

Mitigating Software Vulnerabilities

How exploit mitigation technologies can help reduce or

eliminate risk, prevent attacks and minimize operational

disruption due to software vulnerabilities

July 2011

1

Mitigating Software Vulnerabilities

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE
INFORMATION IN THIS DOCUMENT.

This document is provided ―as-is.‖ Information and views expressed in this

document, including URL and other Internet Web site references, may change

without notice. You bear the risk of using it.

Copyright © 2011 Microsoft Corporation. All rights reserved.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Authors

Matt Miller – Microsoft Security Engineering Center

Tim Burrell – Microsoft Security Engineering Center

Michael Howard – Microsoft Security Engineering Center

2

Introduction

Software vulnerabilities are weaknesses in computer programs that provide a
capable attacker with opportunities to compromise the integrity, availability, or
confidentiality of an affected user‘s computer or data. Severe vulnerabilities can
enable attackers to run custom software of their choice, and in some scenarios
take full control of a victim‘s computer. A common method that is used to address
software vulnerabilities is to install a security update provided by the vendor of
the affected software. Although updating is a robust and well-established vehicle
for addressing vulnerabilities, it is not without limitations.

One limitation of security updating is that it presupposes knowledge of what
needs to be updated. In other words, a software vendor must know about a
vulnerability to create a security update. After the vendor becomes aware of a
vulnerability, they must then develop a robust fix and thoroughly test it to ensure
that no regressions have been introduced, which can be a time consuming and
costly process. Once the update is completed, the vendor must distribute it to
their customers as rapidly as possible. The key point to understand is that
customers remain at risk until they install the update on their systems.

Accordingly, it has become increasingly important to enable customers to more
effectively manage risk when facing an unknown or unaddressed vulnerability. To
facilitate this, Microsoft and other software vendors provide customers with
guidance on mitigations and workarounds1 that can be used to reduce or
eliminate the risk posed by a software vulnerability. For example, the guidance for
mitigating a vulnerability in a network service might include using a firewall to
restrict connectivity, using authentication/authorization technologies to prevent
access, disabling the service or vulnerable feature, and so on. In each case, the goal
is the same: to make it impossible or very costly for an attacker to successfully
exploit a vulnerability. Mitigations that successfully accomplish this goal help
protect customers while a security update is being developed and deployed.

One particularly noteworthy method of keeping customers safe while a security
update is being developed focuses on breaking the exploitation techniques that
attackers rely on when developing an exploit for a vulnerability. Exploitation

1 All Microsoft customers are encouraged to regularly view Microsoft Security Bulletins, which are issued to
address new vulnerabilities: www.microsoft.com/technet/security/current.aspx

http://www.microsoft.com/technet/security/current.aspx

3

techniques can be thought of as the tools attackers have developed for turning a
vulnerability into something that enables them to take control of a user‘s
computer. Breaking or destabilizing these techniques essentially removes a
valuable tool from the attacker‘s toolbox and can make exploitation impossible or
increase the time and cost of developing an exploit. This approach has a direct
impact on an attacker‘s economic incentive to exploit a vulnerability and can also
extend the window of time a customer is protected until an update is deployed.

Mitigations that take this approach are generally referred to as exploit mitigations
and they have some unique traits that make them attractive as a mitigation
strategy. In many scenarios, the logic that is needed to break an exploitation
technique can be built into an application or the Windows operating system itself.
If the logic exists in the application, customers will not need to take extra steps to
enable the mitigation. Another benefit is that because exploit mitigations focus on
breaking exploitation techniques, they are independent of specific vulnerabilities
and generally transparent to the application‘s functionality. By building exploit
mitigations into applications and enabling them by default, it becomes possible to
provide generic protection for known or currently unknown vulnerabilities.

Microsoft is aware of these benefits, and we have developed and incorporated a
wide array of exploit mitigation technologies into many products. These
technologies have long been integrated into development tools such as Visual
Studio®, and have also been built into the Windows® operating system itself.
Furthermore, the latest version of Windows Internet Explorer® fully takes
advantage of these technologies. This level of integration enables Microsoft and
third-party software vendors to build applications with mitigations that are built
in and enabled by default.

The following sections explore the exploit mitigation technologies provided by
Microsoft and also provide a business case for the value of these technologies. The
concept of an exploit mitigation is then solidified by introducing the fundamental
tactics and technologies that are used to break exploitation techniques. This
information forms the basis for providing guidance on how software development
teams and IT administrators can use these technologies to protect the applications
they develop and deploy.

