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Background

This tutorial is meant to acquaint readers from various backgrounds with many of the com-
mon ideas surrounding diffusion. The diffusion equation, most generally stated

∂

∂t
c(x̄, t) = D∇2c(x̄, t), (1)

has multiple historical origins each building upon a unique physical interpretation. This partial
differential equation (PDE) also encompasses many ideas about probability and stochasticity and
its solution will require that we delve into some challenging mathematics. The most common
applications are particle diffusion, where c is interpreted as a concentration and D as a diffusion
coefficient; and heat diffusion where c is the temperature and D is the thermal conductivity. It
has also found use in finance and population dynamics, and is closely related to Schrodinger’s
Equation for a free particle.

But before delving into those fascinating details, what is it that the diffusion equation is
actually trying to describe? It allows us to talk about the statistics of randomly moving particles
in n dimensions. By random, we mean the movement at one moment in time cannot be correlated
movement at any other moment in time, or in other words, there is no deterministic/predictive
power over the exact motion of the particle. Already this means we must abandon Newtonian

1



mechanics and the notion of inertia, in favor of a system that directly responds to fluctuations
in the surrounding environment.

It is then inherent (almost by definition) that diffusion takes place in an environment where
viscous forces dominate (i.e. very low Reynolds Number). Given a group of non-interacting
particles immersed in a fluctuating (Brownian) environment, the movement of each individual
particle is not governed by the diffusion equation. However, many identical particles each obey-
ing the same boundary and initial conditions share statistical properties of their spatial and
temporal evolution. It is the evolution of the probability distribution underlying these statis-
tical properties that the diffusion equation captures. The function c(x̄, t) is a distribution that
gives the probability of finding a perfectly average particle in the small vicinity of the point
x̄ at time t. The evolution of some systems does follow the diffusion equation outright: for
instance, when you put a drop of dye in a beaker of water, there are millions of dye molecules
each exhibiting the random movements of Brownian motion, but as a group they exhibit the
smooth, well-behaved statistical features of the diffusion equation.

In this tutorial we will briefly discuss the equations of motion at low Reynolds number
that underly diffusion. We then derive the diffusion equation from two perspectives: 1) the
continuum limit using potentials, forces and fluxes, 2) from a microscopic point of view where
the individual probabilistic motions of particles lead to diffusion. Finally we explore the diffusion
equation using the Fourier Transform to find a general solution for the case of diffusion in an
infinite n-dimensional space.

A Continuum View of Diffusion

Unlike our macroscopic experiences, where objects move at constant speeds, with a well-defined
momentum in a straight line, the life of a small particle is dominated by fast time scales, short
distances, and collisions with neighboring particles that yield a very erratic (or even ergodic)
motion. In some sense, the apparent disparity between macro- and micro-scopic life is really an
issue of scale, that is to say, our normal observations are very very slow (on the order of seconds)
compared to molecular collisions (on the order 10−12s) and our distances are very very large (on
the order of a 100 m) compared to molecular mean free paths (on the order of 10−10 − 10−9 m).
Thus the ideas of viscosity and random walk are in place only to allow us to ignore the massive
complexity of such a small, fast system, to yield a more tractable problem.

The Reynolds number is a dimensionless measure of the ratio of inertial forces to viscous
forces in a fluid, hence if viscous forces dominate in diffusion, we would expect a very low
Reynolds number. The Reynolds Number of a particle with characteristic size r is given by

R =
ρvsr

η
(2)

where ρ is fluid density, η is absolute viscosity, and vs is the characteristic speed at which the
particle moves through the fluid. In the thermal setting, equipartition gives a measure of 〈vs〉
by

〈vs〉 =

√
kBT

m
, (3)

where m is the particle mass. For example, a particle with radius 10 nm and density comparable
to water, at room temperature vs ∼ 1 m/s. Then given the density (1000 kg/m3) and viscosity
(0.001 Ns/m2) of water, R ' 10−2. At this low Reynolds number, viscous effects dictate that a
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particle moves at a velocity proportional to the force applied

v̄ = σF̄ , (4)

where the constant of proportionality (σ) is called the mobility. Such a strange equation of
motion arises because energy is dissipated very quickly at high viscosity. Let us consider quasi-
spherical particles, where it makes sense that the mobility should decrease both with increasing
particle size (more fluid to move out of the way) and fluid viscosity (each unit volume of fluid
is harder to move out of the way), where by dimensional analysis

σ ∝ 1

rη
. (5)

By definition, a flux is a movement of particles (or other quantities) through a unit measure
(point, length, area) per unit time. In the case of diffusion, we are concerned with a probability
flux (very similar to a concentration flux) and hence

