine for itself which source actually emitted a particular event.

To make event delivery more convenient, we would like to allow the events for different event
sources to be delivered to different target methods on the final listener object. So for example
if I have two buttons “OKButton” and “CancelButton”, I would like to be able to arrange that
a push on the “OKButton” results in a call on one method, whereas a push on the “CancelBut-
ton” results in a call on another method.

We can solve this problem by interposing “demultiplexing” adaptors between each source and
the listener, where each demultiplexing adaptor takes an incoming method call of one name and
then calls a differently named method on its target object.
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In the example (see the diagram and code below) a DialogBox object has two push buttons
“OK” and “Cancel”, both of which fire abuttonPushed(PBEvent) method. The DialogBox is
designed to invoke the methods,doOKAction()when the “OK” button fires, anddoCancelAc-
tion() when the “Cancel” button fires.

The DialogBox defines two classes,OKButtonAdaptor andCancelButtonAdaptor that both im-
plement thePBListener interface but dispatch the incoming notification to their respective ac-
tion methods.

As a side effect of instantiation of the DialogBox, instances of the private adaptors are also cre-
ated and registered with thePushButton instances, resulting in the appropriate event flow and
mapping.

// Adaptor to map “Cancel Pressed” events onto doCancelAction()

class CancelAdaptor implements PushButtonExampleListener {
private Dialog dialog;
public CancelAdaptor(Dialog dest) {

dialog = dest;
}
public void buttonPushed(PushButtonExampleEvent pbe) {

dialog.doCancelAction();
}

}

OK Button

Cancel Button

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe) {
        dialog.doOKAction();
 }

 buttonPushed(PBEvent pbe) {
        dialog.doCancelAction();
 }

Dialog BoxOKButtonAdaptor

doOKAction() {
       // ...
}

doCancelAction() {
      // ...
}

okButton.addPBListener(okButtonAdaptor)

cancelButton.addPBListener(cancelButtonAdaptor)

CancelButtonAdaptor
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// Adaptor to map “OK Pressed” events onto doOKAction()

class OKAdaptor implements PushButtonExampleListener {
private Dialog dialog;
public OKAdaptor(Dialog dest) {

dialog = dest;
}
public void buttonPushed(PushButtonExampleEvent pbe) {

dialog.doOKAction();
}

}

// Define generic Dialog with two methods, doOKAction()
// and doCancelAction()

public abstract class DialogBox{
// Dialog with two adaptors for OK and Cancel buttons
protected PushButton okButton;
protected PushButton cancelButton;
protected OKAdaptor okAdaptor;
protected CancelAdaptor cancelAdaptor;

DialogBox() {
okButton = new PushButton(“OK”);
cancelButton= new PushButton(“Cancel”);

okAdaptor = new OKAdaptor(this);
okButton.addPushButtonExampleListener(OKAdaptor)

cancelAdaptor= new CancelAdaptor(cancelButton, this);
cancelButton.addPushButtonExampleListener(CancelAdaptor);

}

public abstract void doOKAction();
public abstract void doCancelAction();

}

6.7.4 Generic demultiplexing adaptors.

The simple demultiplexing adaptor model described in Section 6.7.3 has the drawback that the
number of private adaptor classes can become very high if there are large number of different
event targets, as a different adaptor class is required for each source-target hookup.

Where there are a large number of event source instances another technique can be employed
in order to obviate the need for an adaptor class per source-target hookup.

This technique uses generic adaptors and is most suited to automatic code generation by appli-
cation builder tools. It involves synthesizing an adaptor class that utilizes the new low-level
Java introspection APIs to map incoming events from multiple source instances onto particular
method invocations via theinvokemethod of thejava.lang.reflect.Method class.

The shortcoming of this technique however is that the use of the low-level introspection APIs
for method lookup and invocation via string names is in some senses “unnatural”, and it defeats
the strong typing facilities.
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Therefore it is not recommended that this technique be used in manually generated code as it
may lead to fatal errors in an application using this technique at runtime. It is instead recom-
mended that this technique only be used by application builder generated code, where greater
constraints may be applied to, and subsequently checked during, the code generation and thus
there is less risk of introducing serious runtime errors into application code using this tech-
nique.

fireE(E)
ES1

fireE(E)
ES2

fireE(E)
ES3

fireE(E)
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fireE(E)
ESN

Sources

Adaptor1

Adaptor2

Adaptor3

Adaptor4

AdaptorN

action1()

action2()

action3()

action4()

actionN()

Adaptors Listener

action1() { ... }

action2() { ... }

action3() { ... }

action4() { ... }

actionN() { ... }

Adaptor Proliferation with Simple Multiplexing Adaptors.

fireE(E)
ES1

fireE(E)
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fireE(E)
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fireE(E)
ES4

fireE(E)
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Sources
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action2()

action3()
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actionN()

Adaptor Listener

action1() { ... }

action2() { ... }

action3() { ... }

actionN() { ... }

{
 { ES1, “action1” },
 { ES2, “action2” },
 { ES3, “action3” },
 { ES4, “action4” },
 ...
 { ESN, “actionN” }
}

Map incoming event
onto Method object
and then use low-
level reflection:

Method.invoke(
   listener, null);

action4() { ... }

Using a Generic Multiplexing Adaptor.
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Interface EventListener

public interface java.util. EventListener

A tagging interface that all event listener interfaces must extend
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Class EventObject

public class java.util. EventObject
    extends java.lang. Object
    implements java.io. Serializable

The Event class is the abstract root class from which all event state objects shall be derived.

All Event's are constructed with a reference to the object, the "source", that is logically deemed to be the object upon
which the Event in question initially occurred upon.

Variables

• source

protected transient Object source

Constructors

• EventObject

public EventObject(Object source)

Constructs a prototypical Event

Parameters:
source

The object that the Event occurred upon.

Methods

• getSource

public Object getSource()

Returns:
The object that the Event initially occurred upon.

• toString

public String toString()

Overrides:
toString() in class Object .
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Class TooManyListenersException

public class java.util. TooManyListenersException
    extends java.lang. Exception

TheTooManyListenersException Exception is used as part of the Java Event model to annotate and imple-
ment a unicast special case of a multicast Event Source.

The presence of a "throws TooManyListenersException" clause on any given concrete implementation of the nor-
mally multicast "void addXyzEventListener" event listener registration pattern is used to annotate that interface as
implementing a unicast Listener special case, that is, that one and only one Listener may be registered on the particu-
lar event listener source concurrently.

See Also:

EventObject , EventListener .

Constructors

• TooManyListenersException

public TooManyListenersException()

Constructs a TooManyListenersException with no detail message. A detail message is a String that describes this par-
ticular exception.

• TooManyListenersException

public TooManyListenersException(String s)

Constructs a TooManyListenersException with the specified detail message. A detail message is a String that
describes this particular exception.

Parameters:
s

the detail message
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7 Properties

Properties are discrete, named attributes of a Java Bean that can affect its appearance or its be-
haviour. For example, a GUI button might have a property named “Label” that represents the
text displayed in the button.

Properties show up in a number of ways:

1. Properties may be exposed in scripting environments as though they were fields of
objects. So in a Javascript environment I might do “b.Label = foo” to set the value of a
property.

2. Properties can be accessed programmatically by other components calling their getter
and setter methods (see Section 7.1 below).

3. As part of the process of customizing a component (see Section 9), its properties may
be presented in a property sheet for a user to edit.

4. Typically a bean’s properties will be persistent, so that their state will be stored away
as part of the persistent state of the bean.

Properties can have arbitrary types, including both built-in Java types such as “int” and class
or interfaces types such as “java.awt.Color”.

7.1  Accessor methods

Properties are always accessed via method calls on their owning object. For readable properties
there will be agettermethod to read the property value. For writable properties there will be a
setter method to allow the property value to be updated. Thus even when a script writer types
in something such as “b.Label = foo” there is still a method call into the target object to set the
property, and the target object has full programmatic control.

So properties need not just be simple data fields, they can actually be computed values. Updates
may have various programmatic side effects. For example, changing a bean’s background color
property might also cause the bean to be repainted with the new color.

For simple properties the accessor type signatures are:

void setFoo(PropertyType value); // simple setter
PropertyType getFoo(); // simple getter

GetFooandsetFoo are simply example names. Accessor methods can have arbitrary names.
However for standard naming conventions for accessor methods see the design patterns de-
scribed in Section 8.3.

7.2  Indexed properties

In addition to simple single-value properties, we also supportindexed properties. An indexed
property supports a range of values. Whenever the property is read or written you just specify
an index to identify which value you want.

Property indexes must be Java “int”s.
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We may relax this restriction in the future to allow other index types. However it seems that “int” in-
dexes are in practice the most common and useful kind of property index.

A component may also expose an indexed property as a single array value. For example, if
there is an indexed property “fred” of type string it may be possible from a scripting environ-
ment to access an individual indexed value using “b.fred[3]” and also to access the same prop-
erty as an array using “b.fred”.

For indexed properties the accessor type signatures are:

void setter(int index, PropertyType value); // indexed setter
PropertyType getter(int index); // indexed getter
void setter(PropertyType values[]); // array setter
PropertyType[] getter(); // array getter

The indexed getter and setter methods may throw ajava.lang.ArrayIndexOutOfBoundsExcep-
tion runtime exception if an index is used that is outside the current array bounds.

In order to change the size of the array you must use the array setter method to set a new (or
updated) array.

7.3  Exceptions on accessor methods

Both simple and indexed property accessor methods may throw checked exceptions. This al-
lows property setter/getter methods to report exceptional conditions.

Thus for example you might have:

void setWombat(Wombat value) throws BadWombatException;
Marsupial getKangaroo(int index) throws AwfulCommunicationException;

7.4  Bound and constrained properties

Java Beans provides support forboundandconstrainedproperties. These are advanced fea-
tures that are not required for simple beans or for initial beans programming.

7.4.1 Bound properties

Sometimes when a bean property changes then either the bean’s container or some other bean
may wish to be notified of the change.

A component can choose to provide a change notification service for some or all of its proper-
ties. Such properties are commonly known asbound properties, as they allow other compo-
nents to bind special behaviour to property changes.

ThePropertyChangeListenerevent listener interface is used to report updates to simple bound
properties. If a bean supports bound properties then it should support a normal pair of multicast
event listener registration methods for PropertyChangeListeners:

public void addPropertyChangeListener(PropertyChangeListener x);
public void removePropertyChangeListener(PropertyChangeListener x);

When a property change occurs on a bound property the bean should call the PropertyChange-
Listener.propertyChange method on any registered listeners, passing aPropertyChangeEvent



JavaBeans Properties

Sun Microsystems 42 7/24/97

object that encapsulates the locale-independent name of the property and its old and new val-
ues.

The event source should fire the eventafterupdating its internal state.

For programming convenience, we provide a utility class PropertyChangeSupport that can be
used to keep track of PropertyChangeListeners and to fire PropertyChange events.

7.4.2 Constrained properties

Sometimes when a property change occurs some other bean may wish to validate the change
and reject it if it is inappropriate.

We refer to properties that undergo this kind of checking asconstrained properties.

In Java Beans, constrained property setter methods are required to support thePropertyVetoEx-
ception. This documents to the users of the constrained property that attempted updates may be
vetoed.

So a simple constrained property might look like:

PropertyType getFoo();
void setFoo(PropertyType value) throws PropertyVetoException;

TheVetoableChangeListenerevent listener interface is used to report updates to constrained
properties. If a bean supports constrained properties then it should support a normal pair of
multicast event listener registration methods for VetoableChangeListeners:

public void addVetoableChangeListener(VetoableChangeListener x);
public void removeVetoableChangeListener(VetoableChangeListener x);

When a property change occurs on a constrained property the bean should call the Veto-
ableChangeListener.vetoableChange method on any registered listeners, passing aProperty-
ChangeEvent object that encapsulates the locale-independent name of the property and its old
and new values. If the event recipient does not wish the requested edit to be performed it may
throw a PropertyVetoException. It is the source bean’s responsibility to catch this exception,
revert to the old value, and issue a new VetoableChangeListener.vetoableChange event to re-
port the reversion.

The initial vetoableChangeListener.vetoablePropertyChange event may have been multicast to a num-
ber of recipients before one vetoes the new value. If one of the recipients vetoes, then we have to make
sure that all the other recipients are informed that we have reverted to the old value. Thus the need to
fire another VetoableChangeListener.vetoableChange event when we revert. The source may choose to
ignore vetoes when reverting to the old value.

The event source should fire the eventbefore updating its internal state.

For programming convenience we provide a utility class VetoableChangeSupport that can be
used to keep track of VetoableChangeListeners and to fire VetoableChange events. It also
catches PropertyVetoExceptions and sends any necessary reversion event.
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7.4.3 Listening for both bound and constrained properties

In general we recommend that if a property is constrained then it should also be bound. If it is
desirable to allow other beans to veto changes to a property then it is probably also desirable
to allow them to be notified when the property is actually changed.

If a bean supports a property that is both bound and constrained, then it should fire a Veto-
ableChangeListener.vetoableChange event before updating the property and a Property-
ChangeListener.propertyChange event after updating the property.

So if a bean is interested in both being able to veto proposed updates and in accurately moni-
toring the state of a property then it should use a “two phase” approach and register both a Veto-
ableChangeListener and a PropertyChangeListener. In the first phase at vetoableChange time
it should merely check whether the proposed value is acceptable and veto unacceptable values.
In the second phase at PropertyChange time it can rely on the change being effective and can
proceed to act on the new value.

