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book [Mor 1964]', and the review became famous. Immediately after

the review appeared, in that same year, Siegel wrote a letter to
Mordell to express his agreement with Mordell’s review concerning the
overall nature of the book, and to express more generally his negative
reaction to trends in mathematics of the 1950’s and 1960’s. 1 learned of
Siegel’s letter to Mordell only in the seventies by hearsay, without knowing
its precise content. At that time, in a letter dated 11 December 1975, I wrote
to Siegel to tell him I got the message, and I sent a copy of my letter to
many people. There was considerable gossip about Siegel’s letter to Mordell,
but I saw the letter for the first time only in March 1991, when I received
from Michel Waldschmidt a copy which he made from the original in the
Cambridge library of St John College.

I n 1962, 1 published Diophantine Geometry. Mordell reviewed this

Siegel’s letter is a historical document of interest from many points of view.
I would like to deal here with one of these points of view having to do with
the relation between number theory and algebraic geometry, or what has
come to be known as the number field case and the function field case. 1
shall document part of the 20th century history of the way these two cases
have benefited from each other, and the extent to which both Mordell and
Siegel failed to understand the accomplishments of the fifties and sixties in
connection with them.? Siegel wrote to Mordell :

“Thank you for the copy of your review of Lang’s book. When I first saw
this book, about a year ago, 1 was disgusted with the way in which my own
contributions to the subject had been disfigured and made unintelligible. My
feeling is very well expressed when you mention Rip van Winkle!

The whole style of the author contradicts the sense for simplicity and honesty
which we admire in the works of the masters in number theory — Lagrange,

t [ reproduced Mordell’s review in toto as an appendix to the greatly expanded version

Fundamentals of Diophantine Geometry {Lan 1983] because | wanted future generations to evaluate
his position for themselves. I also reproduced my review of his book [Lan 1970], including a letter
which [ wrote to Mordell in 1966.

2 PFor an account of results and conjectures in current diophantine geometry, much more Systematic
and complete than | can give here, as well as looking to the future rather than the past, see my
book Number Theory 1iI : Diophantine Geometry, Encyclopedia of Mathematics Vol. 60, Springer

Verlag, 1991.
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Gauss, or on a smaller scale, Hardy, Landau. Just now Lang has published
another book on algebraic numbers which, in my opinion, is still worse than
the former one. | see a pig broken into a beautiful garden and rooting up all
flowers and trees.

Unfortunately there are many “fellow-travelers” who have already disgraced a
large part of algebra and function theory; however, until now, number theory
had not been touched. These people remind me of the impudent behaviour of
the national socialists who sang : “Wir werden weiter marschieren, bis alles
in Scherben zerfallt1”

I am afrald that mathematics will perish before the end of this century if the
present trend for senseless abstraction — as I call it : theory of the empty set
~ cannot be blocked up. Let us hope that your review may be helpful..”

I shall alsc deal with some concrete instances of the more general problem
mathematicians face in dealing with advances in mathematics which may
pass them by.

1. From Dedekind-Weber to the Riemann Hypothesis
in function fields over finite fields

The analogy between number fields and function fields has been realized
since the latter part of the 19th century. Kronecker was already in some
sense aware of some of its aspects. Dedekind originated a terminology in his
study of number fields which he and Weber applied to function fields in one
variable [Ded-W 1882]. Hensel-Landsberg then provided a first systematic
book treatment of basic facts concerning these function fields [Hen-L 1902],
using the Dedekind-Weber approach. Artin in his thesis [Art 1921] translated
the Riemann hypothesis to the function field analogue (actually for quadratic
fields). Several years later F. K. Schmidt treated general analytic number
theory including the functional equation of the zeta function for function
fields of arbitrary genus [Schm 1931]. However, Artin thought that the
Riemann hypothesis in the function field case would be as difficult as in
the classical case of the ordinary Riemann or Dedekind zeta function (he
told me so around 1950). It was Hasse in 1934 and 1936 who pointed out
the “key for the problem” in the function field case through the theory of
correspondences, as Weil writes in [Wei 1940]. (Hasse also indicated another
way through reduction mod p using complex multiplication in characteristic
zero.) Hasse himself proved the Riemann hypothesis (Artin’s conjecture)
for curves of genus 1 [Has 1934], [Has 1936]. 3 Then Deuring pursued the

3 In 1932-1933 Davenport and Hasse started collaborating on a classical paper concerning Gauss

sums [Dav-H 1934]. Davenport had previously been concerned with Gauss sums, and he learned
from Hasse the connection with the Riemann hypothesis in function fields as formulated by Artin.
I find it appropriate to quote here a historical comment made by Halberstam, who edited Vol 1V
of Davenport’s collected works, and states p. 1553 : “In fact, Davenport spent part of the academic
session 1932-33 with Hasse in Marburg; he obviously learnt a great deal from Hasse (cf. [8], [18],
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20 SERGE LANG

higher dimensional generalization of Hasse’s theory of endomorphisms on
elliptic curves and correspondences [Deu 1937}, [Deu 1940], by showing that
some results of Severi [Sev 1926] could be proved so that they applied in
characteristic p, especially to curves over finite fields. Weil went much further
than Hasse and Deuring in this direction. “Directly inspired” [Wei 10484, p.
28] by works of Severi [Sev 1926] and Castelnuovo [Cas 1905], [Cas 1906],
[Cas 1921], Weil developed a purely algebraic theory of correspondences and
abelian varieties; and he formulated the positive definiteness of his trace
(which he related to Castelnuovo’s equivalence defect, see footnote 4}, thus
yielding the Riemann-Hypothesis in the function field case for curves of
higher genus [Wei 1940], [Wei 1948a], [Wei 1948b].