J̄(x̄, t) = c(x̄, t)v̄(x̄, t). (6)

From statistical mechanics we know that the chemical potential (with units of energy) for an en-
semble of non-interacting particles is related to local probability density (or local concentration)
by

µ = µo + kBT ln(c/co), (7)

where µo and co are constants. If the probability density varies in space, then the chemical
potential also varies in space, effectively generating a force on the particles, given by

F̄ = −∇µ = −kBT
c
∇c. (8)

Putting this altogether, this means the flux in the system is

J̄ = −kBTσ∇c. (9)

For spherical particles the mobility is the inverse of the Stokes drag

σ =
1

6πηr
, (10)

and thus the diffusion coefficient is defined as

D =
kBT

6πηr
. (11)

Finally, we recover Fick’s First Law
J̄ = −D∇c. (12)

For a normal diffusion process, particles cannot be created or destroyed, which means the flux of
particles into one region must be the sum of particle flux flowing out of the surrounding regions.
This can be captured mathematically by the continuity equation

∂

∂t
c+∇ · J̄ = 0, (13)
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which upon substitution yields the diffusion equation

∂

∂t
c = ∇ · (D∇c). (14)

If the diffusion coefficient is constant in space, then

∂

∂t
c = D∇2c. (15)

We should note that c and D take on different meanings in different situations: in heat con-
duction c ∝ T and D = κ is the thermal conductivity, and in the movement of material, c is
interpreted as a concentration.

A Microscopic View of Diffusion

The continuum view of diffusion appeals to our intuition about forces and fluxes, but gives
little understanding of how the erratic motion of particles and the probabilistic nature of mo-
tion on this scale gives rise to diffuse behavior. In one of his landmark papers in 1905, Einstein
derived a more general version of the diffusion equation using a microscopic perspective. We
will roughly follow that derivation here.

Imagine you are a small particle in a fluctuating environment. Standing at position x̄ you
are bombarded by particles whose energy is distributed according to e−E/kBT . During a time ∆t
you are impacted by some number of particles such that there is a probability φ that you have
been moved to a new position x̄+ ε̄. In isotropic diffusion, the rate at which you are bombarded
by particles is not dependent on direction, and hence on average your position does not change
much. This defines a ‘jump’ distribution

φ(x̄, ε̄,∆t), (16)

which is interpreted as the probability that during a time ∆t, you will be jostled by your neigh-
bors such that you move from x̄ → x̄ + ε̄. We impose the obvious constraint that regardless of
position or size of the time step, you must jump somewhere (ε̄ = 0 is somewhere), or mathemat-
ically ∫

M
φ(x̄, ε̄,∆t)dε̄ = 1, (17)

whereM is the set of all possible jumps. Now we construct a so-called ‘master equation’, which
dictates how probability flows from one state to another in a system. Consider the probability
density at position x̄ and time t+ ∆t; this can be written as the sum of all probability density
which flows from an arbitrary position into this position in a time ∆t. Whatever probability
density was originally at x̄ has a probability (1− φ(x̄, 0,∆t)dε̄) of moving from x̄, hence it will
always moves. This is written as the Einstein Master Equation

c(x̄, t+ ∆t) =

∫
M
c(x̄− ε̄, t)φ(x̄− ε̄, ε̄,∆t)dε̄. (18)

More pedantically, let us read this as a (long) sentence: the probability density at position x̄
and forward time step t + ∆t is increased by the flow of probability from a point x̄ − ε̄. There
was a probability φ(x̄ − ε̄, ε̄,∆t) that the all the probability density at x̄ − ε̄ (i.e. c(x̄ − ε̄,∆t))
made a jump ε̄ to reach x̄. During that same small time step, whatever probability density
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was originally at x̄ made any number of jumps ε̄ ∈ M to move all of the original probability
density at x̄ to some new point (that is of no consequence). We then go around and add the
contributions from all possible jumps. The truly amazing thing here is that all of the probability
density at a point moves in the same direction. For instance, why doesn’t half of the probability
density go one way, and half another? The success of this theoretical construct demands that
we consider the probability density as being defined by an ensemble average of many identical,
quantized particles (as opposed to the flow of some completely continuous field). This is why it
has been said that Einstein’s analysis of diffusion helped solidify the idea of atoms and molecules
as real physical objects. One could also interpret this as a nascent prediction of the existence of
the particles that carry heat, called phonons.

