
A New Approach:
Clustrix Sierra 
Database Engine

The Sierra Clustered Database Engine, the technology at the heart of 

the Clustrix solution, is a shared-nothing environment that includes 

the Sierra Parallel Planner and the Sierra Distributed Execution 

Engine. Sierra provides an entirely new architectural approach to query 

resolution. It moves the query to the data, not the data to the query. Learn 

how this revolutionary database technology makes it possible to scale 

a single database across nodes, and still support massive concurrency 

and deliver high performance, full relational functionality, transactional 

consistency (ACID), and seamless deployment.
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Clustrix has produced the first truly scalable fault tolerant Clustered 

Database System (CDS). A complete CDS supports the scalability and 

data model flexibility of a key-value store, while providing the robust 

relational functionality and ACID/immediate consistency and seamless 

deployment of a SQL system. Clustrix’s CDS solution can handle queries from 

simple point selects and updates to complicated SQL joins and aggregates. It 

is optimized for highly transactional OLTP workloads and also works for OLAP 

queries. The Clustrix architecture can start small and expand seamlessly with 

business needs to arbitrary scale. Tables can range from 0 to billions of rows in 

size. Workloads can range from a few to hundreds of thousands of transactions 

per second. It can handle simple key / value operations to full ACID compliant 

transactional SQL. This is all powered by the Clustrix Sierra Database Engine.

The core of Sierra is the ability to execute 
one query with maximum parallelism and 
many simultaneous queries with maximum 
concurrency. In order to do that, a fundamental 
change was needed in query resolution. A 
traditional monolithic database cannot scale 
simply by bolting on an expandable storage 
layer. A distributed storage engine with a 
traditional planner and execution environment 
does not allow sufficient concurrency to scale 
a table to billions of rows and still obtain 
reasonable performance. A new approach is 
needed that encompasses the entire stack from 
the query compiler down to the storage engine.

The key observation to be made is that local 
queries can be satisfied with local locking, 
local data, and local cache. A query operating 
on local data need not talk to other nodes. 
Locks on the data structures can be very short 
lived. Operations on different bits of data 
can be completely independent and operate 
with perfect parallelism. The amount of total 
concurrency  supported  becomes a simple 
function on the number of independent data 

stores that contain that data. The magic then 
becomes the engine that ties these independent, 
high performance data stores into a global 
single-instance database. It is the Clustrix Sierra 
engine that makes this possible.

Sierra’s most basic primitive is a compiled 
program called a query fragment. The query 
fragments are compiled all the way down 
to machine code and have a very rich set of 
operations that they can perform. They can 
read, insert, update a container, execute 
functions, modify control flow, format rows, 
perform synchronization, and send rows to 
query fragments on other nodes. These query 
fragments are run on the nodes that contain 
the data. The communication between the 
nodes consists of just the intermediate and 
result rows needed for the queries. Many, many 
query fragments can operate simultaneously 
across the cluster. Those query fragments may 
be different components of the same query or 
parts of different queries. The result is the same: 
massive concurrency across the cluster that 
scales with the number of nodes.

Bring the Query to the Data, Not the Data to the Query



© 2012 Clustrix, Inc. All Right Reserved

Sierra is a distributed computing environment 
that includes a distributed query compiler and a 
shared-nothing parallel execution environment 
with a transactional concurrent storage engine 
(See Figure 1). These different parts work 
together to be able to execute user queries 
with maximum efficiency, concurrency, and 
parallelism. Queries enter the system through 
the front-end network and are translated by 
the database personality module to an internal 
representation used by Sierra. Sierra then 
executes the queries in an efficient parallel 
fashion. Sierra uses persistent storage (SSDs) to 
store the data, low-latency transactional storage 
(NVRAM) to journal changes, and a low-latency 

interconnect (Infiniband) to communicate with 
other nodes in the cluster. Integrated at every 
level in the stack are extensive monitoring, 
status, and configuration facilities.

The best way to explain how Sierra works is to 
go through some example queries. This paper 
will go through a simple point select, a join, a 
select with order by and limit, and an insert, 
explaining what makes Sierra unique. This will 
show how the flexible components that make up 
Sierra enables it to resolve any query and do it 
with maximum concurrency.

Bring the Query to the Data, Not the Data to the Query

Sierra Overview

FIGURE 1: Block diagram
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 Figure 2 shows a physical representation of 
the data layout for a simple table, T1. Sierra 
partitions tables into objects called slices and 
those slices have replicas for data redundancy. 
In this example, table T1 has 2 slices: T11 and 
T12; additionally, each slice has a replica labeled 
T11’ and T12’ respectively. The slice and its 
replica contain identical data and can be used 
interchangeably by Sierra. There can be any 
number of slices per table, generally determined 
by table size. Sierra will automatically and 
transparently split slices when they get too 
large. The number of slices can be also be 
set by the user. The data placement of these 
slices and replicas throughout the cluster is 
dynamic. Slices can be moved while the cluster 
is online with no disruption to client queries. 
When a new node is added to the cluster, data 
is automatically moved there to rebalance the 
cluster. When a drive or a node fails, the slices 
that were contained on the failed device are 
automatically reconstructed using the remaining 
resources in the cluster. This data redundancy, 
automatic healing, along with a dual Infiniband 
interconnect, ensures there is no single point of 
failure in the cluster.