The economics of exploitation

The primary incentive for an attacker to exploit a vulnerability is to achieve a
return on investment. This return need not be strictly monetary—an attacker may
be interested in obtaining access to data, identities, or some other commodity that
is valuable to them. With these incentives in mind, we can construct a simple
formula to help us consider the economics of exploiting vulnerabilities.

4

The formula in the following figure shows that an attacker must initially invest
resources to acquire a vulnerability and develop a weaponized exploit for it. This
investment is offset by the gains an attacker receives and the number of
opportunities they have to use their exploit.

Figure 1: A formula for modeling the economics of exploitation with respect to an attacker's return on

investment.

In recent years, attackers have become very proficient at reducing the cost of
acquiring a vulnerability. For example, fuzzing tools and methodologies have
become increasingly mature and provide attackers with ways to automate and
scale their vulnerability-finding efforts. Software vendors are placed at a
noteworthy disadvantage in this respect because they must find and fix all
vulnerabilities whereas an attacker only needs to find one. This imbalance is
important to recognize—it means that software vendors must invest significantly
more than attackers to find vulnerabilities. Even so, it is not possible to guarantee
that all vulnerabilities have been eliminated. This issue can be a challenge for
vendors whose core business is not software security.

Exploit mitigations can be an important factor in this equation. Put simply, the
cost of developing a weaponized exploit for a vulnerability must not exceed an
attacker‘s expected return on investment. Therefore, increasing this cost directly
affects an attacker‘s incentive to develop an exploit. Since exploit mitigations
remove generic tools from an attacker‘s toolbox—an attacker who attempts to
exploit a vulnerability must invest significantly more time and resources to
develop new exploitation techniques, which may or may not be applicable to
other vulnerabilities. For software vendors, the return on investment is also
noteworthy because exploit mitigations are relatively cheap to enable and do not
require prior knowledge of a particular vulnerability. When combined, these
factors suggest that exploit mitigations can be powerful and cost-effective methods
for software vendors to use to decrease an attacker‘s return on investment.

It is important to clarify that the use of exploit mitigations does not excuse a
software vendor from finding and fixing vulnerabilities. Vulnerabilities that are
difficult or impossible to exploit today have the potential to be exploitable

5

tomorrow if attackers are able to develop new and improved exploitation
methods. In other words, exploit mitigations cannot currently be considered a
panacea to the problem posed by vulnerabilities.

Although outside the scope of this document, an attacker‘s return on investment
can also be decreased by reducing the number of opportunities an attacker has to
exploit a vulnerability. This reduction can be accomplished by decreasing the
amount of time it takes to deploy an update that addresses a vulnerability.
However, unlike exploit mitigations, this approach relies on prior knowledge of
the vulnerability. In some scenarios, it may also be possible to alter what an
attacker can gain from exploiting a vulnerability by employing isolation
techniques such as sandboxing to prevent the attacker from gaining access to what
they desire. (For more information about sandboxing and other techniques for
developing secure software, visit the Microsoft Security Development Lifecycle
webpage at www.microsoft.com/sdl.)

Exploit mitigation technology overview

Over the past decade, Microsoft has developed a variety of exploit mitigation
technologies that are designed to make it more difficult for attackers to exploit
software vulnerabilities such as buffer overruns. This section enumerates each of
the mitigation technologies currently available, and provides answers for common
questions that relate to how each technology works, how effective they are, and
any important performance or compatibility considerations. Availability of each
mitigation technology is also provided in terms of which operating system or
Visual Studio version supports a given feature.

A more detailed discussion of these technologies and how they work is available in
Mitigations Unplugged, a Microsoft presentation given at the Microsoft Blue Hat
security conference in 2008: http://technet.microsoft.com/en-
us/security/dd285253.

Tactics

Every exploit mitigation technology used in Microsoft products that has been
developed to date has employed at least one fundamental tactic that is designed to
make it more difficult to exploit a vulnerability. Such tactics provide a helpful
high-level illustration of how exploit mitigations are designed to work in practice.

Enforce invariants

One tactic that can be used to break exploitation techniques is to enforce new
invariants that invalidate an attacker‘s implicit assumptions. Oftentimes, attackers

http://www.microsoft.com/sdl
http://technet.microsoft.com/en-us/security/dd285253
http://technet.microsoft.com/en-us/security/dd285253

6

depend on a specific set of conditions being true for an exploit to be successful. A
simple analogy for this tactic is to add bars to a window—if an attacker could
previously just open the window and climb in, they now need to find a way to get
past bars that prevent entry through the window. This simple idea has been
embodied in the form of multiple mitigation technologies, and two of the most
noteworthy examples are Data Execution Prevention (DEP) and Structured
Exception Handler Overwrite Protection (SEHOP).