Examining the left-hand side in a Taylor series for small time step we find

c(x̄, t+ ∆t) = c(x̄, t) +
∂

∂t
c(x̄, t)∆t+O(∆t2). (19)

To proceed we need to make one assumption, which is that during an arbitrarily small time step,
the nominal distance traversed by particles is small so that we can expand about x̄ = x̄ + ε̄.
This is very rational, in that it demands that particles cannot just ‘poof’ from one distant point
to another in an arbitrary time step. Examining the right-hand side near the point x̄ + ε̄, we
write the Taylor series of ∫

M
c(x̄− ε̄, t)φ(x̄− ε̄, ε̄,∆t)dε̄ (20)

term by term. The first term is simply∫
M

[c(x̄− ε̄, t)φ(x̄− ε̄, ε̄,∆t)] |x̄=x̄+ε̄ dε̄ =

∫
M
c(x̄, t)φ(x̄, ε̄,∆t)dε̄ = c(x̄, t). (21)

The second term is∫
M

(−ε̄ · ∇) [c(x̄− ε̄, t)φ(x̄− ε̄, ε̄,∆t)] |x̄=x̄+ε̄ dε̄ = −∇ ·
[
c(x̄, t)

∫
M
ε̄φ(x̄, ε̄,∆t)dε̄

]
(22)

Finally, the third term is

1

2

∫
M

(ε̄ · ∇)2 [c(x̄− ε̄, t)φ(x̄− ε̄, ε̄,∆t)] |x̄=x̄+ε̄ dε̄ = ∇ ·
[
∇[c(x̄, t)]

1

2

∫
M
φ(x̄, ε̄,∆t)|ε̄|2 dε̄

]
. (23)

To study diffusion as a continuous process, we let ∆t → 0 (and hence terms O(∆t2) = 0).
Combining the Taylor series for the right and left hand sides and canceling a common factor of
c(x̄, t), we have

∂

∂t
c(x̄, t) = −∇ ·

[
c(x̄, t) lim

∆t→0

1

∆t

∫
M
ε̄φ(x̄, ε̄,∆t)dε̄

]
(24)

+∇ ·
[
∇[c(x̄, t)] lim

∆t→0

1

2∆t

∫
M
φ(x̄, ε̄,∆t)|ε̄|2 dε̄

]
.

In some sense, this is the most general statement of the diffusion equation, however, the moments
of φ have far more intuitive meanings than are embodied by their integral representation. Let
us examine those more closely - the first moment is the average distance a particle travels in a
time ∆t, hence

lim
∆t→0

1

∆t

∫
M
ε̄φ(x̄, ε̄,∆t)dε̄ = v̄(x̄), (25)
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defines an average particle velocity v̄, but what is this velocity? Recall that in this low Reynolds
number environment, there is a linear relationship between force and velocity (v̄ = σF̄ ) and
further recall that all (conservative) forces can be thought of as the gradient of a potential V (x̄)
(F̄ = −∇V ). Then this is the average velocity of particles due to forces generated by an external
energy landscape

v̄ = −σ∇V, (26)

where σ = D/kBT (there is also a rigorous derivation of this relationship from statistical me-
chanics). For instance, in electrophoresis, a species with charge q in an electrostatic potential
Φ, moves with an average velocity v̄ = −µq∇Φ, essentially showing us the origin of Ohm’s Law,
where the mobility is related to the temperature and the mean free path. The second moment
measures the variance of a particle’s movement and is the microscopic definition of the diffusion
constant

lim
∆t→0

1

2∆t

∫
M
φ(x̄, ε̄,∆t)|ε̄|2 dε̄ = D. (27)

Putting this altogether yields a more general version of the diffusion equation, often called a
Fokker-Planck equation

∂

∂t
c(x̄, t) = ∇ ·D

[
c(x̄, t)

kBT
∇V +∇c(x̄, t)

]
, (28)

and defines a more general kind of particle flux

J̄ = −D
[
c(x̄, t)

kBT
∇V +∇c(x̄, t)

]
. (29)

This equation holds even under conditions of non-conservative forces, i.e. ∇×∇V 6= 0. If the
forces are conservative, i.e. ∇×∇V = 0, then we know the Boltzmann distribution must be a
stationary solution of the diffusion equation,

c(x̄, t→∞) ∝ e−V (x̄)/kBT . (30)

For instance, Ohm’s Law is the case where electron concentration is constant and hence J̄ =
−σcqĒ. Additionally, we can add all kinds of terms to the right-hand side to create, destroy or
modify probability, leading to so-called ‘reaction-diffusion’ equations, however, we will end our
derivation here. If the diffusion coefficient does not vary in space then

