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1 Introduction

A new proof of the following theorem of Glauberman [5] is presented.

The Solvable Signalizer Functor Theorem. Let G be a finite group, A
an elementary abelian r-subgroup of G with rank m(A) ≥ 3 and θ a solvable
A-signalizer functor on G. Then θ is solvably complete.

For the benefit of the uninitiated, in §3 there is an exposition of elementary
signalizer functor theory - including the basic definitions.

Signalizer functors were invented by Gorenstein as a tool for use in the
Classification of Finite Simple Groups, see [8] for a discussion. The first solvable
signalizer functor theorem was established by Gorenstein who considered the
case r = 2,m(A) ≥ 5. Goldschmidt [6], [7] improved this work, dealing with the
cases r odd, m(A) ≥ 4 and r = 2,m(A) ≥ 3. Glauberman was the first to prove
the definitive Solvable Signalizer Functor Theorem. A proof similar in outline
to Glauberman’s appears in the book by Kurzweil and Stellmacher [9].

Bender [3] gives a remarkably short proof in the case r = 2. His argument
is quite different from Glauberman’s. The ingredients are:

• An idea of Glauberman enabling effective use of induction.

• Bender’s Maximal Subgroup Theorem.

• Glauberman’s ZJ-Theorem.

• A fixed point theorem.

In attempting to generalize Bender’s proof to arbitrary r, two difficulties arise:
the ZJ-Theorem cannot be applied to all solvable groups of even order; and the
fixed point theorem is not valid when r is a Fermat prime.

Aschbacher, in the first edition of his book Finite Group Theory, gives a
proof of the Solvable Signalizer Functor Theorem along these lines. He uses
the less powerful Glauberman Failure of Factorization Theorem as a substitute
for the ZJ-Theorem and develops techniques for dealing with Fermat primes.
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Unfortunately the difficulties are such that the resulting proof is much more
complex than Bender’s. Indeed, so much so, that in the second edition of Finite
Group Theory, Aschbacher abandons the general case and presents a proof only
for r = 2.

The proof presented here follows Bender’s in outline. A recent result of
the author [4] is a more suitable substitute for the ZJ-Theorem and we use
Aschbacher’s idea for dealing with Fermat primes. The resulting argument is
similar to Aschbacher’s but with several layers of complexity removed. Since we
have to use [4], there is no overall reduction in length. However, the resulting
conceptual simplification and the applicability of [4] to other problems make the
effort worthwhile.

2 Preliminaries

All groups considered in this paper are finite.

Definition 2.1. Let A and G be groups. Then A acts coprimely on G if
we are given a homomorphism θ : A −→ Aut(G); the orders of A and G are
coprime; and at least one of A or G is solvable.

Definition 2.2. Suppose that A acts coprimely on G and let p be a prime.
Then:

(a) Sylp(G ; A) is the set of maximal, under inclusion, A-invariant p-subgroups
of G.

(b) Op(G ; A) =
⋂

Sylp(G ; A).

Coprime Action. Suppose A acts coprimely on the group G.

(a) Let p be a prime. Then Sylp(G ; A) ⊆ Sylp(G); CG(A) acts transitively by
conjugation on Sylp(G ; A); and every ACG(A)-invariant p-subgroup of G
is contained in Op(G ; A).

(b) Suppose G is solvable and π is a set of primes. Then G possesses a unique
maximal ACG(A)-invariant π-subgroup.

(c) Suppose K is an A-invariant normal subgroup of G. Set G = G/K. Then
CG(A) = CG(A).

(d) G = CG(A)[G,A] and [G,A] = [G,A, A].

(e) Suppose X and Y are A-invariant subgroups of G with G = XY . Then
CG(A) = CX(A)CY (A).

(f) Suppose G is solvable and [F (G), A] = 1. Then [G,A] = 1.

(g) Suppose G is solvable, p is a prime and [P, A] = 1 for some P ∈ Sylp(G ;A).
Then [G,A] ≤ Op′(G).
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(h) Suppose A is elementary abelian and noncyclic. Then

G = 〈CG(B) | B ∈ Hyp(A) 〉
= 〈CG(a) | a ∈ A# 〉.