Hasse also defined a zeta function for arbitrary varieties over number fields
and conjectured its analytic continuation and functional equation. This pownt
of view was promoted by Weil in the fifties. There was a serious problem
of algebraic geometry even dealing with varieties of higher dimension over
finite fields, let alone number fields, because as Weil conjectured, the
analogue of the functional equation and Riemann hypothesis in this case
would depend on finding algebraic analogues of homology groups {homology
functors) satisfying the Lefschetz fixed point formula [Wel 1949].

In the forties and fifties several subjects in mathematics, including
algebraic topology and algebraic geometry, systematically developed new
foundations and internal results. Indeed, homological algebra developed
first from algebraic topology, but soon saw its domain of applications
extend to several other fields including algebraic geometry. This algebra
was affectionately called “abstract nonsense” by Steenrod (with a quite
different intent and meaning from Siegel’s “senseless abstraction”). A large
body of material, recognized to be fairly dry by some of its creators, had
to be systematically worked out to provide appropriate background for more
extensive applications. The dryness was unavoidable.

One also saw the simultaneous development of commutative algebra. One of
its motivations was that in the context of algebraic geometry, a curve over
a number field can be defined by equations whose coefficients lie in the ring
of algebraic integers, and so can be viewed as a family of curves obtained by
reducing mod p for all primes p, or even mod p" for higher n so as to include
infinitesimal properties. This case can be unified with the case of algebraic
families of curves over an arbitrary field, including curves over the complex
pumbers. Furthermore, one wants to treat higher dimensional varieties in the
same fashion, in an algebraic and analytic context. For the analytic context

{277 - in later years he would say that he had not learnt nearly as much as he would have done
if he had been ’less pig-headed’ - and it seems that he in turn sharpened Hasse’s interest in the
arithmetical questions discussed above. ...According to Mordell, Hasse was led to his proof of (5)
[RH in elliptic function fields] in response to a challenge from Davenport to produce a concrete
application of abstract algebra.”

GAZETTE DES MATHEMATICIENS



MORDELL'S REVIEW, SIEGEL’S LETTER TO MORDELL 21

one is led to work over power series rings, and more generally over complete
local rings because of the presence of singularities and the infinitesimal
aspects. One was also led to globalize from modules to sheaves, in a context
involving both homological algebra and commutative algebra, thus leading to
further abstractions.

These developments were a prelude to the subsequent conceptual unification
of topology, complex differential geometry and algebraic geometry during
the sixties, the seventies, and beyond. For such a unification to take
place, it was necessary to develop not only a language, but an extensive
theory containing very substantial results as well, starting with commutative
algebra and merging into algebraic geometry. In the fifties and sixiies, these
developments appeared as “senseless abstractions” to some people, including
Siegel, who writes as if these developments deal only with the “theory of
the empty set”. But it 1s precisely the insights of Grothendieck which led
to an extension - including an abstraction - of algebraic geometry whereby
he defined the cohomology functors algebraically; whereby he proved the
Lefschetz formula [Gro 1964]; and whereby finally a decade later, Deligne
finally proved the analogue of the Riemann hypothesis for varieties in the
higher dimensional case [Del 1974]. Deligne also proved related applications,
because in a Bourbaki seminar talk [Del 1969], he had previously shown how
to reduce the Ramanujan-Petersson conjecture for eigenvalues of modular
forms under Hecke operators to this Riemann hypothesis, in a direction first
foreseen by Sato and also using some insights of Kuga-Shimura, to whom he
refers at the begining of his Bourbaki seminar talk. A very short and clear
account of the ideas, leading from a classical problem involving the partition
function to the most advanced uses of Grothendieckian algebraic geometry, is
given in the first two pages of [Del 1969].

2. Some implications

We now pause a moment to consider some implications of these great
developments. As 1 wrote in my 1961 review of Grothendieck’s Eléments
de géometrie algébrique [Lan 1961] a decade before Deligne’s applications
of Grothendieckian geometry occurred : “The present work...is one of the
major landmarks in the development of algebraic geometry.. Before we go
into a closer description of the contents of Chapter 0 and I [which were
Just appearing and prompted the review] it is necessary to say a few words
explaining why the present treatise differs radically in its point of view from
previous ones.” [ then mentioned four specific points like those already listed
above : the need to deal with algebraic families of varieties, applications to
number theory and reduction modulo a prime power, defining algebraically
the functors from topology such as homology and homotopy, and the study of
non-abelian coverings. [ also emphasized throughout the importance and far
reaching implications of Grothendieck’s functorial point of view.
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22 SERGE LANG