∂

∂t
c(x̄, t) = D∇ ·

[
c(x̄, t)

kBT
∇V +∇c(x̄, t)

]
, (31)

and if no external potential is applied, we retrieve the canonical diffusion equation

∂

∂t
c(x̄, t) = D∇2c(x̄, t). (32)

Solutions to the Diffusion Equation

Thus far, we have spent a lot of time discussing the physical origins and implications of dif-
fusion, but still do not know how to actually solve this equation explicitly for the evolution of
a diffuse system. As we will see, there are other physical concepts buried within the diffusion
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equation that only become apparent upon solution. As a mathematical entity, the diffusion
equation has two very important features: it is a ‘linear’ equation, and it is ‘separable’ (in most
useful coordinate systems).

The equation being separable means that we can decompose the original equation into a set
of uncoupled equations for the evolution of c in each dimension (including time). This means
that whatever solution one finds for c, it can be represented as the multiplication of separate
solutions, for instance, in two dimensions

c(x̄, t) = X(x) · Y (y) · T (t). (33)

This fact will also prove quite useful when we consider how dimensionality affects diffusion.
Explicitly, in two dimensions the diffusion equation is

∂

∂t
c = D

(
∂2c

∂x2
+
∂2c

∂y2

)
, (34)

where if we substitute the separable form of c we have

1

DT

∂T

∂t
=

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
. (35)

The only way that an equation strictly in time (lhs) can be equal to an equation strictly in space
(rhs) is if they are both equal to a constant, that is

1

DT

∂T

∂t
= −(m2

1 +m2
2), (36)

and
1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= −(m2

1 +m2
2), (37)

where we have defined the peculiar constantm2
1+m2

2, which will make more sense when compared
to the actual solution. Likewise, we can rearrange the spatial equation to read

1

X

∂2X

∂x2
+m2

1 = −
(

1

Y

∂2Y

∂y2
+m2

2

)
. (38)

In order for two completely independent equations of precisely the same form, and opposite sign,
to be equal, they must both equal zero, that is

∂2X

∂x2
+m2

1X = 0 (39)

and
∂2Y

∂y2
+m2

2Y = 0. (40)

We garner a few important facts from this. First, regardless of the dimensionality, we can
always split the diffusion equation into uncoupled dimensionally independent equations, using a
constant of the form

∑n
i=1m

2
i , where n is the number of spatial dimensions. In other coordinate

systems, the number of constants does not change, but their construction should be modified
(e.g. in spherical coordinates one uses constants of the form l(l+ 1)). Second we learn that the
solutions for the time component will have a form

T (t) ∝ e−D(
∑n

i=1 m
2
i )t (41)
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while the spatial components will have solutions

Xj(xj) ∝ eimjxj . (42)

Being a linear equation means the equation itself has no powers or complicated functions of
the function c (i.e. there are no terms like c2, ec, etc). This means we can think of the equation
as a so-called ‘linear differential operator’ acting on the function c

L [c] = 0 with L =
∂

∂t
−D∇2. (43)

This is arguably one of the most profound ideas in all of mathematical physics. If a differential
equation is linear, and has more than one solution, new solutions can be constructed by adding
together other solutions. This means that if

L [ck] = 0 (44)

for some solution ck, then the weighted sum of solutions

L

[∑
k

akck

]
= 0 (45)

for any arbitrary constants ak. By completeness and orthonormality of the Fourier modes, we
know that c(x̄, t) can be represented by its Fourier Transform

c(x̄, t) =

∫
Ak(t)e

−ik̄·x̄dk̄ (46)

with no loss of generality, and this representation can be used to simultaneously discuss any
level of dimensionality. Using the linearity of the diffusion equation, if one Fourier mode solves
the diffusion equation, a general solution can be built by adding together many such modes at
different frequencies with the right ‘strength’ Ak(t). First we note that

c(x̄, t) =

∫
ck(x̄, t)dk̄ where ck(x̄, t) = Ak(t)e

−ik̄·x̄. (47)

Taking the time derivative of a single mode gives

∂

∂t
ck = e−ik̄·x̄

∂

∂t
Ak, (48)

and taking the spatial derivative gives

∇2ck = −Ak(k̄ · k̄)e−ik̄·x̄. (49)

Thus the linear operator L acting on ck gives a differential equation for the coefficient Ak

L [ck(t)] = e−ik̄·x̄
∂

∂t
Ak +DAk|k|2e−ik̄·x̄ = 0, (50)

which simplifies to
∂

∂t
Ak +DAk|k|2 = 0. (51)

