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Digital VLSI circuits are usually classified into synchronous and asynchronous circuits.
Synchronous circuits are generally controlled by global synchronization signals provided by
a clock. Asynchronous circuits, on the other hand, do not use such global synchroniza-
tion signals. Between these extremes there are various hybrids. Digital circuits in today’s
commercial products are almost exclusively synchronous. Despite this big difference in pop-

ularity, there are a number of reasons why asynchronous circuits are of interest.

In this article, we present a brief overview of asynchronous circuits. First we address some
of the motivations for designing asynchronous circuits. Then, we discuss different classes of
asynchronous circuits and briefly explain some asynchronous design methodologies. Finally,

we present a typical asynchronous design in detail.

1 Motivations for Asynchronous Circuits

Throughout the years researchers have had various reasons for studying and building asyn-
chronous circuits. Some of the often mentioned advantages of asynchronous circuits are
speed, low energy dissipation, modular design, immunity to metastable behavior, freedom
from clock skew, and low generation of and low susceptibility to electromagnetic interfer-
ence. We elaborate here on some of these potentials and indicate when they have been

demonstrated through comparative case studies.



1.1 Speed

Speed has always been a motivation for designing asynchronous circuits. The main reasoning
behind this advantage is that synchronous circuits exhibit worst-case behavior, whereas
asynchronous circuits exhibit average-case behavior. The speed of a synchronous circuit is
governed by its clock frequency. The clock period should be large enough to accommodate
the worst-case propagation delay in the critical path of the circuit, the maximum clock skew,
and a safety factor due to fluctuations in the chip fabrication process, operating temperature,
and supply voltage. Thus, synchronous circuits exhibit worst-case performance. This worst-
case behavior is dictated by the global clock and, in spite of the fact that the worst-case
propagation in many circuits, particularly arithmetic units, is improbable and may be much

longer than the average-case propagation.

Many asynchronous circuits are controlled by local communications and are based on the
principle of initiating a computation, waiting for its completion, and then initiating the next
one. When a computation is completed early, the next computation can start early. For this
reason, the speed of asynchronous circuits equipped with completion-detection mechanisms
depend on the computation time of the data being processed, not the worst-case timing.
Accordingly, such asynchronous circuits exhibit average-case performance. An example of
an asynchronous circuit where the average-case potential is nicely exploited is reported in [1],
an asynchronous divider that is twice as fast as its synchronous counterpart. Nevertheless,
to date, there are few concrete examples demonstrating that the average-case performance
of asynchronous circuits is higher than that of synchronous circuits performing similar func-
tions. The reason is that the average-case performance advantage is often counterbalanced

by the overhead in control circuitry and completion-detection mechanisms.

Besides demonstrating the average-case potential, there are case studies in which the
speed of an asynchronous design is compared to the speed of a corresponding synchronous
version. Molnar et al. report a case study of an asynchronous FIFO that is every bit as fast as
any synchronous FIFO using the same data latches [2]. Furthermore, the asynchronous FIFO
has the additional benefits that it operates under local control and is easily expandable. At

the end of this article we give an example of a FIFO with a slightly different control circuit.

1.2 Immunity to Metastable Behavior

Any circuit with a number of stable states also has metastable states. When such a cir-

cuit gets into a metastable state, it can remain there for an indefinite period of time before



resolving into a stable state [3,4]. Metastable behavior occurs, for example, in circuit prim-
itives that realize mutual exclusion between processes, called arbiters, and components that
synchronize independent signals of a system, called synchronizers. Although the probabil-
ity that metastable behavior lasts longer than period ¢ decreases exponentially with ¢, it
1s possible that metastable behavior in a synchronous circuit lasts longer than one clock
period. Consequently, when metastable behavior occurs in a synchronous circuit, erroneous
data may be sampled at the the computation time of the clock pulses. An asynchronous
circuit deals gracefully with metastable behavior by simply delaying the computation until

the metastable behavior has disappeared and the element has resolved into a stable state.

