
A New Approach:
Clustrix Sierra
Database Engine

The Sierra Clustered Database Engine, the technology at the heart of

the Clustrix solution, is a shared-nothing environment that includes

the Sierra Parallel Planner and the Sierra Distributed Execution

Engine. Sierra provides an entirely new architectural approach to query

resolution. It moves the query to the data, not the data to the query. Learn

how this revolutionary database technology makes it possible to scale

a single database across nodes, and still support massive concurrency

and deliver high performance, full relational functionality, transactional

consistency (ACID), and seamless deployment.

© 2012 Clustrix, Inc. All Right Reserved

Clustrix has produced the first truly scalable fault tolerant Clustered

Database System (CDS). A complete CDS supports the scalability and

data model flexibility of a key-value store, while providing the robust

relational functionality and ACID/immediate consistency and seamless

deployment of a SQL system. Clustrix’s CDS solution can handle queries from

simple point selects and updates to complicated SQL joins and aggregates. It

is optimized for highly transactional OLTP workloads and also works for OLAP

queries. The Clustrix architecture can start small and expand seamlessly with

business needs to arbitrary scale. Tables can range from 0 to billions of rows in

size. Workloads can range from a few to hundreds of thousands of transactions

per second. It can handle simple key / value operations to full ACID compliant

transactional SQL. This is all powered by the Clustrix Sierra Database Engine.

The core of Sierra is the ability to execute
one query with maximum parallelism and
many simultaneous queries with maximum
concurrency. In order to do that, a fundamental
change was needed in query resolution. A
traditional monolithic database cannot scale
simply by bolting on an expandable storage
layer. A distributed storage engine with a
traditional planner and execution environment
does not allow sufficient concurrency to scale
a table to billions of rows and still obtain
reasonable performance. A new approach is
needed that encompasses the entire stack from
the query compiler down to the storage engine.

The key observation to be made is that local
queries can be satisfied with local locking,
local data, and local cache. A query operating
on local data need not talk to other nodes.
Locks on the data structures can be very short
lived. Operations on different bits of data
can be completely independent and operate
with perfect parallelism. The amount of total
concurrency supported becomes a simple
function on the number of independent data

stores that contain that data. The magic then
becomes the engine that ties these independent,
high performance data stores into a global
single-instance database. It is the Clustrix Sierra
engine that makes this possible.

Sierra’s most basic primitive is a compiled
program called a query fragment. The query
fragments are compiled all the way down
to machine code and have a very rich set of
operations that they can perform. They can
read, insert, update a container, execute
functions, modify control flow, format rows,
perform synchronization, and send rows to
query fragments on other nodes. These query
fragments are run on the nodes that contain
the data. The communication between the
nodes consists of just the intermediate and
result rows needed for the queries. Many, many
query fragments can operate simultaneously
across the cluster. Those query fragments may
be different components of the same query or
parts of different queries. The result is the same:
massive concurrency across the cluster that
scales with the number of nodes.

Bring the Query to the Data, Not the Data to the Query

© 2012 Clustrix, Inc. All Right Reserved

Sierra is a distributed computing environment
that includes a distributed query compiler and a
shared-nothing parallel execution environment
with a transactional concurrent storage engine
(See Figure 1). These different parts work
together to be able to execute user queries
with maximum efficiency, concurrency, and
parallelism. Queries enter the system through
the front-end network and are translated by
the database personality module to an internal
representation used by Sierra. Sierra then
executes the queries in an efficient parallel
fashion. Sierra uses persistent storage (SSDs) to
store the data, low-latency transactional storage
(NVRAM) to journal changes, and a low-latency

interconnect (Infiniband) to communicate with
other nodes in the cluster. Integrated at every
level in the stack are extensive monitoring,
status, and configuration facilities.

The best way to explain how Sierra works is to
go through some example queries. This paper
will go through a simple point select, a join, a
select with order by and limit, and an insert,
explaining what makes Sierra unique. This will
show how the flexible components that make up
Sierra enables it to resolve any query and do it
with maximum concurrency.

Bring the Query to the Data, Not the Data to the Query

Sierra Overview

FIGURE 1: Block diagram

© 2012 Clustrix, Inc. All Right Reserved

 Figure 2 shows a physical representation of
the data layout for a simple table, T1. Sierra
partitions tables into objects called slices and
those slices have replicas for data redundancy.
In this example, table T1 has 2 slices: T11 and
T12; additionally, each slice has a replica labeled
T11’ and T12’ respectively. The slice and its
replica contain identical data and can be used
interchangeably by Sierra. There can be any
number of slices per table, generally determined
by table size. Sierra will automatically and
transparently split slices when they get too
large. The number of slices can be also be
set by the user. The data placement of these
slices and replicas throughout the cluster is
dynamic. Slices can be moved while the cluster
is online with no disruption to client queries.
When a new node is added to the cluster, data
is automatically moved there to rebalance the
cluster. When a drive or a node fails, the slices
that were contained on the failed device are
automatically reconstructed using the remaining
resources in the cluster. This data redundancy,
automatic healing, along with a dual Infiniband
interconnect, ensures there is no single point of
failure in the cluster.