Create artificial diversity

The existence of diversity within a population helps minimize the number of
universal assumptions that can be made about its members. This principle is
relevant in the digital world because attackers often assume that the configuration
of one computer mirrors that of another computer. Introducing artificial diversity
into computer systems can invalidate these assumptions, thereby preventing an
attacker from reliably exploiting a vulnerability. A good example of creating
artificial diversity can be seen in the context of the exploit mitigation known as
Address Space Layout Randomization (ASLR).

Leverage knowledge deficits

In some scenarios, exploitation techniques can be broken by taking advantage of
secrets an attacker does not know or cannot easily predict. A simple analogy for
this tactic is a door with a combination lock. The extensive number of possible
combinations prevents the attacker from being able to easily open the door simply
because it is impractical or impossible to guess the combination in a timely
fashion. The use of this tactic in practice is most clearly demonstrated by the code
Generation Security (/GS) support included in the Visual C++ compiler developed
by Microsoft.

Technologies

The tactics described in the previous section are general methods by which
exploitation techniques can be prevented. These methods are made concrete
through the actual technologies that are designed to mitigate exploitation
techniques. This section provides a technical description of each of the exploit
mitigation technologies that are currently available, and discusses potential
performance or compatibility concerns from their use.

Stack buffer overrun detection

The most well-known example of a software vulnerability is a stack-based buffer
overrun. This type of vulnerability is typically exploited by overwriting critical

7

data used to execute code after a function has completed. Since the release of
Microsoft Visual C++ 2002, the Visual C++ compiler has included support for the
/GS compiler switch which, when enabled, introduces an additional security
check designed to help mitigate this exploitation technique. This mitigation works
by placing a random value (known as a cookie) prior to the critical data that an
attacker would want to overwrite. This cookie is checked when the function
completes to ensure it is equal to the expected value. If a mismatch exists, it is
assumed that corruption occurred and the program is safely terminated. This
simple concept demonstrates how a secret value (in this example, the cookie) can
be used to break certain exploitation techniques by detecting corruption at critical
points in the program. The fact that the value is secret introduces a knowledge
deficit that is generally difficult for the attacker to overcome.

Visual C++ 2005 improved the effectiveness of /GS by reordering local variables
and parameters on the stack, which is the storage area for variables referenced in a
function. This approach is designed to prevent an attacker from corrupting local
variables or parameters that may be used before the cookie check occurs.

Visual C++ 2010 includes enhancements to /GS that expand the heuristics used to
determine when stack overrun protection should be enabled for a function, and
when it can safely be optimized away. This approach helps maximize coverage
while also minimizing overhead.

To enable this mitigation technology
Stack buffer overrun detection is enabled by compiling with the /GS switch, which
has been enabled by default in the Visual Studio IDE since it was first introduced
in Visual Studio 2002. The command line compiler enabled this by default in
Visual C++ 2005.

Proof point
The vulnerability addressed by Microsoft bulletin MS09-0532 was caused by a
stack-based buffer overrun. A functional exploit was developed and released
before an update was available that targeted Windows 2000, which was not built
with/GS protection. The exploit did not work on Windows XP, Windows Vista®,
Windows Server® 2003, and Windows Server 2008, which were all built with
/GS protection.

Performance considerations
The performance impact of /GS is difficult to measure because it is highly
dependent on coding style. Code with large numbers of stack-based string buffers
and arguments might see a small impact; code without them will see no impact.

2 Information on Microsoft security updates is available at:
http://www.microsoft.com/technet/security/current.aspx

http://www.microsoft.com/technet/security/current.aspx

8

Compatibility considerations
Well-written software should have no compatibility impact when making use of
/GS. The only time /GS will affect how a program performs is when there is an
existing stack-based buffer overrun vulnerability. In these scenarios, /GS makes it
easier to identify the vulnerability and fix it because the application stops at the
point of failure.