Some experienced developers may chose to use a “single phase” mechanism to track the state of a prop-
erty and merely register a VetoableChangeListener and track the state of the bean though the successive
vetoableChange notifications. After all, if a vetoableChange is subsequently vetoed then a new veto-
ableChange will be sent reporting the reversion to the old value. Note however that this approach is in-
herently racy as it is hard to be sure when a new value is really effective. This approach requires
considerable care if it is to be used safely. However in some situations, this approach may be appropri-
ate.

7.4.4 Checking for changes that have no effect

If a property setter method gets called with an argument that is equal to the property’s current
value, then we recommend that the bean does not fire either a VetoableChangeListener.veto-
ableChange event or a PropertyChangeListener.propertyChange event. This behaviour is both
more efficient and reduces the danger of loops when property setter methods are cross connect-
ed.

Thus for example the following property update on a bound property “fred” need not fire a
PropertyChangeEvent:

x.setFred(x.getFred());

For code that uses the PropertyChangeSupport and VetoableChangeSupport utility classes, this
check for equality is handled automatically, as these classes check if the “old” and “new” prop-
erty values are equal and if so avoid firing an event.

7.4.5 Optional support for listening on named properties

In addition to supporting the standard design pattern for adding and removing PropertyChange-
Listeners shown in Section 7.4.1 above, a bean that fires PropertyChangeEvents may also sup-
port an additional pair of methods that allow a PropertyChangeListener to be added and
removed for a named property:

void addPropertyChangeListener(String propertyName,
PropertyChangeListener listener);

void removePropertyChangeListener(String propertyName,
PropertyChangeListener listener);
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In this case, the bean should associate the given listener with the given property name, and only
invoke its propertyChange method when the given named property has been changed.

Similarly, in addition to supporting the standard design pattern for adding and removing Veto-
ableChangeListeners, beans may also support additional registration methods that are tied to a
specific named property:

void addVetoableChangeListener(String propertyName,
VetoableChangeListener listener);

void removeVetoableChangeListener(String propertyName,
VetoableChangeListener listener);

Note that in both cases the bean must also support the standard design pattern for registering
an event listener, which takes a single event listener argument.

7.4.6 Optional event handler methods for specific properties

As an alternative to the mechanism described in the previous section, a bean may provide ex-
plicit methods to allow the registration and removal of a event handlers for a specific property.
This is entirely optional, but if a bean chooses to support this, then for each such bound prop-
erty it may provide methods of the form:

void add< PropertyName >Listener(PropertyChangeListener p);
void remove< PropertyName >Listener(PropertyChangeListener p);

and it may also add a similarly named pair of optional methods for registering and deregistering
VetoableChangeListeners:

void add< PropertyName >Listener(VetoableChangeListener p);
void remove< PropertyName >Listener(VetoableChangeListener p);

7.4.7 A bound and constrained example

In the following example the JellyBean class supports a bound property “color” and a bound
and constrained property “priceInCents”. We use instances of the PropertyChangeSupport and
VetoableChangeSupport classes to help us keep track of the event listeners and to deliver the
actual events.

import java.awt.*;
import java.beans.*;

public class JellyBean {

public Color getColor() {
return ourColor;

}

public void setColor(Color newColor) {
Color oldColor = ourColor;
ourColor = newColor;
changes.firePropertyChange(“color”, oldColor, newColor);

}
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public int getPriceInCents() {
return ourPriceInCents;

}

public void setPriceInCents(int newPriceInCents)
throws PropertyVetoException {

int oldPriceInCents = ourPriceInCents;
// First tell the vetoers about the change. If anyone objects, we
// let the PropertyVetoException propagate back to our caller.
vetos.fireVetoableChange(“priceInCents”,

new Integer(oldPriceInCents),
new Integer(newPriceInCents));

// No one vetoed, so go ahead and make the change.
ourPriceInCents = newPriceInCents;
changes.firePropertyChange(“priceInCents”,

new Integer(oldPriceInCents),
new Integer(newPriceInCents));

}

public void addPropertyChangeListener(PropertyChangeListener l) {
changes.addPropertyChangeListener(l);

}

public void removePropertyChangeListener(PropertyChangeListener l) {
changes.removePropertyChangeListener(l);

}

public void addVetoableChangeListener(VetoableChangeListener l) {
vetos.addVetoableChangeListener(l);

}

public void removeVetoableChangeListener(VetoableChangeListener l) {
vetos.removeVetoableChangeListener(l);

}

private PropertyChangeSupport changes =
new PropertyChangeSupport(this);

private VetoableChangeSupport vetos = new VetoableChangeSupport(this);
private Color ourColor = Color.orange;
private int ourPriceInCents = 2;

}
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Class PropertyChangeEvent

public class java.beans. PropertyChangeEvent
    extends java.util. EventObject

A "PropertyChange" event gets delivered whenever a bean changes a "bound" or "constrained" property. A Property-
ChangeEvent object is sent as an argument to the PropertyChangeListener and VetoableChangeListener methods.

Normally PropertyChangeEvents are accompanied by the name and the old and new value of the changed property. If
the new value is a primitive type (such as int or boolean) it must be wrapped as the corresponding java.lang.* Object
type (such as Integer or Boolean).

Null values may be provided for the old and the new values if their true values are not known.

An event source may send a null object as the name to indicate that an arbitrary set of if its properties have changed.
In this case the old and new values should also be null.

Constructors

• PropertyChangeEvent

public PropertyChangeEvent(Object source,
String propertyName,
Object oldValue,
Object newValue)

Parameters:
source

The bean that fired the event.
propertyName

The programmatic name of the property that was changed.
oldValue

The old value of the property.
newValue

The new value of the property.

Methods

• getNewValue

public Object getNewValue()

Returns:
The new value for the property, expressed as an Object. May be null if multiple properties have changed.

• getOldValue

public Object getOldValue()

Returns:
The old value for the property, expressed as an Object. May be null if multiple properties have changed.

• getPropagationId

public Object getPropagationId()
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The "propagationId" field is reserved for future use. In Beans 1.0 the sole requirement is that if a listener catches a
PropertyChangeEvent and then fires a PropertyChangeEvent of its own, then it should make sure that it propagates
the propagationId field from its incoming event to its outgoing event.

Returns:
the propagationId object associated with a bound/constrained property update.

• getPropertyName

public String getPropertyName()

Returns:
The programmatic name of the property that was changed. May be null if multiple properties have changed.

• setPropagationId

public void setPropagationId(Object propagationId)

Parameters:
propagationId

The propagationId object for the event.
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Interface PropertyChangeListener

public interface java.beans. PropertyChangeListener
    extends java.util. EventListener

A "PropertyChange" event gets fired whenever a bean changes a "bound" property. You can register a Property-
ChangeListener with a source bean so as to be notified of any bound property updates.

Methods

• propertyChange

public void
propertyChange(PropertyChangeEvent evt)

This method gets called when a bound property is changed.

Parameters:
evt

A PropertyChangeEvent object describing the event source and the property that has changed.
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Class PropertyChangeSupport

public class java.beans. PropertyChangeSupport
    extends java.lang. Object
    implements java.io. Serializable

This is a utility class that can be used by beans that support bound properties. You can use an instance of this class as
a member field of your bean and delegate various work to it.

Constructors

• PropertyChangeSupport

public PropertyChangeSupport(Object sourceBean)

Methods

• addPropertyChangeListener

public synchronized void
addPropertyChangeListener(PropertyChangeListener listener)

Add a PropertyChangeListener to the listener list.

Parameters:
listener

The PropertyChangeListener to be added

• firePropertyChange

public void
firePropertyChange(String propertyName,

Object oldValue, Object newValue)

Report a bound property update to any registered listeners. No event is fired if old and new are equal and non-null.

Parameters:
propertyName

The programmatic name of the property that was changed.
oldValue

The old value of the property.
newValue

The new value of the property.

• removePropertyChangeListener

public synchronized void
removePropertyChangeListener(PropertyChangeListener listener)

Remove a PropertyChangeListener from the listener list.

Parameters:
listener

The PropertyChangeListener to be removed
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Class PropertyVetoException

public class java.beans. PropertyVetoException
    extends java.lang. Exception

A PropertyVetoException is thrown when a proposed change to a property represents an unacceptable value.

Constructors

• PropertyVetoException

public
PropertyVetoException(String mess,

PropertyChangeEvent evt)

Parameters:
mess

Descriptive message
evt

A PropertyChangeEvent describing the vetoed change.

Methods

• getPropertyChangeEvent

public PropertyChangeEvent getPropertyChangeEvent()
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Interface VetoableChangeListener

public interface java.beans. VetoableChangeListener
    extends java.util. EventListener

A VetoableChange event gets fired whenever a bean changes a "constrained" property. You can register a Veto-
ableChangeListener with a source bean so as to be notified of any constrained property updates.

Methods

• vetoableChange

public void
vetoableChange(PropertyChangeEvent evt)

        throws PropertyVetoException

This method gets called when a constrained property is changed.

Parameters:
evt

aPropertyChangeEvent  object describing the event source and the property that has changed.

Throws: PropertyVetoException
if the recipient wishes the property change to be rolled back.
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Class VetoableChangeSupport

public class java.beans. VetoableChangeSupport
    extends java.lang. Object
    implements java.io. Serializable

This is a utility class that can be used by beans that support constrained properties. You can use an instance of this
class as a member field of your bean and delegate various work to it.

Constructors

• VetoableChangeSupport

public VetoableChangeSupport(Object sourceBean)

Methods

• addVetoableChangeListener

public synchronized void
addVetoableChangeListener(VetoableChangeListener listener)

Add a VetoableListener to the listener list.

Parameters:
listener

The VetoableChangeListener to be added

• fireVetoableChange

public void
fireVetoableChange(String propertyName,

Object oldValue, Object newValue)
        throws PropertyVetoException

Report a vetoable property update to any registered listeners. If anyone vetos the change, then fire a new event revert-
ing everyone to the old value and then rethrow the PropertyVetoException.

No event is fired if old and new are equal and non-null.

Parameters:
propertyName

The programmatic name of the property that was changed.
oldValue

The old value of the property.
newValue

The new value of the property.

Throws: PropertyVetoException
if the recipient wishes the property change to be rolled back.

• removeVetoableChangeListener

public synchronized void
removeVetoableChangeListener(VetoableChangeListener listener)
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Remove a VetoableChangeListener from the listener list.

Parameters:
listener

The VetoableChangeListener to be removed
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8 Introspection

8.1  Overview

At runtime and in the builder environment we need to be able to figure out which properties,
events, and methods a Java Bean supports. We call this processintrospection.

We want Java Beans developers to be able to work entirely in terms of Java. We therefore want
to avoid using any separate specification language for defining the behaviour of a Java Bean.
Rather we’d like all of its behaviour to be specifiable in Java.

A key goal of Java Beans is to make it very easy to write simple components and to provide
default implementations for most common tasks. Therefore, we’d like to be able to introspect
on simple beans without requiring that the beans developer do a whole bunch of extra work to
support introspection. However, for more sophisticated components we also want to allow the
component developers full and precise control over which properties, events, and methods are
exposed.

We therefore provide a composite mechanism. By default we will use a low levelreflection
mechanism to study the methods supported by a target bean and then apply simpledesign pat-
ternsto deduce from those methods what properties, events, and public methods are supported.
However, if a bean implementor chooses to provide a BeanInfo class describing their bean then
this BeanInfo class will be used to programmatically discover the beans behaviour.

To allow application builders and other tools to analyze beans, we provide an Introspector class
that understands the various design patterns and standard interfaces and provides a uniform
way of introspecting on different beans.

For any given bean instance we expect its introspection information to be immutable and not
to vary in normal use. However if a bean is updated with a new improved set of class files, then
of course its signatures may change.

8.2  Overview ofDesign Patterns

By the termdesign patterns we mean conventional names and type signatures for sets of meth-
ods and/or interfaces that are used for standard purposes. For example the use of getFoo and
setFoo methods to retrieve and set the values of a “foo” property.

These design patterns have two uses. First they are a useful documentation hint for human pro-
grammers. By quickly identifying particular methods as fitting standard design patterns, hu-
mans can more quickly assimilate and use new classes. Secondly, we can write tools and
libraries that recognize design patterns and use them to analyze and understand components.
In particular for Java Beans we use automatic identification of design patterns as a way for tools
to identify properties, events, and exported methods.

However, within Java Beans the use of method and type names that match design patterns is
entirely optional. If a programmer is prepared to explicitly specify their properties, methods,
and events using the BeanInfo interface then they can call their methods and types whatever
they like. However, these methods and types will still have to match the required type signa-
tures, as this is essential to their operation.
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Although use of the standard naming patterns is optional, we strongly recommend their use as
standard naming conventions are an extremely valuable documentation technique.

8.3  Design Patterns for Properties

8.3.1 Simple properties

By default, we use design patterns to locate properties by looking for methods of the form:

public < PropertyType > get< PropertyName >();
public void set< PropertyName >(< PropertyType > a);

If we discover a matching pair of “get<PropertyName>” and “set<PropertyName>” methods
that take and return the same type, then we regard these methods as defining a read-write prop-
erty whose name will be “<propertyName>”. We will use the “get<PropertyName>” method
to get the property value and the “set<PropertyName>” method to set the property value. The
pair of methods may be located either in the same class or one may be in a base class and the
other may be in a derived class.

If we find only one of these methods, then we regard it as defining either a read-only or a write-
only property called “<propertyName>”

By default we assume that properties are neitherboundnorconstrained (see Section 7).