1 ended my review as follows : “To conclude this review, I must make
a remark intended to emphasize a point which might otherwise lead to
misunderstanding. Some may ask : If Algebraic Geometry really consists of
(at least) 13 Chapters, 2,000 pages [it turned out to be more like 10,000], all
of commutative algebra, then why not just give up? The answer is obvious.
On the one haund, to deal with special topics which may be of particular
interest only portions of the whole work are pecessary, and shortcuts can be
taken to arrive faster to specific goals...But even more important, theorems
and conjectures still get discovered and tested on special examples, for
instance elliptic curves or cubic forms over the rational numbers. And to
handle these, the mathematician needs no great machinery, just elbow grease
and imagination to uncover their secrets. Thus as in the past, there is enough
stuff lying around to fit everyone's taste. Those whose taste allow them to
swallow the Elements, however, will be richly rewarded.” Thus I did not see
the developments of Grothendieck’s algebraic geometry as incompatible with
doing beautiful or deep mathematics with only a minimum of knowledge.

Five years later, when I wrote to Mordell the letter reproduced in [Lan 1970]
and [Lan 1983], T continued to take such a balanced view. Since Mordell had
written in his review : “When proof of an extension makes it exceedingly
difficult to understand the simpler cases, it might sometimes be better if the
generalizations were left in the journals” (see below for the context of this
judgraent), I replied :

“] see no reason why it should be prohibited to write very advanced
monographs, presupposing substantial knowledge in some fields, and thus
allowing certain expositions at a level which may be appreciated only by a
few, but achieves a certain coherence which would not otherwise be possible.

“This of course does not preclude the writing of elementary monographs.
For instance, I could rewrite Diophantine Geometry by working entirely on
elliptic curves, and thus make the book understandable to any first year
graduate student (not mentioning you)...) Both books would then coexist
amicably, and neither would be better than the other. Each would achieve
different ends. [In fact, 1 eventually wrote Elliptic Curves : Diophantine
Analysis, Springer Verlag, 1978.]

“ When 1 write a standard text in Algebra, 1 attempt something very
different from writing a book which for the first time gives a systematic point
of view on the relations of diophantine equations and the advanced contexts
of algebraic geometry. The purpose of the latter is to jazz things up as much
as possible. The purpose of the former is to educate someone in the first
steps which might eventually culminate in his knowing the jazz too, if his
tastes allow him that path. And if his tastes don’t, then my blessings to him
also. This is known as aesthetic tolerance. But just as a composer of music
(be it Bach or the Beatles), I have to take my responsibility as to what I
consider to be beautiful and write my books accordingly, not just with the
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intent of pleasing one segment of the population. Let pleasure then fall where
it may.”

Thus I advocated “aesthetic tolerance” - which is certainly absent from
Siegel’s letter, to say the least.

It 15 of course not only a matter of “taste” or “aesthetic tolerance”. It may
also have to do with one’s natural limitations. For instance, I had my own
limitations vis a vis Grothendieck’s work (and other works). Having gone
through Weil’s Foundations right after my PhD, I myself was unable later
to absorb completely Grothendieck’s work, and I was unable to read much
of that work, as well as some of its applications, such as those by Deligne
[Del 1969], [Del 1974]. However, 1 did not put down Grothendieck’s work.
I admired it (as quoted above), and merely regretted my own limitations.
I also could not read the Italian geometers myself and 1 needed van der
Waerden and Weil as intermediaries in algebraicizing and modernizing italian
geometry.

3. Diophantine results over number fields and function fields

Next we consider diophantine questions over the rationals or over number
fields. At the turn of the century, Poincaré defined the “rank” of the group
of rational points on an elliptic curve over the rational numbers [Poi 1901].
By “rank” he actually meant something different from what we mean today.
Roughly speaking, he meant the smallest number of generators of the set
of rational points using the secant and tangent method to generate points.
Poincaré wrote as if this rank is always finite. The finite generation was
proved by Mordell [Mor 1921], and again Weil extended this result to abelian
varieties over number fields using more algebraic geometry in his thesis at
the end of that decade [Wei 1928]. The analytic parametrization of abelian
varieties, and especially Jacobians of curves, was a convenient tool at the
time, and for this particular application a complete algebraization of curves
and their Jacobians was not yet needed.