The data cache in Sierra is local to the node that 
contains the data. In this example, the slice T11 
and its related cache live on node 1. Writes go to 
all replicas for redundancy (T11 on node 1 and 
T11’ on node 2 in this example). Sierra treats one 
replica of a slice as the primary for reads (T11 
here). Having a primary read replica ensures 
maximal cache utilization by avoiding caching 
the same data in multiple places in the cluster. 
Sierra can dynamically change which replica is 
primary based on dynamic load in the cluster. If 
you contrast this with a shared disk system that 
pulls the data to the query, you either have high 
latency for data movement around the cluster 
when queries are executed or you have to cache 
the data on the machine where the query is run. 
This can mean many copies of the same data in 
cache, greatly reducing cache efficiency.

The distribution of data among the slices is 
determined by a distribution function: 
dist(<key>). That distribution function can 
either be range or hash based. The number of 
components in a compound key contributing to 
the distribution can be selected. In the example 
in Figure 2, data can be distributed on (̀ uid )̀ or 
the combination (̀ uid ,̀̀ gid )̀.

Data Layout

FIGURE 2: Data layout for a simple table
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Figure 3 describes the simplest of all queries 
in a database, the point select. For clarity, the 
replicas have been removed from the picture. 
In this example, a query comes into the client’s 
session on node 1, the Sierra planner generates 
a plan, this plan is executed in the Sierra 
execution engine, and the results returned to 
the client. There is more going on here than is 
obvious at first.

The SQL query in step 1 is parsed by the session 
and turned into a query fragment by the 
Sierra Planner. Using the distribution function 
dist(uid=10), Sierra decides T12 is the slice that 
contains the relevant data. The query fragment, 
along with any necessary constants (uid=10) 
is what is sent to node 2 in step 2. The query 
fragment is represented in this diagram by the 
rounded rectangle. These query fragments can 
be cached with parameterized constants so 
they don’t have to be generated every time. In 
this case, the query fragment does a container 

read and finds all rows matching the constraint 
uid=10 and returns the rows in step 3. Those 
rows are then sent back to the client in step 4.

A point select in Sierra involves no global table 
or row level locks. Sierra does this with MVCC 
or Multi-Version Concurrency Control to ensure 
consistent data is returned. Very short-lived 
local page-level locks protect the on- disk data 
structures themselves. Even those locks are 
scalable given that they are per-slice and the 
number of slices grows with the size of the table.

If you contrast this with a database that is 
distributed at the storage layer, the story is 
quite different. In that sort of architecture, 
the data would be pulled to the node that 
is running the query. There, the locking is 
global and necessarily higher latency. Global 
lock contention and drastically increased 
data movement severely limits the potential 
scalability of that system.

 

Point Select

FIGURE 3: Point Select
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Figure 4 illustrates a two-table join with a 
constraint. Here like with the point select, the 
query comes in, gets compiled down to machine 
code query fragments, is routed around the 
cluster for query resolution, and the rows are 
sent back to the client. The plan generated 
in this case is more complicated. The Sierra 
planner has flexibility in join order, access path 
(which index it uses), general operation ordering, 
distribution, and parallelism. Sierra uses a 
variety of statistics to make intelligent decisions 

when making the plan. In this example, the 
generated plan is illustrated in Figure 5 as a 
dependency graph. The dependency graph is 
closer to the internal representation the Sierra 
planner uses when creating the plan. There, it’s 
easier to see the dependencies, of course, but it 
also illustrates which data is transferred in each 
step. The numbered steps in the dependency 
graph correspond with the steps in the physical 
representation.

Two Table Join

FIGURE 4: Table join with constraint
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As before, the SQL query in step 1 is compiled to 
machine code. In step 2, the query fragment is 
sent to the slice determined by the distribution 
function dist(uid=10) of the first table of the 
join. There, it finds all rows that match the 
constraint uid=10 and forwards the rows along 
with the query fragments to the appropriate 
slices in step 3. Here, it uses the distribution 
function dist(gid) to decide where to forward 
each row retrieved from the slice T12. Slices T21 
and T22 are read to find the rows that match 
the T1.gid=T2.gid constraint. The appropriate 
result rows are sent in step 4 to the session 
and the result is sent to the client in step 5. It’s 
important to note that only the relevant columns 

FIGURE 5: Dependency graph for two-table join

of the necessary rows are sent at each stage. 
In this example, (uid,gid) is sent in step 3 and 
(uid,name) is sent in step 4.