8



This first-order differential equation in time is easily solved, yielding

Ak(t) = Ak(0)e−D|k|
2t (52)

where Ak(0) is an initial condition that we will address momentarily. The first interesting fact
emerges here, that higher frequencies are damped quadratically, hence any sharp variations in
probability density ‘smooth out’ very quickly, while longer wavelength variations persist on a
longer time-scale. Using Ak(t) we construct the general solution as

c(x̄, t) =

∫
Ak(0)e−D|k|

2te−ik̄·x̄dk̄, (53)

but still need to find the Ak(0)’s using the initial condition c(x̄, 0). The first way to proceed is
simply by taking the Fourier Transform on the initial condition, namely

Ak(0) =
1

(2π)n

∫
c(x̄, 0)eik̄·x̄dx̄, (54)

where n is the number of dimensions. In some sense, this is the answer, but a more useful result
can be had if we study the impulse initial condition c(x̄, 0) = δ(x̄− x̄′), where

Ak(0) =
1

(2π)n

∫
δ(x̄− x̄′)eik̄·x̄dx̄ =

1

(2π)n
eik̄·x̄

′
. (55)

We create a solution to the PDE known as the Green’s Function, by studying the response to
this initial δ-function impulse

G(x̄, x̄′, t) =
1

(2π)n

∫
e−D|k|

2te−ik̄·(x̄−x̄
′)dk̄. (56)

The Green’s Function tells us how a single point of probability density initially at x̄′ evolves in
time and space. Thus the evolution of the system from any initial condition can be found simply
by adding up the right amount of probability density at the right points in space, given by

c(x̄, t) =

∫
G(x̄, x̄′, t)c(x̄′, 0)dx̄′, (57)

because each point of probability density evolves in space and time independently. It behooves
us to mention one caveat, that this method becomes very difficult to employ when the evolution
of the probability density depends on the current (or past) state of the probability distribution,
so-called ‘non-linear field’ problems.

In the case of diffusion in Cartesian coordinates, the Green’s Function is quite easy to
determine from the integral representation. Consider that we are working in n dimensions, such
that

G(x̄, x̄′, t) =
1

(2π)n

∫
e(−Dt

∑n
j=1 |kj |2)e−i

∑n
j=1 kj(xj−x′j)

n∏
j=1

dkj . (58)

At first this looks quite messy, but upon inspection one notices that it can be reorganized to

G(x̄, x̄′, t) =

(
1

2π

∫
e−Dk

2te−ik(x−x′)dk

)n
. (59)
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This striking result tells us diffusion is happening in precisely the same way, independently in
all dimensions. In other words, diffusion in 3D is really just diffusion in 1D happening simul-
taneously on three orthogonal axes - this is the result of ‘separability’ of the PDE. Performing
the integral gives the n-dimensional Green’s function of infinite extent

G(x̄, x̄′, t) =
e
−|x̄−x̄′|2

4Dt

(4πDt)n/2
, (60)

with the proper normalization ∫
G(x̄, x̄′, t)dx̄ = 1. (61)

It is important to realize that the Green’s Function depends on the precise boundary conditions
applied, for instance a fixed flux boundary condition J(x̄(s), t) = Jo or fixed probability-density
boundary condition c(x̄(s), t) = co results in a very different Green’s Function (where s is a
variable that parameterizes spatial location of a boundary condition).

Finally, we can use this the Green’s Function to study the ensemble dynamics of a diffusing
particle. The average position of a particle is given

〈x̄〉 (t) =

∫
G(x̄, x̄′, t)x̄dx̄ = x̄′, (62)

or in other words, on average the particle remains where it was initially located at t = 0. The
more exciting calculation is what happens to the root-mean-square position of the particle? The
mean-square position is a measure of the degree of fluctuation in the particle’s position, given
by the second moment 〈

x̄2
〉

(t) =

∫
G(x̄, x̄′, t)(x̄ · x̄)dx̄. (63)

Again, let us appeal to the full dimensional notation

〈
x̄2
〉

(t) =
1

(4πDt)n/2

∫
e
−

∑n
j=1(xj−x′j)2

4Dt

 n∑
j=1

x2
j

 n∏
j=1

dxj . (64)

This can be rewritten

〈
x̄2
〉

(t) = n ·

∫ e−
(x−x′)2

4Dt

(4πDt)1/2
dx

(n−1)

·
∫

e−
(x−x′)2

4Dt

(4πDt)1/2
x2dx. (65)

and quickly simplifies to 〈
x̄2
〉

(t) = n ·
∫

e−
(x−x′)2

4Dt

(4πDt)1/2
x2dx. (66)

and finally 〈
x̄2
〉

(t) = |x̄′|2 + 2nDt. (67)

The the mean-square motion has independent contributions, of strength 2Dt, from each dimen-
sion. Finally, the root-mean-square motion is given by√

〈x̄2〉 − 〈x̄〉2 =
√

2nDt, (68)
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essentially saying that all diffuse particles move in a way proportional to
√
Dt, independent of

dimensionality. There are certain important features of diffusion which do depend on dimen-
sionality, for instance the probability that a particle is found in a neighborhood |r̄| around its
initial point scales as (r/

√
Dt)n.