Data Execution Prevention (DEP)

One assumption attackers often make is that data can be executed as code. The
origin of this assumption stems from the common exploit practice of injecting
custom machine code (often referred to as shellcode) and then later executing it—
from which the term arbitrary code execution is derived. In most cases, exploits
will store this custom machine code in portions of a program‘s memory, such as
the stack or the heap, which are traditionally meant to contain only data. This
exploitation technique has historically been quite reliable because older Intel and
AMD processors and versions of Windows prior to Windows XP Service Pack 2
did not support making memory non-executable. The introduction of Data
Execution Prevention (DEP) in Windows XP Service Pack 2 established a new
invariant that made it possible to prevent data from being executed as code by
leveraging processors that support the hardware NX bit (No eXecute). When DEP
is enabled, it is not possible for an exploit to directly inject and execute custom
machine code from regions of memory that are comprised strictly of data. Most
modern processors at the time of this writing support the hardware NX bit.

To enable this mitigation technology
DEP is enabled by linking with /NXCOMPAT or by calling SetProcessDEPPolicy at
runtime.

Proof point
Although Internet Explorer 8 was vulnerable to MS10-002 and MS10-018, the
fact that DEP is enabled by default successfully mitigated the public exploits that
were released. In addition, enabling DEP for Microsoft Office broke 100% of the
exploits that were tested in a lab environment. DEP is enabled by default in
Microsoft Office 2010.

Performance considerations
There are no performance considerations for the use of DEP.

Compatibility considerations
Applications written without taking DEP into consideration may encounter
problems when enabling DEP. For example, if a program generates code at
runtime but does not properly allocate the memory as executable, the program
will crash when the code is executed. Applications that use the Active Template
Library (ATL) must use version 8.0 or greater to ensure compatibility with DEP.

9

Address Space Layout Randomization (ASLR)

Attackers often assume that certain objects (such as executable .DLL and .EXE
files) will be located at the same address in memory every time a program runs,
and on every computer the program runs on. Assumptions such as these are
convenient for an attacker and are often fundamentally required for the exploit to
succeed. The inability to hardcode such addresses can make it difficult or
impossible to write a reliable exploit that will work against every computer. This
insight is what drives the motivation for Address Space Layout Randomization
(ASLR), which can break numerous exploitation techniques by introducing
diversity into the address space layout of a program. In other words, ASLR
randomizes the location of objects in memory to prevent an attacker from reliably
assuming their location. This mitigation makes the address space layout of a
program different across multiple computers, which ultimately prevents an
attacker from developing a successful exploit by assuming the location of objects
in memory.

Although Windows XP Service Pack 2 was the first version of Windows to
randomize the location of internal data structures such as Process Environment
Blocks (PEBs) and Thread Environment Blocks (TEBs), true support for ASLR was
not available until Windows Vista. With Windows Vista it became possible to
randomize the location of stacks, heaps, and executable files. For compatibility
reasons, executable files are required to indicate that they support being
randomized by ASLR.

The randomization of stacks is conditional on the process EXE indicating that it
supports ASLR. Heap randomization is always enabled and cannot be disabled.

To enable this mitigation technology
ASLR is enabled by linking executable files with /DYNAMICBASE. EXEs must link
with /DYNAMICBASE to enable stack randomization.

Proof point
MS08-067 was actively exploited in the wild on Windows 2000, Windows XP,
and Windows Server 2003 prior to an update being released. Some exploits were
even able to bypass DEP on Windows XP and Windows Server 2003. There are
no known exploits that target Windows Vista even though it is also vulnerable,
primarily because of the presence of ASLR and DEP.

Performance considerations
ASLR introduces negligible performance overhead the first time an executable file
is loaded into memory. Enabling ASLR can result in performance gains by
compacting the address space and by reducing the chance that two executable
files will try to map to the same address. Executable files that attempt to map to
the same address can result in wasteful memory overhead because one must be

10

relocated to a new address and private copies of certain memory pages may be
necessary. There is no performance overhead associated with stack and heap
randomization.

Compatibility considerations
In rare cases, an application may assume that the location of stacks, heaps, or
executable files will not change each time the application is run. Enabling ASLR
for an application that makes these assumptions may cause the application to
crash.

Stack randomization has a minor effect on the amount of stack space that can be
used by a thread. Applications that use significant amounts of stack space may
encounter stack exhaustion issues when stack randomization is enabled.

Deployment considerations
All executable images should be built with /DYNAMICBASE to maximize the
effectiveness of ASLR.

SAFESEH and Structured Exception Handler Overwrite

Protection (SEHOP)

Certain types of stack-based buffer overrun vulnerabilities can allow an attacker to
make use of an exploitation technique known as a Structured Exception Handler
Overwrite (SEH overwrite). This technique involves corrupting a data structure
that is used when handling exceptional conditions that may occur while a
program is running. The act of corrupting this data structure allows the attacker to
execute code from anywhere in memory. Because exceptions can occur before a
function returns, it is not possible for /GS to fully mitigate this technique. Instead,
two mitigations designed to break this exploitation technique have been
developed.

