
H E W L E T - P A C K A R D

JOURNAL
A u g u s t 1 9 9 3

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL A u g u s t 1 9 9 3 V o l u m e 4 4 â € ¢ N u m b e r 4

Articles

High-Ef f i c iency A luminum Ind ium Gal l ium Phosph ide L igh t -Emi t t ing D iodes, by Rober t M.
Fletcher, Chihping Kuo, Timothy D. Osentowski , J iann Gwo Yu, and Virginia M. Robbins

The Structure of LEDs: Homojunctions and Heterojunctions

t Â » H P b y G . A T o o l f o r D i s t r i b u t i n g C o m p u t a t i o n a l T a s k s , b y T e r r e n c e P . G r a f , R e n a t o G .
Ass in i , John M. Lewis, Edward J . Sharpe, James J. Turner , and Michael C. Ward

6
8

16
19
21

HP Task Broker and Computational Clusters

Task Broker and DCE Interoperability

HP Task Broker Version 1.1

/ â€¢< The HP-RT Real-Time Operat ing System, by Kevin D. Morgan

) I A n O v e r v i e w o f T h r e a d s

Managing PA-RISC Mach ines fo r Rea l -T ime Systems, by George A. Anz inger

< / C o n t e x t S w i t c h i n g i n H P - R T

< < Protect ing Shared Data St ructures

< / | T h e S h a d o w R e g i s t e r E n v i r o n m e n t

â€¢< ""j C Environment

< >< The Yoshisuke Tsutsuji Logic Synthesis System, by W. Bruce Culbertson, Toshiki Osame, Yoshisuke
Otsuru, J . Barry Shackleford, and Motoo Tanaka

Editor, Richard R Dolan â€¢ Associate Editor. Charles L Leath â€¢ Publication Production Manager, Susan i . Wright â€¢ I l lustrat ion. RenÃ©e D Pighini
Typography/Layout . C indy Rubin â€¢ Test and Measurement Organizat ion L ia ison, Sydney C. Avey

Advisory J Harry W, Brown, Integrated Circui t Business Div is ion, Santa Clara. Cal i forn ia Â» Frank J Calv i l lo , Greeley Storage Div is ion. Greeley. Colorado â€¢ Harry
Chou, Microwave Systems Division. Santa Rosa. California â€¢ Derek I Dang, System Support Division. Mountain View. California â€¢ Rajesh Desai, Commercial Systems
Division, Cupertino, California Â» Kevin G- Ewert. Integrated Systems Division. Sunnyvale. California Â» Bernhard Fischer, Boblingen Medica! Division. Boblingen. Germany Â»
Douglas Gennetten, Greeley Hardcopy Division. Greeley. Colorado Gary Gordon, HP Laboratories. Palo A/to. Cali forniaÂ» Matt J Marl ine, Systems Technology Division.
Roseville. California â€¢ Bryan Hoog, Lake Stevens Instrument Division. Everett. Washington â€¢ Grace Judy, Grenoble Networks Division. Cupertino, California Â» Roger L
Jungerman. Thomas Technology Division, Santa Rosa. California â€¢ Paula H Kanarek, InkJet Components Division. Corval/ is. Oregon Â» Thomas F Kraemer. Colorado
Springs Group. Colorado Springs. Colorado â€¢ Ruby B. Lee, Networked Systems Group. Cupertino. California Â«Bill Lloyd, HP Laboratories Japan. Kawasaki. Japan â€¢
Al f red P. Wa/dbronn Analyt ica l Div is ion, Waldbronn, GermanyÂ» Michael P. Moore. VXl Systems Div is ion. Loveland. ColoradoÂ» Shel ley I . Moore. San Diego Pr inter
Division. Will iam Software CaliforniaÂ» Dona L. Morril l. Worldwide Customer Support Division. Mountain View. CaliforniaÂ» Will iam M Mowson, Open Systems Software
Division. Garry Massachusetts â€¢ Steven J. Narciso. VXl Systems Division. Loveland. Colorado Â» Garry Orsol ini. Software Technology Division. Rosevi l le, Cali fornia Â»
Raj Oza, Peripherals Technology Division. Mountain View. California Â» Han Tian Phua. Asia Peripherals Division. Singapore â€¢ Ken Poulton, HP Laboratories. Palo A/to.
California Systems GÃ¼nter Riebesell. Boblingen Instruments Division. Boblingen. GermanyÂ» Marc Sabatella, Software Engineering Systems Division. Fon Collins. Colorado â€¢
Michael B Laboratories Integrated Circuit Business Division. Corvallis. Oregon Â«Philip Stenton, HP Laboratories Bristol. Bristol. EnglandÂ» Beng-Hang Tay. Singapore
Networks Operation. SingaporeÂ» Stephen R. Undy, Systems Technology Division. Fon Coll ins. ColoradoÂ» Jim Wil l i ts, Network and System Management Division. Fon
Collins. Colorado Â» Koichi Yanagawa. Kobe Instrument Division. Kobe. Japan Â» Dennis C. York, Corvallis Division. Corvallis. Oregon Â» Barbara Zimmer. Corporate
Engineering. Palo Alto, Cal i fornia

Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 9 3 P r i n t e d i n U S A T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

August 1993 Hewlett-PackarclJournal

© Copr. 1949-1998 Hewlett-Packard Co.

â € ¢ \ y D e s i g n i n g a S c a n n e r w i t h C o l o r V i s i o n , b y K . D o u g l a s G e n n e t t e n a n d M i c h a e l J . S t e i n l e

- \ y M e c h a n i c a l C o n s i d e r a t i o n s f o r a n I n d u s t r i a l W o r k s t a t i o n , b y B r a d C l e m e n t s

! O n l i n e D e f e c t M a n a g e m e n t v i a a C l i e n t / S e r v e r R e l a t i o n a l D a t a b a s e M a n a g e m e n t S y s t e m ,
b y B r i a n Â £ H o f f m a n n , D a v i d A . K e e f e r , a n d D o u g l a s K . H o w e / I

j C l i e n t / S e r v e r D a t a b a s e A r c h i t e c t u r e

t j R e a l i z i n g P r o d u c t i v i t y G a i n s w i t h C + + , b y T i m o t h y C . O ' K o n s k i

I G l o s s a r y

I B r i d g i n g t h e G a p b e t w e e n S t r u c t u r e d A n a l y s i s a n d S t r u c t u r e d D e s i g n f o r R e a l - T i m e S y s t e m s ,
b y J o s e p h M . L u s z c z a n d D a n i e l G . M a t e r

Research Report

j O n l i n e C O ? L a s e r B e a m R e a l - T i m e C o n t r o l A l g o r i t h m f o r O r t h o p e d i c S u r g i c a l A p p l i c a t i o n s ,
b y F r a n c o A . C a n e s t r i

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

5 8 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P) p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r
c o n s e q u e n t i a l d a m a g e s , a t t o r n e y ' s a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b m i s s i o n s : A l t h o u g h a r t i c l e s i n t h e H e w l e t t - P a d

ing by HP.

Copyr ight publ icat ion granted Hewlet t -Packard Company. Al l r ights reserved. Permission to copy wi thout fee a l l or par t of th is publ icat ion is hereby granted prove
that 1) advantage; Company are not made, used, displayed, or d istr ibuted (or commercial advantage; 2) the Hewlet t -Packard Company copyr ight not ice and the t i t le
o f t h e t h e a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , submiss ions , and reques ts t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3200 H i l l v i ew Avenue , Pa lo A l t o , CA 94304 U .S .A .

August 1993 Hewlett-Packard Journal 3
© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Light-emit t ing diodes br ight enough for outdoor appl icat ions in br ight sunl ight â€”
automobile tai l l ights, for example â€” have been a long-sought goal of LED re
search. HP's latest LEDs, descr ibed in the art ic le on page 6, should meet the
needs gall ium many outdoor applications. Made from aluminum indium gall ium phos
phide (Al lnGaP), they surpass the br ightness of any previously avai lable v is ib le
LEDs and come in a range of colors f rom red-orange to green. Technical ly , they
are double-heterost ructure LEDs on an absorb ing subst rate and are grown by
means has a technique cal led organometal l ic vapor phase epi taxy, which has
been the fo r p roduc ing semiconduc to r l ase r d iodes bu t no t fo r the mass p ro
duct ion of LEDs. In addit ion to the technical detai ls of the new LEDs, the art ic le

provides a h is tory of LED mater ia l and st ructure development.