One final, curious property of diffusion is that it has a deep connection on many levels to
quantum mechanics and Schrodinger’s Wave Equation. One brief parallel is the following, recall
from elementary quantum mechanics that upon measurement of a particle’s position, the wave
function and hence corresponding probability distribution collapses to a δ-function. In much
the same way, a measurement of a diffusing particle’s position at x̄′ effectively collapses the
probability distribution to a δ-function,and resets time to t = 0, given by c(x̄, 0) = δ(x̄− x̄′).

Application of Boundary Conditions using Images

In some rare but informative cases, boundary conditions can be applied simply by the right
addition of two or more Green’s functions to create a new Green’s function. The most common
types of boundary conditions are the so-called Dirichlet and Neumann boundary conditions,
which correspond to specifying either a constant probability density, c, or a constant flux,
J̄ ∝ ∇c, at some boundary, respectively.

In the first case, let us presume we want to study diffusion with complete absorption, i.e. c =
0, at some boundary. We examine the 2D version of this problem, with the absorbing boundary
at the x = 0 line. Consider what happens if we add one Green’s function at a position x̄ = (x =
x′, y) and subtract a Green’s function at x̄ = (x = −x′, y). At x = 0 the values will completely
cancel all along the y-axis for all time. Thus on the half-plane defined by x ≥ 0 the x = 0 line
acts like a perfect absorbing boundary, regardless of where we put x̄′. Thus the new Green’s
function for this scenario is given by

GD(x ≥ 0, y, x′ ≥ 0, y′, t) = G(x, y, x′, y′, t)−G(x, y,−x′, y′, t), (69)

and one can see how this generalizes to many dimensions. The general solution for any initial
condition c(x̄, 0) is then

c(x̄, t) =

∫
GD(x̄, x̄′, t)c(x̄′, 0)dx̄′ (70)

for all (x, x′) ≥ 0. Figure 1c shows a time series with the x = 0 line at the top. Alternatively, we
can construct a simple Neumann boundary condition, where we do not allow any flux through
the x = 0 line, i.e. J(x = 0, y, t) = 0, which is the same a reflecting boundary condition.
Consider what happens if we add one Green’s function at a position x̄ = (x = x′, y) and another
at x̄ = (x = −x′, y). Whatever flux passes through the x = 0 line from the particle whose
position is x > 0 is exactly replaced by the image flux from the particle with x < 0, thus x = 0
acts like a perfect reflecting boundary. The new Green’s function for this scenario is given by

GN (x ≥ 0, y, x′ ≥ 0, y′, t) = G(x, y, x′, y′, t) +G(x, y,−x′, y′, t), (71)

and one can see how this generalizes to many dimensions. The general solution for any initial
condition c(x̄, 0) is then

c(x̄, t) =

∫
GN (x̄, x̄′, t)c(x̄′, 0)dx̄′ (72)

for all (x, x′) ≥ 0. Figure 1d shows a time series with the x = 0 line at the top.
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Figure 1: Diffusion in two dimensions. a) The evolution of a δ-function impulse is shown at four
different scaled times, in units of Dt. The peak height of the distribution decays as (Dt)−n/2.
b) Evolution of semi-circle geometry (as indicated by the dashed line) created using the Green’s
function, shown at five scaled times, in units of Dt. c) Time series of the Green’s function for
the case where c(x, y, t)|x=0 = 0 in time units of Dt. d) Time series of the Green’s function for
the case where ∂c(x, y, t)/∂x|x=0 = 0 in time units of Dt.
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The reader can then imagine how other interesting scenarios could be constructed in n
dimensions using the idea of images.