The first mitigation technique is known as SAFESEH (image has safe exception
handlers), which first shipped with Visual C++ 2003. This mitigation works by
building a table of safe exception handlers when a program is being compiled. The
table of safe exception handlers is then consulted at runtime when an exceptional
condition occurs to ensure that a matching exception handler is in the table. If a
match is not found, the application is terminated. Although this technique has the
potential to be effective, it does have some noteworthy limitations such as the
requirement that all code must be rebuilt with SAFESEH enabled.

The second mitigation technique is known as Structured Exception Handler
Overwrite Protection (SEHOP), and was first shipped with Windows Vista Service
Pack 1 and the original release-to-market (RTM) version of Windows Server 2008.
SEHOP differs from SAFESEH in that it does not require code to be built with any

11

special flags. Instead, SEHOP is able to mitigate SEH overwrites by verifying the
integrity of the chain of registered exception handlers at the time that an
exceptional condition occurs. Typically, an SEH overwrite will break the integrity
of this chain, which is what enables SEHOP to mitigate it.

SEHOP support was extended in Windows 7 and Windows Server 2008 R2 by
permitting applications to opt-in on a per-application basis, as opposed to
enabling or disabling SEHOP for the entire system. By default, SEHOP is disabled
in Windows Vista and Windows 7 for compatibility reasons, and is enabled by
default on Windows Server 2008 and Windows Server 2008 R2.

SEHOP and SAFESEH are both only relevant to 32-bit x86 applications running
on 32-bit or 64-bit versions of Windows. The SEH overwrite exploitation
technique is not relevant to native x64 or Itanium-based versions.

To enable SAFESEH
SAFESEH is enabled by linking x86 executable images with /SAFESEH.

To enable SEHOP
SEHOP can be enabled by setting the DisableExceptionChainValidation Image File
Execution Option (IFEO) to zero on Windows 7 and Windows Server 2008 R2.

Proof point
There are no known exploits for stack-based vulnerabilities that have been capable
of bypassing the combination of /GS, SEHOP, DEP, and ASLR.

Performance considerations
SAFESEH and SEHOP introduce negligible performance overhead into the
exception handling path. Because this path is rarely used, there is generally no
observable performance overhead.

Compatibility considerations
SAFESEH and SEHOP should both be transparent to applications because they
interact with internal and undocumented data structures. However, a small
number of applications have been found to be incompatible with SEHOP because
they modify these internal data structures in an unsupported way.

Deployment considerations
All executable files should be built with SAFESEH to maximize effectiveness of
SAFESEH.

Heap metadata protection

The Windows heap uses metadata to manage allocations made by an application.
Sometimes a heap-based buffer overrun may result in this metadata becoming
corrupted. Failing to detect this corruption could enable an attacker to direct the

12

heap to perform an action that is to the attacker‘s advantage, and could ultimately
enable them to execute arbitrary code. To prevent these types of attacks, various
checks designed to detect metadata corruption and prevent it from being abused
have been added to the Windows heap. In some cases, features more prone to
these types of attacks have been removed from the heap, such as lookaside lists
and free lists.

Windows XP Service Pack 2 was the first version of Windows to introduce
support for a metadata protection technique known as safe unlinking. This
protection is designed to detect when a linked list data structure has been
corrupted and terminate the use of any corrupt data structures. Windows Vista
introduced many additional integrity checks, such as block header encryption and
an expanded role for block header cookies, which are designed to protect against
other types of heap metadata corruption.

Applications can instruct the Windows heap to terminate when metadata
corruption has been detected. The default configuration of this functionality is
application-dependent and platform-dependent.

To enable this mitigation technology
Metadata integrity checks are automatically enabled and cannot be disabled. Heap
termination on corruption is enabled by default for x64 and Itanium-based
applications, and disabled by default for 32-bit x86 applications. To enable this
feature in an application, use the HeapSetInformation API.

Visual C++ 2010 enables HeapTerminateOnCorruption by default for the C-
runtime—that is, any corruption of a C++ object allocated via the typical ‗new‘
operator will lead to termination.

Proof point
No exploits have been observed in the wild that rely on corrupting heap metadata
and target Windows Vista and beyond.

Performance considerations
Because heap metadata protection is enabled by default, there is no additional
performance overhead concern. Heap termination on corruption adds no
additional overhead because this path is only executed when corruption is
detected.