1.3 Modularity

Modularity in design is an advantage exploited by many asynchronous design styles. The
basic idea is that an asynchronous system is composed of functional modules communi-
cating along well-defined interfaces. Composing asynchronous systems is simply a matter
of connecting the proper modules with matching interfacial specifications. The interfacial
specifications describe only the sequences of events that can take place and do not specify
any restrictions on the timing of these events. This characteristic reduces the design time
and complexity of an asynchronous circuit, because the designer does not have to worry
about the delays incurred in individual modules or the delays inserted by connection wires.
Designers of synchronous circuits, on the other hand, often pay considerable attention to

satisfying the detailed interfacial timing specifications.

Besides ease of composability, modular design also has the potential for better technology
migration, ease of incremental improvement, and reuse of modules [5]. Here the idea is
that an asynchronous system adapts itself more easily to the advances in technology. The
obsolete parts of an asynchronous system can be replaced with new parts to improve system
performance. Synchronous systems cannot take advantage of new parts as easily, because
they must be operated with the old clock frequency or other modules must be redesigned to

operate at the new clock frequency.

One of the earliest projects that exploited modularity in designing asynchronous circuits
is the Macromodules project [6]. Another nice example where modular design has been
demonstrated is the TANGRAM compiler developed at Philips Research Laboratories [7].



1.4 Low Power

Due to rapid growth in the use of portable equipment and the trend in high-performance
processors towards unmanageable power dissipation, energy efficiency has become crucial
in VLSI design. Asynchronous circuits are attractive for energy-efficient designs, mainly
because of the elimination of the clock. In systems with a global clock, all of the latches and
registers operate and consume dynamic energy during each clock pulse, in spite of the fact
that many of those latches and registers might not have new data to store. There is no such
waste of energy in asynchronous circuits, because computations are initiated only when they

need to be done.

Two notable examples that demonstrated the potential of asynchronous circuits when in
energy-efficient design are the work done at Philips Research Laboratories and at Manchester
University. The Philips group designed a fully asynchronous digital compact-cassette (DCC)
error detector which consumed 80% less energy than a similar synchronous version [8]. The
AMULET group at Manchester University successfully implemented an asynchronous version
of the ARM microprocessor, one of the most energy-efficient synchronous microprocessors.
The asynchronous version achieved a power dissipation comparable to the fourth generation

of ARM, around 150 mW [9], in a similar technology.

Recently, power management techniques are being used in synchronous systems to turn
the clock on and off conditionally. However, these techniques are only worthwhile imple-
menting at the level of functional units or higher. Besides, the components that monitor the

environment for switching the clock continue dissipating energy.

It is also worth mentioning that unlike synchronous circuits, most asynchronous circuits
do not waste energy on hazards, which are spurious changes in a signal. Asynchronous
circuits are essentially designed to be hazard-free. Hazards can be responsible for up to 40%

of energy loss in synchronous circuits [10].

1.5 Freedom from Clock Skew

Because asynchronous circuits generally do not have clocks, they do not have many of the
problems associated with clocks. Omne such problem is clock skew, the technical term for
the maximum difference in clock arrival time at different parts of a circuit. In synchronous
circuits, it is crucial that all modules operating with a common clock receive this signal
simultaneously, that is, within a tolerable period of time. Minimizing clock skew is a difficult

problem for large circuits. Various techniques have been proposed to control clock skew, but



generally they are expensive in terms of silicon area and energy dissipation. For instance, the
clock distribution network of the DEC Alpha, a 200 MHz microprocessor at a 3.3 V supply,
occupies 10% of the chip area and has a 40% share in the total chip power consumption [11].
Although asynchronous circuits do not have the clock skew problem, they have their own

set of problems in minimizing the overhead needed for synchronization among the parts.

2 Models and Methodologies

There are many models and methodologies for analyzing and designing asynchronous circuits.
Asynchronous circuits can be categorized by the following criteria: signaling protocol and
data encoding, underlying delay model, mode of operation, and formalism for specifying and

designing circuits. This section presents an informal explanation of these criteria.

2.1 Signaling Protocols and Data Encodings

Modules in an asynchronous circuit communicate data with some signaling protocol con-
sisting of request and acknowledgment signals. There are two common signaling protocols
for communicating data between a sender and a receiver: the four-phase and the two-phase
protocol. In addition to the signaling protocol, there are different ways to encode data. The
most common encodings are single-rail and dual-rail encoding. We explain the two signaling

protocols first and then discuss the data encodings.