Let T ≤ A. Then

[G,T ] = 〈 [CG(B), T ] | B ∈ Hyp(A) 〉
= 〈 [CG(a), T ] | a ∈ A# 〉.

Proof. (a),(b),(c). See [9, p.185-187]. (d) is [9, p.184] and (e) is [9, p.188].
(f). We have [G,A] ≤ CG(F (G)). Since G is solvable, CG(F (G)) ≤ F (G).

Thus [G,A, A] = 1. Apply (c).
(g). Set G = G/Op′(G), so F (G) = Op(G). Then [Op(G), A] ≤ [P ,A] = 1.

Apply (f).
(h) is [9, p.193]. Recall that if A is an elementary abelian r-group then

Hyp(A) is the set of subgroups of A with index r.

P × Q-Lemma ([9, p.187]). Suppose P × Q acts on the group V where P
and V are p-groups and Q is a p′-group. If [CV (P ), Q] = 1 then [V, Q] = 1.

Goldschmidt Lemma ([9, p.190]). Let P be a p-subgroup of the solvable
group G. Then Op′(N(P )) ≤ Op′(G).

Definition 2.3. A group M has characteristic p, where p is a prime p, if
CM (Op(M)) ≤ Op(M).

Remark. This is equivalent to F ∗(M) = F (M) = Op(M); and if M is solvable
to Op′(M) = 1.

Definition 2.4. A weak primitive pair for a group G is a pair (M1, M2) of
distinct subgroups of G that satisfy

• whenever { i, j } = { 1, 2 } and 1 6= K charMi with K ≤ M1 ∩ M2 then
NMj (K) = M1 ∩M2.

Moreover, (M1,M2) has characteristic p if in addition:

• for each i, Mi has characteristic p and Op(M1)Op(M2) ≤ Mi.

Definition 2.5. If M and H are solvable subgroups of the group G we define

M Ã H

to mean there exists X ≤ F (M) with XCF (M)(X) ≤ H.

Bender’s Maximal Subgroup Theorem. Suppose that (M,H) is a weak
primitive pair of solvable groups for the group G and that M Ã H. Then:

(a) Oq(H) ∩M = 1 for all q 6∈ π(F (M)).
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(b) If H Ã M or Oq(H) = 1 for all q 6∈ π(F (M)) then there is a prime p
such that M and H have characteristic p.

We use the following as a substitute for the ZJ-Theorem.

Theorem 2.6 ([4, Corollary C]). Let G be a group. The following configu-
ration is impossible.

• (M1, M2) is a weak primitive pair of characteristic p for G.

• M1 and M2 are solvable.

• For each i there is a group Ai that acts coprimely on Mi and
Op(M1)Op(M2) ≤ Op(Mi ;Ai).

3 Signalizer Functors

This section is aimed at the uninitiated. It develops elementary signalizer func-
tor theory. Henceforth, G is a group, r is a prime and A a noncyclic elementary
abelian r-subgroup of G.

Definition 3.1. An A-signalizer functor on G is a mapping θ which for
each a ∈ A# assigns an A-invariant r′-subgroup

θ(C(a))

of C(a) and satisfies
θ(C(a)) ∩ C(b) ≤ θ(C(b))

for all a, b ∈ A#. Moreover, θ is solvable if θ(C(a)) is solvable for all a ∈ A#.

A trivial way of constructing signalizer functors is as follows: let M be an A-
invariant r′-subgroup of G and define θ(C(a)) = C(a)∩M . The aim of signalizer
functor theory is to show that every signalizer functor arises in this way. Since
there are many other ways of constructing signalizer functors, see for example
[8], we have a useful tool for constructing subgroups of G.

Definition 3.2. An A-signalizer functor θ on G is complete if there is an
A-invariant r′-subgroup M os G such that

θ(C(a)) = C(a) ∩M

for all a ∈ A#. If M is solvable then we say that θ is solvably complete.

Remarks. Since A is noncyclic it follows from Coprime Action(h) that M is
uniquely determined. If θ is (solvably) complete then the subgroups θ(C(a))
generate a proper (solvable) r′-subgroup of G.

Henceforth θ is an A-signalizer functor on G.
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Definition 3.3. A θ-subgroup of G is an A-invariant r′-subgroup H of G
with the property

C(a) ∩H ≤ θ(C(a))

for all a ∈ A#.