Compatibility considerations
Enabling heap termination on corruption can cause applications with latent heap
corruption issues to terminate when previously they may have silently executed
without a problem.

13

Enhanced Mitigation Experience Toolkit (EMET)

In 2009, Microsoft released a stand-alone tool called the Enhanced Mitigation
Experience Toolkit (EMET). This toolkit is designed to make it easier to enable
and disable exploit mitigation features for a computer as well as for individual
applications. EMET centralizes the management of these settings and includes
support for additional mitigations that are not currently supported by some
versions of Windows. EMET can enable software vendors to test their products
with various mitigations in place, and can also enable both large organizations and
home users to better protect applications that may not currently take advantage of
certain mitigations.

The latest version of EMET can be downloaded here:
http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409.

Proof point
EMET was able to successfully break exploits that targeted unpatched
vulnerabilities in Internet Explorer (MS10-090) and Adobe Reader (CVE-2010-
2883).

Availability of Mitigation Technologies

The availability and default settings for the mitigation technologies described
previously vary based on operating system and compiler version. The following
two figures provide the availability and default settings for mitigation technologies
that are supported by the Windows operating system. The third figure provides
the availability and default settings for mitigation technologies that are supported
by the Visual C++ compiler. The data in these figures show that the latest versions
of Windows and the Visual C++ compiler have the most complete support for the
exploit mitigation technologies described earlier.

Figure 2 and Figure 3 provide mitigation availability details by Windows
operating system version. For software developers, Figure 4 provides mitigation
availability details by Visual C++ compiler version.

http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409

14

The following key is provided to help interpret the data presented in the figures.

Variable Description

n The feature is not supported.

y The feature is supported and enabled.

OptIn
The feature is supported but is not enabled by default;

applications must explicitly enable the feature.

OptOut

The feature is supported and is enabled by default;

applications must explicitly disable the feature if they

do not support it.

AlwaysOn
The feature is supported, enabled, and cannot be

disabled.

Figure 2: Availability and default settings of platform mitigation features by Windows operating system

version (client).

XP

RTM,

SP1

XP

SP2
XP SP3

Vista

RTM

Vista

SP1,

SP2

Win7

RTM,

SP1

SEH

 SafeSEH n y y y y y

 SEHOP n n n n OptIn OptIn

 SEHOP per-

 process OptIn

 support

n n n n n y

Heap

 Safe unlinking n y y y y y

 block header

 cookies
n y y y y y

 lookaside/

 freelist removal
n n n y y y

15

XP

RTM,

SP1

XP

SP2
XP SP3

Vista

RTM

Vista

SP1,

SP2

Win7

RTM,

SP1

 metadata

 encryption
n n n y y y

 terminate on

 corruption (32-

 bit app)

n n n OptIn OptIn OptIn

 terminate on

 corruption (64-

 bit app)

n n n OptOut OptOut OptOut

DEP

 NX support

 (i386)
n OptIn OptIn OptIn OptIn OptIn

 NX support

 (amd64, 32-bit

 app)

n OptIn OptIn OptIn OptIn OptIn

 NX support

 (amd64, 64-bit

 app)

n
Always

On

Always

On

Always

On

Always

On

Always

On

ASLR

 randomization

 support

 images n n n OptIn OptIn OptIn

 stacks n n n OptIn OptIn OptIn

 heaps n n n y y y

 PEBs/TEBs n y y y y y

 entropy (bits)

 images 0 0 0 8 8 8

 stacks 0 0 0 14 14 14

 heaps 0 0 0 5 5 5

 PEBs/TEBs 0 4 4 4 4 4

APIs

16

XP

RTM,

SP1

XP

SP2
XP SP3

Vista

RTM

Vista

SP1,

SP2

Win7

RTM,

SP1

 Set process DEP

 policy support
n n y n y y

Figure 3: Availability and default settings of platform mitigation features by Windows operating system

version (server).