If the sender and receiver communicate through a two-phase signaling protocol, then each
communication cycle has two distinct phases. The first phase consists of a request initiated
by the sender. The second phase consists of an acknowledgment by the receiver. The request
and acknowledgment signals are often implemented by voltage transitions on separate wires.
No distinction is made between the directions of voltage transitions. Both rising and falling

transitions denote a signaling event.

The four-phase signaling protocol consists of four phases: a request followed by an ac-
knowledgment, followed by a second request, and finally a second acknowledgment. If the
request and acknowledgment are implemented by voltage transitions, then at the end of
every four phases, the signaling wires return to the same voltage levels as at the start of the
four phases. Because the initial voltage is usually zero, this type of signaling is also called
return-to-zero signaling. Other names for two-phase and four-phase signaling are two-cycle

and four-cycle signaling, respectively, or transition and level signaling, respectively.



Both signaling protocols can be used with single and dual-rail data encodings. In single-
rail data encoding each bit is encoded with one wire, whereas in dual-rail encoding, each bit

is encoded with two wires.

In single-rail encoding, the value of the bit is represented by the voltage on the data
wire. When communicating n data bits with a single-rail encoding, during periods where
the data wires are guaranteed to remain stable, we say that the data are valid. During periods
where the data wires are possibly changing, we say the data are invalid. A two-phase or
four-phase signaling protocol is used to tell the receiver when data are valid or invalid . The
sender informs the receiver about the validity of the data through the request signal, and the
receiver, in turn, informs the sender of the receipt of the data through the acknowledgment
signal. Therefore, to communicate n bits of data, a total number of (n+2) wires are necessary
between the sender and the receiver. The connection pattern for single-rail encoding and

two or four-phase signaling is depicted in Figure 1(a).
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Figure 1: Two different data communication schemes

Figure 2(a) shows the sequence of events in a two-phase signaling protocol. The events
include the times when the data become valid and invalid. The transparent bars indicate
the period when data are valid, during the other periods, data are invalid. Notice that a
request signal occurs only after data become valid. This is an important timing restriction
associated with these communication protocols, namely, the request signal that indicates
that data are valid should always arrive at the receiver after all data wires have attained
their proper value. The restriction is referred to as the bundling constraint. For this reason
the communication protocol is often called the bundled data protocol. Figure 2(b) shows a
sequence of events in a four-phase protocol and single-rail data encoding. Other sequences

are also applicable for the four-phase protocol.

The dual-rail encoding scheme uses two wires for every data bit. There are several dual-
rail encoding schemes. All combine the data encoding and signaling protocol. There is

no explicit request signal, and the dual-rail encoding schemes all require (2n + 1) wires as
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Figure 2: Data transfer in two-phase signaling (a), and four-phase signaling (b)

illustrated in Figure 1(b). In the case of four-phase signaling, there are several encodings
that can be used to transmit a data bit. The most common encoding has the following
meaning for the four states in which each pair of wires can be in: 00 = reset, 10 = valid 0,
01 = valid 1, and 11 is an unused state. Every pair of wires has to go through the reset state
before becoming valid again. In the first phase of the four-phase signaling protocol, every
pair of wires leaves the reset state for a valid 0 or 1 state. The receiver detects the arrival of a
new set of valid data when all pairs of wires have left the reset state. This detection replaces
an explicit request signal. The second phase consists of an acknowledgment to inform the
sender that data has been consumed. The third phase consists of the reset of all pairs of

wires to the reset state, and the fourth phase is the reset of the acknowledgment.

In a two-phase signaling protocol, a different dual-rail encoding is used. An example of
an encoding is as follows. Each pair of wires has one wire associated with a 0 and one wire
associated with a 1. A transition on the wire associated with 0 represents the communication
of a 0, whereas a transition on the other wire represents a communication of a 1. Thus, a
transition on one wire of each pair signals the arrival of a new bit value. A transition on
both wires is not allowed. In the first phase of the two-phase signaling protocol, every pair of

wires communicates a 0 or a 1. The second phase 1s an acknowledgment sent by the receiver.