By the definition of signalizer functor, the subgroups θ(C(a)) are θ-subgroups.

Lemma 3.4. Let H be a θ-subgroup of G. Then:

(a) Every A-invariant subgroup of H is a θ-subgroup.

(b) If B is a noncyclic subgroup of A then

H = 〈 θ(C(b)) ∩H | b ∈ B# 〉.
(c) If K is also a θ-subgroup and HK = KH then HK is a θ-subgroup.

Proof. (a) is trivial. (b) and (c) follow from Coprime Action(h) and (e) respec-
tively.

The θ-subgroups of G are partially ordered by inclusion. Hence we may refer
to the maximal θ-subgroups of G. Trivially:

Lemma 3.5. The following are equivalent:

(a) θ is complete.

(b) G possesses a unique maximal θ-subgroup.

Moreover, the subgroup M in the definition of complete is the unique maximal
θ-subgroup.

Using Coprime Action(h) we have:

Lemma 3.6. The following are equivalent:

(a) θ is (solvably) complete.

(b) For every noncyclic B ≤ A, 〈 θ(C(b)) | b ∈ B# 〉 is a (solvable) θ-subgroup.

(c) There exists a noncyclic B ≤ A such that 〈 θ(C(b)) | b ∈ B# 〉 is a
(solvable) θ-subgroup.

Given H with A ≤ H ≤ G we can consider the θ-subgroups of G that are
contained in H. If there is a unique maximal such subgroup then we denote it
by

θ(H)

and say that θ(H) is defined. Thus θ is complete if and only if θ(G) is defined.
A moments thought reveals that if a ∈ A# then every θ-subgroup of C(a) is
contained in θ(C(a)). Thus there is no ambiguity in the notation θ(C(a)).

Alternatively, we can define an A-signalizer functor θH on H by

θH(C(a)) = θ(C(a)) ∩H.

Then θ(H) is defined if and only if θH is complete.
The following are left for the reader:
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Lemma 3.7. Suppose A ≤ N ≤ G and θ(N) is defined. Then

M ∩N = M ∩ θ(N)

for every θ-subgroup M .

Lemma 3.8. Suppose 1 6= B ≤ A. Then

(a) θ(C(B)) is defined and θ(C(B)) =
⋂

b∈B# θ(C(b)).

(b) If b ∈ B# then θ(C(b)) ∩ C(B) = θ(C(B)).

(c) If M is a θ-subgroup then CM (B) = M ∩ θ(C(B)).

Lemma 3.9. Let a ∈ A#. Then

θ(C(a)) = 〈 θ(C(B)) | a ∈ B ∈ Hyp(A) 〉.

The subgroup θ(C(A)) plays a prominent role in signalizer functor theory.
Next we consider quotients.

Lemma 3.10. Suppose N E G is a (solvable) θ-subgroup. Set G = G/N and
define θ by

θ(C(a)) = θ(C(a))

for each a ∈ A#. Then

(a) θ is a A-signalizer functor on G.

(b) Suppose N ≤ M ≤ G. Then M is a θ-subgroup if and only if M is a
θ-subgroup.

(c) θ is (solvably) complete if and only if θ is (solvably) complete.

Definition 3.11. Let p be a prime. A subgroup of G is a (p, θ)-subgroup if
it is both a p-subgroup and a θ-subgroup. The set of maximal (p, θ)-subgroups is
denoted by

Sylp(G ; θ).

Transitivity Theorem ([9, p.369]). Let p be a prime and assume that m(A) ≥
3. Then θ(C(A)) acts transitively by conjugation on Sylp(G ; θ).

Finally we define
π(θ) =

⋃

a∈A#

π(θ(C(a)))

where for any group X the set of prime factors of |X| is denoted by π(X).

6



4 Fixed point theorems

Lemma 4.1 ([1, (36.2), p.193]). Let r, p and q be distinct primes, a an
element of order r faithful on a p-group P and V a faithful GF (q)〈 a 〉P -module.
If r is a Fermat prime and p = 2 assume P is abelian. Then CV (a) 6= 0.