At the purely algebraic level, the fifties saw a clarification of the Mordell-
Weil theorem and its relations to the algebraic-geometric situation in the

4 In my book on abelian varieties, I systematically gave Weil credit for his ability to make the
contributions of Severi and Castelnuovo available in the postwar period of algebraic geometry, and
to go beyond. In historical comments concerning Casteinuovo’s equivalence defect, I even stated
that Weil “was the first to recognize that Castelnuovo’s theorem on the eguivalence defect of
correspondences on a curve could be expressed as a theorem on abelian varieties” Kani pointed out
that this statement was wrong [Kan 1984]. Castelnuovo clearly established the relation between his
equivalence defect and an intersection number on the Jacobian [Cas 1906] but I had never seen a
reference to this paper in Weil. Furthermore, Castelnuovo showed that the equivalence defect occurs
as the penultimate coefficient of the characteristic polynomial, the determinant of the pfaffian of the
complex representation, as on pp. 536, 538 and 541, and that all these coefficients can be expressed
as intersection numbers. | was not able to figure this out without Weil having algebraicized
Castelnuovo’s results, and Kani having pointed out the original reference to Castelnuovo.
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function field case. The Artin-Whaples product formula of the forties [Ar-
W 1945] was the number theoretic analogue of the geometric theorem that
s rational funciion on a curve has the same number of zeros and poles
(counting multiplicities), or in higher dimension that the degree projective
space of the divisor of a rational function is zero. I used this product formula
as the basic axiom for the theory of heights in Diophantine Geometry,
applicable simultaneously to the number field and function field case, in any
dirnension. Mordell complained that here “we have definitions which many
other authors do not find necessary”. However, varieties over number fields
have their analogues in algebraic families of varieties over any field, especially
over the complex numbers. Rational points have their analogues in sections
of such families, and in fact are sections when the proper language and
setting has been defined. The analogy has been interesting and fruitful not
only because it has allowed techniques to go back and forth enriching the
two cases, but because for instance in the study of algebraic surfaces, cases
occur systematically when these varieties are generically fibered by curves
of genus 1. One then wants to know which fibers have rational points, and
how many. In case the gemeric fiber of an algebraic family is an abelian
variety, the sections form a group, and Lang-Néron proved that this group
is finitely generated modulo the subgroup of “constant” sections [La-Ne
1959], this being the function field analogue of the Mordell-Weil theorem.
Furthermore, Severi long ago conjectured that the algebraic part of the first
cohomology group, i.e. the group of divisors modulo algebraic equivalence,
was finitely generated (Theorem of the Base), and he had the intuition that
such a resull was also analogous in some way to the Mordell-Weil theorem.
Néron proved Severi’s conjecture [Ner 1952], and Lang-Néron established
an actual isomorphism between the Néron-Severi group of a variety, and a
subgroup of the group of sections (modulo constant sections) of the Jacobian
of the generic curve in some projective imbedding. These results of the fifties
formed the backbone of my book Diophantine Geometry, but were viewed as
“senseless abstraction...the theory of the empty set” by Siegel.

Using Weil’s results, and his own results on diophantine approximations
(Thue-Siegel theorem), Siegel proved that an affine curve of genus at least
1 over a number field has only a finite number of integral points [Sie
1929]. In [Lan 60] and in another part of Diophantine Geometry, 1 also
showed how the Thue-Siegel-Schneider-Roth theorem and Siegel’s theorem on
integral points had analogues in the function field case. The interdependence
between the number field case and the function field case lies not only in
the analogy of results and methods applicable to both cases, but also in the
fact that when, say, a curve depending on parameters defined by a family
of equation f¢(x,y) = 0 has solutions in polynomials z = z(¢) and y = y(1),
such polynomials may have complex coefficients, or in a more arithmetic
setting they may have ordinary integer coeflicients. In the latter case, by
specialization of the parameter ¢ in integers, one obtains integral solutions of

GAZETTE DES MATHEMATICIENS



MORDELL'S REVIEW, SIEGEL'S LETTER TO MORDELL 25

the specialized equation. It is a problem to classify all surfaces which admit
such a generic fibration by rational curves, over the complex numbers and
over the ordinary integers. More generally, one can consider the case when
z and y are integral afline algebraic functions rather than polynomials. In
order to treat both the number field and function field case simultaneously,
there developed a language and results which are now natural throughout
the world. At the time, this language and results appeared unnatural or
worse to some people. As Siegel wrote to Mordell : “The whole style of the
author contradicts the sense for simphicity and honesty which we admire in
the works of the masters of number theory”.

In part of the proof of Roth’s theorem, it is necessary to solve certain linear
equations with upper bounds on the size of the solution. A lower bound on
the number of solutions is required in the number field case, and a lower
bound on the dimension of the space of solutions is required in the function
field case. Classically, the Riemann-Roch theorem on curves provides the
desired estimates in the function field case, and I drew the analogy explicitly
with the number field case by an appropriate axiomatization, whereby I
treated both cases simultaneously. But Mordell states in his review : “The
author claims to follow Roth’s proof. The reader might prefer to read this
which requires only a knowledge of elementary algebra and then he need not
be troubled with axioms which are very weak forms of the Riemann-Roch
theorermn.” But drawing closer together various manifestations of what goes
under the trade name of Riemann-Roch has been a very fruitful viewpoint
over decades. Already in [Schm 1931] we see the Riemanu-Roch theorem
closely related to the functional equation of the zeta function in the function
field case. In the thirties, Artin recognized the functional equation of the
theta function as an analogue of Riemann-Roch in the number field case.
Following the ideas in a course of Artin, Weissinger gave the connection
between Riemann-Roch and the functional equation of L-functions in the
function field case [Weis 1938]. Weil went further by giving an analogy
of Riemann-Roch not only to the problem of counting lattice points in
parallelotopes, but also by formulating an analogue for Cauchy’s residue
formula in the number field case [Wei 1939]. In my book on algebraic number
theory, I emphasized the Riemann-Roch viewpoint in these ways. First |
gave a formula for the number of lattice points in adelic parallelotopes,
asymptotic with respect to the normalized volume; and second, 1 reproduced
the formulation and proof of the functional equation for the zeta function
and L-functions via the adelic method in Tate’s thesis, especially the adelic
Poisson summation formula having as corollary what was properly called by
Tate a number theoretic Riemann-Roch theorem.® But Siegel found my book
on algebraic numbers “still worse than the former one”. Nevertheless, 1 shall