So a simple read-write property “foo” might be represented by a pair of methods:

public Wombat getFoo();
public void setFoo(Wombat w);

8.3.2 Boolean properties

In addition, for boolean properties, we allow a getter method to match the pattern:

public boolean is< PropertyName >();

This “is<PropertyName>” method may be provided instead of a “get<PropertyName>” meth-
od, or it may be provided in addition to a “get<PropertyName>” method.

In either case, if the “is<PropertyName>” method is present for a boolean property then we will
use the “is<PropertyName>” method to read the property value.

An example boolean property might be:

public boolean isMarsupial();
public void setMarsupial(boolean m);

8.3.3 Indexed properties

If we find a property whose type is an array “<PropertyElement>[]”, then we also look for
methods of the form:

public < PropertyElement > get< PropertyName >(int a);
public void set< PropertyName >(int a, < PropertyElement > b);

If we find either kind of pattern then we assume that “<propertyName>” is an indexed property
and that these methods can be used to read and/or write an indexed value.

Thus an indexed property “foo” might be represented by four accessor methods:
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public Bah[] getFoo();
public void setFoo(Bah a[]);
public Bah getFoo(int a);
public void setFoo(int a, Bah b);

8.4  Design Patterns for Events

By default, we use the following design pattern to determine which events a bean multicasts.
We look for a pair of methods of the form:

public void add< EventListenerType >(< EventListenerType > a)
public void remove< EventListenerType >(< EventListenerType > a)

where both methods take the same “<EventListenerType>” type argument, where the
“<EventListenerType>” type extends the “java.util.EventListener” interface, where the first
method starts with “add”, the second method starts with “remove”, and where the “<EventLis-
tenerType>” type name ends with “Listener”.

This design pattern assumes that the Java Bean is acting as a multicast event source for the
events specified in the “<EventListenerType>” interface.

So for example:

public void addFredListener(FredListener t);
public void removeFredListener(FredListener t);

defines a multicast event source.

8.4.1 Unicast event sources

As a special case, when we locate an event source using the design pattern described above we
check if the “add<EventListenerType>”method throws the java.util.TooManyListenersEx-
ception. If so, we assume that the event source is unicast and can only tolerate a single event
listener being registered at a time.

So for example:

public void addJackListener(JackListener t)
throws java.util.TooManyListenersException;

public void removeJackListener(JackListener t);

defines a unicast event source for the “JackListener” interface.

8.5  Design Patterns for Methods

By default, we assume that all public methods of a Java Bean should be exposed as external
methods within the component environment for access by other components or by scripting
languages.

By default, this includes any property accessor methods, and any event listener registry meth-
ods.

8.6  Explicit Specification using a BeanInfo class

A Java Bean can also explicitly specify which properties, events, and methods it supports by
providing a class that implements the BeanInfo interface.
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The BeanInfo interface provides methods for learning about the events, properties, methods,
and global information about a target bean. As part of delivering a bean, an ISV may also de-
liver a matching BeanInfo class whose name is formed by adding “BeanInfo” to the bean’s
class name.

Java Beans uses purely programmatic APIs to obtain introspection information through BeanInfo.
However note that individual component developers have the option of using arbitrary private bean de-
scription files behind the scenes and simply providing BeanInfo classes that know how to read these
files.

A bean’s BeanInfo class may choose to only specify part of a bean’s behavior. It might for ex-
ample return an EventSetDescriptor array from the getEventSetDescriptors method to provide
definitive information on the bean’s events while opting to return null from the getMethodDe-
scriptors method, which indicates that the information on exposed methods should be discov-
ered by examining the bean itself.

Thus to obtain a complete picture of a bean, application tools should always use the Introspec-
tor interface (see next section) which combines the information from a variety of potential
sources to construct a definitive BeanInfo descriptor for a target bean.

8.7  Analyzing a Bean

We allow both explicit specification of a bean’s exposed properties/methods/events and also
implicit analysis using design patterns.

To simplify access to this information, and to make sure that all tools apply the same analysis
rules, we provide a class java.beans.Introspector that should be used to analyze a bean class. It
allows you to obtain a BeanInfo object that comprehensively describes a target bean class.

The Introspector class walks over the class/superclass chain of the target class. At each level it
checks if there is a matching BeanInfo class which provides explicit information about the
bean, and if so uses that explicit information. Otherwise it uses the low level reflection APIs to
study the target class and uses design patterns to analyze its behaviour and then proceeds to
continue the introspection with its baseclass. (See the Introspector class definition for a full de-
scription of the analysis rules.)

The reason for this multi-level analysis is to allow ISVs to deliver complex beans with explic-
itly specified behaviour where these beans are then subclassed and extended in minor ways by
end customers. We want to be able to use automatic introspection to analyze the extensions
added by the end customers and then add in the explicit information provided by the ISV who
wrote the baseclass.

8.8  Capitalization of inferred names.

When we use design patterns to infer a property or event name, we need to decide what rules
to follow for capitalizing the inferred name. If we extract the name from the middle of a normal
mixedCase style Java name then the name will, by default, begin with a capital letter.

Java programmers are accustomed to having normal identifiers start with lower case letters.
Vigorous reviewer input has convinced us that we should follow this same conventional rule
for property and event names.
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Thus when we extract a property or event name from the middle of an existing Java name, we
normally convert the first character to lower case. However to support the occasional use of all
upper-case names, we check if the first two characters of the name are both upper case and if
so leave it alone. So for example,

“FooBah” becomes “fooBah”

“Z” becomes “z”

“URL” becomes “URL”

We provide a method Introspector.decapitalize which implements this conversion rule.

8.9  Security

The high-level Introspection APIs only provide information on “public” methods of target
beans. The normal JDK security manager will allow even untrusted applets to access public
fields and methods using the java.lang.reflect APIs. However, while access to private methods
and fields may be available to “trusted” application builders, this access will normally be de-
nied to untrusted applets.
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Class BeanDescriptor

public class java.beans. BeanDescriptor
    extends java.beans. FeatureDescriptor

A BeanDescriptor provides global information about a "bean", including its Java class, its displayName, etc.

This is one of the kinds of descriptor returned by a BeanInfo object, which also returns descriptors for properties,
method, and events.

Constructors

• BeanDescriptor

public BeanDescriptor(Class beanClass)

Create a BeanDescriptor for a bean that doesn't have a customizer.

Parameters:
beanClass

The Class object of the Java class that implements the bean. For example sun.beans.OurButton.class.

• BeanDescriptor

public BeanDescriptor(Class beanClass,
Class customizerClass)

Create a BeanDescriptor for a bean that has a customizer.

Parameters:
beanClass

The Class object of the Java class that implements the bean. For example sun.beans.OurButton.class.
customizerClass

The Class object of the Java class that implements the bean's Customizer. For example sun.beans.Our-
ButtonCustomizer.class.

Methods

• getBeanClass

public Class getBeanClass()

Returns:
The Class object for the bean.

• getCustomizerClass

public Class getCustomizerClass()

Returns:
The Class object for the bean's customizer. This may be null if the bean doesn't have a customizer.
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Interface BeanInfo

public interface java.beans. BeanInfo

A bean implementor who wishes to provide explicit information about their bean may provide a BeanInfo class that
implements this BeanInfo interface and provides explicit information about the methods, properties, events, etc, of
their bean.

A bean implementor doesn't need to provide a complete set of explicit information. You can pick and choose which
information you want to provide and the rest will be obtained by automatic analysis using low-level reflection of the
bean classes' methods and applying standard design patterns.

You get the opportunity to provide lots and lots of different information as part of the various XyZDescriptor classes.
But don't panic, you only really need to provide the minimal core information required by the various constructors.

See also the SimpleBeanInfo class which provides a convenient "noop" base class for BeanInfo classes, which you
can override for those specific places where you want to return explicit info.

To learn about all the behaviour of a bean see the Introspector class.

Variables

• ICON_COLOR_16x16

public final static int ICON_COLOR_16x16

Constant to indicate a 16 x 16 color icon.

• ICON_COLOR_32x32

public final static int ICON_COLOR_32x32

Constant to indicate a 32 x 32 color icon.

• ICON_MONO_16x16

public final static int ICON_MONO_16x16

Constant to indicate a 16 x 16 monochrome icon.

• ICON_MONO_32x32

public final static int ICON_MONO_32x32

Constant to indicate a 32 x 32 monochrome icon.

Methods

• getAdditionalBeanInfo

public BeanInfo[] getAdditionalBeanInfo()

This method allows a BeanInfo object to return an arbitrary collection of other BeanInfo objects that provide addi-
tional information on the current bean.

If there are conflicts or overlaps between the information provided by different BeanInfo objects, then the current
BeanInfo takes precedence over the getAdditionalBeanInfo objects, and later elements in the array take precedence
over earlier ones.



JavaBeans

Sun Microsystems 61 7/24/97

Returns:
an array of BeanInfo objects. May return null.

• getBeanDescriptor

public BeanDescriptor getBeanDescriptor()

Returns:
A BeanDescriptor providing overall information about the bean, such as its displayName, its customizer, etc.
May return null if the information should be obtained by automatic analysis.

• getDefaultEventIndex

public int getDefaultEventIndex()

A bean may have a "default" event that is the event that will mostly commonly be used by human's when using the
bean.

Returns:
Index of default event in the EventSetDescriptor array returned by getEventSetDescriptors.

Returns -1 if there is no default event.

• getDefaultPropertyIndex

public int getDefaultPropertyIndex()

A bean may have a "default" property that is the property that will mostly commonly be initially chosen for update by
human's who are customizing the bean.

Returns:
Index of default property in the PropertyDescriptor array returned by getPropertyDescriptors.

Returns -1 if there is no default property.

• getEventSetDescriptors

public EventSetDescriptor[]
getEventSetDescriptors()

Returns:
An array of EventSetDescriptors describing the kinds of events fired by this bean. May return null if the
information should be obtained by automatic analysis.

• getIcon

public Image getIcon(int iconKind)

This method returns an image object that can be used to represent the bean in toolboxes, toolbars, etc. Icon images
will typically be GIFs, but may in future include other formats.

Beans aren't required to provide icons and may return null from this method.

There are four possible flavors of icons (16x16 color, 32x32 color, 16x16 mono, 32x32 mono). If a bean choses to
only support a single icon we recommend supporting 16x16 color.

We recommend that icons have a "transparent" background so they can be rendered onto an existing background.

Parameters:
iconKind

The kind of icon requested. This should be one of the constant values ICON_COLOR_16x16,
ICON_COLOR_32x32, ICON_MONO_16x16, or ICON_MONO_32x32.
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Returns:
An image object representing the requested icon. May return null if no suitable icon is available.

• getMethodDescriptors

public MethodDescriptor[]
getMethodDescriptors()

Returns:
An array of MethodDescriptors describing the externally visible methods supported by this bean. May return
null if the information should be obtained by automatic analysis.

• getPropertyDescriptors

public PropertyDescriptor[]
getPropertyDescriptors()

Returns:
An array of PropertyDescriptors describing the editable properties supported by this bean. May return null if
the information should be obtained by automatic analysis.

If a property is indexed, then its entry in the result array will belong to the IndexedPropertyDescriptor sub-
class of PropertyDescriptor. A client of getPropertyDescriptors can use "instanceof" to check if a given
PropertyDescriptor is an IndexedPropertyDescriptor.
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Class EventSetDescriptor

public class java.beans. EventSetDescriptor
    extends java.beans. FeatureDescriptor

An EventSetDescriptor describes a group of events that a given Java bean fires.

The given group of events are all delivered as method calls on a single event listener interface, and an event listener
object can be registered via a call on a registration method supplied by the event source.

Constructors

• EventSetDescriptor

public EventSetDescriptor(Class sourceClass,
String eventSetName,
Class listenerType,
String listenerMethodName)

        throws IntrospectionException

This constructor creates an EventSetDescriptor assuming that you are following the most simple standard design pat-
tern where a named event "fred" is (1) delivered as a call on the single method of interface FredListener, (2) has a sin-
gle argument of type FredEvent, and (3) where the FredListener may be registered with a call on an addFredListener
method of the source component and removed with a call on a removeFredListener method.

Parameters:
sourceClass

The class firing the event.
eventSetName

The programmatic name of the event. E.g. "fred". Note that this should normally start with a lower-
case character.

listenerType
The target interface that events will get delivered to.

listenerMethodName
The method that will get called when the event gets delivered to its target listener interface.

Throws: IntrospectionException
if an exception occurs during introspection.

• EventSetDescriptor

public
EventSetDescriptor(Class sourceClass,

String eventSetName,
Class listenerType,
String listenerMethodNames[],
String addListenerMethodName,
String removeListenerMethodName)

        throws IntrospectionException

This constructor creates an EventSetDescriptor from scratch using string names.

Parameters:
sourceClass

The class firing the event.
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eventSetName
The programmatic name of the event set. Note that this should normally start with a lower-case charac-
ter.

listenerType
The Class of the target interface that events will get delivered to.

listenerMethodNames
The names of the methods that will get called when the event gets delivered to its target listener inter-
face.

addListenerMethodName
The name of the method on the event source that can be used to register an event listener object.

removeListenerMethodName
The name of the method on the event source that can be used to de-register an event listener object.

Throws: IntrospectionException
if an exception occurs during introspection.