The data cache in Sierra is local to the node that
contains the data. In this example, the slice T11
and its related cache live on node 1. Writes go to
all replicas for redundancy (T11 on node 1 and
T11’ on node 2 in this example). Sierra treats one
replica of a slice as the primary for reads (T11
here). Having a primary read replica ensures
maximal cache utilization by avoiding caching
the same data in multiple places in the cluster.
Sierra can dynamically change which replica is
primary based on dynamic load in the cluster. If
you contrast this with a shared disk system that
pulls the data to the query, you either have high
latency for data movement around the cluster
when queries are executed or you have to cache
the data on the machine where the query is run.
This can mean many copies of the same data in
cache, greatly reducing cache efficiency.

The distribution of data among the slices is
determined by a distribution function:
dist(<key>). That distribution function can
either be range or hash based. The number of
components in a compound key contributing to
the distribution can be selected. In the example
in Figure 2, data can be distributed on (̀ uid)̀ or
the combination (̀ uid ,̀̀ gid)̀.

Data Layout

FIGURE 2: Data layout for a simple table

© 2012 Clustrix, Inc. All Right Reserved

Figure 3 describes the simplest of all queries
in a database, the point select. For clarity, the
replicas have been removed from the picture.
In this example, a query comes into the client’s
session on node 1, the Sierra planner generates
a plan, this plan is executed in the Sierra
execution engine, and the results returned to
the client. There is more going on here than is
obvious at first.

The SQL query in step 1 is parsed by the session
and turned into a query fragment by the
Sierra Planner. Using the distribution function
dist(uid=10), Sierra decides T12 is the slice that
contains the relevant data. The query fragment,
along with any necessary constants (uid=10)
is what is sent to node 2 in step 2. The query
fragment is represented in this diagram by the
rounded rectangle. These query fragments can
be cached with parameterized constants so
they don’t have to be generated every time. In
this case, the query fragment does a container

read and finds all rows matching the constraint
uid=10 and returns the rows in step 3. Those
rows are then sent back to the client in step 4.

A point select in Sierra involves no global table
or row level locks. Sierra does this with MVCC
or Multi-Version Concurrency Control to ensure
consistent data is returned. Very short-lived
local page-level locks protect the on- disk data
structures themselves. Even those locks are
scalable given that they are per-slice and the
number of slices grows with the size of the table.

If you contrast this with a database that is
distributed at the storage layer, the story is
quite different. In that sort of architecture,
the data would be pulled to the node that
is running the query. There, the locking is
global and necessarily higher latency. Global
lock contention and drastically increased
data movement severely limits the potential
scalability of that system.

Point Select

FIGURE 3: Point Select

© 2012 Clustrix, Inc. All Right Reserved

Figure 4 illustrates a two-table join with a
constraint. Here like with the point select, the
query comes in, gets compiled down to machine
code query fragments, is routed around the
cluster for query resolution, and the rows are
sent back to the client. The plan generated
in this case is more complicated. The Sierra
planner has flexibility in join order, access path
(which index it uses), general operation ordering,
distribution, and parallelism. Sierra uses a
variety of statistics to make intelligent decisions

when making the plan. In this example, the
generated plan is illustrated in Figure 5 as a
dependency graph. The dependency graph is
closer to the internal representation the Sierra
planner uses when creating the plan. There, it’s
easier to see the dependencies, of course, but it
also illustrates which data is transferred in each
step. The numbered steps in the dependency
graph correspond with the steps in the physical
representation.

Two Table Join

FIGURE 4: Table join with constraint

© 2012 Clustrix, Inc. All Right Reserved

As before, the SQL query in step 1 is compiled to
machine code. In step 2, the query fragment is
sent to the slice determined by the distribution
function dist(uid=10) of the first table of the
join. There, it finds all rows that match the
constraint uid=10 and forwards the rows along
with the query fragments to the appropriate
slices in step 3. Here, it uses the distribution
function dist(gid) to decide where to forward
each row retrieved from the slice T12. Slices T21
and T22 are read to find the rows that match
the T1.gid=T2.gid constraint. The appropriate
result rows are sent in step 4 to the session
and the result is sent to the client in step 5. It’s
important to note that only the relevant columns

FIGURE 5: Dependency graph for two-table join

of the necessary rows are sent at each stage.
In this example, (uid,gid) is sent in step 3 and
(uid,name) is sent in step 4.

In this join example, like the point select, there
is no global locking, the data lookup for different
slices happen in parallel, and there are no
global points of contention. Given the scalable
nature of the Sierra architecture, the tables T1
and T2 can have any number of rows and any
number of slices. As the cluster expands, the
available resources to store tables and execute
queries also expand. Sierra truly represents full
relational calculus capability at arbitrary scale.

