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Digital VLSI circuits are usually classi�ed into synchronous and asynchronous circuits�

Synchronous circuits are generally controlled by global synchronization signals provided by

a clock� Asynchronous circuits� on the other hand� do not use such global synchroniza�

tion signals� Between these extremes there are various hybrids� Digital circuits in today�s

commercial products are almost exclusively synchronous� Despite this big di�erence in pop�

ularity� there are a number of reasons why asynchronous circuits are of interest�

In this article� we present a brief overview of asynchronous circuits� First we address some

of the motivations for designing asynchronous circuits� Then� we discuss di�erent classes of

asynchronous circuits and brie�y explain some asynchronous design methodologies� Finally�

we present a typical asynchronous design in detail�

� Motivations for Asynchronous Circuits

Throughout the years researchers have had various reasons for studying and building asyn�

chronous circuits� Some of the often mentioned advantages of asynchronous circuits are

speed� low energy dissipation� modular design� immunity to metastable behavior� freedom

from clock skew� and low generation of and low susceptibility to electromagnetic interfer�

ence� We elaborate here on some of these potentials and indicate when they have been

demonstrated through comparative case studies�
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��� Speed

Speed has always been a motivation for designing asynchronous circuits� The main reasoning

behind this advantage is that synchronous circuits exhibit worst�case behavior� whereas

asynchronous circuits exhibit average�case behavior� The speed of a synchronous circuit is

governed by its clock frequency� The clock period should be large enough to accommodate

the worst�case propagation delay in the critical path of the circuit� the maximum clock skew�

and a safety factor due to �uctuations in the chip fabrication process� operating temperature�

and supply voltage� Thus� synchronous circuits exhibit worst�case performance� This worst�

case behavior is dictated by the global clock and� in spite of the fact that the worst�case

propagation in many circuits� particularly arithmetic units� is improbable and may be much

longer than the average�case propagation�

Many asynchronous circuits are controlled by local communications and are based on the

principle of initiating a computation� waiting for its completion� and then initiating the next

one� When a computation is completed early� the next computation can start early� For this

reason� the speed of asynchronous circuits equipped with completion�detection mechanisms

depend on the computation time of the data being processed� not the worst�case timing�

Accordingly� such asynchronous circuits exhibit average�case performance� An example of

an asynchronous circuit where the average�case potential is nicely exploited is reported in ��	�

an asynchronous divider that is twice as fast as its synchronous counterpart� Nevertheless�

to date� there are few concrete examples demonstrating that the average�case performance

of asynchronous circuits is higher than that of synchronous circuits performing similar func�

tions� The reason is that the average�case performance advantage is often counterbalanced

by the overhead in control circuitry and completion�detection mechanisms�

Besides demonstrating the average�case potential� there are case studies in which the

speed of an asynchronous design is compared to the speed of a corresponding synchronous

version� Molnar et al� report a case study of an asynchronous FIFO that is every bit as fast as

any synchronous FIFO using the same data latches �
	� Furthermore� the asynchronous FIFO

has the additional bene�ts that it operates under local control and is easily expandable� At

the end of this article we give an example of a FIFO with a slightly di�erent control circuit�

��� Immunity to Metastable Behavior

Any circuit with a number of stable states also has metastable states� When such a cir�

cuit gets into a metastable state� it can remain there for an inde�nite period of time before






resolving into a stable state ����	� Metastable behavior occurs� for example� in circuit prim�

itives that realize mutual exclusion between processes� called arbiters� and components that

synchronize independent signals of a system� called synchronizers� Although the probabil�

ity that metastable behavior lasts longer than period t decreases exponentially with t� it

is possible that metastable behavior in a synchronous circuit lasts longer than one clock

period� Consequently� when metastable behavior occurs in a synchronous circuit� erroneous

data may be sampled at the the computation time of the clock pulses� An asynchronous

circuit deals gracefully with metastable behavior by simply delaying the computation until

the metastable behavior has disappeared and the element has resolved into a stable state�

��� Modularity

Modularity in design is an advantage exploited by many asynchronous design styles� The

basic idea is that an asynchronous system is composed of functional modules communi�

cating along well�de�ned interfaces� Composing asynchronous systems is simply a matter

of connecting the proper modules with matching interfacial speci�cations� The interfacial

speci�cations describe only the sequences of events that can take place and do not specify

any restrictions on the timing of these events� This characteristic reduces the design time

and complexity of an asynchronous circuit� because the designer does not have to worry

about the delays incurred in individual modules or the delays inserted by connection wires�

Designers of synchronous circuits� on the other hand� often pay considerable attention to

satisfying the detailed interfacial timing speci�cations�

Besides ease of composability� modular design also has the potential for better technology

migration� ease of incremental improvement� and reuse of modules �	� Here the idea is

that an asynchronous system adapts itself more easily to the advances in technology� The

obsolete parts of an asynchronous system can be replaced with new parts to improve system

performance� Synchronous systems cannot take advantage of new parts as easily� because

they must be operated with the old clock frequency or other modules must be redesigned to

operate at the new clock frequency�

One of the earliest projects that exploited modularity in designing asynchronous circuits

is the Macromodules project ��	� Another nice example where modular design has been

demonstrated is the TANGRAM compiler developed at Philips Research Laboratories ��	�
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��� Low Power

Due to rapid growth in the use of portable equipment and the trend in high�performance

processors towards unmanageable power dissipation� energy e�ciency has become crucial

in VLSI design� Asynchronous circuits are attractive for energy�e�cient designs� mainly

because of the elimination of the clock� In systems with a global clock� all of the latches and

registers operate and consume dynamic energy during each clock pulse� in spite of the fact

that many of those latches and registers might not have new data to store� There is no such

waste of energy in asynchronous circuits� because computations are initiated only when they

need to be done�

Two notable examples that demonstrated the potential of asynchronous circuits when in

energy�e�cient design are the work done at Philips Research Laboratories and at Manchester

University� The Philips group designed a fully asynchronous digital compact�cassette �DCC�

error detector which consumed ��� less energy than a similar synchronous version ��	� The

AMULET group at Manchester University successfully implemented an asynchronous version

of the ARM microprocessor� one of the most energy�e�cient synchronous microprocessors�

The asynchronous version achieved a power dissipation comparable to the fourth generation

of ARM� around �� mW ��	� in a similar technology�

Recently� power management techniques are being used in synchronous systems to turn

the clock on and o� conditionally� However� these techniques are only worthwhile imple�

menting at the level of functional units or higher� Besides� the components that monitor the

environment for switching the clock continue dissipating energy�

It is also worth mentioning that unlike synchronous circuits� most asynchronous circuits

do not waste energy on hazards� which are spurious changes in a signal� Asynchronous

circuits are essentially designed to be hazard�free� Hazards can be responsible for up to ���

of energy loss in synchronous circuits ���	�

��� Freedom from Clock Skew

Because asynchronous circuits generally do not have clocks� they do not have many of the

problems associated with clocks� One such problem is clock skew� the technical term for

the maximum di�erence in clock arrival time at di�erent parts of a circuit� In synchronous

circuits� it is crucial that all modules operating with a common clock receive this signal

simultaneously� that is� within a tolerable period of time� Minimizing clock skew is a di�cult

problem for large circuits� Various techniques have been proposed to control clock skew� but
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generally they are expensive in terms of silicon area and energy dissipation� For instance� the

clock distribution network of the DEC Alpha� a 
�� MHz microprocessor at a ��� V supply�

occupies ��� of the chip area and has a ��� share in the total chip power consumption ���	�

Although asynchronous circuits do not have the clock skew problem� they have their own

set of problems in minimizing the overhead needed for synchronization among the parts�

� Models and Methodologies

There are many models and methodologies for analyzing and designing asynchronous circuits�

Asynchronous circuits can be categorized by the following criteria� signaling protocol and

data encoding� underlying delay model� mode of operation� and formalism for specifying and

designing circuits� This section presents an informal explanation of these criteria�

��� Signaling Protocols and Data Encodings

Modules in an asynchronous circuit communicate data with some signaling protocol con�

sisting of request and acknowledgment signals� There are two common signaling protocols

for communicating data between a sender and a receiver� the four�phase and the two�phase

protocol� In addition to the signaling protocol� there are di�erent ways to encode data� The

most common encodings are single�rail and dual�rail encoding� We explain the two signaling

protocols �rst and then discuss the data encodings�

If the sender and receiver communicate through a two�phase signaling protocol� then each

communication cycle has two distinct phases� The �rst phase consists of a request initiated

by the sender� The second phase consists of an acknowledgment by the receiver� The request

and acknowledgment signals are often implemented by voltage transitions on separate wires�

No distinction is made between the directions of voltage transitions� Both rising and falling

transitions denote a signaling event�

The four�phase signaling protocol consists of four phases� a request followed by an ac�

knowledgment� followed by a second request� and �nally a second acknowledgment� If the

request and acknowledgment are implemented by voltage transitions� then at the end of

every four phases� the signaling wires return to the same voltage levels as at the start of the

four phases� Because the initial voltage is usually zero� this type of signaling is also called

return�to�zero signaling� Other names for two�phase and four�phase signaling are two�cycle

and four�cycle signaling� respectively� or transition and level signaling� respectively�





Both signaling protocols can be used with single and dual�rail data encodings� In single�

rail data encoding each bit is encoded with one wire� whereas in dual�rail encoding� each bit

is encoded with two wires�

In single�rail encoding� the value of the bit is represented by the voltage on the data

wire� When communicating n data bits with a single�rail encoding� during periods where

the data wires are guaranteed to remain stable� we say that the data are valid� During periods

where the data wires are possibly changing� we say the data are invalid� A two�phase or

four�phase signaling protocol is used to tell the receiver when data are valid or invalid � The

sender informs the receiver about the validity of the data through the request signal� and the

receiver� in turn� informs the sender of the receipt of the data through the acknowledgment

signal� Therefore� to communicate n bits of data� a total number of �n�
� wires are necessary

between the sender and the receiver� The connection pattern for single�rail encoding and

two or four�phase signaling is depicted in Figure ��a��
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Figure �� Two di�erent data communication schemes

Figure 
�a� shows the sequence of events in a two�phase signaling protocol� The events

include the times when the data become valid and invalid� The transparent bars indicate

the period when data are valid� during the other periods� data are invalid� Notice that a

request signal occurs only after data become valid� This is an important timing restriction

associated with these communication protocols� namely� the request signal that indicates

that data are valid should always arrive at the receiver after all data wires have attained

their proper value� The restriction is referred to as the bundling constraint� For this reason

the communication protocol is often called the bundled data protocol� Figure 
�b� shows a

sequence of events in a four�phase protocol and single�rail data encoding� Other sequences

are also applicable for the four�phase protocol�

The dual�rail encoding scheme uses two wires for every data bit� There are several dual�

rail encoding schemes� All combine the data encoding and signaling protocol� There is

no explicit request signal� and the dual�rail encoding schemes all require �
n � �� wires as
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Figure 
� Data transfer in two�phase signaling �a�� and four�phase signaling �b�

illustrated in Figure ��b�� In the case of four�phase signaling� there are several encodings

that can be used to transmit a data bit� The most common encoding has the following

meaning for the four states in which each pair of wires can be in� �� � reset� �� � valid ��

�� � valid �� and �� is an unused state� Every pair of wires has to go through the reset state

before becoming valid again� In the �rst phase of the four�phase signaling protocol� every

pair of wires leaves the reset state for a valid � or � state� The receiver detects the arrival of a

new set of valid data when all pairs of wires have left the reset state� This detection replaces

an explicit request signal� The second phase consists of an acknowledgment to inform the

sender that data has been consumed� The third phase consists of the reset of all pairs of

wires to the reset state� and the fourth phase is the reset of the acknowledgment�

In a two�phase signaling protocol� a di�erent dual�rail encoding is used� An example of

an encoding is as follows� Each pair of wires has one wire associated with a � and one wire

associated with a �� A transition on the wire associated with � represents the communication

of a �� whereas a transition on the other wire represents a communication of a �� Thus� a

transition on one wire of each pair signals the arrival of a new bit value� A transition on

both wires is not allowed� In the �rst phase of the two�phase signaling protocol� every pair of

wires communicates a � or a �� The second phase is an acknowledgment sent by the receiver�

Of all data encodings and signaling protocols� the most popular are the single�rail encod�

ing and four�phase signaling protocol� The main advantages of these protocols are the small

number of connection wires and the simplicity of the encoding� which allows using conven�

tional techniques for implementing data operations� The disadvantages of these protocols

are the bundling constraints that must be satis�ed and the extra energy and time wasted

in the additional two phases compared with two�phase signaling� Dual�rail data encodings

have been used to communicate data in asynchronous circuits free of any timing constraints�

Dual�rail encodings� however� are expensive in practice� because of the many interconnec�
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tion wires� the extra circuitry to detect completion of a transfer� and the di�culty in data

processing�

��� Delay Models

An important characteristic distinguishing di�erent asynchronous circuit styles is the delay

model on which they are based� For each circuit primitive� gate or wire� a delay model

stipulates the sort of delay it imposes and the range of the delays� Delay models are needed

to analyze all possible behavior of a circuit for various correctness conditions� like the absence

of hazards�

A circuit is composed of gates and interconnection wires� all of which impose delays on

the signals propagating through them� The delay models are categorized into two classes�

pure delay models and inertial delay models� In a pure delay model� the delay associated with

a circuit component produces only a time shift in the voltage transitions� In reality� a circuit

component may shift the signals and also �lter out pulses of small width� A delay model

which captures this fact is called an inertial delay model� Both classes of delay models can

have several ranges for the delay shifts� We distinguish the zero�delay� �xed�delay� bounded�

delay� and unbounded�delay models� In the zero�delay model� the values of the delays are

zero� In the �xed�delay model� the values of the delays are constant� whereas in the bounded�

delay model the values of the delays vary within a bounded range� The unbounded�delay

model does not impose any restriction on the value of the delays except that they cannot

be in�nite� Sometimes two di�erent delay models are assumed for the wires and the gates

in an asynchronous circuit� For example� the operation of a class of asynchronous circuits is

based on the zero�delay model for wires and the unbounded�delay model for gates� Formal

de�nitions of the various delay models are given in ��
	�

A concept closely related to the delay model of a circuit is its mode of operation� The

mode of operation characterizes the interaction between a circuit and its environment� Clas�

sical asynchronous circuits operate in the fundamental mode ������	� which assumes that the

environment changes only one input signal and waits until the circuit reaches a stable state�

Then the environment is allowed to apply the next change to one of the input signals� Many

modern asynchronous circuits operate in the input�output mode� In contrast to the funda�

mental mode� the input�output mode allows for input changes immediately after receiving

an appropriate response to a previous input change� even if the entire circuit has not yet

stabilized� The fundamental mode was introduced in the sixties to simplify the analysis and

design of gate circuits with Boolean algebra� The input�output mode evolved in the eighties
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from event�based formalisms to describe modular design methods that abstracted from the

internal operation of a circuit�

��� Formalisms

Just as in any other design discipline� designers of asynchronous circuits use various for�

malisms to master the complexities in the design and analysis of their artifacts� The for�

malisms used in asynchronous circuit design can be categorized into two classes� formalisms

based on Boolean algebra and formalisms based on sequences of events� Most design method�

ologies in asynchronous circuits use some mixture of both formalisms�

The design of many asynchronous circuits is based on Boolean algebra or its derivative

switching theory� Such circuits often use the fundamental mode of operation� the bounded�

delay model� and have� as primitive elements� gates that correspond to the basic logic func�

tions� like and� or� and inversion� These formalisms are convenient for implementing logic

functions� analyzing circuits for the presence of hazards� and synthesizing fundamental�mode

circuits ��
���	�

Event�based formalisms deal with sequences of events rather than binary logic variables�

Circuits designed with an event�based formalism operate in the input�output mode� un�

der an unbounded�delay model� and have� as primitive elements� the join� the toggle�

and the merge� for example� Event�based formalisms are particularly convenient for de�

signing asynchronous circuits when a high degree of concurrency is involved� Several tools

have been generated for the automatic veri�cation of asynchronous circuits with event�based

formalisms �����	� Examples of event�based formalisms are Trace Theory ������	� DI Alge�

bra �
�	� Petri nets� and Signal Transition Graphs �
��

	�

� Design Techniques

This section introduces the most popular types of asynchronous circuits and brie�y describes

some of their design techniques�

��� Types of Asynchronous Circuits

There are special types of asynchronous circuits for which formal and informal speci�cations

have been given� Here are brief informal descriptions of some of them in a historical context�
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There are two types of logic circuits� combinational and sequential� The output of a

combinational circuit depends only on the current inputs� whereas the output of a sequential

circuit depends also on the previous sequences of the inputs� With this de�nition of a

sequential circuit� almost all asynchronous circuit styles fall into this category� However�

the term asynchronous sequential circuits or machines generally refers to those asynchronous

circuits based on �nite state machines similar to those in synchronous sequential circuits

����
�	�

Muller was the �rst to give a rigorous formalization of a special type of circuits for which

he coined the name speed�independent circuits� An account of this formalization is given

in �
�� 
	� Informally� a speed�independent circuit is a network of gates that satis�es its

speci�cation irrespective of any gate delays�

From a design discipline that was developed as part of the Macromodules project ��	 at

Washington University in St� Louis� the concept of another type of asynchronous circuits

evolved� which was given the name delay�insensitive circuit� that is� a network of modules

that satis�es its speci�cation irrespective of any element and wire delays� It was realized

that proper formalization of this concept was needed to specify and design such circuits in

a well�de�ned manner� Such a formalization was given by Udding �
�	�

Another name frequently used in designing asynchronous circuits is self�timed systems�

This name was introduced by Seitz �
�	� A self�timed system is described recursively as

either a self�timed element or a legal connection of self�timed systems� The idea is that

self�timed elements can be implemented with their own timing discipline� and some may

even have synchronous implementations� In composing self�timed systems from self�timed

elements� however� no reference to the timing of events is made� only the sequence of events

is relevant� In other words� the elements �keep time to themselves��

Some have found the unbounded gate�and�wire delay assumption� on which the concept

of a delay�insensitive circuit is based� to be too restrictive in practice� For example� the

unbounded gate�and�wire delay assumption implies that a signal sent to multiple recipients

by a fork can incur a di�erent unbounded delay for each of the recipients� They proposed

to relax this delay assumption slightly by using isochronic forks �
�	� An isochronic fork is a

fork whose di�erence in the delays of its branches is negligible compared with the delays in

the element to which it is connected� A delay�insensitive circuit that uses isochronic forks

is called a quasi�delay�insensitive circuit ���� 
�	� Although the use of isochronic forks gives

more design freedom in exchange for less delay insensitivity� care has to be taken with its

implementation �
�	�
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��� Asynchronous Sequential Machines

The design of asynchronous sequential �nite state machines was initiated with the pioneer�

ing work of Hu�man �
�	� He proposed a structure similar to that of synchronous sequential

circuits consisting of a combinational logic circuit� inputs� outputs� and state variables ���	�

Hu�man circuits� however� store the state variables in feedback loops containing delay ele�

ments� instead of in latches or �ip��ops� as synchronous sequential circuits do� The design

procedure begins with creating a �ow table and reducing it through some state minimiza�

tion technique� After a state assignment� the procedure obtains the Boolean expressions

and implements them in combinational logic with the aid of a logic minimization program�

To guarantee a hazard�free operation� Hu�man circuits adopt the restrictive single�input�

change fundamental mode� that is� the environment changes only one input and waits until

the circuit becomes stable before changing another input� This requirement can substantially

degrade the circuit performance� Hollaar realized this fact and introduced a new structure

in which the fundamental mode assumption is relaxed ���	� In his implementation� the state

variables are stored in nand latches� so that inputs are allowed to change earlier than the

fundamental mode would allow� Although Hollaar�s method improves the performance� it

su�ers from the danger of producing hazards� Besides� neither technique seem to be adequate

for designing concurrent systems� Models and algorithms for the analysis of asynchronous

sequential circuits have been developed by Brzozowski and Seger ��
	�

The quest for more concurrency� higher performance� and hazard�free operation� resulted

in the formulation of a new generation of asynchronous sequential circuits known as burst�

mode machines �����
	� A burst�mode circuit does not react until the environment performs

a number of input changes called an input burst� The environment� in turn� is not allowed

to introduce the next input burst until the circuit produces a number of outputs called an

output burst� A state graph is used to specify the transitions caused by the input and output

bursts� Two synthesis methods have been proposed and automated for implementing burst�

mode circuits� The �rst method employs a locally generated clock to avoid some hazards ���	�

The second method uses three�dimensional �ow tables and is based on Hu�man circuits ���	�

One limitation of burst mode circuits is that they restrict concurrency within a burst�

��� Speed�Independent Circuits and STG synthesis

Speed�independent circuits are usually designed by a form of Petri nets ��	� A popular ver�

sion of Petri nets� signal transition graphs �STG�� was introduced by Chu� He also developed

a synthesis technique for transforming STGs into speed�independent circuits �
�	� Chu�s work
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was extended by Meng� who produced an STG�based tool for synthesizing speed�independent

circuits from high�level speci�cations ���	� In this technique� a circuit is composed of com�

putational blocks and interconnection blocks� Computational blocks range from a simple

shifter module to more complicated ones� such as ALUs� RAMs� and ROMs� Interconnec�

tion blocks synchronize the operation of computational blocks by producing appropriate

control signals� Computational blocks generate completion signals after their output data

become valid� The interconnection blocks use the completion signals to generate four�phase

handshake protocols�

��� Delay�Insensitive Circuits and Compilation

Several researchers have proposed techniques for designing delay�insensitive circuits� Eber�

gen ���	 has developed a synthesis method based on the formalism of Trace Theory� The

method consists of specifying a component by a program and then transforming this program

into a delay�insensitive network of basic elements� The program notation allows specifying

parallel behavior� Ebergen�s method has been applied to the design of small components

like stacks� various counters� and arbiters ���	�

Martin proposes a method �
�	 that starts with a speci�cation of an asynchronous circuit

in a high�level programming language similar to Hoare�s Communicating Sequential Processes

�CSP� ���	� An asynchronous circuit is speci�ed as a group of processes communicating over

channels� After various transformations� the program is mapped into a network of gates�

This method led to the design of an asynchronous microprocessor ���	 in ����� Martin�s

method yields quasi�delay�insensitive circuits�

Van Berkel ���	 has designed a compiler based on a high�level language called Tangram� A

Tangram program also speci�es a set of processes communicating over channels� A Tangram

program is �rst translated into a handshake circuit� Then these handshake circuits are

mapped into various target architectures� depending on the data�encoding techniques or

standard�cell libraries used� The translation is syntax�directed� which means that every

operation occurring in a Tangram program corresponds to a primitive in the translated

handshake circuit� This property is exploited by various tools that quickly estimate the

area� performance� and energy dissipation of the �nal design by analyzing the Tangram

program� Van Berkel�s method also yields quasi�delay�insensitive circuits�

Other translation methods from a CSP�like language to a �quasi�� delay�insensitive circuit

can be found in ������	�
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� A Typical Asynchronous Design

In this section we present a typical asynchronous design� a micropipeline ��
	� The circuit

uses single�rail encoding with the two�phase signaling protocol to communicate data between

stages of the pipeline� The control circuit for the pipeline is a delay�insensitive circuit� First

we present the primitives for the control circuit� then we present the latches that store the

data� and �nally we present the complete design�

��� The Control Primitives

Figure � shows a few simple primitives used in event�based design styles� The schematic

symbol for each primitive is depicted opposite its name�
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Figure �� Some delay�insensitive primitives