• EventSetDescriptor

public
EventSetDescriptor(String eventSetName,

Class listenerType,
Method listenerMethods[],
Method addListenerMethod,
Method removeListenerMethod)

        throws IntrospectionException

This constructor creates an EventSetDescriptor from scratch using java.lang.reflect.Method and java.lang.Class
objects.

Parameters:
eventSetName

The programmatic name of the event set.
listenerType

The Class for the listener interface.
listenerMethods

An array of Method objects describing each of the event handling methods in the target listener.
addListenerMethod

The method on the event source that can be used to register an event listener object.
removeListenerMethod

The method on the event source that can be used to de-register an event listener object.

Throws: IntrospectionException
if an exception occurs during introspection.

• EventSetDescriptor

public
EventSetDescriptor(String eventSetName,

Class listenerType,
MethodDescriptor listenerMethodDescriptors[],
Method addListenerMethod,
Method removeListenerMethod)

        throws IntrospectionException

This constructor creates an EventSetDescriptor from scratch using java.lang.reflect.MethodDescriptor and
java.lang.Class objects.
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Parameters:
eventSetName

The programmatic name of the event set.
listenerType

The Class for the listener interface.
listenerMethodDescriptors

An array of MethodDescriptor objects describing each of the event handling methods in the target lis-
tener.

addListenerMethod
The method on the event source that can be used to register an event listener object.

removeListenerMethod
The method on the event source that can be used to de-register an event listener object.

Throws: IntrospectionException
if an exception occurs during introspection.

Methods

• getAddListenerMethod

public Method getAddListenerMethod()

Returns:
The method used to register a listener at the event source.

• getListenerMethodDescriptors

public MethodDescriptor[]
getListenerMethodDescriptors()

Returns:
An array of MethodDescriptor objects for the target methods within the target listener interface that will get
called when events are fired.

• getListenerMethods

public Method[] getListenerMethods()

Returns:
An array of Method objects for the target methods within the target listener interface that will get called
when events are fired.

• getListenerType

public Class getListenerType()

Returns:
The Class object for the target interface that will get invoked when the event is fired.

• getRemoveListenerMethod

public Method getRemoveListenerMethod()

Returns:
The method used to register a listener at the event source.

• isInDefaultEventSet

public boolean isInDefaultEventSet()
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Report if an event set is in the "default set".

Returns:
True if the event set is in the "default set". Defaults to "true".

• isUnicast

public boolean isUnicast()

Normally event sources are multicast. However there are some exceptions that are strictly unicast.

Returns:
True if the event set is unicast. Defaults to "false".

• setInDefaultEventSet

public void
setInDefaultEventSet(boolean inDefaultEventSet)

Mark an event set as being in the "default" set (or not). By default this is true.

Parameters:
unicast

True if the event set is unicast.

• setUnicast

public void setUnicast(boolean unicast)

Mark an event set as unicast (or not).

Parameters:
unicast

True if the event set is unicast.
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Class FeatureDescriptor

public class java.beans. FeatureDescriptor
    extends java.lang. Object

The FeatureDescriptor class is the common baseclass for PropertyDescriptor, EventSetDescriptor, and MethodDe-
scriptor, etc.

It supports some common information that can be set and retrieved for any of the introspection descriptors.

In addition it provides an extension mechanism so that arbitrary attribute/value pairs can be associated with a design
feature.

Constructors

• FeatureDescriptor

public FeatureDescriptor()

Methods

• attributeNames

public Enumeration attributeNames()

Returns:
An enumeration of the locale-independent names of any attributes that have been registered with setValue.

• getDisplayName

public String getDisplayName()

Returns:
The localized display name for the property/method/event. This defaults to the same as its programmatic
name from getName.

• getName

public String getName()

Returns:
The programmatic name of the property/method/event

• getShortDescription

public String getShortDescription()

Returns:
A localized short description associated with this property/method/event. This defaults to be the display
name.

• getValue

public Object getValue(String attributeName)

Retrieve a named attribute with this feature.

Parameters:
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attributeName
The locale-independent name of the attribute

Returns:
The value of the attribute. May be null if the attribute is unknown.

• isExpert

public boolean isExpert()

The "expert" flag is used to distinguish between those features that are intended for expert users from those that are
intended for normal users.

Returns:
True if this feature is intended for use by experts only.

• isHidden

public boolean isHidden()

The "hidden" flag is used to identify features that are intended only for tool use, and which should not be exposed to
humans.

Returns:
True if this feature should be hidden from human users.

• setDisplayName

public void setDisplayName(String displayName)

Parameters:
displayName

The localized display name for the property/method/event.

• setExpert

public void setExpert(boolean expert)

The "expert" flag is used to distinguish between features that are intended for expert users from those that are
intended for normal users.

Parameters:
expert

True if this feature is intended for use by experts only.

• setHidden

public void setHidden(boolean hidden)

The "hidden" flag is used to identify features that are intended only for tool use, and which should not be exposed to
humans.

Parameters:
hidden

True if this feature should be hidden from human users.

• setName

public void setName(String name)

Parameters:
name
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The programmatic name of the property/method/event

• setShortDescription

public void setShortDescription(String text)

You can associate a short descriptive string with a feature. Normally these descriptive strings should be less than
about 40 characters.

Parameters:
text

A (localized) short description to be associated with this property/method/event.

• setValue

public void
setValue(String attributeName, Object value)

Associate a named attribute with this feature.

Parameters:
attributeName

The locale-independent name of the attribute
value

The value.
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Class IndexedPropertyDescriptor

public class java.beans. IndexedPropertyDescriptor
    extends java.beans. PropertyDescriptor

An IndexedPropertyDescriptor describes a property that acts like an array and has an indexed read and/or indexed
write method to access specific elements of the array.

An indexed property may also provide simple non-indexed read and write methods. If these are present, they read and
write arrays of the type returned by the indexed read method.

Constructors

• IndexedPropertyDescriptor

public
IndexedPropertyDescriptor(String propertyName,

Class beanClass)
        throws IntrospectionException

This constructor constructs an IndexedPropertyDescriptor for a property that follows the standard Java conventions
by having getFoo and setFoo accessor methods, for both indexed access and array access.

Thus if the argument name is "fred", it will assume that there is an indexed reader method "getFred", a non-indexed
(array) reader method also called "getFred", an indexed writer method "setFred", and finally a non-indexed writer
method "setFred".

Parameters:
propertyName

The programmatic name of the property.
beanClass

The Class object for the target bean.

Throws: IntrospectionException
if an exception occurs during introspection.

• IndexedPropertyDescriptor

public
IndexedPropertyDescriptor(String propertyName,

Class beanClass,
String getterName,
String setterName,
String indexedGetterName,
String indexedSetterName)

        throws IntrospectionException

This constructor takes the name of a simple property, and method names for reading and writing the property, both
indexed and non-indexed.

Parameters:
propertyName

The programmatic name of the property.
beanClass

The Class object for the target bean.
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getterName
The name of the method used for reading the property values as an array. May be null if the property is
write-only or must be indexed.

setterName
The name of the method used for writing the property values as an array. May be null if the property is
read-only or must be indexed.

indexedGetterName
The name of the method used for reading an indexed property value. May be null if the property is
write-only.

indexedSetterName
The name of the method used for writing an indexed property value. May be null if the property is
read-only.

Throws: IntrospectionException
if an exception occurs during introspection.

• IndexedPropertyDescriptor

public
IndexedPropertyDescriptor(String propertyName,

Method getter,
Method setter,
Method indexedGetter,
Method indexedSetter)

        throws IntrospectionException

This constructor takes the name of a simple property, and Method objects for reading and writing the property.

Parameters:
propertyName

The programmatic name of the property.
getter

The method used for reading the property values as an array. May be null if the property is write-only
or must be indexed.

setter
The method used for writing the property values as an array. May be null if the property is read-only or
must be indexed.

indexedGetter
The method used for reading an indexed property value. May be null if the property is write-only.

indexedSetter
The method used for writing an indexed property value. May be null if the property is read-only.

Throws: IntrospectionException
if an exception occurs during introspection.

Methods

• getIndexedPropertyType

public Class getIndexedPropertyType()

Returns:
The Java Class for the indexed properties type. Note that the Class may describe a primitive Java type such
as "int".

This is the type that will be returned by the indexedReadMethod.
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• getIndexedReadMethod

public Method getIndexedReadMethod()

Returns:
The method that should be used to read an indexed property value. May return null if the property isn't
indexed or is write-only.

• getIndexedWriteMethod

public Method getIndexedWriteMethod()

Returns:
The method that should be used to write an indexed property value. May return null if the property isn't
indexed or is read-only.
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Class IntrospectionException

public class java.beans. IntrospectionException
    extends java.lang. Exception

Thrown when an exception happens during Introspection.

Typical causes include not being able to map a string class name to a Class object, not being able to resolve a string
method name, or specifying a method name that has the wrong type signature for its intended use.

Constructors

• IntrospectionException

public IntrospectionException(String mess)

Parameters:
mess

Descriptive message
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Class Introspector

public class java.beans. Introspector
    extends java.lang. Object

The Introspector class provides a standard way for tools to learn about the properties, events, and methods supported
by a target Java Bean.

For each of those three kinds of information, the Introspector will separately analyze the bean's class and superclasses
looking for either explicit or implicit information and use that information to build a BeanInfo object that comprehen-
sively describes the target bean.

For each class "Foo", explicit information may be available if there exists a corresponding "FooBeanInfo" class that
provides a non-null value when queried for the information. We first look for the BeanInfo class by taking the full
package-qualified name of the target bean class and appending "BeanInfo" to form a new class name. If this fails,
then we take the final classname component of this name, and look for that class in each of the packages specified in
the BeanInfo package search path.

Thus for a class such as "sun.xyz.OurButton" we would first look for a BeanInfo class called "sun.xyz.OurButton-
BeanInfo" and if that failed we'd look in each package in the BeanInfo search path for an OurButtonBeanInfo class.
With the default search path, this would mean looking for "sun.beans.infos.OurButtonBeanInfo".

If a class provides explicit BeanInfo about itself then we add that to the BeanInfo information we obtained from ana-
lyzing any derived classes, but we regard the explicit information as being definitive for the current class and its base
classes, and do not proceed any further up the superclass chain.

If we don't find explicit BeanInfo on a class, we use low-level reflection to study the methods of the class and apply
standard design patterns to identify property accessors, event sources, or public methods. We then proceed to analyze
the class's superclass and add in the information from it (and possibly on up the superclass chain).

Methods

• decapitalize

public static String decapitalize(String name)

Utility method to take a string and convert it to normal Java variable name capitalization. This normally means con-
verting the first character from upper case to lower case, but in the (unusual) special case when there is more than one
character and both the first and second characters are upper case, we leave it alone.

Thus "FooBah" becomes "fooBah" and "X" becomes "x", but "URL" stays as "URL".

Parameters:
name

The string to be decapitalized.

Returns:
The decapitalized version of the string.

• getBeanInfo

public static BeanInfo getBeanInfo(Class beanClass)
        throws IntrospectionException

Introspect on a Java bean and learn about all its properties, exposed methods, and events.

Parameters:
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beanClass
The bean class to be analyzed.

Returns:
A BeanInfo object describing the target bean.

Throws: IntrospectionException
if an exception occurs during introspection.

• getBeanInfo

public static BeanInfo
getBeanInfo(Class beanClass, Class stopClass)

        throws IntrospectionException

Introspect on a Java bean and learn all about its properties, exposed methods, below a given "stop" point.

Parameters:
bean

The bean class to be analyzed.
stopClass

The baseclass at which to stop the analysis. Any methods/properties/events in the stopClass or in its
baseclasses will be ignored in the analysis.

Throws: IntrospectionException
if an exception occurs during introspection.

• getBeanInfoSearchPath

public static String[] getBeanInfoSearchPath()

Returns:
The array of package names that will be searched in order to find BeanInfo classes.

• setBeanInfoSearchPath

public static void
setBeanInfoSearchPath(String path[])

Change the list of package names that will be used for finding BeanInfo classes.

Parameters:
path

Array of package names.
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Class MethodDescriptor

public class java.beans. MethodDescriptor
    extends java.beans. FeatureDescriptor

A MethodDescriptor describes a particular method that a Java Bean supports for external access from other compo-
nents.

Constructors

• MethodDescriptor

public MethodDescriptor(Method method)

Parameters:
method

The low-level method information.

• MethodDescriptor

public
MethodDescriptor(Method method,

ParameterDescriptor parameterDescriptors[])

Parameters:
method

The low-level method information.
parameterDescriptors

Descriptive information for each of the method's parameters.

Methods

• getMethod

public Method getMethod()

Returns:
The low-level description of the method

• getParameterDescriptors

public ParameterDescriptor[]
getParameterDescriptors()

Returns:
The locale-independent names of the parameters. May return a null array if the parameter names aren't
known.
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Class ParameterDescriptor

public class java.beans. ParameterDescriptor
    extends java.beans. FeatureDescriptor

The ParameterDescriptor class allows bean implementors to provide additional information on each of their parame-
ters, beyond the low level type information provided by the java.lang.reflect.Method class.

Currently all our state comes from the FeatureDescriptor base class.
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Class PropertyDescriptor

public class java.beans. PropertyDescriptor
    extends java.beans. FeatureDescriptor

A PropertyDescriptor describes one property that a Java Bean exports via a pair of accessor methods.

Constructors

• PropertyDescriptor

public PropertyDescriptor(String propertyName,
Class beanClass)

        throws IntrospectionException

Constructs a PropertyDescriptor for a property that follows the standard Java convention by having getFoo and setFoo
accessor methods. Thus if the argument name is "fred", it will assume that the reader method is "getFred" and the
writer method is "setFred". Note that the property name should start with a lower case character, which will be capi-
talized in the method names.