First Passage Times using Images

The combination of Green’s functions and images is a powerful tool for exploring other
dynamic aspects of diffusion. A classic problem is to determine the rate of arrival of particles to
a certain portion of physical space, and in many interesting instances, a specific area of ‘phase
space.’ For instance, say you wanted to know how long it would take a particle that starts at
some position x̄′ to reach some region δΓ (where everything that is not δΓ we just call Γ)? Since
diffusion is not a deterministic process, the result will be a distribution of arrival times for a
given set of identical particles all obeying the same boundary and initial conditions. In some
instances that distribution is amenable to calculating a mean rate of arrival, or the ‘mean first
passage time’, and in other cases the distribution is amenable to calculating the median rate of
arrival, in which case we call this the ‘median first passage time.’

Probably the easiest way to conceptualize this problem is to consider all the individual
trajectories a particle might take that lead to δΓ from x̄′ and take a time t, taken with their
relative probabilities of occurence. For instance, there are higher probability paths starting from
x̄′ that lead relatively directly to the region δΓ, while other less likely paths might travel far from
the starting point before coming back to δΓ, as schematically shown in Fig. 2a. This defines a
so-called ‘path integral’, where one would sum all the (infinite) paths that lead to δΓ in a time t.
The challenge with this route is that it is tremendously difficult to enumerate all of these paths
in a way that is easy to manipulate. However, this is precisely how one would setup a stochastic
simulation to measure the distribution of arrival times, that is, one would simulate the paths
of many identical particles and simply measure what fraction of particle trajectories arriving
in δΓ between t and t + ∆t. Toward the end of this section, we will show computed results as
compared to our analytical calculation for a tractable example problem. But first, let’s discuss
the problem in more general terms.

Recall that the solution to the diffusion equation, c(x̄, t), is the probability of finding a
particle in a spatial region near x̄ at a particular point in time, which is not the same as
asking for the probability that the particle will enter the region near x̄ for the first time at a
particular point in time. The probability one calculates in c(x̄, t) encompasses all the phase-space
trajectories that lead to the region near x̄ at that time, including all trajectories that entered
that same spatial region at earlier times and then returned again. Thus the local probability
around x̄ is made up of a mixture of trajectories; some arriving there for the first time, and
other trajectories that have been to that region any number of times before. Let us assume
that the boundary between our region of interest, δΓ, and the rest of space, Γ, is defined by the
parametric equation γ̄(s̄), as shown in Fig. 2b. If we are working in a space with n dimensions,
the boundary of δΓ is parameterized by s̄ with n−1 dimensions (e.g. a 1D line defines a bounded
area in 2D space, a 2D surface defines a bounded volume in 3D space, and so on). Considering
that the probability density c(x̄, t) is the result of all the possible trajectories that lead to a
certain region at a certain time, calculating the fraction of trajectories that first enter the region
δΓ at a time t requires that trajectories entering the region be immediately removed from the
pool of all possible trajectories (so that those trajectories do not re-enter at later times). In
terms of c(x̄, t), that amounts to removing any probability that enters the region δΓ with an
absorbing boundary condition along γ̄(s̄). Then the distribution of first arrival times is the rate
of arrival of trajectories that enter δΓ and never leave, or simply the flux into δΓ at the boundary
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γ̄(s̄).
If we denote G(x̄, x̄′, t) as the Green’s function for diffusion in the region Γ + δΓ, then the

challenge to calculating the first passage time distribution is to find the Green’s function that
corresponds to the solution with all appropriate boundary conditions in Γ, but now with the
additional boundary condition that

GΓ(x̄, x̄′, t)
∣∣
x̄=γ̄(s̄)

= 0, (73)

where we denote this new Green’s function by GΓ. This Green’s function can be subject to
any number of other distinct boundary conditions, and may even exist on a potential energy
landscape where particles collect or drift to certain locations. Recall that the flux for diffusion
is

J̄ = −D∇GΓ, (74)

and in this case we want to integrate around the boundary that fraction of the flux that crosses
the boundary and enters δΓ. The fraction of the flux that enters δΓ flows perpandicular to
the boundary. Mathematically, that is the dot product of the flux (a vector field) and the unit
normal of the parametric curve describing the boundary, integrated around the boundary, which
can be written as

P (t, x̄′) = −D
∫
γ̄(s̄)

[(
∇GΓ(x̄, x̄′, t)

)∣∣
x̄=γ̄(s̄)

· n̂(s̄)
]

ds̄. (75)

The function P (t, x̄′) is then the probability density for a particle starting at x̄′ to reach δΓ
for the first time at a time t. Said differently, the probability that the particle will first enter
δΓ between t and t + ∆t is the integral of P (t, x̄′) from t to t + ∆t. While it is certainly most
informative to know the distribution of arrival times, often we simply want to know on average,
how long must we wait for a particle to arrive, given by∫ ∞

0
(P (t, x̄′) · t)dt = τ1(x̄′). (76)

However, if the tail of P (x̄′, t) decays with a power of t−2 or slower, the average time for arrival
will diverge, and hence the mean first passage time is infinite. Despite this possible complication,
the distribution will always have a most likely time of arrival (or possibly more than one), and
even more informatively, all distributions will have a median time of arrival, as defined by the
implicit equation ∫ τ1/2

0
P (t, x̄′)dt =

1

2
. (77)

The median time of arrival is the time it will take half the particles that will enter δΓ to enter
δΓ, keeping in mind that depending on the GΓ and the boundary conditions, not all particles
necessarily arrive at δΓ.