3

5 Be it said in passing that the adelic method of Tate’s thesis was to become standard in the

treatment of analogous situations on linear algebraic groups.
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continue below to describe the ever expanding extent to which the Riemann-
Roch umbrella covers aspects of number theory and algebraic geometry.

Naturally, to deal simultaneously with the number field and function field
case in diophantine geometry, I had to assume the basic language and results
of algebraic geometry and abelian varieties. Mordell in his review of the book
complained : “Let us note some of the concepts required in the chapter.
There are a K/k—trace of A, a "Theorem of Chow, Chow’s Regularity
Theorem, Chow Coordinates, compatibility of projections and specializations,
blowing up a point, Albanese Variety, Picard variety, Jacobian of a curve,
Chow’s theory of the k(u)/k—trace. When proof of an extension makes it
exceedingly difficult to understand the simpler cases, it might sometimes be
better if the generalizations were left in the Journals.” T ask @ exceedingly
difficult to whom? Current readers and subsequent generations can evaluate
for themselves Mordell’s admonition to leave what he calls “generahizations”
to the journals. But Mordell went on : “The reviewer was reminded of Rip
Van Winkle, who went to sleep for a hundred years and woke up to a state
of affairs and a civilization (and perhaps a language) completely different
from that to which he had been accustomed.” Siegel accepted the comparison
with Rip Van Winkle when he wrote to Mordell : “My feeling is very well
expressed when you mention Rip Van Winkle.” In particular both Siegel
and Mordell had difficully understanding some basic notions of algebraic
geometry as rtecalled above. But these notions were of course accepted
without further ado by younger mathematicians and by other schools of
mathematics and algebraic geometry, notably by the Russian school, whose
contributions to diophantine geometry were to dominate the sixties and
seventies, as we shall now indicate.

Mordell himself in [Mor 1922] had conjectured that a curve of genus at
least 2 over the rational numbers has only a finite number of rational
points. In [Lan 1960] and in Diophantine Geometry I translated this
conjecture into the function field analogue, to the effect that for an algebraic
family of such curves, there is only a finite number of sections unless the
family is constant, in a suitable sense. Independently, Manin had already
started his investigations of the Picard-Fuchs differential equations and
their connections with algebraic families of curves, their Jacoblans and their
periods, via horizontal differentiation and the Gauss-Manin connection [Man
1958]. Manin put these two mathematical threads together by proving the
function field analogue of the Mordell conjecture via his differential methods
[Man 1963]. We note in passing that the function field analogue of Siegel’s
theorem on integral points is needed to complete that proof. (See [Col 1990].)
Manin’s work kindled various people’s interests in various directions lying
between algebraic geometry and the theory of algebraic differential equations.
Furthermore in 1970-1971 Deligne proved the semisimplicity of the action of
the monodromy group on the cohomology of a family of projective smooth
varieties [Del 1972]. After Coleman [Col 1990] pointed out that Manin’s
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“theorem of the kernel” had not been completely proved, Deligne’s theorem
was applied by Chai to complete the proof, independently of the application
to the Mordell conjecture in the function field case [Cha 1990]. Even more
recently, Buium has pursued the application of differential algebra in this
direction and he has obtained a substantial extension of results showing that
the intersection of a curve with certain subsets of its Jacobian defined by
algebraic differential conditions is finite [Bui 1992].

I learned of Manin’s proof on a trip to Moscow in 1963, and I lectured on it
at the Arbeitstagung in Bonn upon returning. Grauer! was in the audience,
and was then led to find another proof of the function field case of Mordell’s
conjecture [Gra 1965} (see among others the final remarks of the introduction
to his paper). Grauert’s method also involved horizontal differentiation,
taking the derivative of a section into the projectivized tangent bundle. For
the latest development of this method in a quantitative direction, see Vojia
[Voj 1991]. Grauert’s proof also worked in characteristic p, as pointed out by
Samuel [Sam 1966]. For further insight in the problem in characteristic p, see
Voloch [Vol 1990].