Parameters:
propertyName

The programmatic name of the property.
beanClass

The Class object for the target bean. For example sun.beans.OurButton.class.

Throws: IntrospectionException
if an exception occurs during introspection.

• PropertyDescriptor

public PropertyDescriptor(String propertyName,
Class beanClass,
String getterName,
String setterName)

        throws IntrospectionException

This constructor takes the name of a simple property, and method names for reading and writing the property.

Parameters:
propertyName

The programmatic name of the property.
beanClass

The Class object for the target bean. For example sun.beans.OurButton.class.
getterName

The name of the method used for reading the property value. May be null if the property is write-only.
setterName

The name of the method used for writing the property value. May be null if the property is read-only.

Throws: IntrospectionException
if an exception occurs during introspection.

• PropertyDescriptor

public
PropertyDescriptor(String propertyName,
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Method getter, Method setter)
        throws IntrospectionException

This constructor takes the name of a simple property, and Method objects for reading and writing the property.

Parameters:
propertyName

The programmatic name of the property.
getter

The method used for reading the property value. May be null if the property is write-only.
setter

The method used for writing the property value. May be null if the property is read-only.

Throws: IntrospectionException
if an exception occurs during introspection.

Methods

• getPropertyEditorClass

public Class getPropertyEditorClass()

Returns:
Any explicit PropertyEditor Class that has been registered for this property. Normally this will return "null",
indicating that no special editor has been registered, so the PropertyEditorManager should be used to locate
a suitable PropertyEditor.

• getPropertyType

public Class getPropertyType()

Returns:
The Java type info for the property. Note that the "Class" object may describe a built-in Java type such as
"int". The result may be "null" if this is an indexed property that does not support non-indexed access.

This is the type that will be returned by the ReadMethod.

• getReadMethod

public Method getReadMethod()

Returns:
The method that should be used to read the property value. May return null if the property can't be read.

• getWriteMethod

public Method getWriteMethod()

Returns:
The method that should be used to write the property value. May return null if the property can't be written.

• isBound

public boolean isBound()

Updates to "bound" properties will cause a "PropertyChange" event to get fired when the property is changed.

Returns:
True if this is a bound property.

• isConstrained
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public boolean isConstrained()

Attempted updates to "Constrained" properties will cause a "VetoableChange" event to get fired when the property is
changed.

Returns:
True if this is a constrained property.

• setBound

public void setBound(boolean bound)

Updates to "bound" properties will cause a "PropertyChange" event to get fired when the property is changed.

Parameters:
bound

True if this is a bound property.

• setConstrained

public void setConstrained(boolean constrained)

Attempted updates to "Constrained" properties will cause a "VetoableChange" event to get fired when the property is
changed.

Parameters:
constrained

True if this is a constrained property.

• setPropertyEditorClass

public void
setPropertyEditorClass(Class propertyEditorClass)

Normally PropertyEditors will be found using the PropertyEditorManager. However if for some reason you want to
associate a particular PropertyEditor with a given property, then you can do it with this method.

Parameters:
propertyEditorClass

The Class for the desired PropertyEditor.
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Class SimpleBeanInfo

public class java.beans. SimpleBeanInfo
    extends java.lang. Object
    implements java.beans. BeanInfo

This is a support class to make it easier for people to provide BeanInfo classes.

It defaults to providing "noop" information, and can be selectively overriden to provide more explicit information on
chosen topics. When the introspector sees the "noop" values, it will apply low level introspection and design patterns
to automatically analyze the target bean.

Methods

• getAdditionalBeanInfo

public BeanInfo[] getAdditionalBeanInfo()

Claim there are no other relevant BeanInfo objects. You may override this if you want to (for example) return a Bean-
Info for a base class.

• getBeanDescriptor

public BeanDescriptor getBeanDescriptor()

Deny knowledge about the class and customizer of the bean. You can override this if you wish to provide explicit
info.

• getDefaultEventIndex

public int getDefaultEventIndex()

Deny knowledge of a default event. You can override this if you wish to define a default event for the bean.

• getDefaultPropertyIndex

public int getDefaultPropertyIndex()

Deny knowledge of a default property. You can override this if you wish to define a default property for the bean.

• getEventSetDescriptors

public EventSetDescriptor[] getEventSetDescriptors()

Deny knowledge of event sets. You can override this if you wish to provide explicit event set info.

• getIcon

public Image getIcon(int iconKind)

Claim there are no icons available. You can override this if you want to provide icons for your bean.

• getMethodDescriptors

public MethodDescriptor[] getMethodDescriptors()

Deny knowledge of methods. You can override this if you wish to provide explicit method info.

• getPropertyDescriptors
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public PropertyDescriptor[] getPropertyDescriptors()

Deny knowledge of properties. You can override this if you wish to provide explicit property info.

• loadImage

public Image loadImage(String resourceName)

This is a utility method to help in loading icon images. It takes the name of a resource file associated with the current
object's class file and loads an image object from that file. Typically images will be GIFs.

Parameters:
resourceName

A pathname relative to the directory holding the class file of the current class. For example,
"wombat.gif".

Returns:
an image object. May be null if the load failed.



JavaBeans Customization

Sun Microsystems 83 7/24/97

9 Customization

When a user is composing an application in an application builder we want to allow them to
customize the appearance and behaviour of the various beans they are using.

We allow this customization to occur in two different ways. When a bean exports a set of prop-
erties, then an application builder can use these properties to construct a GUIproperty sheet
that lists the properties and provides aproperty editor for each property. The user can then use
this property sheet to update the various properties of the bean.

This kind of simple property sheet is likely to work well for simple to medium sized beans.
However for larger and more complex beans, we want to allow more sophisticated kinds of
component customization. For example, we would like to allow component writers to provide
customization “wizards” that guide users through the different steps of customizing a bean,
rather than simply facing them with property sheet choices.

We therefore allow each Java Bean to be accompanied by acustomizer class that controls the
customization of the bean. This customizer class should be an AWT component that can be run
to customize a target bean. It can provide whatever GUI behaviour it wishes to control the cus-
tomization of the target bean.

9.1  Storing customized components

When a human has customized the behaviour of a set of components, the application builder
should use the persistence mechanisms described in Section 5 to store away the state of the
components. When the application is run, this pickled state should be read back in to initialize
the components.

9.2  Property editors

A property editor is a class that exists to allow GUI editing of a property value such as a String
or Color. Bean developers may also deliver new property editors for any new data types that
they deliver as part of their bean. For example, if a database bean developer defines a new type
foo.baz.SQLString and uses that type for component properties, then they may also wish to
provide a property editor foo.baz.SQLStringEditor for editing SQLString values.

The PropertyEditor class provides a number of different ways of reading and writing the prop-
erty value. Not all property editors need support all the different options. At the low-end a Prop-
ertyEditor may simply support reading and writing a value as a String. At the high-end, a
PropertyEditor is allowed to provide a full-blown java.awt.Component that can be popped-up
to edit its value.

A property editor may be instantiated either as part of a property sheet, or as a field within a
more complex component customizer. If a PropertyEditor allows itself to be represented in sev-
eral different ways (as a String, as a painted rectangle, as a full-blown custom editor compo-
nent, etc.) it is the responsibility of the higher-level tool to decide how best to represent a given
PropertyEditor.
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9.2.1 Locating property editors

Some property editors will be supplied as part of the Java Beans runtimes, other property edi-
tors may be supplied by component developers, other property editors may be provided by ap-
plication builder tools.

To allow the right property editor to be located for a given Java data type, we provide a class
java.beans.PropertyEditorManager that maps between Java types and corresponding property
editor classes.

The PropertyEditorManager class manages a registry of property editors, and allows you to
register a class to act as the property editor for a given Java type. The registry is pre-loaded
with editors for the standard Java built-in types such as “int”, “boolean”, etc.

When you attempt to locate a property editor for a Java type, the property manager searches for
a suitable property editor by:

• First looking to see if a property editor has been explicitly registered.

• If that fails, it will take the given Java type name and add “Editor” to the end and look
for that class. So for “foo.bah.Wombat” it will look for “foo.bah.WombatEditor” to act
as the property editor.

• If that also fails, it will take the final component of the given class name, add “Editor”
to the end and then look for that class name in a search-list of packages. (By default
java.beans.editors). Thus for “foo.bah.Wombat” it will check for
“java.beans.editors.WombatEditor”. Application builder tools may change the package
search path, by for example, pre-pending a package that they themselves provide.

Normally component writers who define new types and want to supply property editors should
simply provide an editor class whose name is the base type name + “Editor”.

Application builder tools can either use the set of default property editors provided with Java
Beans or define their own set of property editors for the basic Java types.

9.2.2 Reporting changes

Whenever a property editor makes a change it should fire a “PropertyChange” event. This al-
lows higher level software to detect the change, retrieve the new value, and do an appropriate
setXXX call to the target component.

9.2.3 Don’t change the initial object

Property editors are given an object representing the current value of a property. However a
property editor should not directly change this initial object. Instead, based on user input, it
should create a new object to reflect the revised state of the property. When the property editor
fires a “PropertyChange” event (see above) higher level software will detect the change, re-
trieve the new object, and do an appropriate property setter method call on the target compo-
nent to set the new value.

Since most simple objects in Java (String, Color, Font) are immutable, this model works natu-
rally for them. However, for mutable data types this also feels like the clearest and most reliable
model. It seems likely to lead to errors and misunderstandings if we were to try to change an
existing property object’s value under a component’s feet.
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Some property sheets may immediately apply each modified property value to the target com-
ponent. However some property sheets (or customizers) may choose to delay the changes until
the users confirms them.

9.2.4 Indirect property changes

In some components, setting one property value may cause other property values to change.

If this happens while a property sheet is open, then the user would like the property sheet to be
updated with all the new values. We therefore recommend that after each property update a
property sheet manager should re-read all the properties associated with the target bean. How-
ever, in order to avoid excessive screen redraws we recommend that it should do an “==” fol-
lowed by a “Object.equals” test to compare each new property value with its previous value.
The individual property editors should only be updated if the value has actually changed.

We considered defining an “IndirectPropertyUpdate” event that should get fired when a property was
changed as a side-effect of some other operation. However this seemed to add extra weight to the inter-
face for only a fairly small performance gain.

See also “bound properties” in Section 7.4.

9.2.5 The getJavaInitializationString method

If you are implementing a PropertyEditor, note that it is important to support the getJavaInitial-
ziationString method. Builder tools may use this method to help generate source code to restore
the state of a bean (see Section 5.4). For example getJavaInitializationString might be used to
generate code that will reinitialize a bean’s properties to the current values shown in a property
sheet.

The String returned by getJavaInitializationString should represent a value that can be passed
as a method or constructor argument.

So for example:

• The property editor for the “int” primitive type might return strings such as “0”, “-1”,
or “555”.

• The property editor for java.awt.Color might return strings such as
“java.awt.Color.red” or “new java.awt.Color(128,128,128)”.

9.3 Customizers

Property sheets will be an adequate way of customizing most simple components.

However for large components that offer a number of different ways of being configured, it
may be more appropriate for the component developer to provide a special class for customiz-
ing the component. We refer to these classes ascustomizers.

Each customizer should inherit either directly or indirectly from java.awt.Component. It should
also implement the java.beans.Customizer interface.
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9.3.1 GUI appearance

Normally each Customizer will be run in a separate AWT dialog window. The customizer has
complete discretion how it chooses to represent itself, and may redraw its appearance as the
user navigates/moves through different stages of customization.

A customizer may choose to include property editors in its screen appearance to edit target data
values.

9.3.2 In place update

Each customizer will be given a target object to customize as its constructor argument.

It is entirely up to the individual customizer whether it chooses to apply changes as it goes
along, or whether it batches up changes and applies them to the object at appropriate points.
However, whenever possible, we advise that the target bean’s screen appearance should be
quickly updated to reflect requested changes.

9.3.3 Locating customizers

If a bean wishes to provide its own Customizer then it must provide its own BeanInfo class (see
8.6). Tools can then use the BeanInfo.getBeanDescriptor().getCustomizerClass() method to lo-
cate the bean’s Customizer class.
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Interface Customizer

public interface java.beans. Customizer

A customizer class provides a complete custom GUI for customizing a target Java Bean.

Each customizer should inherit from the java.awt.Component class so it can be instantiated inside an AWT dialog or
panel.

Each customizer should have a null constructor.

Methods

• addPropertyChangeListener

public void
addPropertyChangeListener(PropertyChangeListener listener)

Register a listener for the PropertyChange event. The customizer should fire a PropertyChange event whenever it
changes the target bean in a way that might require the displayed properties to be refreshed.

Parameters:
listener

An object to be invoked when a PropertyChange event is fired.

• removePropertyChangeListener

public void
removePropertyChangeListener(PropertyChangeListener listener)

Remove a listener for the PropertyChange event.

Parameters:
listener

The PropertyChange listener to be removed.

• setObject

public void setObject(Object bean)

Set the object to be customized. This method should be called only once, before the Customizer has been added to
any parent AWT container.

Parameters:
bean

The object to be customized.
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Interface PropertyEditor

public interface java.beans. PropertyEditor

A PropertyEditor class provides support for GUIs that want to allow users to edit a property value of a given type.

PropertyEditor supports a variety of different kinds of ways of displaying and updating property values. Most Proper-
tyEditors will only need to support a subset of the different options available in this API.