Theorem 4.2. Let r and p be primes, a an element of order r acting on a
solvable r′-group G and P an 〈 a 〉C(a)-invariant subgroup of G with P = [P, a].
If r is a Fermat prime and p = 2 assume P is abelian. Then P ≤ Op(G).

Proof. Let G be a minimal counterexample. Let V be a minimal a-invariant
normal subgroup of G and set G = G/V . Note that V is an elementary abelian
q-group for some prime q. Coprime Action(c) and the minimality of G imply
P ≤ Op(G). Let N be the inverse image of Op(G) in G, so P ≤ N E G. Then
q 6= p. Also Op(G) = 1 since otherwise we could have chosen V ≤ Op(G).

Choose S with P ≤ S ∈ Sylp(N). Then N = SV and CP (V ) ≤ CS(V ) =
Op(N) ≤ Op(G) = 1. The minimality of G forces G = PV . If [V, a] = 1 then
P = [P, a] ≤ CP (V ) = 1, a contradiction. Thus [V, a] 6= 1. Since a has prime
order r 6= p and since CP (V ) = 1 it follows that 〈 a 〉P is faithful on V .

Lemma 4.1 implies CV (a) 6= 1. As P is C(a)-invariant we have [P,CV (a)] ≤
P ∩ V = 1. Now G = PV so CV (a) is an a-invariant normal subgroup of G.
The choice of V forces V = CV (a). This contradicts the previous paragraph
and completes the proof.

The following results are needed when r is a Fermat prime.

Lemma 4.3 ([1, (36.4), p.194]). Let r and p be distinct odd primes, let a be
an element of order r faithful on a p-group P , assume 〈 a 〉P acts faithfully on a
2-group T , and assume V is a faithful GF (p)〈 a 〉PT -module. Then CV (a) 6= 0.

Theorem 4.4. Let a be an element of prime order r acting on the solvable
r′-group G. Let X = [X, a] be an 〈 a 〉C(a)-invariant subgroup of G. Then
O2(O2(X)) ≤ O2(G).

Proof. This is a special case of [1, (36.5), p.194]. Let G be a minimal coun-
terexample, set T = O2(O2(X)) 6= 1 and let V be a minimal a-invariant normal
subgroup of G. Then V is an elementary abelian p-group for some prime p 6= 2.
Arguing as in Theorem 4.2, we obtain O2(G) = 1, G = XV, X ∩ V = 1 and
〈 a 〉X is faithful on V . Moreover [CV (a), X] ≤ X ∩ V = 1 so CV (a) E G and
then CV (a) = 1.

Let q ∈ π(X) − { 2, p }, choose Q ∈ Sylq(X ; a) and set H = [Q, a]V . Using
Coprime Action(e), CH(a) ≤ [Q, a] so Theorem 4.2 implies [Q, a] ≤ Oq(H).
Then [Q, a] ≤ CX(V ) = 1 and |X|q = |CX(a)|q. Let X0 be an a-invariant Hall
{ 2, p }-subgroup of X. It follows that X = CX(a)X0 whence X = [X, a] ≤ X0

and we conclude that X is a { 2, p }-group.
Let P ∈ Sylp(X ; a). If [P, a] = 1 then Coprime Action(g) implies X =

[X, a] ≤ Op′(X) = O2(X) whence O2(X) = 1, a contradiction. Thus 1 6=
[P, a] ≤ O2(X). Now 〈 a 〉P acts faithfully and irreducibly on V so Op(X) =
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1. Then Op(O2(X)) = 1 so as O2(X) is a solvable { 2, p }-group, it follows
that 〈 a 〉[P, a] acts faithfully on T . The previous lemma implies CV (a) 6= 1, a
contradiction.

5 The minimal counterexample

Henceforth we assume the Solvable Signalizer Theorem to be false and consider
a minimal counterexample with |G|+ |π(θ)| minimal.

Lemma 5.1. (a) If B is a noncyclic subgroup of A then

〈 θ(C(b)) | b ∈ B# 〉

is not contained in a solvable θ-subgroup of G.

(b) No nontrivial solvable θ-subgroup is normal in G.

(c) If X 6= 1 is a solvable θ-subgroup then θ(N(X)) is defined and solvable.

(d) If M is a maximal solvable θ-subgroup and 1 6= X EM is A-invariant then
M = θ(N(X)).