Of all data encodings and signaling protocols, the most popular are the single-rail encod-
ing and four-phase signaling protocol. The main advantages of these protocols are the small
number of connection wires and the simplicity of the encoding, which allows using conven-
tional techniques for implementing data operations. The disadvantages of these protocols
are the bundling constraints that must be satisfied and the extra energy and time wasted
in the additional two phases compared with two-phase signaling. Dual-rail data encodings
have been used to communicate data in asynchronous circuits free of any timing constraints.

Dual-rail encodings, however, are expensive in practice, because of the many interconnec-



tion wires, the extra circuitry to detect completion of a transfer, and the difficulty in data

processing.

2.2 Delay Models

An important characteristic distinguishing different asynchronous circuit styles is the delay
model on which they are based. For each circuit primitive, gate or wire, a delay model
stipulates the sort of delay it imposes and the range of the delays. Delay models are needed
to analyze all possible behavior of a circuit for various correctness conditions, like the absence

of hazards.

A circuit 1s composed of gates and interconnection wires, all of which impose delays on
the signals propagating through them. The delay models are categorized into two classes:
pure delay models and inertial delay models. In a pure delay model, the delay associated with
a circuit component produces only a time shift in the voltage transitions. In reality, a circuit
component may shift the signals and also filter out pulses of small width. A delay model
which captures this fact is called an inertial delay model. Both classes of delay models can
have several ranges for the delay shifts. We distinguish the zero-delay, fized-delay, bounded-
delay, and unbounded-delay models. In the zero-delay model, the values of the delays are
zero. In the fixed-delay model, the values of the delays are constant, whereas in the bounded-
delay model the values of the delays vary within a bounded range. The unbounded-delay
model does not impose any restriction on the value of the delays except that they cannot
be infinite. Sometimes two different delay models are assumed for the wires and the gates
in an asynchronous circuit. For example, the operation of a class of asynchronous circuits is
based on the zero-delay model for wires and the unbounded-delay model for gates. Formal

definitions of the various delay models are given in [12].

A concept closely related to the delay model of a circuit is its mode of operation. The
mode of operation characterizes the interaction between a circuit and its environment. Clas-
sical asynchronous circuits operate in the fundamental mode [13,14], which assumes that the
environment changes only one input signal and waits until the circuit reaches a stable state.
Then the environment is allowed to apply the next change to one of the input signals. Many
modern asynchronous circuits operate in the input-output mode. In contrast to the funda-
mental mode, the input-output mode allows for input changes immediately after receiving
an appropriate response to a previous input change, even if the entire circuit has not yet
stabilized. The fundamental mode was introduced in the sixties to simplify the analysis and

design of gate circuits with Boolean algebra. The input-output mode evolved in the eighties



from event-based formalisms to describe modular design methods that abstracted from the

internal operation of a circuit.

2.3 Formalisms

Just as in any other design discipline, designers of asynchronous circuits use various for-
malisms to master the complexities in the design and analysis of their artifacts. The for-
malisms used in asynchronous circuit design can be categorized into two classes: formalisms
based on Boolean algebra and formalisms based on sequences of events. Most design method-

ologies in asynchronous circuits use some mixture of both formalisms.

The design of many asynchronous circuits is based on Boolean algebra or its derivative
switching theory. Such circuits often use the fundamental mode of operation, the bounded-
delay model, and have, as primitive elements, gates that correspond to the basic logic func-
tions, like AND, OR, and inversion. These formalisms are convenient for implementing logic
functions, analyzing circuits for the presence of hazards, and synthesizing fundamental-mode
circuits [12,14].

Event-based formalisms deal with sequences of events rather than binary logic variables.
Circuits designed with an event-based formalism operate in the input-output mode, un-
der an unbounded-delay model, and have, as primitive elements, the JOIN, the TOGGLE,
and the MERGE, for example. Event-based formalisms are particularly convenient for de-
signing asynchronous circuits when a high degree of concurrency is involved. Several tools
have been generated for the automatic verification of asynchronous circuits with event-based
formalisms [15,16]. Examples of event-based formalisms are Trace Theory [17-19], DI Alge-
bra [20], Petri nets, and Signal Transition Graphs [21,22].

3 Design Techniques

This section introduces the most popular types of asynchronous circuits and briefly describes

some of their design techniques.

3.1 Types of Asynchronous Circuits

There are special types of asynchronous circuits for which formal and informal specifications

have been given. Here are brief informal descriptions of some of them in a historical context.