The simplest primitive is the wire� a two�terminal element that produces an output

event on its output terminal b after every input event on its input terminal a� Input and

output events in a wire must alternate� An input event a must be followed by an output

event b before another event a occurs� A wire is physically realizable with a wire� and events

are implemented by voltage transitions� An initialized wire� or iwire� is very similar to a

wire� except that it starts by producing an output event b instead of accepting an input

event a� after this� its behavior exactly resembles that of a wire�
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The primitive for synchronization is the join� also called the rendezvous ��	� A join

has two inputs a and b and one output c� The join performs the and operation of two events

a and b� It produces an output event c only after both of its inputs� a and b� received an

event� The inputs can change again after an output is produced� A join can be implemented

by a Muller C�element� explained in the next section�

The merge component performs the or operation of two events� If a merge component

receives an event on either of its inputs� a or b� it produces an output event c� After an input

event� there must be an output event� successive input events are not allowed� A merge

can be implemented by a xor gate�

The toggle has a single input a and two outputs b and c� After an event on input a� an

event occurs on output b� The next event on a results in a transition on output c� An input

event must be followed by an output event before another input event can occur� Thus�

output events alternate or toggle after each input event� The dot in the toggle schematic

indicates the output which produces the �rst event�

��� The Muller C�Element

The Muller C�element is named for its inventor D� E� Muller �
�	� Traditionally� its logical

behavior is described as follows� If both inputs are � ���� then the output becomes � ����

otherwise the output remains the same� For the proper operation of the C�element� it is also

assumed that� once both inputs become � ���� they will not change again until the output

changes� A state diagram is given in Figure �� The behavior of the output c of the C�element
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Figure �� State diagram of the C�element

is expressed in terms of the inputs a and b and the previous state of the output �c by the

following Boolean function

c � ��c � �a� b�	 � �a � b� ���
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The C�element can be used for implementing the join� which has a slightly more re�

strictive environment behavior in the sense that an input is not allowed to change twice in

succession� A state graph for the join is produced by replacing the bidirectional arcs by

unidirectional arcs�

There are many implementations of the C�element� We have given two popular CMOS

implementations in Figure � Implementation �a� is a conventional pull�up pull�down imple�

mentation suggested by Sutherland ��
	� Implementation �b� is suggested by Van Berkel �
�	�

Each implementation has its own characteristics� Implementation �b� is the best choice for

speed and energy e�ciency ���	�
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Figure � Two CMOS implementations of the C�element� �a� conventional and �b� symmetric

��� Storage Primitives

Now we discuss two event�controlled latches due to Sutherland ��
	� as depicted in Figure ��

Their operation is managed through two input control signals� capture and pass� labeled c

and p respectively� They also have two output control signals� capture done� cd� and pass

done� pd� The input data is labeled D� and the output data is labeled Q� Implementation

�a� is composed of three so�called double�throw switches� Implementation �b� includes a

merge� a toggle� and a level�controlled latch consisting of a double�throw switch and an

inverter� A double�throw switch is schematically represented by an inverter and a switching

tail� The tail toggles between two positions based on the logic value of a controlling signal�

A double�throw switch� in fact� is a two�input multiplexer that produces an inverted version

of its selected input� A CMOS implementation of the double�throw switch is shown in

Figure � ��
	� The position of the switch corresponds to the state where c is low�
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An event�controlled latch can assume two states� transparent and opaque� In the trans�

parent state no data is latched� but the output replicates the input� because a path of two

inverting stages exists between the input and the output� In the opaque state� this path is

disconnected so that the input data can change without a�ecting the output� the current

data at the output� however� is latched� Implementations in Figures ��a� and ��b� are both

shown in their initial transparent states� The capture and pass signals in an event�controlled

latch always alternate� Upon a transition on c� the latch captures the current input data and

becomes opaque� The following transition on cd is an acknowledgment to the data provider

that the current data has been captured and that the input data can be changed safely� A

subsequent transition on p returns the latch back to its transparent state to pass the next

data to its output� The p signal is acknowledged by a transition on pd� Notice that in

implementation �a� of Figure �� signals cd and pd are merely delayed and possibly ampli�ed

versions of c and p� respectively�

A group of event�controlled latches� similar to implementation �a� of Figure �� can be

��



connected� sharing a capture wire and a pass wire� to form an event�controlled register of

arbitrary data width� Implementation �b� of Figure � can be generalized similarly into a

register by inserting additional level�controlled latches between the merge and the toggle�

A comparison of di�erent micropipeline latches is reported in ���	 and later in ��	�

��� Pipelining

Pipelining is a powerful technique for constructing high�performance processors� Micropipelines

are elegant asynchronous circuits that have gained much attention in the asynchronous com�

munity� Many VLSI circuits based on micropipelines have been successfully fabricated� The