(e) If M1 and M2 are distinct maximal solvable θ-subgroups then (M1,M2) is
a weak primitive pair for G.

Proof. This is a consequence of the minimality of G and the elementary results
from §3.

Theorem 5.2. Let p ∈ π(θ) and P ∈ Sylp(G ; θ). Then CA(P ) = 1.

Proof. We repeat the proof given in [3], which relies on an idea of Glauberman.
Let a ∈ A#. Now A acts on the solvable r′-group θ(C(a)) so Coprime Action(b)
implies that θ(C(a)) possesses a unique maximal Aθ(C(a))∩C(A)-invariant p′-
subgroup, which we denote by

ψ(C(a)).

Lemma 3.7 implies θ(C(a)) ∩ C(A) = θ(C(A)). Thus ψ(C(a)) is the unique
maximal Aθ(C(A))-invariant p′-subgroup of θ(C(a)). It follows that ψ is an
A-signalizer functor. Indeed, if b ∈ A# then

ψ(C(a)) ∩ C(b) ≤ θ(C(a)) ∩ C(b) ≤ θ(C(b))

and so the left hand side, being an Aθ(C(A))-invariant p′-subgroup of θ(C(b)),
is contained in ψ(C(b)).

By construction, π(ψ) ⊆ π(θ)− { p } so the minimality of π(θ) implies that
ψ is solvably complete. Let

K = ψ(G).

For each a ∈ A#, K∩C(a) = ψ(C(a)) ≤ θ(C(a)) so K is a solvable θ-subgroup.
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Assume the theorem to be false. Choose T with Zr
∼= T ≤ CA(P ). Since

θ(C(A)) ≤ C(T ), the Transitivity Theorem implies that T centralizes every
(p, θ)-subgroup of G. For each a ∈ A#, an A-invariant Sylow p-subgroup of
θ(C(a)) is a (p, θ)-subgroup so Coprime Action(g) yields

[θ(C(a)), T ] ≤ Op′(θ(C(a))) ≤ ψ(C(a)) = CK(a) ≤ θ(C(a)).

Coprime Action(d) implies

[θ(C(a)), T ] = [CK(a), T ]. (∗)
Let B ∈ Hyp(A) with T < B < A. Now B is noncyclic so Coprime Action(h)

and (∗) imply
[K, T ] = 〈 [θ(C(b)), T ] | b ∈ B# 〉.

For each b ∈ B#, θ(C(B)) normalizes θ(C(b)) and T . It follows that θ(C(B))
normalizes [K, T ]. Lemma 3.8 implies θ(C(T )) normalizes [K,T ]. Lemma 3.4(c)
implies that

θ(C(T ))[K, T ]

is a solvable θ-subgroup.
Let a ∈ A#. Using Coprime Action(d) and (∗) we have

θ(C(a)) =
(
θ(C(a)) ∩ C(T )

)
[θ(C(a)), T ]

≤ θ(C(T ))[K, T ].

Lemma 5.1(a) supplies a contradiction.

Corollary 5.3. Suppose a ∈ A#, M is a maximal solvable θ-subgroup, θ(C(a)) ≤
M , p ∈ π(F (M)) and S ∈ Sylp(M ;A). Then:

(a) [S, a] 6= 1.

(b) [F (M), a] 6= 1.

(c) Suppose [O(M), a] = 1 6= O(M) and p 6= 2. Then

1 6= [
[S, a], O2(M)

] ≤ O2(O2([M,a])).

Proof. (a). Suppose [S, a] = 1. Let N = θ(N(S)), so N = CN (a)[N, a]. Now
CN (a) ≤ θ(C(a)) ≤ M . Also [N, a] ≤ C(S) ≤ C(Op(M)) ≤ N(Op(M)).
Then [N, a] ≤ θ(N(Op(M))) = M by Lemma 5.1. Thus N ≤ M . Choose
P with S ≤ P ∈ Sylp(G ; θ). Then NP (S) ≤ θ(N(P )) = N ≤ M whence
NP (S) = S and then S = P ∈ Sylp(G ; θ). Since [S, a] = 1, Theorem 5.2
supplies a contradiction.