There are two types of logic circuits: combinational and sequential. The output of a
combinational circuit depends only on the current inputs, whereas the output of a sequential
circuit depends also on the previous sequences of the inputs. With this definition of a
sequential circuit, almost all asynchronous circuit styles fall into this category. However,
the term asynchronous sequential circuits or machines generally refers to those asynchronous
circuits based on finite state machines similar to those in synchronous sequential circuits

[14,23).

Muller was the first to give a rigorous formalization of a special type of circuits for which
he coined the name speed-independent circuits. An account of this formalization is given
in [24,25]. Informally, a speed-independent circuit is a network of gates that satisfies its

specification irrespective of any gate delays.

From a design discipline that was developed as part of the Macromodules project [6] at
Washington University in St. Louis, the concept of another type of asynchronous circuits
evolved, which was given the name delay-insensitive circuit, that is, a network of modules
that satisfies its specification irrespective of any element and wire delays. It was realized
that proper formalization of this concept was needed to specify and design such circuits in

a well-defined manner. Such a formalization was given by Udding [26].

Another name frequently used in designing asynchronous circuits is self-timed systems.
This name was introduced by Seitz [27]. A self-timed system is described recursively as
either a self-timed element or a legal connection of self-timed systems. The idea is that
self-timed elements can be implemented with their own timing discipline, and some may
even have synchronous implementations. In composing self-timed systems from self-timed
elements, however, no reference to the timing of events is made; only the sequence of events

is relevant. In other words, the elements “keep time to themselves.”

Some have found the unbounded gate-and-wire delay assumption, on which the concept
of a delay-insensitive circuit is based, to be too restrictive in practice. For example, the
unbounded gate-and-wire delay assumption implies that a signal sent to multiple recipients
by a fork can incur a different unbounded delay for each of the recipients. They proposed
to relax this delay assumption slightly by using isochronic forks [28]. An isochronic fork is a
fork whose difference in the delays of its branches is negligible compared with the delays in
the element to which it is connected. A delay-insensitive circuit that uses isochronic forks
is called a quasi-delay-insensitive circuit [17,28]. Although the use of isochronic forks gives
more design freedom in exchange for less delay insensitivity, care has to be taken with its

implementation [29].
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3.2 Asynchronous Sequential Machines

The design of asynchronous sequential finite state machines was initiated with the pioneer-
ing work of Huffman [23]. He proposed a structure similar to that of synchronous sequential
circuits consisting of a combinational logic circuit, inputs, outputs, and state variables [14].
Huffman circuits, however, store the state variables in feedback loops containing delay ele-
ments, instead of in latches or flip-flops, as synchronous sequential circuits do. The design
procedure begins with creating a flow table and reducing it through some state minimiza-
tion technique. After a state assignment, the procedure obtains the Boolean expressions
and implements them in combinational logic with the aid of a logic minimization program.
To guarantee a hazard-free operation, Huffman circuits adopt the restrictive single-input-
change fundamental mode, that is, the environment changes only one input and waits until
the circuit becomes stable before changing another input. This requirement can substantially
degrade the circuit performance. Hollaar realized this fact and introduced a new structure
in which the fundamental mode assumption is relaxed [30]. In his implementation, the state
variables are stored in NAND latches, so that inputs are allowed to change earlier than the
fundamental mode would allow. Although Hollaar’s method improves the performance, it
suffers from the danger of producing hazards. Besides, neither technique seem to be adequate
for designing concurrent systems. Models and algorithms for the analysis of asynchronous

sequential circuits have been developed by Brzozowski and Seger [12].

The quest for more concurrency, higher performance, and hazard-free operation, resulted
in the formulation of a new generation of asynchronous sequential circuits known as burst-
mode machines [31,32]. A burst-mode circuit does not react until the environment performs
a number of input changes called an input burst. The environment, in turn, is not allowed
to introduce the next input burst until the circuit produces a number of outputs called an
output burst. A state graph is used to specify the transitions caused by the input and output
bursts. Two synthesis methods have been proposed and automated for implementing burst-
mode circuits. The first method employs a locally generated clock to avoid some hazards [33].
The second method uses three-dimensional flow tables and is based on Huffman circuits [34].