Srv03

RTM

Srv03

SP1, SP2

Srv08

RTM

Srv08 R2

RTM, SP1

SEH

 SafeSEH n y y y

 SEHOP n n OptOut OptOut

 SEHOP per-process OptIn support n n n y

Heap

 safe unlinking n y y y

 block header cookies n y y y

 lookaside/freelist removal n n y y

 metadata encryption n n y y

 terminate on corruption (32-bit app) n n OptIn OptIn

 terminate on corruption (64-bit app) n n OptOut OptOut

DEP

 NX support (i386) n OptOut OptOut OptOut

 NX support (amd64, 32-bit app) n OptOut OptOut OptOut

 NX support (amd64, 64-bit app) n AlwaysOn AlwaysOn AlwaysOn

 NX support (ia64) n/a AlwaysOn AlwaysOn AlwaysOn

ASLR

17

Srv03

RTM

Srv03

SP1, SP2

Srv08

RTM

Srv08 R2

RTM, SP1

 randomization support

 images n n OptIn OptIn

 stacks n n OptIn OptIn

 heaps n n y y

 PEBs/TEBs n y y y

 entropy (bits)

 images 0 0 8 8

 stacks 0 0 14 14

 heaps 0 0 5 5

 PEBs/TEBs 0 4 4 4

APIs

 SetProcessDEPPolicy support n n y y

18

Figure 4: Availability and default settings for Visual C++ compiler mitigation features and flags.

Visual C++ Compiler

Tools
VC6

VC7

(VS2002)

VC7.1

(VS2003)

VC8

(VS2005)

VC8.1

(VS2005

SP1)

VC9

(VS2008)

VC10

(VS2010)

GS

 stack cookies n OptOut OptOut OptOut OptOut OptOut OptOut

 string buffers n OptOut OptOut OptOut OptOut OptOut OptOut

 strict_gs_check

 pragma
n n n n OptIn OptIn OptIn

 non-pointer

 arrays
n n n n n n OptOut

 structs (pure data) n n n n n n OptOut

 variable reordering n n OptOut OptOut OptOut OptOut OptOut

 shadow parameter

 copying
n n n OptOut OptOut OptOut OptOut

 operator new[]

 integer overflow

 check

n n n AlwaysOn AlwaysOn AlwaysOn AlwaysOn

Linker flags

 /DYNAMICBASE n n n OptIn OptIn OptIn OptOut

 /SAFESEH n n OptOut OptOut OptOut OptOut OptOut

 /NXCOMPAT n OptIn OptIn OptIn OptIn OptIn OptOut

19

The tables in Figure 5 and Figure 6 provide a breakdown of the mitigation
technologies that are enabled by default for major versions of Microsoft Internet
Explorer and Microsoft Office when running on different versions of Windows.
The key point to observe is that the latest versions of these products benefit the
most in terms of exploit mitigation technologies when running on the latest
versions of Windows. It should be noted that since Windows XP Service Pack 2
all versions of Internet Explorer have been built with /GS and SAFESEH enabled.
Microsoft Office has been built with /GS since Microsoft Office 2003 and
SAFESEH since Microsoft Office 2007.

In Figure 5 and Figure 6 green indicates that the feature is enabled.

Figure 5: Default settings for exploit mitigation technologies for Microsoft Internet Explorer by version

of Windows.

 Internet Explorer 6 Internet Explorer 7 Internet Explorer 8 Internet Explorer 93

XP SP2

SEHOP SEHOP SEHOP

Heap terminate Heap terminate Heap terminate

DEP DEP DEP

ASLR (images & stacks) ASLR (images & stacks) ASLR (images & stacks)

XP SP3

SEHOP SEHOP SEHOP

Heap terminate Heap terminate Heap terminate

DEP DEP DEP

ASLR (images & stacks) ASLR (images & stacks) ASLR (images & stacks)

Vista
RTM

 SEHOP SEHOP

 Heap terminate Heap terminate

 DEP DEP

 ASLR (images & stacks) ASLR (images & stacks)

Vista
SP1, SP2

 SEHOP SEHOP SEHOP

 Heap terminate Heap terminate Heap terminate

 DEP DEP DEP

 ASLR (images & stacks) ASLR (images & stacks) ASLR (images & stacks)

Win7

 SEHOP SEHOP

 Heap terminate Heap terminate

 DEP DEP

 ASLR (images & stacks) ASLR (images & stacks)

3 Internet Explorer 9 requires Windows Vista Service Pack 2, Windows 7 RTM, or above.

20

Figure 6: Default settings for exploit mitigation technologies for Microsoft Office by version of

Windows.