(b). Apply Coprime Action(f).
(c). Since O2([M, a]) E M and [S, a] ≤ O2([M,a]) the inclusion is clear.

Suppose
[
[S, a], O2(M)

]
= 1. Now [O(M), a] = 1 whence

[S, a] ≤ C(O2(M)) ∩ C(O(M)) ≤ C(F (M)) ≤ F (M)

and so [S, a] ≤ O(M) because p 6= 2. Then [S, a] = [S, a, a] ≤ [O(M), a] = 1,
contrary to (a).
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6 A uniqueness theorem

Let

L be the set of nontrivial θ(C(A))-invariant solvable θ-subgroups, and
L∗ be the set of maximal members of L under inclusion.

Trivially, if M ∈ L∗ then θ(C(A)) ≤ M and CM (A) = θ(C(A)). Moreover,
L∗ 6= ∅ since otherwise θ = 1.

Lemma 6.1. Suppose B is a noncyclic subgroup of A, M is a maximal solvable
θ-subgroup of G and x ∈ θ(C(B))−M . Then (M, Mx) is a weak primitive pair.

Proof. We have θ(C(B)) ∩ N(M) ≤ θ(N(M)) = M so M 6= Mx. Let 1 6=
K charM and set N = NMx(K). If b ∈ B# then x ∈ θ(C(B)) ≤ θ(C(b)) so

CN (b) ≤ CMx(b) =
(
CM (b)

)x ≤ θ(C(b))x = θ(C(b)).

Hence CN (b) ≤ θ(C(b)) ∩N(K) ≤ θ(N(K)) = M . Coprime Action(h) implies
N ≤ M , so NMx(K) ≤ M .

Let 1 6= K charMx and set y = x−1. Then Ky charM so applying the
above, with y in place of x, yields NMy (Ky) ≤ M . Thus NM (K) ≤ Mx. The
proof is complete.

Theorem 6.2. Let p be a prime. Then L∗ contains at most one member with
characteristic p.

Proof. Suppose M ∈ L∗ has characteristic p. Let

P =
⋂

Sylp(G ; θ).

The Transitivity Theorem implies that P contains every θ(C(A))-invariant (p, θ)-
subgroup of G. In particular, Op(M) ≤ P . Set

Q = P ∩M.

Since CM (A) = θ(C(A)) it follows that Q = Op(M ; A).
We claim that θ(N(Q)) ≤ M . Assume false and set N = θ(N(Q)). By

Coprime Action(h) there exists B ∈ Hyp(A) and x ∈ CN (B) − M . Since N
is a θ-subgroup we have x ∈ θ(C(B)). Also B is noncyclic because m(A) ≥ 3.
Lemma 6.1 implies (M, Mx) is a weak primitive pair. Now x ∈ N(Q) so

Op(M)Op(Mx) ≤ Q = Qx = Op(M ;A) = Op(Mx ; Ax) ≤ M ∩Mx.

Consequently (M, Mx) has characteristic p. Note that A and Ax act coprimely
on M and Mx respectively. Theorem 2.6 supplies a contradiction. We deduce
that θ(N(Q)) ≤ M . In particular, NP (Q) ≤ P ∩M = Q whence P = Q ≤ M .

Now suppose H ∈ L∗ also has characteristic p and H 6= M . Lemma 5.1
implies (M, H) is a weak primitive pair. By the previous paragraph,

Op(M)Op(H) ≤ P = Op(M ; A) = Op(H ; A).

Then (M, H) has characteristic p. Theorem 2.6, with A1 = A2 = A, supplies a
contradiction.
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Corollary 6.3. Let M, H ∈ L∗ with M Ã H. Suppose at least one of the
following hold:

(a) H Ã M , or

(b) Oq(H) = 1 for all q 6∈ π(F (M)).

Then M = H.

Proof. Apply Lemma 5.1(e), Bender’s Maximal Subgroup Theorem and Theo-
rem 6.2.

7 The generic case

For each a ∈ A# let

Ma = {M ∈ L∗ | θ(C(a)) ≤ M }.
Note that θ(C(A)) ≤ θ(C(a)), so as L∗ 6= ∅ it follows that Ma 6= ∅. Choose

Ma ∈Ma

but if possible with COp(Ma)(a) = 1 for some p ∈ π(F (Ma)).
The strategy is quite simple. Lemma 5.1 implies not all the M ’s can be

equal. Using §4 and §6 we are able to force many of the M ’s to equal one
another. The resulting tension leads to a contradiction.