One Limitation of burst mode circuits is that they restrict concurrency within a burst.

3.3 Speed-Independent Circuits and STG synthesis

Speed-independent circuits are usually designed by a form of Petri nets [35]. A popular ver-
sion of Petri nets, signal transition graphs (STG), was introduced by Chu. He also developed

a synthesis technique for transforming STGs into speed-independent circuits [21]. Chu’s work

11



was extended by Meng, who produced an STG-based tool for synthesizing speed-independent
circuits from high-level specifications [36]. In this technique, a circuit is composed of com-
putational blocks and interconnection blocks. Computational blocks range from a simple
shifter module to more complicated ones, such as ALUs, RAMs, and ROMs. Interconnec-
tion blocks synchronize the operation of computational blocks by producing appropriate
control signals. Computational blocks generate completion signals after their output data
become valid. The interconnection blocks use the completion signals to generate four-phase

handshake protocols.

3.4 Delay-Insensitive Circuits and Compilation

Several researchers have proposed techniques for designing delay-insensitive circuits. Eber-
gen [37] has developed a synthesis method based on the formalism of Trace Theory. The
method consists of specifying a component by a program and then transforming this program
into a delay-insensitive network of basic elements. The program notation allows specifying
parallel behavior. Ebergen’s method has been applied to the design of small components

like stacks, various counters, and arbiters [18].

Martin proposes a method [28] that starts with a specification of an asynchronous circuit
in a high-level programming language similar to Hoare’s Communicating Sequential Processes
(CSP) [38]. An asynchronous circuit is specified as a group of processes communicating over
channels. After various transformations, the program is mapped into a network of gates.
This method led to the design of an asynchronous microprocessor [39] in 1989. Martin’s

method yields quasi-delay-insensitive circuits.

Van Berkel [17] has designed a compiler based on a high-level language called Tangram. A
Tangram program also specifies a set of processes communicating over channels. A Tangram
program is first translated into a handshake circuit. Then these handshake circuits are
mapped into various target architectures, depending on the data-encoding techniques or
standard-cell libraries used. The translation is syntax-directed, which means that every
operation occurring in a Tangram program corresponds to a primitive in the translated
handshake circuit. This property is exploited by various tools that quickly estimate the
area, performance, and energy dissipation of the final design by analyzing the Tangram

program. Van Berkel’s method also yields quasi-delay-insensitive circuits.

Other translation methods from a CSP-like language to a (quasi-) delay-insensitive circuit
can be found in [40,41].

12



4 A Typical Asynchronous Design

In this section we present a typical asynchronous design, a micropipeline [42]. The circuit
uses single-rail encoding with the two-phase signaling protocol to communicate data between
stages of the pipeline. The control circuit for the pipeline is a delay-insensitive circuit. First
we present the primitives for the control circuit, then we present the latches that store the

data, and finally we present the complete design.

4.1 The Control Primitives

Figure 3 shows a few simple primitives used in event-based design styles. The schematic

symbol for each primitive is depicted opposite its name.
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Figure 3: Some delay-insensitive primitives

The simplest primitive is the WIRE, a two-terminal element that produces an output
event on its output terminal b after every input event on its input terminal a. Input and
output events in a WIRE must alternate. An input event a must be followed by an output
event b before another event a occurs. A WIRE is physically realizable with a wire, and events
are implemented by voltage transitions. An initialized WIRE, or IWIRE, is very similar to a
WIRE, except that it starts by producing an output event b instead of accepting an input

event a; after this, its behavior exactly resembles that of a WIRE.
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The primitive for synchronization is the JOIN, also called the RENDEZVOUS [6]. A JOIN
has two inputs a and b and one output ¢. The JOIN performs the AND operation of two events
a and b. It produces an output event ¢ only after both of its inputs, a and b, received an
event. The inputs can change again after an output is produced. A JOIN can be implemented

by a Muller C-element, explained in the next section.

The MERGE component performs the OR operation of two events. If a MERGE component
receives an event on either of its inputs, a or b, it produces an output event ¢. After an input
event, there must be an output event; successive input events are not allowed. A MERGE

can be implemented by a XOR gate.