Simple PropertyEditors may only support the getAsText and setAsText methods and need not support (say) paint-
Value or getCustomEditor. More complex types may be unable to support getAsText and setAsText but will instead
support paintValue and getCustomEditor.

Every propertyEditor must support one or more of the three simple display styles. Thus it can either (1) support
isPaintable or (2) both return a non-null String[] from getTags() and return a non-null value from getAsText or (3)
simply return a non-null String from getAsText().

Every property editor must support a call on setValue when the argument object is of the type for which this is the
corresponding propertyEditor. In addition, each property editor must either support a custom editor, or support setAs-
Text.

Each PropertyEditor should have a null constructor.

Methods

• addPropertyChangeListener

public void
addPropertyChangeListener(PropertyChangeListener listener)

Register a listener for the PropertyChange event. When a PropertyEditor changes its value it should fire a Property-
Change event on all registered PropertyChangeListeners, specifying the null value for the property name and itself as
the source.

Parameters:
listener

An object to be invoked when a PropertyChange event is fired.

• getAsText

public String getAsText()

Returns:
The property value as a human editable string.

Returns null if the value can't be expressed as an editable string.

If a non-null value is returned, then the PropertyEditor should be prepared to parse that string back in setAs-
Text().

• getCustomEditor

public Component getCustomEditor()

A PropertyEditor may choose to make available a full custom Component that edits its property value. It is the
responsibility of the PropertyEditor to hook itself up to its editor Component itself and to report property value
changes by firing a PropertyChange event.

The higher-level code that calls getCustomEditor may either embed the Component in some larger property sheet, or
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it may put it in its own individual dialog, or ...

Returns:
A java.awt.Component that will allow a human to directly edit the current property value. May be null if this
is not supported.

• getJavaInitializationString

public String getJavaInitializationString()

This method is intended for use when generating Java code to set the value of the property. It should return a fragment
of Java code that can be used to initialize a variable with the current property value.

Example results are "2", "new Color(127,127,34)", "Color.orange", etc.

Returns:
A fragment of Java code representing an initializer for the current value.

• getTags

public String[] getTags()

If the property value must be one of a set of known tagged values, then this method should return an array of the tags.
This can be used to represent (for example) enum values. If a PropertyEditor supports tags, then it should support the
use of setAsText with a tag value as a way of setting the value and the use of getAsText to identify the current value.

Returns:
The tag values for this property. May be null if this property cannot be represented as a tagged value.

• getValue

public Object getValue()

Returns:
The value of the property. Primitive types such as "int" will be wrapped as the corresponding object type
such as "java.lang.Integer".

• isPaintable

public boolean isPaintable()

Returns:
True if the class will honor the paintValue method.

• paintValue

public void
paintValue(Graphics gfx, Rectangle box)

Paint a representation of the value into a given area of screen real estate. Note that the propertyEditor is responsible
for doing its own clipping so that it fits into the given rectangle.

If the PropertyEditor doesn't honor paint requests (see isPaintable) this method should be a silent noop.

The given Graphics object will have the default font, color, etc of the parent container. The PropertyEditor may
change graphics attributes such as font and color and doesn't need to restore the old values.

Parameters:
gfx

Graphics object to paint into.
box

Rectangle within graphics object into which we should paint.
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• removePropertyChangeListener

public void
removePropertyChangeListener(PropertyChangeListener listener)

Remove a listener for the PropertyChange event.

Parameters:
listener

The PropertyChange listener to be removed.

• setAsText

public void setAsText(String text)
        throws IllegalArgumentException

Set the property value by parsing a given String. May raise java.lang.IllegalArgumentException if either the String is
badly formatted or if this kind of property can't be expressed as text.

Parameters:
text

The string to be parsed.

• setValue

public void setValue(Object value)

Set (or change) the object that is to be edited. Primitive types such as "int" must be wrapped as the corresponding
object type such as "java.lang.Integer".

Parameters:
value

The new target object to be edited. Note that this object should not be modified by the PropertyEditor,
rather the PropertyEditor should create a new object to hold any modified value.

• supportsCustomEditor

public boolean supportsCustomEditor()

Returns:
True if the propertyEditor can provide a custom editor.
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Class PropertyEditorManager

public class java.beans. PropertyEditorManager
    extends java.lang. Object

The PropertyEditorManager can be used to locate a property editor for any given type name. This property editor
must support the java.beans.PropertyEditor interface for editing a given object.

The PropertyEditorManager uses three techniques for locating an editor for a given type. First, it provides a regis-
terEditor method to allow an editor to be specifically registered for a given type. Second it tries to locate a suitable
class by adding "Editor" to the full qualified classname of the given type (e.g. "foo.bah.FozEditor"). Finally it takes
the simple classname (without the package name) adds "Editor" to it and looks in a search-path of packages for a
matching class.

So for an input class foo.bah.Fred, the PropertyEditorManager would first look in its tables to see if an editor had
been registered for foo.bah.Fred and if so use that. Then it will look for a foo.bah.FredEditor class. Then it will look
for (say) standardEditorsPackage.FredEditor class.

Default PropertyEditors will be provided for the Java primitive types "boolean", "byte", "short", "int", "long", "float",
and "double"; and for the classes java.lang.String. java.awt.Color, and java.awt.Font.

Methods

• findEditor

public static PropertyEditor
findEditor(Class targetType)

Locate a value editor for a given target type.

Parameters:
targetType

The Class object for the type to be edited

Returns:
An editor object for the given target class. The result is null if no suitable editor can be found.

• getEditorSearchPath

public static String[] getEditorSearchPath()

Returns:
The array of package names that will be searched in order to find property editors.

• registerEditor

public static void
registerEditor(Class targetType, Class editorClass)

Register an editor class to be used to editor values of a given target class.

Parameters:
targetType

the Class object of the type to be edited
editorClass

the Class object of the editor class. If this is null, then any existing definition will be removed.
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• setEditorSearchPath

public static void
setEditorSearchPath(String path[])

Change the list of package names that will be used for finding property editors.

Parameters:
path

Array of package names.
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Class PropertyEditorSupport

public class java.beans. PropertyEditorSupport
    extends java.lang. Object
    implements java.beans. PropertyEditor

This is a support class to help build property editors.

It can be used either as a base class or as a delagatee.

Constructors

• PropertyEditorSupport

protected PropertyEditorSupport()

Constructor for use by derived PropertyEditor classes.

• PropertyEditorSupport

protected PropertyEditorSupport(Object source)

Constructor for use when a PropertyEditor is delegating to us.

Parameters:
source

The source to use for any events we fire.

Methods

• addPropertyChangeListener

public synchronized void
addPropertyChangeListener(PropertyChangeListener listener)

Register a listener for the PropertyChange event. The class will fire a PropertyChange value whenever the value is
updated.

Parameters:
listener

An object to be invoked when a PropertyChange event is fired.

• firePropertyChange

public void firePropertyChange()

Report that we have been modified to any interested listeners.

Parameters:
source

The PropertyEditor that caused the event.

• getAsText

public String getAsText()

Returns:
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The property value as a string suitable for presentation to a human to edit.

Returns "null" is the value can't be expressed as a string.

If a non-null value is returned, then the PropertyEditor should be prepared to parse that string back in setAs-
Text().

• getCustomEditor

public Component getCustomEditor()

A PropertyEditor may chose to make available a full custom Component that edits its property value. It is the respon-
sibility of the PropertyEditor to hook itself up to its editor Component itself and to report property value changes by
firing a PropertyChange event.

The higher-level code that calls getCustomEditor may either embed the Component in some larger property sheet, or
it may put it in its own individual dialog, or ...

Returns:
A java.awt.Component that will allow a human to directly edit the current property value. May be null if this
is not supported.

• getJavaInitializationString

public String getJavaInitializationString()

This method is intended for use when generating Java code to set the value of the property. It should return a fragment
of Java code that can be used to initialize a variable with the current property value.

Example results are "2", "new Color(127,127,34)", "Color.orange", etc.

Returns:
A fragment of Java code representing an initializer for the current value.

• getTags

public String[] getTags()

If the property value must be one of a set of known tagged values, then this method should return an array of the tag
values. This can be used to represent (for example) enum values. If a PropertyEditor supports tags, then it should sup-
port the use of setAsText with a tag value as a way of setting the value.

Returns:
The tag values for this property. May be null if this property cannot be represented as a tagged value.

• getValue

public Object getValue()

Returns:
The value of the property.

• isPaintable

public boolean isPaintable()

Returns:
True if the class will honor the paintValue method.

• paintValue

public void paintValue(Graphics gfx, Rectangle box)

Paint a representation of the value into a given area of screen real estate. Note that the propertyEditor is responsible
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for doing its own clipping so that it fits into the given rectangle.

If the PropertyEditor doesn't honor paint requests (see isPaintable) this method should be a silent noop.

Parameters:
gfx

Graphics object to paint into.
box

Rectangle within graphics object into which we should paint.

• removePropertyChangeListener

public synchronized void
removePropertyChangeListener(PropertyChangeListener listener)

Remove a listener for the PropertyChange event.

Parameters:
listener

The PropertyChange listener to be removed.

• setAsText

public void setAsText(String text)
        throws IllegalArgumentException

Set the property value by parsing a given String. May raise java.lang.IllegalArgumentException if either the String is
badly formatted or if this kind of property can't be expressed as text.

Parameters:
text

The string to be parsed.

• setValue

public void setValue(Object value)

Set (or change) the object that is to be edited.

Parameters:
value

The new target object to be edited. Note that this object should not be modified by the PropertyEditor,
rather the PropertyEditor should create a new object to hold any modified value.

• supportsCustomEditor

public boolean supportsCustomEditor()

Returns:
True if the propertyEditor can provide a custom editor.
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10 Miscellaneous

10.1  java.beans.Beans

The java.beans.Beans class provides a few miscellaneous beans control methods.

The isDesignTime and isGuiAvailable methods allow a bean to test its environment so as to
tailor its behaviour.

10.2  java.beans.Visibility

Some beans may be run in both client GUI application and in “invisible” server applications.
The java.beans.Visibility interface lets a container instruct a bean if it is in a server only envi-
ronment.

This interface need only be supported by those beans that want to provide different behaviour
in a server environment.

10.3  Instantiating a bean

A bean can be delivered as either a serialized template (which must be deserialized to create an
instance of the bean) or as an implementation class (where a bean instance is created simply by
creating an instance of the class).

If a programmer is certain that a bean is being delivered simply a class, then they can create an
instance of the bean by doing a “new”:

JellyBean fred = new JellyBean();

However we also provide a utility method “Beans.instantiate” that can be used to allocate a
bean that can be either a class or a serialized template. Beans.instantiate will check whether a
given name represents either a serialized template or a class. If it represents a serialized tem-
plate, then Beans.instantiate will handle the mechanics of reading in the serialized form in a
given ClassLoader context.

For example, in the following sample code, if the target ClassLoader has a serialized template
file “acme.widgets.PurpleMutantWombat.ser” then Beans.instantiate will read in a bean from
that template, otherwise it will look for a class “acme.widgets.PurpleMutantWombat”.

ClassLoader cl = this.getClass().getClassLoader();
MutantWombat w = (MutantWombat) Beans.instantiate(cl,

“acme.widgets.PurpleMutantWombat”);

Beans.instantiate also checks whether the newly created bean is an Applet and if so provides it
with a default Applet context.

In general, we recommend (but do not require) that programers use Beans.instantiate when cre-
ating beans, as it provides some isolation from how the bean is implemented and initialized.

If implementors chose to bypass Beans.instantiate then they must take care to emulate its func-
tionality. For example, by providing applet contexts for beans that are applets.
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10.4 Obtaining different type views of a Java Bean

In Beans 1.0 each bean is represented by a single Java object. However in future versions of
Java Beans we may wish to add support for more complex beans, where a set of Java objects
cooperate to provide a set of differently typed views that are all part of one bean. (See Section
2.10)

Therefore when an application program wishes to determine if a Java Bean supports a target
interface or if it wishes to cast a Java Bean to a target interface, we require that the Beans.in-
stanceOf and Beans.getInstanceOf methods are used. These methods are initially implemented
in Beans 1.0 simply in terms of the Java “instanceof” operator, but as we evolve the Java Beans
APIs this may change. So developers should use these methods now to allow their application
code to work with future extensions.

So a typical sequence for attempting to assess if a bean supports a particular API might be:

DataseBaseAccessor x = getDBAccessor();
java.awt.Component y = null;
if (Beans.isInstanceOf(x, java.awt.Component.class)) {

y = (java.awt.Component) Beans.getInstanceOf(x,
java.awt.Component.class);

}
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Class Beans

public class java.beans. Beans
    extends java.lang. Object

This class provides some general purpose beans control methods.

Methods

• getInstanceOf

public static Object
getInstanceOf(Object bean, Class targetType)

From a given bean, obtain an object representing a specified type view of that source object.

The result may be the same object or a different object. If the requested target view isn't available then the given bean
is returned.

This method is provided in Beans 1.0 as a hook to allow the addition of more flexible bean behaviour in the future.

Parameters:
obj

Object from which we want to obtain a view.
targetType

The type of view we'd like to get.

• instantiate

public static Object
instantiate(ClassLoader cls, String beanName)

        throws IOException, ClassNotFoundException

Instantiate a bean.

The bean is created based on a name relative to a class-loader. This name should be a dot-separated name such as
"a.b.c".