To this day, no one has seen how to translate Manin’s or Grauert’s proofs
of Mordell’s conjecture from the function field case to the number field
case. However, in the early sixties, Shafarevich conjectured that over a
number field, given a finite set of places, there exists only a finlte number
of isomorphism classes of curves of given genus at least 1 and having good
reduction outside this finite set [Sha 1963]. In 1968, Parshin showed how
Shafarevich’s conjecture implied Mordell’s conjecture [Par 1968], and he
proved the analogue of Shafarevich’s conjecture in the function field case
(under an additional technical condition, later removed by Arakelov [Ara
1971]). Parshin’s proof was based entirely on the intersection theory of
surfaces, without making use of horizontal differentiation. This provided hope
for an eventual translation to the number field case. As we have already
mentioned, a curve over the ring of integers of a number field can be viewed
as a family of curves obtained by reduction mod p for all primes p. In
a fundamental paper, Arakelov showed how to complete such a family of
curves over a number field by introducing the components at infinity, and by
defining a new type of divisor class group taking the components at infinity
into account [Ara 1974]. With this point of view, a curve over the ring of
integers of a number field is called an arithmetic surface. Whereas the Artin-
Whaples product formula had been the starting point for unifying the case
of number fields and function fields in one variable, Arakelov theory laid the
foundations for unifying intersection theory on arithmetic surfaces and the
classical intersection theory, thus making Parshin’s method more accessible
to the number field case. °

6 Parshin himself was quite aware of the historical context in which he was writing, and gives a

very different perspective from Mordell and Siegel, as we find in the introduction of [Par 1968] :
“Finally when g > 1, numerous examples provide a basis for Mordell’s conjecture that in this
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Arakelov defined intersection numbers al infinity as the values of Green’s
functions, and made extensive use of hermitian metrics on line bundles [Ara
1974]. His foundations could lead in several directions. In one direction,
inspired by the basic idea of carrying out algebraic geometry with complete
objects, including the components at infinity and the metrized line bundles,
Faltings gave his proof of Mordell’s conjecture a decade later [Fal 1983].7
Be it noted that Faltings also depended on the full-fledged abstractions
of contemporary algebraic geometry, for instance by using techniques of
Raynaud [Ray 1974], reducing modulo a prime power (actually mod 7%), to
bound the degrees of certain isogenies of abelian varieties.

We now come back to the Riemann-Roch theme. In the direction of
algebraic geometry, the Italian algebraic geometers dealt classically with
the Riemann-Roch theorem on algebraic surfaces. Hirzebruch in the carly
fifties gave an entirely new slant to the theorem by his formula expressing
the (holomorphic-algebraic) Buler characteristic as a polynomial in the Chern
classes, for non-singular projective varieties of arbitrary dimension [Hir 1956].
Thus Hirzebruch drew together algebraic geometry, topology, and complex
differential geometry. Siegel did not appreciate Hirzebruch’s mathematics any
more than some other mathematics of the period. Indeed, Siegel was the

case X(@) is always finite. The one general result in line with this conjecture is the proof by
Siegel that the number of integral points (i.e., points whose affine coordinates belong to the ring
7, of integers) is finite. These results are also true for arbitrary fields of finite type over Q
Fundamentally this is because the fields are global, i.e., there is a theory of divisors with a product
formula, which makes it possible to construct a theory of the height of quasi-projective schemes
of finite type over K. Lang’s book [Diophantine Geometry] contains a description of that theory
and its application to the proof of the Mordell and Siegel theorems. It appears that further progress
in diophantine geometry involves a deeper use of the specific nature of the ground field. This is
confirmed by Ju. I. Manin’s proof of the functional analogue of Mordell’s conjecture.”

7 In his thesis [Wei 1928] Weil refers explicitly to “Mordell’s conjecture”, and states that “it seems
confirmed to some extent” by Siegel’s theorem on the finiteness of integral points on curves of
genus at least 1. In [Wei 1936] he makes a similar evaluation without reference to Mordell : “On
the other hand, Siegel’s theorem, for curves of genus > 1, is only the first step in the direction
of the following statement : On every curve of genus > 1, there are only finitely many rational
points” However, some forty years later, he inveighed against “conjectures”, when he wrote [Wei
19741 : “For instance, the so-called "Mordell conjecture’ on Diophantine equations says that a curve
of genus at least two with rational coefficients has at most finitely many rational points. It would
be nice if this were so, and 1 would rather bet for it than against it. But it is no more than
wishful thinking because there is not a shred of evidence for it, and also none against it Finally
in comments in his collected works made in 1979 (Vol. III, p. 454), he goes one better : “Nous
sommes moins avancés 2 1'égard de la 'conjecture de Mordell’. I s’agit 1a d’une question qu'un
arithméticien ne peut guére manquer de se poser; on n’appergoit d’ailleurs aucun motif sérieux de
parier pour ou contre”” First, concerning a “question which an arithmetician can hardly fail to raise”,
I would ask when? It’s quite a different matter to raise the question in 1921, as did Mordell, or
decades later. As for the statements in 1974 and 1979 that there is no “shred of evidence” or “motif
sérieux” for Mordell’s conjecture, they not only went against Weil’s own evaluations in earlier
decades, but they were made after Manin proved the function field analogue in 1963; after Gravert
gave his other proof in 1965; after Parshin gave his other proof in 1968, while indicating that
Mordell’s conjecture follows from Shafarevich’s conjecture (which Shafarevich himself had proved
for curves of genus 1); at the same time that Arakelov theory was being developed and that
Zarhin was working actively on the net of conjectures in those directions; and within four years of
Faltings’ proof.
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principal factor causing the collapse of negotiations between Gottingen and
Hirzebruch in the fifties, when Hirzebruch was in the process of returning to
Germany after his stay in America. Furthermore, in 1960, there was an early
attempt to create a Max Planck Institute to be headed by Hirzebruch. Siegel
wrote negatively about Hirzebruch and his mathematics in this connection. ¥