Microsoft Office 2003 Microsoft Office 20074 Microsoft Office 2010

XP SP2

SEHOP SEHOP SEHOP

DEP DEP DEP

ASLR (images & stacks) ASLR (images & stacks) ASLR (images & stacks)

XP SP3

SEHOP SEHOP SEHOP

DEP DEP DEP

ASLR (images & stacks) ASLR (images & stacks) ASLR (images & stacks)

Vista RTM

SEHOP SEHOP SEHOP

DEP DEP DEP

ASLR (images & stacks) ASLR (images) ASLR (images & stacks)

Vista
SP1, SP2

SEHOP SEHOP SEHOP

DEP DEP DEP

ASLR (images & stacks) ASLR (images) ASLR (images & stacks)

Win7

SEHOP SEHOP SEHOP

DEP DEP DEP

ASLR (images & stacks) ASLR (images) ASLR (images & stacks)

4 Microsoft Office 2007 Service Pack 3 enabled ASLR support for stacks.

21

Call to action

Maximizing the effectiveness of the exploit mitigation technologies described in
this document requires action on the part of software vendors, enterprise
administrators, and home and business users. These actions are itemized in the
following subsections.

Software vendors

 Build your software with exploit mitigation technologies such as DEP, ASLR,

SEHOP, and /GS enabled by default. Detailed instructions on how this can be

accomplished are available at: http://msdn.microsoft.com/en-

us/library/bb430720.aspx.

 Verify that your software has been built with DEP, ASLR, SEHOP, and /GS

enabled by taking advantage of the SDL BinScope tool developed by

Microsoft, which is available at:

www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90

e6181c-5905-4799-826a-772eafd4440a.

Enterprise IT departments

 Require ISVs and application suppliers to opt in to exploit mitigations as part

of the acceptance criteria when procuring an application.

 Use EMET to enable exploit mitigation technologies for critical applications

that may be at risk of being attacked. EMET can be downloaded from:

http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409.

 Enable exploit mitigations such as SEHOP (provided by the client/server

Windows platform) on a system-wide basis whenever possible.

Home and business users

 Demand that software vendors enable exploit mitigation technologies.

http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409

22

 Use EMET to enable exploit mitigation technologies for critical applications

that may be at risk of being attacked. EMET can be downloaded from:

http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409.

http://go.microsoft.com/fwlink/?LinkID=200220&clcid=0x409

23

References

/GS Stack Buffer Overrun Detection

 Compiler Security Checks In Depth: http://msdn.microsoft.com/en-
us/library/aa290051.aspx

 /GS cookie protection—effectiveness and limitations:
http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-
effectiveness-and-limitations.aspx

Enhanced /GS in Visual Studio 2010:
http://blogs.technet.com/b/srd/archive/2009/03/20/enhanced-gs-in-visual-
studio-2010.aspx

Data Execution Prevention (DEP)

 Understanding DEP as a mitigation technology:

o Part 1:

http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-

dep-as-a-mitigation-technology-part-1.aspx

o Part 2:

http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-

dep-as-a-mitigation-technology-part-2.aspx

 On the effectiveness of DEP and ASLR:

http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-

dep-and-aslr.aspx

Address Space Layout Randomization (ASLR)

 On the effectiveness of DEP and ASLR:
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-
dep-and-aslr.aspx

http://msdn.microsoft.com/en-us/library/aa290051.aspx
http://msdn.microsoft.com/en-us/library/aa290051.aspx
http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://blogs.technet.com/b/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://blogs.technet.com/b/srd/archive/2009/03/20/enhanced-gs-in-visual-studio-2010.aspx
http://blogs.technet.com/b/srd/archive/2009/03/20/enhanced-gs-in-visual-studio-2010.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-part-1.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-part-1.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-part-2.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-part-2.aspx
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-dep-and-aslr.aspx
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-dep-and-aslr.aspx
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-dep-and-aslr.aspx
http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-dep-and-aslr.aspx

24

SAFESEH and Structured Exception Handler

Overwrite Protection (SEHOP)

 /SAFESEH: http://msdn.microsoft.com/en-us/library/9a89h429(VS.80).aspx

 How to enable SEHOP: http://support.microsoft.com/kb/956607

 Preventing the exploitation of SEH overwrites:
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-
exploitation-of-seh-overwrites-with-sehop.aspx

Heap Metadata Protection

 Windows Vista Heap Management Enhancements:
www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf

 Preventing the exploitation of user mode heap corruption vulnerabilities:
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-
exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx

To learn more about security science at Microsoft please visit:
http://www.microsoft.com/msec

http://msdn.microsoft.com/en-us/library/9a89h429(VS.80).aspx
http://support.microsoft.com/kb/956607
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx
http://blogs.technet.com/b/srd/archive/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities.aspx
http://www.microsoft.com/msec

25

One Microsoft Way

Redmond, WA 98052-6399

microsoft.com/security