In Beans 1.0 the given name can indicate either a serialized object or a class. Other mechanisms may be added in the
future. In beans 1.0 we first try to treat the beanName as a serialized object name then as a class name.

When using the beanName as a serialized object name we convert the given beanName to a resource pathname and
add a trailing ".ser" suffix. We then try to load a serialized object from that resource.

For example, given a beanName of "x.y", Beans.instantiate would first try to read a serialized object from the
resource "x/y.ser" and if that failed it would try to load the class "x.y" and create an instance of that class.

If the bean is a subtype of java.applet.Applet, then it is given some special initialization. First, it is supplied with a
default AppletStub and AppletContext. Second, if it was instantiated from a classname the applet's "init" method is
called. (If the bean was deserialized this step is skipped.)

Note that for beans which are applets, it is the caller's responsiblity to call "start" on the applet. For correct behaviour,
this should be done after the applet has been added into a visible AWT container.

Note that applets created via beans.instantiate run in a slightly different environment than applets running inside
browsers. In particular, bean applets have no access to "parameters", so they may wish to provide property get/set
methods to set parameter values. We advise bean-applet developers to test their bean-applets against both the JDK
appletviewer (for a reference browser environment) and the BDK BeanBox (for a reference bean container).



JavaBeans

Sun Microsystems 99 7/24/97

Parameters:
classLoader

the class-loader from which we should create the bean. If this is null, then the system class-loader is
used.

beanName
the name of the bean within the class-loader. For example "sun.beanbox.foobah"

Throws: ClassNotFoundException
if the class of a serialized object could not be found.

Throws: IOException
if an I/O error occurs.

• isDesignTime

public static boolean isDesignTime()

Test if we are in design-mode.

Returns:
True if we are running in an application construction environment.

• isGuiAvailable

public static boolean isGuiAvailable()

Returns:
True if we are running in an environment where beans can assume that an interactive GUI is available, so
they can pop up dialog boxes, etc. This will normally return true in a windowing environment, and will nor-
mally return false in a server environment or if an application is running as part of a batch job.

• isInstanceOf

public static boolean
isInstanceOf(Object bean, Class targetType)

Check if a bean can be viewed as a given target type. The result will be true if the Beans.getInstanceof method can be
used on the given bean to obtain an object that represents the specified targetType type view.

Parameters:
bean

Bean from which we want to obtain a view.
targetType

The type of view we'd like to get.

Returns:
"true" if the given bean supports the given targetType.

• setDesignTime

public static void
setDesignTime(boolean isDesignTime)

        throws SecurityException

Used to indicate whether of not we are running in an application builder environment. Note that this method is secu-
rity checked and is not available to (for example) untrusted applets.

Parameters:
isDesignTime

True if we're in an application builder tool.
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• setGuiAvailable

public static void
setGuiAvailable(boolean isGuiAvailable)

        throws SecurityException

Used to indicate whether of not we are running in an environment where GUI interaction is available. Note that this
method is security checked and is not available to (for example) untrusted applets.

Parameters:
isGuiAvailable

True if GUI interaction is available.
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Interface Visibility

public interface java.beans. Visibility

Under some circumstances a bean may be run on servers where a GUI is not available. This interface can be used to
query a bean to determine whether it absolutely needs a gui, and to advise the bean whether a GUI is available.

This interface is for expert developers, and is not needed for normal simple beans. To avoid confusing end-users we
avoid using getXXX setXXX design patterns for these methods.

Methods

• avoidingGui

public boolean avoidingGui()

Returns:
true if the bean is currently avoiding use of the Gui. e.g. due to a call on dontUseGui().

• dontUseGui

public void dontUseGui()

This method instructs the bean that it should not use the Gui.

• needsGui

public boolean needsGui()

Returns:
True if the bean absolutely needs a GUI available in order to get its work done.

• okToUseGui

public void okToUseGui()

This method instructs the bean that it is OK to use the Gui.
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11 Packaging

11.1  Goals and Non Goals

This chapter specifies the format and conventions needed so that a packaged Java Bean can be
used by tools and applications.

The Java Beans specification doesnot prescribe a format to be used by an application to store
the Java Beans it uses. In particular, for the special but very important case of an application
builder, the Java Beans specification doesnot prescribe a format for projects,nor does it pre-
scribe a format for the delivery of built applications. So for example, although beans are ini-
tially delivered as JAR files, they may be arbitrarily repackaged when they are built into an
application.

11.2  Overview of JAR files

Java Beans are packaged and delivered in JAR files, which are a new technology supported in
JDK1.1. JAR files are used to collect class files, serialized objects, images, help files and sim-
ilar resourcefiles

A JAR file is a ZIP format archive file that may optionally have amanifest file(see Section
11.5 below) with additional information describing the contents of the JAR file. All JAR files
containing beans must have a manifest describing the beans. A single JAR file may contain
more than one Java Bean; this simplifies packaging and allows for sharing of classes and re-
source files at packaging time.

Classes in a JAR file may be signed; this may grant additional privileges to them (class signing
uses information that is also stored in the manifest file).

11.3  Content

A JavaBeans JAR file contains a number of entries defining one or more packaged JavaBeans.
By convention, JAR file entries are given slash-separated names such as “a/b/c”.

Each JavaBeans JAR may include entries defining:

1. A set of class files to provide behavior for a Java Bean. These entries must have names
ending in “.class”. E.g. “foo/bah/Aardvark.class”.

2. Optionally, a serialized prototype of a bean to be used to initialize the bean. These
entries must have names ending in “.ser”. E.g. “foo/elk.ser”.

3. Optional help files in HTML format to provide documentation for the Java Bean. If the
Java Bean is localized, there might be multiple versions of this documentation, one per
locale. These entries must have names of the form<locale>/.../<tail>.html .

4. Optional internationalization information to be used by the bean to localize itself.

5. Otherresource files needed by the Java Bean (like images, sound, video, whatever).
This is open-ended.
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11.4  Names of Beans

The name of a bean is a string comprising a “.” separated sequence of names.

Beans that are simply instantiated from classes have the same name as the corresponding class.
These are mapped to JAR entries by replacing each “.”with “/” and adding “.class” at the end.
So a class “x.y.z” will be read from the JAR entry “x/y/z.class”.

Beans that are based on serialized prototypes also have “.” separated names similar to class
names. These are mapped to JAR entries by replacing each “.”with “/” and adding “.ser” at the
end. So a serialized bean “a.b.c” will be read from the JAR entry “a/b/c.ser”.

Bean names, like class names, must be unique within a given class loader. To avoid naming
collisions, bean developers should follow the standard Java de facto naming convention for
classes, where the top-level package name is a company name.

A JAR file that contains beans must have a manifest file (see next section) which will indicate
which of the entries in the JAR archive represent beans. For an entry ending in “.class” this
means that the corresponding class is a bean, for an entry ending in “.ser” this indicates that the
entry holds a serialized bean.

11.5  Format of Manifest File

As part of the JAR file format, a JAR archive may include amanifest file to describe its con-
tents. (See the Manifest File specification for a full description.)

The manifest file must be named “META-INF/MANIFEST.MF”.

The manifest file in a JAR archive provides information on selected parts of the contents of the
archive. It is a sequence ofsections separated by empty lines. Each section contains one or
moreheaders, (so named because they conform to the RFC822 standard) each of the form
<tag>: <value>. The sections that provide information on files in the archive must have a
header whose<tag> is Name, and whose<value> is the relative name of the file being de-
scribed.

Note that in JDK1.1 manifest entry names must use forward slashes “/” and will not be processed cor-
rectly if they use backslashes “\”.

A manifest file can include information describing what beans are in the JAR archive. If a file
in the JAR archive is a Bean, its corresponding section must contain a header whose<tag> is
Java-Bean, and whose<value> is True (case is not important).

For example, two relevant sections of a manifest file might be:

Name: wessex/wonder/bean.class
Java-Bean: True

Name: wessex/quaint/bean.ser
Java-Bean: True
Depends-On: wessex/wonder/bean.class
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The JDK 1.1 “jar” command can be used to create a JAR file. For example, the following com-
mand will create a JAR file fred.jar including the files foo.class and bah.class with a manifest
that is initialized from manifest.tmp:

jar cfm fred.jar manifest.tmp foo.class bah.class

11.6 Manifest headers used with JavaBeans

Three manifest header tags are defined for use with JavaBeans: “Java-Bean”, “Depends-On”,
and “Design-Time-Only”.

11.6.1 Java-Bean

The header tag “Java-Bean” is used to identify JAR entries that represent JavaBeans.

Each bean in a JAR file must be identified by a Manifest entry with a header line whose tag is
“Java-Bean” and whose value is “True” (case is not important).

So for example the following manifest defines two beans, the first of which is in the file “wes-
sex/bean.class” and is therefore a class for a bean called “wessex.bean” and the second of
which is in the file “wessex/leaf.ser” and which is therefore a serialized prototype for a bean
called “wessex.leaf”.

Name: wessex/bean.class
Java-Bean: True

Name: wessex/leaf.ser
Java-Bean: True

11.6.2 Depends-On

The manifest section for a JAR entry can optionally specify other JAR entries which it depends
on using the “Depends-On” tag.

The “Depends-On” tag should be followed by a list of space separated JAR entry names. A giv-
en “Depends-On” line can specify zero, one, or many dependencies. A given manifest section
can contain zero, one, or many “Depends-On” lines.

If a JAR entry’s manifest section contains no “Depends-On” lines, then its dependencies are
unknown.

If a bean’s manifest section contains one or more “Depends-On” lines, then these should col-
lectively define the complete list of JAR entries that this bean depends on. If the list is empty
then there are no dependencies.

Note that a JAR entry that supports “Depends-On” must explicitly specifyall of its dependencies. It
does not inherit any indirect dependencies from other JAR entries it depends on.

For example, the following manifest defines:

• a bean a.b whose dependencies are unknown

• a bean x.y which depends on x/a.gif, x/b.gif, and the class mammal.Wombat

• a bean TinyBean which has no dependencies
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The manifest also references several JAR entries (x/a.gif, x/b.gif and mammal.Wombat) which
don’t have manifest entries. Since these don’t have “Depends-On” lines, their dependencies are
unknown.

Name: a/b.ser
Java-Bean: True

Name: x/y.class
Java-Bean: True
Depends-On: x/a.gif x/b.gif
Depends-On: mammal/Wombat.class

Name: TinyBean.class
Java-Bean: true
Depends-On:

11.6.3 Design-Time-Only

The manifest section for a JAR entry can optionally use the “Design-Time-Only” tag to specify
whether the given entry is only needed at design time. This means that builder tools may choose
to exclude the given entry when they are packaging up a bean as part of a constructed applica-
tion.

The “Design-Time-Only” tag should be followed by a value of either “True” or “False”.

So for example, the following manifest defines a bean argle.Bargle and says that the JAR entry
argle/BargleBeanInfo.class is only needed at design time.

Name: argle/Bargle.class
Java-Bean: True

Name argle/BargleBeanInfo.class
Design-Time-Only: True

Note that under some circumstances tools may wish to pass through some “design time” infor-
mation. For example, if a tool has merely been used to customize a bean, then it may output a
new bean that includes all of the design-time information from the original bean. Similarly, if
a tool is generating beans that it expects to be separately visible and manipulable at run-time
then it may include the design time information from the original beans.

11.7  Accessing Resource Files

Java code occasionally needs to access some information stored in a file. Some examples are
images, audio files, text messages, as well as serialized objects.

JDK1.1 provides a basic mechanism to specify aresource used by a class in a way that is in-
dependent of where the class actually resides (e.g. in a local disk file or through an http based
ClassLoader). Access to persistent representations of Beans (Section 11.8) uses this basic
mechanism, as do the I18N facilities in JDK1.1.

A typical use could be:
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Class c = Class.forName(“foo.bah.XyzComponent”);
InputStream x = c.getResourceAsStream(”/foo/bah/MyRedStuff.txt”);

See the section onresources andInternationalizationin JDK1.1 for more details.

11.8  Persistence representation

A JAR file may contain serialized prototypes of Java Beans. Not all Java Beans need to have a
prototype. Those that do will use the Java Object Serialization mechanism (see Chapter 5).

The prototypes are stored and restored by a simple use of thejava.io.ObjectInputStream and
java.io.ObjectOutputStream. Thus, to serialize

java.io.OutputStream out = ... // the stream where to serialize
java.io.ObjectOutputStream s = new java.io.ObjectOutputStream(out);
s.writeObject(myComponent);

Deserialization is a little more complex. We will normally want to deserialize a serialized bean
in the context of a specific class-loader. So we have to first locate a class that we can use to
identify the source class-loader, and then use Beans.instantiate to instantiate a named bean at
that class-loader.

ClassLoader cl = Class.forName(“foo.bah.Xyz”).getClassLoader();
MyStuff x = (MyStuff) Beans.instantiate(cl,”foo.bah.MyRedStuff”);

When an object is deserialized from a stream using Beans.instantiate we will use the specified
class-loader as a source for .class files to satisfy any class dependencies.

See the documentation on Serialization and on Beans.instantiate for more details.

11.9  Help Documentation

Documentation is described as a collection of HTML entries. These entries should be in HTML
2.0 format. An application using Java Beans may choose to translate the contents of these en-
tries into whatever format it chooses before presenting it to the user.

For each bean the optional top-level help documentation can in<locale>/<bean-name>.html.
(If the documentation is only available for a single locale, the initial<locale>/ may be omit-
ted.)