The TOGGLE has a single input a and two outputs b and c¢. After an event on input a, an
event occurs on output b. The next event on a results in a transition on output ¢. An input
event must be followed by an output event before another input event can occur. Thus,
output events alternate or toggle after each input event. The dot in the TOGGLE schematic

indicates the output which produces the first event.

4.2 The Muller C-Element

The Muller C-element is named for its inventor D. E. Muller [24]. Traditionally, its logical
behavior is described as follows. If both inputs are 0 (1), then the output becomes 0 (1);
otherwise the output remains the same. For the proper operation of the C-element, it is also
assumed that, once both inputs become 0 (1), they will not change again until the output

changes. A state diagram is given in Figure 4. The behavior of the output ¢ of the C-element

Figure 4: State diagram of the C-element

is expressed in terms of the inputs a and b and the previous state of the output ¢ by the

following Boolean function

c=[¢-(a+b)]+(a-b) (1)
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The C-element can be used for implementing the JOIN, which has a slightly more re-
strictive environment behavior in the sense that an input is not allowed to change twice in
succession. A state graph for the JOIN is produced by replacing the bidirectional arcs by

unidirectional arcs.

There are many implementations of the C-element. We have given two popular CMOS
implementations in Figure 5. Implementation (a) is a conventional pull-up pull-down imple-
mentation suggested by Sutherland [42]. Implementation (b) is suggested by Van Berkel [29].
Each implementation has its own characteristics. Implementation (b) is the best choice for

speed and energy efficiency [43].
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Figure 5: Two CMOS implementations of the C-element: (a) conventional and (b) symmetric

4.3 Storage Primitives

Now we discuss two event-controlled latches due to Sutherland [42], as depicted in Figure 6.
Their operation is managed through two input control signals: capture and pass, labeled ¢
and p respectively. They also have two output control signals: capture done, cd, and pass
done, pd. The input data is labeled D, and the output data is labeled Q. Implementation
(a) is composed of three so-called double-throw switches. Implementation (b) includes a
MERGE, a TOGGLE, and a level-controlled latch consisting of a double-throw switch and an
inverter. A double-throw switch is schematically represented by an inverter and a switching
tail. The tail toggles between two positions based on the logic value of a controlling signal.
A double-throw switch, in fact, is a two-input multiplexer that produces an inverted version
of its selected input. A CMOS implementation of the double-throw switch is shown in

Figure 7 [42]. The position of the switch corresponds to the state where ¢ is low.
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Figure 6: Two event-driven latch implementations
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Figure 7: A CMOS implementation of a double-throw switch

An event-controlled latch can assume two states: transparent and opague. In the trans-
parent state no data is latched, but the output replicates the input, because a path of two
inverting stages exists between the input and the output. In the opaque state, this path is
disconnected so that the input data can change without affecting the output; the current
data at the output, however, is latched. Implementations in Figures 6(a) and 6(b) are both
shown in their initial transparent states. The capture and pass signals in an event-controlled
latch always alternate. Upon a transition on ¢, the latch captures the current input data and
becomes opaque. The following transition on cd is an acknowledgment to the data provider
that the current data has been captured and that the input data can be changed safely. A
subsequent transition on p returns the latch back to its transparent state to pass the next
data to its output. The p signal is acknowledged by a transition on pd. Notice that in
implementation (a) of Figure 6, signals ¢d and pd are merely delayed and possibly amplified

versions of ¢ and p, respectively.

A group of event-controlled latches, similar to implementation (a) of Figure 6, can be
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connected, sharing a capture wire and a pass wire, to form an event-controlled register of
arbitrary data width. Implementation (b) of Figure 6 can be generalized similarly into a
register by inserting additional level-controlled latches between the MERGE and the TOGGLE.

A comparison of different micropipeline latches is reported in [44] and later in [45].

4.4 Pipelining

Pipelining is a powerful technique for constructing high-performance processors. Micropipelines
are elegant asynchronous circuits that have gained much attention in the asynchronous com-
munity. Many VLSI circuits based on micropipelines have been successfully fabricated. The

AMULET microprocessor [9] is one example.