© 2012 Clustrix, Inc. All Right Reserved

Figure 6 shows a more complicated query that
illustrates more of the optimizations available
to Sierra. The query has two constraints plus
a limit and an order by. As before, the query
enters the system in step 1 and is compiled
into query fragments. In step 2, those query
fragments are pushed to the nodes that match
the distribution function dist(uid<100), in this
case, slices T11 and T12. These query fragments
will do a container read for all rows matching
the constraint uid<100, filter the resulting rows
on the constraint gid>10 and stop once it finds 5
rows. The query fragments don’t have to do an
explicit sort for this query because the data in
the slice is already sorted by uid. Those resulting
rows are forwarded to node 2 in step 3. On node
2, the result rows are sorted and requested 5
rows are sent back to the session and to the
client in steps 4 and 5.

Let’s look more closely at what’s going on here.
As a general rule, the Sierra planner “pushes
down” as many calculations as it can. That is to

say, it pushes the calculations as close to the data
as it can to reduce latency and data transfer. In
this example, the filters are placed close to the
data and the filtered rows never leave the node.
If this were a traditional database with a shared-
disk back-end, all those calculations would
happen on the initiating node and there would
be more data movement, additional locking, and
no appreciable parallelism resulting in far less
efficient operation. Notice the “limit(5)” appears
3 times, applied close to the data and before
sending rows to the client. This is an optimization
Sierra will do called “limit push down” to reduce
data movement and total calculations required
for the query. This same sort of optimization can
be applied to other operators like count(*) –
count the rows close to the data then aggregate
the counts and return.

This query has the same lightweight locking
behavior as the previous two examples.
The query fragment primitive is general
enough that a query of any complexity can

Select With Constraints, Order By, and Limit

FIGURE 6: Group by with limit

© 2012 Clustrix, Inc. All Right Reserved

be efficiently represented to execute with
maximum parallelism and concurrency. In fact,
as queries become more complicated, Sierra
has more opportunity for parallelization and
optimization. By moving the query to the data

and doing smart optimizations, Sierra enables
true scalability and flexibility for simple key/
value lookups as well as complex relational
expressions.

Write performance is often the biggest
bottleneck of database solutions today. Sierra
goes to extreme lengths to provide scalable
write as well as read performance. Figure 7
illustrates an insert to a table T1 that contains a
secondary index marked as T1_i in the diagram.
This diagram includes all replicas of the data
since they all get written transactionally. In the
Sierra architecture, indices are kept as separate
tables internally, each with a distribution based
on the columns being indexed. In this example,
inserting the row (10,20) needs to update T12
of the base representation and T1_i2 of the
index and their replicas. Inserts follow the same
flow in Sierra as selects. The query arrives in
step 1 and is compiled into query fragments. In
step 2, the query fragments and the data are
sent to the appropriate slices in parallel. The

acknowledgements are sent back to the session
and client respectively in steps 3 and 4. When
the transaction is committed, Sierra uses an
optimized parallel distributed commit protocol.

Local locking is used in the insert case as well.
Write operations are optimistic. If any of the
query fragments sent out in step 2 fail, the
transaction machinery will roll back all of the
operations. Given Sierra’s use of MVCC, no other
query will ever see the tables in an inconsistent
state. The only locking employed in the insert
path is local page-level locking on the on-disk
data structure itself, just like in the select
case. Just like with the select case, the insert
concurrency allowed on the table grows with the
table for a truly scalable solution.

Insert

FIGURE 7: Insert with index

© 2012 Clustrix, Inc. All Right Reserved

Move the query to the data, not the data to
the query. Clustrix Sierra has taken this simple
concept and driven it to the logical conclusion
with great benefit. Data movement and global
locking are minimized while concurrency and
parallelism are maximized. Sierra provides
complete flexibility in data layout, which can be
changed dynamically without interruption to the

user. Queries ranging from simple point selects
to complex joins and aggregates to inserts and
updates are fast and efficient using Sierra. Sierra
allows the database to scale to any arbitrary
size and the performance scales linearly with
the data. Clustrix Sierra represents a revolution
in database functionality and scalability, while
setting-the-bar for Clustered Database Systems.

Conclusion

© 2012 Clustrix, Inc. All Right Reserved

ABOUT CLUSTRIX, INC.
Clustrix is the leader in NewSQL databases for transactional big-data applications. It enables
fast-growing online businesses to rapidly scale to unlimited users, transactions and data,
with no database sharding and full ACID compliance. Clustrix is delivered as an optimized
appliance that is easy to install and automates fault tolerance as the database grows.

Clustrix helps break the vicious cycle of database cost and complexity with a simpler, more
elegant approach that allows you to focus 100% on innovation. A unique parallel query
model enables linear transactional performance as you add nodes. Start fast, scale fast, grow
big and never hit the wall.

CONTACT US
TEL: 415-501-9560
EMAIL: info@clustrix.com
WEB: www.clustrix.com

Clustrix, Inc.
201 Mission Street, Suite 800
San Francisco, California 94105