In this join example, like the point select, there 
is no global locking, the data lookup for different 
slices happen in parallel, and there are no 
global points of contention. Given the scalable 
nature of the Sierra architecture, the tables T1 
and T2 can have any number of rows and any 
number of slices. As the cluster expands, the 
available resources to store tables and execute 
queries also expand. Sierra truly represents full 
relational calculus capability at arbitrary scale.
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Figure 6 shows a more complicated query that 
illustrates more of the optimizations available 
to Sierra. The query has two constraints plus 
a limit and an order by. As before, the query 
enters the system in step 1 and is compiled 
into query fragments. In step 2, those query 
fragments are pushed to the nodes that match 
the distribution function dist(uid<100), in this 
case, slices T11 and T12. These query fragments 
will do a container read for all rows matching 
the constraint uid<100, filter the resulting rows 
on the constraint gid>10 and stop once it finds 5 
rows. The query fragments don’t have to do an 
explicit sort for this query because the data in 
the slice is already sorted by uid. Those resulting 
rows are forwarded to node 2 in step 3. On node 
2, the result rows are sorted and requested 5 
rows are sent back to the session and to the 
client in steps 4 and 5.

Let’s look more closely at what’s going on here. 
As a general rule, the Sierra planner “pushes 
down” as many calculations as it can. That is to 

say, it pushes the calculations as close to the data 
as it can to reduce latency and data transfer. In 
this example, the filters are placed close to the 
data and the filtered rows never leave the node. 
If this were a traditional database with a shared-
disk back-end, all those calculations would 
happen on the initiating node and there would 
be more data movement, additional locking, and 
no appreciable parallelism resulting in far less 
efficient operation. Notice the “limit(5)” appears 
3 times, applied close to the data and before 
sending rows to the client. This is an optimization 
Sierra will do called “limit push down” to reduce 
data movement and total calculations required 
for the query. This same sort of optimization can 
be applied to other operators like count(*) – 
count the rows close to the data then aggregate 
the counts and return.

This query has the same lightweight locking 
behavior as the previous two examples. 
The query fragment primitive is general 
enough that a query of any complexity can 

Select With Constraints, Order By, and Limit

FIGURE 6: Group by with limit
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be efficiently represented to execute with 
maximum parallelism and concurrency. In fact, 
as queries become more complicated,  Sierra 
has more opportunity for parallelization and 
optimization. By moving the query to the data 

and doing smart optimizations, Sierra enables 
true scalability  and flexibility  for simple key/
value  lookups as well as complex relational 
expressions.

Write performance is often the biggest 
bottleneck of database solutions today. Sierra 
goes to extreme lengths to provide scalable 
write as well as read performance. Figure 7 
illustrates an insert to a table T1 that contains a 
secondary index marked as T1_i in the diagram. 
This diagram includes all replicas of the data 
since they all get written transactionally. In the 
Sierra architecture, indices are kept as separate 
tables internally, each with a distribution based 
on the columns being indexed. In this example, 
inserting the row (10,20) needs to update T12 
of the base representation and T1_i2 of the 
index and their replicas. Inserts follow the same 
flow in Sierra as selects. The query arrives in 
step 1 and is compiled into query fragments. In 
step 2, the query fragments and the data are 
sent to the appropriate slices in parallel. The 

acknowledgements are sent back to the session 
and client respectively in steps 3 and 4. When 
the transaction is committed, Sierra uses an 
optimized parallel distributed commit protocol.

Local locking is used in the insert case as well. 
Write operations are optimistic. If any of the 
query fragments sent out in step 2 fail, the 
transaction machinery will roll back all of the 
operations. Given Sierra’s use of MVCC, no other 
query will ever see the tables in an inconsistent 
state. The only locking employed in the insert 
path is local page-level locking on the on-disk 
data structure itself, just like in the select 
case. Just like with the select case, the insert 
concurrency allowed on the table grows with the 
table for a truly scalable solution.

Insert

FIGURE 7: Insert with index
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Move the query to the data, not the data to 
the query. Clustrix Sierra has taken this simple 
concept and driven it to the logical conclusion 
with great benefit. Data movement and global 
locking are minimized while concurrency and 
parallelism are maximized. Sierra provides 
complete flexibility in data layout, which can be 
changed dynamically without interruption to the 

user. Queries ranging from simple point selects 
to complex joins and aggregates to inserts and 
updates are fast and efficient using Sierra. Sierra 
allows the database to scale to any arbitrary 
size and the performance scales linearly with 
the data. Clustrix Sierra represents a revolution 
in database functionality and scalability, while 
setting-the-bar for Clustered Database Systems.

Conclusion 
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Clustrix is the leader in NewSQL databases for transactional big-data applications. It enables 
fast-growing online businesses to rapidly scale to unlimited users, transactions and data, 
with no database sharding and full ACID compliance. Clustrix is delivered as an optimized 
appliance that is easy to install and automates fault tolerance as the database grows.

Clustrix helps break the vicious cycle of database cost and complexity with a simpler, more 
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model enables linear transactional performance as you add nodes. Start fast, scale fast, grow 
big and never hit the wall.
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