Later in the fifties, Grothendieck vastly extended Hirzebruch’s Riemann-Roch
theorem partly by formulating it m such a way that it applies to families
and partly by making the theorem more functorial [Bor-5 1957]. Still later,
he further expanded the formulation of the theorem so that i particular,
it applied over arbitrary Noetherian rings, and therefore could be used in
the number theoretic context over the ring of algebraic integers of a number
field [Gro 1971]. These extensions required the full fledged abstractions of
algebraic geometry and algebraic topology which he had developed, including
both the cohomology functors and the K-theory functors [Gro EGA), [Gro
SGA]. An especially interesting application of Grothendieck Riemann-Roch
was made by Mumford in his contributions to the theory of moduli spaces for
curves and abelian varieties [Mum 1977].

Just before Faltings proved Mordell’s conjecture, he developed Arakelov
theory so far as to give an arithmetic version of the Riemann-Roch theorem
on arithmetic surfaces [Fal 1984]. This version was vastly extended recently

8 In June 1991 1 wrote to the President of the Max Planck Society to ask for a copy of
Siegel’s letter so that one has primary sources on which to base factual historical reporting.
1 received a friendly answer and the letter was sent to me. Siegel wrote four and a half
pages, discussing institutes in general, and giving his evaluation of Hirzebruch in particular, as
follows : “Was den zum Schluss vorgeschlagenen Leiter des zu griindenden Institute betrifft, so
habe ich auch dariiber eine abweichende Meinung,.. Seine [Hirzebruchs] mathematischen Leistungen
wurden allerdings damals auch hier ziemlich hoch bewertet, insbesondere wegen seiner Jugend.
Jetzt erscheint es mir aber zweifelhaft, ob sich das von ihm bisher bearbeitete sehr abstrakte
Gebiet weiter erschliessen und fruchtbar machen ldsst, und ich halte es fiir mdoglich, ja sogar fiir
wahrscheinlich, dass diese ganze Richtung sich schon in wenigen Jahren totlaufen wird. Nach den
vorhergehenden Ausfihrungen mochte ich Thre Fragen 1), 2), 3) und 5) mit Nein beantworten.”
As for others, according to a letter from Behnke to Hirzebruch dated 7 September 1960 : “Im
tibrigen liegen von lhnen ausser von Siegel nur die glinzendsten Gutachten vor. Es gibt jetzt zwei
Hauptbedenken © 1) Man darf Sie nicht aus dem Universititsleben nehmen, weil die Liicke nicht zu
ersetzen ist..2) Es wiirde nur die abstrakte Mathematik gepflegt..” Courant was among those who
wrote along these lines : “Hirzebruch is sicherlich einer der allerbesten unter den Mathematikern der
jingeren Generation. Ich bin stets fir ihn eingetreten und hege sehr freundschaftliche Gesinnungen
fiir ihn. Er ist einer des besten Dozenten, die ich kenne. Nach meiner Meinung wiirde es ein
schweres Unrecht an der Mathematik sein, ihn aus seiner produktiven Lehstiitigkeit herauszureissen.
Ausserdem wiirde er als Hauptleiter des Max Planck Institutes die Priponderanz der abstrakten
Richtung weithin sichtbar symbolisieren. Leistungen und Renommée wiirden dies in Moment wohl
rechtfertigen. Aber, auch in Hirzebruchs eigenem Interesse, und sicherlich in dem der Wissenschaft
rate ich dringend davon ab. Es ist nicht nétig, das Institut in einer solchen personlichen Art zu
organisieren, um den hochsten Grad der Wirksamkeit zu erreichen..” But Courant also added
“Meine Bemerkungen sind nicht sorgfiltig ausgearbeitet. Sie brauchen nicht vertraulich behandelt zu
werden...” Thus Courant also expressed himself with caution. Courant made his letter public at the
time. Some letters to the Max Planck Society were unreservedly for the creation of the Institute,
for instance van der Waerden's. After listing Hirzebruch’s qualities in all directions (mathematical,
personal, and administrative), he asks : “Was will man mehr? ” For more on the history of the Max
Planck Institute, see Schappacher [Scha 1985].
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by Gillet-Soulé, for varieties of arbitrary dimension, putting together the
Hirzebruch-Grothendieck Riemann-Roch theorems, the complex differential
geometry inherent in the components at infinity, and also the theories of real
partial differential equations most recently developed by Bismut, necessary
to handle the analogues of Green’s functions in the higher dimensional case
[Gi-S 1990], [Gi-S 1991]. Thus comes a grand unification of several fields
of mathematics, under the heading of the code-word Riemann-Roch. At the
moment, a complete translation of Parshin’s proof of Mordell's conjecture
from the function field case has not yet taken place. It still requires a proof of
an inequality conjectured by Parshin in the number field case, whose known
analogue in the case of algebraic surfaces evolved from work of van de Ven,
Bogomolov, Parshin, Miyaoka and Yau [Par 1989] (see also [Voj 1988], and
for the latest in the function field case, [Tan 94]). Such an inequality is
related to the so-called Noether formula in the theory of algebraic surfaces.
It 1s known that such an inequality implies Fermat’s theorem for all but a
finite number of cases, which cases depending on how effectively the Parshin
inequality can be proved.