One can also calculate the distribution of first passage times going from one region (not
just a point) to another region. For instance, if the initial particle starts off with a (properly
normalized) spatial probability distribution function c(x̄′, 0) that resides in Γ, then due to the
linearity of the diffusion equation, we know that this can be written as the weighted sum over
all the possible single particle first passage time distributions, given by

PΓ(t) =

∫
Γ
c(x̄′, 0)P (x̄′, t)dx̄′. (78)
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To see these concepts in action, let us consider a fairly simple 2D example. Consider a
particle that is placed at a position x̄′ = (x′, y′), and let us assume that the particle starts in
the left half plane with x′ < 0. For a given x̄′, what is the distribution of arrival times to the
right half plane, where x > 0? We already know from eqn. 60 that the Green’s function for free
diffusion on a plane is

G(x̄, x̄′, t) =
e−
|x̄−x̄′|2

4Dt

4πDt
. (79)

As discussed above, we need to calculate the flux across the boundary of interest – in this case
the x = 0 line – and hence we need to find a Green’s function that has the property that
G(x = 0, y, x′ < 0, y′, t) = 0. As we saw in the previous section on images, this situation can be
constructed by combining two free-diffusion Green’s function into the form

GΓ(x̄, x̄′, t) =
e−
|x̄−x̄′|2

4Dt − e−
|x̄+x̄′|2

4Dt

4πDt
. (80)

The boundary of interest is simply the y-axis, hence γ̄(s) = (0, s) and the unit normal to that
boundary is n̂(s) = (−1, 0). Then using the eqn. 75, the first passage time distribution is
calculated from

P (t, x̄′) = D

∫ ∞
−∞

∂

∂x
GΓ(x, y, x′, y′, t)

∣∣∣∣
x=0

dy, (81)

which can be solved explicitly to find

P (t, x̄′) =
x′

t3/2
e−

x′2
4Dt

√
4πD

. (82)

This example has a combination of interesting properties. First note that the integral∫ ∞
0

P (t, x̄′)dt = 1, (83)

which means that given enough time, every particle will eventually cross over the x = 0 line.
Second, notice that for long times, the distribution takes the asymptotic form P (x′, t) ∝ x′

t3/2
√
D

,

meaning there is no finite mean first passage time, however, the median first passage time is
given by the implicit equation

erf

[
x′√

4Dτ1/2

]
= −1

2
, (84)

which can be approximated by

τ1/2 '
4x′2

πD
. (85)

It is also interesting to note that, in general, we can find the expected, first-order fluctuations
in the arrival time distribution. Consider that if we have N particles, the expected number of
particle arrivals in ∆t is

〈n(t,∆t)〉 = N

∫ t+∆t

t
P (x̄′, t)dt. (86)

For a small time window, ∆t, the expected number of arrivals is small and by our definition, the
expected number of arrivals does not depend on the number of previous arrivals, hence we can
view the arrival of particles to the region of interest as a Poisson process. Thus within a time
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Figure 2: Distribution of first passage times. a) A schematic showing the starting point of a
particle, x̄′, with two possible Brownian paths terminating in the region of interest δΓ. The
orange path is takes less time than the green path to reach δΓ. b) A schematic defining the
boundary γ̄(s̄) with the unit normal vectors to the boundary used to calculate the flux across
the boundary. c) Plot of the first passage time distribution where δΓ is the half-space in n
dimensions. The solid red line is the analytical result from eqn. 82, while the black dots are the
results from a stochastic simulation of the first passage time into the half-space. The red dashed
lines are plus and minus two standard deviations of the expected fluctuation in the arrival rate
of particles into δΓ.

window ∆t, we expect the fluctuation about the mean to be approximately
√
〈n〉, as shown in

Fig. 2c.
Finally, it is also interesting to note that the solution to this example problem is valid for any

half-space in any number of dimensions, yet another result from the separability of the original
diffusion equation.
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