The simplest form of a micropipeline is a FIFO. A four-stage FIFO is shown in Figure 8.
It has a control circuit composed solely of interconnected JOINs and a data path of event-
controlled registers. The control signals are indicated by dashed lines. The thick arrows
show the direction of data flow. Data is implemented with single-rail encoding, and the data
path 1s as wide as the registers can accommodate. Adjacent stages of the FIFO communicate
through a two-phase, bundled-data signaling protocol. This means that a request arrive at
the next stage only when the data for that stage becomes valid. A bubble at the input of
a JOIN is a shorthand for a JOIN with an IWIRE on that input. It implies that, initially,
an event has already occurred on the input with the bubble, and the JOIN can produce an

output event immediately upon receiving an event on the other input.

Rin aa T2 a Rout
SN D G R S
c pd ! cd p | c pd ! cd p |
Din — REG ————| REG —— | REG ——— | REG ——— = Dout
cd p | c pd i cd p | c pd i
SN l PN ! SN | A !
An 1 2 3 Aout

Figure 8: A four-stage micropipeline FIFO structure

Initially, all control wires of the FIFO are at low voltage, and the data in the registers are
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not valid. The FIFO is activated by a rising transition on R;,, which indicates that input
data 1s valid. Subsequently, the first-stage JOIN produces a rising output transition. This
signal 1s a request to the first-stage register to capture the data and become opaque. After
capturing the data, the register produces a rising transition on its cd output terminal. This
causes a transition on A;, and a transition on r1, which is a request to the second stage of
the FIFO. Meanwhile, the data has proceeded to the second-stage register and has arrived
there before the transition on r1 occurs. If the environment does not send any new data,
the first stage remains idle, and the data and the request signals propagate further to the
right. Notice that each time the data i1s captured by a stage, an acknowledgment is sent
back to the previous stage which causes its latch to become transparent again. When the
data has propagated to the last register, it is stored and a request signal R, is forwarded
to the consumer of the FIFO. At this point, all control signals are at high voltage except
for Agyt. If the data is not removed out of the FIFO, that is, Ayt remains low, the next
data coming from the producer advance only up to the third-stage register, because the
fourth-stage JOIN cannot produce an output. Finally, A, also becomess high when the
consumer acknowledges receipt of the data. Further data storage and removal follows the
same pattern. The operation of each JOIN can be interpreted as follows. If the previous
stage has sent a request for data capture and the present stage is empty, then send a signal

to capture the data in the present stage.

The FIFO can be modified easily to include data processing. A four-stage micropipeline,
in its general form, is illustrated in Figure 9. Now the data path consists of alternately po-
sitioned event-driven registers and combinational logic circuits. The event-driven registers
store the input and output data of the combinational circuits, and the combinational cir-
cuits perform the necessary data processing. To satisfy the data bundling constraint, delay
elements may occasionally be required to slow down the propagation of the request signals.
A delay element must at least match the delay through its corresponding combinational
logic circuit, either by some completion detection mechanism or through the insertion of a

worst-case delay.

A micropipeline FIFO is flexible in the number of data items it buffers. There is no
restriction on the rate at which data enters or exits the micropipeline, except for the delays
imposed by the circuit elements. That is why this FIFO and micropipelines generally, are
termed elastic. In contrast, in an ordinary synchronous pipeline, the rates at which data enter
and exit the pipeline are the same, dictated by the external clock signal. A micropipeline
is also flexible in the amount of energy it dissipates, which is proportional to the number

of data movements. A clocked pipeline, however, continuously dissipates energy as if all
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Figure 9: A general four-stage micropipeline structure

stages of the pipeline capture and pass data all the time. Another attractive feature of a
micropipeline is that it automatically shuts off when there is no activity. A clocked pipeline,
on the other hand, requires a special clock management mechanism to implement this feature.
This sensing mechanism, however, constantly consumes energy, because it should never go

idle.

5 Concluding Remarks

We have touched only on a few topics relevant to the area of asynchronous circuits and
omitted many others. Among the topics omitted are the important areas of verification,
testing, and performance analysis of asynchronous circuits. We hope, however, that within
the scope of these pages we have provided enough information for further readings. For more
information on asynchronous circuits, please see [46], [12], or [47]. A comprehensive bibliog-
raphy of asynchronous circuits can be found in [48]. Up-to-date information on research in

asynchronous circuit design can be found at [49].

The authors wish to thank Bill Coates for his generous criticisms of a previous draft of
this article.
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