The Riemann-Roch story in its arithmetic context does not end there. Vojta,
in a major development, showed how to globalize and sheafify on curves
of higher genus the basic ideas of the proof of Roth’s theorem, in such a
way that he found an entirely new proof of Mordell’s conjecture (Paltings’
theorem) [Voj 1990]. Be it noted that Vojta first gave his proof in the
function field case, using intersection theory on surfaces [Voj 1989]. He
then translated his proof to the number field case using the Arakelov type
intersection theory and the newly found (asymptotic) arithmetic Riemann-
Roch theorem of Gillet-Soulé. Although Bombieri subsequently simplified
Vojta’s proof by eliminating the Arakelov part [Bom 1990], he still used
the classical Riemann-Roch theorem on surfaces. The use of Riemann-Roch
in one form or another occurs at the same point in the pattern of proof
as in Roth’s theorem, but of course in the more sophisticated context
of curves of higher genus and their products, rather than the projective
or affine line. Vojta’s idea and a heavy dose of algebraic geometry were
then used by Faltings to prove a conjecture of mine dating back to [Lan
1960], concerning higher dimensional diophantine analogues for subvarieties
of abelian varieties [Fal 1990]. Neither Vojta, Bombieri nor Faltings has
shown that he is “troubled” about using Riemann-Roch theorems, and major
breakthroughs have thus been made by expanding the perspectives on old
problems, rather than by narrowing the viewpoint to “simpler cases”.

Thus we sce that since the translation of the Riemann hypothesis in the
twenties and the very first translations of the Mordell-Weil theorem from the
number field case into the function field analogue in the fifties, there has
been constant interaction between the number field case and the function
field case. A number of subsequent results have been proved first in the
function field case, using geometric intuition and methods from algebraic
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geometry as well as differential geometry. In some, but not yet all cases, these
proofs could then be translated back to the number field case, thus giving
new results in nwmber theory.

4. Further implications

Mordell and Siegel were great mathematicians, a fact which 15 made obvious
once more by their great theorems cited repeatedly in this article. But their
lack of vision and understanding at certain periods of their life obstructed
the development of certain areas of mathematics in their own countries. Of
course they did not have absolute power. In England, Atiyah could develop
the Riemann-Boch theme in the topological and analytic direction for elliptic
operators on vector bundles, for instance, but the direction of number theory
in England was seriously affected by Mordell’s obstructions. In Germany,
Hirgebruch could create an independent center in Bonn, but Siegel did have
an effect in (3otbtingen and some other places, although his influence has
waned to the point where T don’t see it explicitly any more.

In the Soviet Union and France, the obstructing influence of Mordell or
Siegel in algebra and algebraic geometry was nil. The development of
Grothendieck’s school in France needs no further comment. In the Soviet
Union, one sees the absence of obstructing influence in the existence of
the school of algebraic geometry created by Shafarevich. One also sees
the absence of obstructing influence in concrete instances, such as the
introductions to Manin’s and Parshin’s papers [Man 1963] and [Par 1968]
(as mentioned in footnote 5). Furthermore, for the Russian translation
of Fundamentals of Diophantine Geometry, 1 was asked if it was OK
with me to omit the appendices consisting of Mordell’'s review and my
review of his book, and to replace them with an appendix by Parshin and
Zarhin describing previous work of theirs on a net of conjectures (Mordell-
Shafarevich-Tate), as well as the latest developments concerning Faltings’
proof of these conjectures. I agreed without reservations.

In the United States, the influence is more complex to evaluate. Be 1t
noted here only that as recently as December 1989, in the context of my
continued activities concerning the non-election of Samuel P. Huntington to
the National Academy of Sciences, MacLane wrote me a letter commenting
in part on my own 1986 election to the NAS : “I welcomed your election to
the NAS. But please observe that if some social scientist had then known
and used Mordell’s famous comments on your Diophantine book plus the
silly mistakes in the last chapter of your Differential Manifolds plus...you too
would have been soundly defeated on the floor of the Academy.”

Mordell used to pull out Siegel’s letter from his wallet to show people, to my
knowledge without receiving comments that both his and Siegel’s attitudes
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were parochial and blind (if not worse).?

Thus some members of the mathematical community behaved with “collegia-
lity” and bowed to authority, in the face of claims such as those quoted at
the beginning of this article.

Those members of the mathematical community who did not stand up to
Mordell and Siegel are not entirely blameless for the obstructing influence of
Mordell’s review and Siegel’s letter, such as it was.
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