AMULET microprocessor ��	 is one example�

The simplest form of a micropipeline is a FIFO� A four�stage FIFO is shown in Figure ��

It has a control circuit composed solely of interconnected joins and a data path of event�

controlled registers� The control signals are indicated by dashed lines� The thick arrows

show the direction of data �ow� Data is implemented with single�rail encoding� and the data

path is as wide as the registers can accommodate� Adjacent stages of the FIFO communicate

through a two�phase� bundled�data signaling protocol� This means that a request arrive at

the next stage only when the data for that stage becomes valid� A bubble at the input of

a join is a shorthand for a join with an iwire on that input� It implies that� initially�

an event has already occurred on the input with the bubble� and the join can produce an

output event immediately upon receiving an event on the other input�
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Figure �� A four�stage micropipeline FIFO structure

Initially� all control wires of the FIFO are at low voltage� and the data in the registers are

��



not valid� The FIFO is activated by a rising transition on Rin� which indicates that input

data is valid� Subsequently� the �rst�stage join produces a rising output transition� This

signal is a request to the �rst�stage register to capture the data and become opaque� After

capturing the data� the register produces a rising transition on its cd output terminal� This

causes a transition on Ain and a transition on r�� which is a request to the second stage of

the FIFO� Meanwhile� the data has proceeded to the second�stage register and has arrived

there before the transition on r� occurs� If the environment does not send any new data�

the �rst stage remains idle� and the data and the request signals propagate further to the

right� Notice that each time the data is captured by a stage� an acknowledgment is sent

back to the previous stage which causes its latch to become transparent again� When the

data has propagated to the last register� it is stored and a request signal Rout is forwarded

to the consumer of the FIFO� At this point� all control signals are at high voltage except

for Aout� If the data is not removed out of the FIFO� that is� Aout remains low� the next

data coming from the producer advance only up to the third�stage register� because the

fourth�stage join cannot produce an output� Finally� Aout also becomess high when the

consumer acknowledges receipt of the data� Further data storage and removal follows the

same pattern� The operation of each join can be interpreted as follows� If the previous

stage has sent a request for data capture and the present stage is empty� then send a signal

to capture the data in the present stage�

The FIFO can be modi�ed easily to include data processing� A four�stage micropipeline�

in its general form� is illustrated in Figure �� Now the data path consists of alternately po�

sitioned event�driven registers and combinational logic circuits� The event�driven registers

store the input and output data of the combinational circuits� and the combinational cir�

cuits perform the necessary data processing� To satisfy the data bundling constraint� delay

elements may occasionally be required to slow down the propagation of the request signals�

A delay element must at least match the delay through its corresponding combinational

logic circuit� either by some completion detection mechanism or through the insertion of a

worst�case delay�

A micropipeline FIFO is �exible in the number of data items it bu�ers� There is no

restriction on the rate at which data enters or exits the micropipeline� except for the delays

imposed by the circuit elements� That is why this FIFO and micropipelines generally� are

termed elastic� In contrast� in an ordinary synchronous pipeline� the rates at which data enter

and exit the pipeline are the same� dictated by the external clock signal� A micropipeline

is also �exible in the amount of energy it dissipates� which is proportional to the number

of data movements� A clocked pipeline� however� continuously dissipates energy as if all
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stages of the pipeline capture and pass data all the time� Another attractive feature of a

micropipeline is that it automatically shuts o� when there is no activity� A clocked pipeline�

on the other hand� requires a special clock management mechanism to implement this feature�

This sensing mechanism� however� constantly consumes energy� because it should never go

idle�

� Concluding Remarks

We have touched only on a few topics relevant to the area of asynchronous circuits and

omitted many others� Among the topics omitted are the important areas of veri�cation�

testing� and performance analysis of asynchronous circuits� We hope� however� that within

the scope of these pages we have provided enough information for further readings� For more

information on asynchronous circuits� please see ���	� ��
	� or ���	� A comprehensive bibliog�

raphy of asynchronous circuits can be found in ���	� Up�to�date information on research in

asynchronous circuit design can be found at ���	�

The authors wish to thank Bill Coates for his generous criticisms of a previous draft of

this article�
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