Lemma 7.1. Let B be a noncyclic subgroup of A. Then there exists b, c ∈ B#

such that Mb 6= Mc.

Proof. This follows from Lemma 5.1(a).

Lemma 7.2. Let a ∈ A# and H ∈Ma with Ma Ã H. Then Ma = H.

Proof. Assume false. By Corollary 6.3 there exists q ∈ π(F (H)) − π(F (Ma)).
Bender’s Maximal Subgroup Theorem implies Oq(H) ∩Ma = 1. In particular
COq(H)(a) = 1.

The definition of Ma implies COp(H)(a) = 1 for some p ∈ π(F (Ma)). Let
Z = Z(Op(Ma)). Then Z ≤ H because Ma Ã H. Now CZ(a) = 1 so Z = [Z, a].
As CH(a) = θ(C(a)) = CM (a) we see that Z is 〈 a 〉CH(a)-invariant. Note that
Z is abelian. Theorem 4.2 forces Z ≤ Op(H). But then

Oq(H) ≤ θ(N(Z)) = Ma,

contradicting Oq(H) ∩Ma = 1.

Lemma 7.3. Let a ∈ A# and 1 6= X ≤ F (Ma) such that X is Aθ(C(a))-
invariant. Then θ(N(X)) ≤ Ma.

Proof. Choose H with θ(N(X)) ≤ H ∈Ma. Then NF (Ma)(X) ≤ θ(N(X)) ≤ H
so Ma Ã H. Apply the previous lemma.
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Lemma 7.4. Suppose p 6= 2, a ∈ A# and 1 6= P ≤ COp(Ma)(a) with P ∈ L.
Then θ(N(P )) ≤ Ma.

Proof. Assume false and choose H with θ(N(P )) ≤ H ∈ L∗ and H 6= Ma. Since
P ≤ F (Ma) we have Ma Ã H. We claim:

F (H) does not contain a nontrivial
Aθ(C(a))-invariant subgroup of F (Ma).

}
(∗)

Indeed, suppose X is such a subgroup. Lemma 7.3 implies θ(N(X)) ≤ Ma so
H Ã Ma. Corollary 6.3 supplies a contradiction, which establishes (∗).

Let q 6∈ { 2, p }. Then Oq(Ma) ≤ θ(N(P )) ≤ H. Now CH(a) ≤ θ(C(a)) ≤
Ma so Oq(Ma) is CH(a)-invariant. Theorem 4.2 forces [Oq(Ma), a] ≤ Oq(H).
Then (∗) implies [Oq(Ma), a] = 1.

Let P ∗ = COp(Ma)(a) ≥ P . Then P ∗ is Aθ(C(a))-invariant. Moreover
COp(Ma)(P ∗) ≤ θ(C(P )) ≤ H so Theorem 4.2 implies [COp(Ma)(P ∗), a] = 1.
Applying the P × Q-Lemma to the action of 〈 a 〉 × P ∗ on Op(Ma) we deduce
that [Op(Ma), a] = 1.

We have shown that [O(F (Ma)), a] = 1 so [O(Ma), a] = 1 by Coprime
Action(f). Now p 6= 2 and 1 6= P ≤ Op(Ma) so O(Ma) 6= 1. Corollary 5.3
implies

O2(O2([Ma, a])) 6= 1.

Now [Op(Ma), a] = 1 so [Ma, a] ≤ θ(C(Op(Ma))) ≤ θ(C(P )) ≤ H. Theorem 4.4
implies

O2(O2([Ma, a])) ≤ O2(H)

and (∗) supplies a contradiction.

Theorem 7.5. Let a ∈ A#. Then [O(Ma), a] = 1.

Proof. Assume false. Coprime Action(f) implies there exists p 6= 2 such that
[Op(Ma), a] 6= 1 and then Coprime Action(h) implies there exists B ∈ Hyp(A)
with

P :=
[
COp(Ma)(B), a

] 6= 1.