Cross references to other information can be presented as hyperlinks, either as relative URLs
to other html files in the same JAR file, or as absolute URLs that lead back to the vendor’s web
site.
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Appendix A: Transitional Beans under JDK 1.0.2

A.1  Goals.

Some of the features of the full 1.0 Java Beans architecture rely on new Java core interfaces
such as reflection and serialization that are being added in the JDK 1.1.

However in order to allow the early development and deployment of beans we want to allow
developers to produce beans that can run under JDK 1.0.2, but which are also fully compatible
with the final beans architecture.

To enable this, we are defining a set of rules for “transitional” Beans, which are fully compliant
with the 1.0 Java Beans architecture, but which can be used to build applets and applications
that can run on JDK 1.0.2 and on JDK 1.0.2 enabled systems such as Netscape Navigator 3.0
and Internet Explorer 3.0.

These transitional beans will necessarily only use a subset of the full bean model. However this
subset includes the basic property/method/event mechanisms, so that a transitional bean is still
very useful within a JDK 1.0.2 environment.

These transitional beans are primarily intended for use with leading edge application builder
tools.

A.2  Marker classes

In several places the Java Beans APIs use particular classes or interfaces as “markers” to de-
termine that a given class is intended to perform a given role. For example, an event listener
class must implement the java.util.EventListener interface.

We would like transitional Beans to use markers for events and serialization, so that these
markers can be recognized correctly when the transitional beans are used in full JDK 1.1 envi-
ronments. We require that transitional beans should use three transitional marker classes
(sunw.util.EventObject, sunw.util.EventListener, sunw.io.Serializable) as needed as markers.

The fine print explains why.

We could simply make available the appropriate JDK 1.1 marker classes to developers for use with JDK
1.0.2. However these marker classes are all in the java.* part of the namespace and many existing
browsers are reluctant to allow downloading of java.* classes.

To solve this problem, JavaSoft is making available three interim marker classes (sunw.util.EventOb-
ject, sunw.util.EventListener and sunw.io.Serializable) that can be downloaded over the net into JDK
1.0.2 browsers. These classes will be mostly noops under 1.0.2, but as part of JDK 1.1 JavaSoft will
distribute replacement versions of these classes that correctly inherit from the real marker classes.

Thus a transitional bean might inherit from sun.io.Serializable to indicate that it is compatible with the
JDK 1.1 serialization mechanism. When this bean is downloaded into a JDK 1.0.2 system then the JDK
1.0.2 version of sunw.io.Serializable (which is basically an empty interface) can be downloaded as part
of the bean. This will allow the bean to run happily on JDK 1.0.2. However when the same bean is run
on a JDK 1.1 system then the class loader will use the JDK 1.1 version of sunw.io.serializable which
inherits from java.io.Serializable. When the serialization code comes to examine the bean it will find
that (by transitive closure) the bean inherits from java.io.Serializable. This will allow the bean to be se-
rialized on JDK 1.1
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A.3  Rules for a transitional bean developer

In order for a transitional bean to also be usable correctly in a full JDK 1.1 application builder,
a bean developer must follow these rules:

• The bean should be delivered in a bean JAR file.

• The bean should use the getFoo/setFoo patterns (see Section 8.3) for properties.

• All of the bean’s persistent state must be accessible via getFoo/setFoo properties. This
allows application builder tools to save and restore the beans state using the property
accessor methods. The one exception to this rule is that the bean can ignore state in
java.awt base classes.

• Any events the bean fires should use the new AWT event model and should use the
sunw.util.EventObject and sunw.util.EventListener interfaces to mark events and event
listeners. However in interacting with AWT, the bean must of necessity use the old
AWT event model to catch AWT events.

• If the bean is prepared in the future to use automatic serialization then it must inherit
from the sunw.io.Serializable marker interface.

• The bean can’t rely on any new 1.1 interfaces.

A.4  Application builder responsibilities

To be able to use transitional beans to create JDK 1.0.2 conformant applets and applications,
an application builder tool must:

• Read in a bean from a JAR file.

• It must use its own reflection code to identify properties, events, and public methods,
following the rules defined in Section 8.

• Rather than using automatic serialization to store away a bean’s state it must use the
getXXX methods to read its state and generate some code to call setXXX methods to
revive the bean. If the bean inherits from a JDK 1.0.2 java.awt.* component class, then
it must generate code to restore the appropriate AWT state.

A.5  Example of a transitional bean

The following three classes define a transitional bean that (a) supports a pair of property acces-
sor methods for getting and setting a simple boolean property called “debug” and (b) fires a
beans style event.

Because it inherits from java.awt.Button, it will also automatically get the “label”, foreground”,
“background” and “font” properties that can be inferred from the various methods it inherits.
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// This class describes the event that gets generated when
// OurButton gets pushed.

public class ButtonPushEvent extends sunw.util.EventObject {
public ButtonPushEvent(java.awt.Component source) {

super(source);
}

}

// This interface describes the method that gets called when
// an OurButton gets pushed.

public interface ButtonPushListener extends sunw.util.EventListener {
public void push(ButtonPushEvent e);

}

// The OurButton class is a very minimal bean that simply extends the
// standard JDK 1.0.2 Button class to throw a bean event.

public class OurButton extends java.awt.Button implements
sunw.io.Serializable {

private boolean dbg;
private Vector listeners = new Vector();

public OurButton() {
this(“press”);

}

public OurButton(String label) {
super(label);

}

// Register an Event Listener.
public synchronized void
addButtonPushListener(ButtonPushListener bl) {

listeners.addElement(bl);
}

// Remove an Event Listener.
public synchronized void
removeButtonPushListener(ButtonPushListener bl) {

listeners.removeElement(bl);
}
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// Catch an old style AWT event and fire it as a new style event.

public boolean handleEvent(Event evt) {
if (evt.id == Event.ACTION_EVENT) {

// Notify each our our listeners.
Vector l;
ButtonPushEvent e = new ButtonPushEvent(this);
synchronized(this) {

l = (Vector) listeners.clone();
}

for (int i = 0; i < l.size(); i++) {
ButtonPushListener bl =

(ButtonPushListener)l.elementAt(i);
bl.push(e);

}

}
return super.handleEvent(evt);

}

public boolean isDebug() { return dbg; }
public void setDebug(boolean x) { dbg = x; }

}
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Appendix B: Future directions

Java Beans 1.0 specifies a complete set of core functionality required for a component archi-
tecture including support for properties, events, methods, and persistence. However JavaSoft
is also planning to develop some additional APIs to supplement this core functionality.

See our web site at http://java.sun.com/beans for the latest information on future directions for
JavaBeans and for review drafts of the various specifications as they emerge.

B.1 Glasgow

The “Glasgow” release will be the first update to the JavaBeans APIs.

It is currently planned to ship in the second half of 1997 and is expected to include:

• Support for aggregating several objects to make a bean, based on the
Beans.isInstanceOf and Beans.getInstanceOf APIs provided in Beans 1.0

• Support for bean contexts. This provides a containment hierarchy for JavaBeans and
provides ways for beans to find context-specific information such as design-mode
versus run-mode.

• Support for using beans as MIME viewers. This includes the ability for a bean to act as
a viewer for a given kind of MIME typed data.

• Drag and drop support.

B.2 Edinburgh

The “Edinburgh” release will add further functionality after Glasgow.

We’re still investigating features for Edinburgh, but it is likely to include:

• Support for toolbar and menubar merging

• An online component help system

We’re also investigating whether or not we ought to provide some support for structured stor-
age. However we haven’t yet reached a conclusion on this.

B.3 InfoBus

JavaSoft is working with Lotus Development Corp to turn Lotus’s InfoBus technology ino a
Java standard. This will probably be made available sometime between the Glasgow and Ed-
inburgh Beans releases.

Infobus provides a dynamic data transfer mechanism between beans that allows beans to ex-
change and display structured data. For example a spreadsheet bean to publish rows and col-
umns that can then be graphed by a charting bean. Or a database viewer bean can publish
database rows for display and analysis by other beans.
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Appendix C: Change History

For changes between Version 1.00-A (December 1996) and 1.01 there are change bars on the
text, but not on the javadoc API definitions as these are mechanically generated.

C.1  Changes between 1.00 (October ‘96) and 1.00-A (December ‘96).

Since the release of the initial JavaBeans 1.0 text in October we’ve made some minor tweaks
to add in some small pieces of missing functionality (notably icons), to tighten up some defi-
nitions (particularly around manifest files and bound properties), and to fix one potential source
of errors (the use of class name strings). Added BeanInfo.getIcon method and 4 static constants
for different icons. This allows BeanInfo classes to specify icons to represent their bean in tool-
bars and toolboxes.

• Added support in EventSetDescriptor for MethodDescriptor objects (in addition to
Method objects) for listener methods. There is a new EventSetDescriptor constructor
taking MethodDescriptor objects as an alternative to Method objects, and you can use
getListenerMethodsDescriptors to retrieve MethodDescriptors instead of Methods.
This allows BeanInfo classes to provide more detailed information about event listener
methods.

• In the various Descriptor methods replaced the use of class name strings with Class
objects. This reflects the fact that in Java class name strings are actually context
sensitive, so that a class name that makes sense in one piece of code (with one class
loader) may be inaccessible to another piece of code that uses a different class loader.
Therefore it is better to use Class objects as these have global scope. A new feature in
JDK 1.1 “class literals” makes it easier to reference Class objects for specific classes.

• Clarified that property accessor methods may throw checked exceptions (Section 7.3)

• Specified that the JAR manifest file must be called META-INF/MANIFEST.MF
(Section 11.5).

• Several minor changes to tighten up the specification of bound and constrained
properties:

- Updated Section 7.4.1 to specify that propertyChange events should be fired
after the property change has been applied

- Updated Section 7.4.2 to specify that vetoableChange events should be fired
before the property change has been applied.

- Updated Section 7.4.3 to specify that for properties that are both bound and
constrained you should fire a VetoableChangeListener.vetoableChange event
before updating the property and a PropertyChangeListener.propertyChange
event after updating the property.

- Added Section 7.4.4 advising that updates to bound and constrained properties
should not fire events if they are simply setting a value that is the same as the
current value.
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C.2 Changes between 1.00-A and 1.01 to reflect the final JDK 1.1 APIs

• Stated that Beans.instantiate takes a dot separated name that can name either a class or
a serialized form.

• Added applet support to Beans.instantiate, so that an applet that is a bean will be given
a default AppletContext and AppletStub

• In Section 6 added specification of TooManyListenersException (this had been omitted
by accident).

• In Section 9 added specification of PropertyEditorSupport (this had been omitted by
accident).

C.3 Additional updates between 1.00-A and 1.01

• Updated Appendix B “Future Directions” to reflect our current plans.

• Changed example scenarios (Section 3) to use Beans.instantiate

• Clarified in Section 11.6.1 that a JAR file containing beans must have a Manifest
identifying the beans.

• In Section 11.5 emphasized that in JDK1.1 names within manifests must use forward
slashes “/”.

• In Section 7.4.3 explained how a “two phase” mechanism can be used to accurately
monitor the state of a bound and constrained property.

• In PropertyEditor clarified that the paintValue method can change the graphics context
and needn’t restore the old state.

• Defined two new Manifest tags for use with JavaBeans: “Depends-On” (Section 11.6.2)
and “Design-Time-Only” (Section 11.6.3).

• Added Section 5.4 “Persistence through generated initialization code” documentng
how a bean can be resurrected using generated source code.

• By popular demand, added an explicit statement that beans are not required to inherit
from any standard base class or interface. (Section 2.1).

• Added an exhortation to support the PropertyEditor.getJavaInitializationString method
in PropertyEditors (Section 9.2.5)

• By popular demand, defined a new convention so that a bean can allow registration of
PropertyChangeListeners or VetoableChangeListeners for named properties (Section
7.4.5).



JavaBeans Index of Classes and Interfaces

Sun Microsystems 114 7/24/97

BeanDescriptor . . . . . . . . . . . . . . . . .  59

BeanInfo . . . . . . . . . . . . . . . . . . . . . .  60

Beans. . . . . . . . . . . . . . . . . . . . . . . . .  98

Customizer  . . . . . . . . . . . . . . . . . . . .  87

EventListener  . . . . . . . . . . . . . . . . . .  37

EventObject. . . . . . . . . . . . . . . . . . . .  38

EventSetDescriptor . . . . . . . . . . . . . .  63

FeatureDescriptor . . . . . . . . . . . . . . .  67

IndexedPropertyDescriptor . . . . . . . .  70

IntrospectionException . . . . . . . . . . .  73

Introspector . . . . . . . . . . . . . . . . . . . .  74

MethodDescriptor . . . . . . . . . . . . . . .  76

ParameterDescriptor . . . . . . . . . . . . .  77

PropertyChangeEvent . . . . . . . . . . . .  46

PropertyChangeListener . . . . . . . . . .  48

PropertyChangeSupport . . . . . . . . . .  49

PropertyDescriptor . . . . . . . . . . . . . .  78

PropertyEditor. . . . . . . . . . . . . . . . . .  88

PropertyEditorManager. . . . . . . . . . .  91

PropertyEditorSupport  . . . . . . . . . . .  93

PropertyVetoException. . . . . . . . . . .  50

SimpleBeanInfo  . . . . . . . . . . . . . . . .  81

TooManyListenersException . . . . . .  39

VetoableChangeListener. . . . . . . . . .  51

VetoableChangeSupport . . . . . . . . . .  52

Visibility . . . . . . . . . . . . . . . . . . . . . .  101

Index of Classes and Interfaces