Note that P = [P, a] and P ∈ L. We claim that:

P ≤ Op(L) whenever P ≤ L ∈ L∗. (∗)
Indeed, CL(a) ≤ θ(C(a)) ≤ Ma so 〈PCL(a) 〉 is a p-group. Apply Theorem 4.2.

Let b, c ∈ B#. Then P ≤ Ma ∩ C(b) ≤ θ(C(b)) ≤ Mb so P ≤ Op(Mb).
Lemma 7.4 implies θ(N(P )) ≤ Mb. Also, P ≤ Op(Mc) whence NF (Mc)(P ) ≤
θ(N(P )) ≤ Mb so Mc Ã Mb. By symmetry, Mb Ã Mc so Corollary 6.3 forces
Mb = Mc. Lemma 7.1 supplies a contradiction.

We remark that if r = 2 then each Ma has odd order and a contradiction
follows from Theorem 7.5 and Corollary 5.3. Also if r is not a Fermat prime
then the restriction p 6= 2 is not needed in Lemma 7.4 and then the proof of
Theorem 7.5 yields [F (Ma), a] = 1, again contradicting Corollary 5.3.
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8 The Fermat case

We use an idea of Aschbacher [1]. Choose a ∈ A# with O(Ma) maximal.
Lemma 7.1 and Theorem 6.2 imply that not all the M ’s have characteristic
2. Hence O(Ma) 6= 1 and we may choose an odd prime p with Op(Ma) 6= 1.
Theorem 7.5 implies [Op(Ma), a] = [O(Ma), a] = 1. By Coprime Action(h)
there exists B with Zr × Zr

∼= B < A, a ∈ B and

P := COp(Ma)(B) 6= 1.

Lemma 8.1. Let b ∈ B# and suppose O2(Ma) ∩Mb 6= 1. Then Ma = Mb.

Proof. Let T = O2(Ma) ∩Mb ∈ L. Then Z(O2(Ma))O(Ma) ≤ θ(N(T )) and as
Ma = θ(N(Z(O2(Ma)))) it follows from the Goldschmidt Lemma that O(Ma) ≤
O(θ(N(T ))) and then that

O(Ma) ∩Mb ≤ O(Mb). (∗)
In particular, P ≤ O(Mb).

By Theorem 7.5, [O(Mb), b] = 1 so [Mb, b] ≤ θ(N(P )) ≤ Ma, by Lemma 7.4.
Corollary 5.3 and Theorem 4.4 imply

1 6= O2(O2([Mb, b])) ≤ O2(Ma).

Now O2(O2([Mb, b])) E Mb whence O(Ma) ≤ θ(N(O2(O2([Mb, b])))) = Mb, and
then (∗) yields O(Ma) ≤ O(Mb). The choice of a forces O(Ma) = O(Mb) 6= 1,
whence Ma = Mb.

We are now in a position to derive a final contradiction. Choose S ∈
Sylp(Ma ; A). By Lemma 7.1 there exists b ∈ B# with Mb 6= Ma. Then
O2(Ma) ∩Mb = 1. In particular

CO2(Ma)(b) ≤ O2(Ma) ∩ θ(C(b)) ≤ O2(Ma) ∩Mb = 1.

Set H = [S, b]O2(Ma). Then CH(b) ≤ [S, b]. Theorem 4.2 forces [S, b] ≤ Op(H),
whence [

[S, b], O2(Ma)
]

= 1.

Corollary 5.3(c) implies [
[S, a], O2(Ma)

] 6= 1,

so as a ∈ B ∼= Zr × Zr it follows that 〈 b 〉 is uniquely determined. We deduce
that

Mc = Ma

for all c ∈ B − 〈 b 〉.
Coprime Action(h) implies

[O2(Mb), b] = 〈 [CO2(Mb)(c), b] | c ∈ B − 〈 b 〉 〉
≤ Ma.
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Theorem 7.5 and Corollary 5.3(b) imply [O2(Mb), b] 6= 1 and O2(Ma) 6= 1.
Using Lemma 7.3 we obtain

1 6= NO2(Ma)([O2(Mb), b]) ≤ O2(Ma) ∩Mb = 1.

This contradiction completes the proof of the Solvable Signalizer Functor The-
orem.
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