Le t ' s say a have a comput ing ne twork in wh ich users need to share resources . A user needs to move a
compute would to a remote machine to f ree local compute cycles or access remote appl icat ions. You would
l ike your computers to be equal ly loaded, and you would l ike to make remote access as automated as
possib le. Also, you want d isabled machines to be automat ical ly avoided. HP Task Broker (see page 15) is
a sof tware too l that d is t r ibutes appl icat ions among servers e f f ic ient ly and t ransparent ly . When a user
requests an appl icat ion or serv ice, HP Task Broker sends a message to a l l servers, request ing b ids for
provid ing the serv ice requested. Each server returns i ts "af f in i ty value," or b id, for the serv ice, and the
server level the highest value is selected. Tasks are distr ibuted at the appl icat ion level rather than the
procedure level , so no modif icat ions are required to any appl icat ion. Besides load balancing and increased
ava i lab i l i t y , the benef i t s o f HP Task Broker inc lude mu l t ip le -vendor in te roperab i l i t y , eas ie r ne twork
upgradabi l i ty , and reduced costs .

Real - t ime systems, unl ike t imeshar ing and batch systems, must respond rapid ly to real -wor ld events and
therefore requi re specia l a lgor i thms to manage system resources. The HP-RT operat ing system is the
result of computer. an exist ing operating system to the HP 9000 Model 742rt board-level real-t ime computer.
The HP-RT pr ior i ty- implementat ion, including the concepts of threads, count ing semaphores, and pr ior i ty-
inher i tance semaphores, is descr ibed in the ar t ic le on page 23. The ar t ic le on page 31 discusses the
handl ing of interrupts Â¡n HP-RT and tel ls how the HP PA-RISC architecture of the Model 742rt af fected
the operat ing system des ign.

The HP Tsutsuj i logic synthesis system (page 38) takes logic designs expressed as b lock d iagrams and
t ransforms them in to net l is t f i les that gate-ar ray manufacturers can use to produce appl ica t ion-spec i f ic
integrated c i rcui ts (ASICs). In many appl icat ions, the system reduces the t ime required to design an ASIC
by a factor of ten or more. Tsutsuj i was developed jo int ly by HP Laborator ies and the Yokogawa-Hewlet t -
Packard Design Systems Laboratory in Kurume, Japan. Because the Wor ld Azalea Congress was be ing
he ld in fo r when the pro jec t began, Tsutsu j i â€” the Japanese word for aza lea â€” was chosen as the
name of the system. Current ly, Tsutsuj i is only being marketed in Japan. The art ic le covers i ts architecture,
i ts operat ion, and several appl icat ions.

August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

A desk top and d i g i t i zes pho tog raphs , documen ts , d raw ings , and t h ree -d imens iona l ob jec t s and
sends the in format ion to a computer , usual ly for e lect ronic publ ish ing appl icat ions. The HP ScanJet l ie
scanner opt ical 52) is a 400-dot-per- inch f latbed scanner that has black and white, color, and opt ical
character recogni t ion capabi l i t ies. Using an HP-developed color separator design, i t prov ides fast ,
s ingle-scan, 24-b i t co lor image scanning. The ar t ic le descr ibes the color separator design and d iscusses
the chal lenge of t ry ing to dupl icate human vis ion so that colors look the same in a l l media.

Issues applications serviceability, design of a workstation computer for industrial automation applications include serviceability,
input /output capabi l i t ies, support , re l iabi l i ty , graphics, f ront- to-back revers ib i l i ty , mount ing opt ions, form
fac tor , the management , acoust ics , and modular i ty . How these issues are addressed by the mechan ica l
design subject article HP 9000 Models 745Ã and 747Ã entry-level industrial workstations is the subject of the article
on page 62.

Franco cardiology is an appl icat ion and technical support special ist for HP cardiology products in Europe.
H e a l s o t h e t h e m e d i c a l l a s e r r e s e a r c h h e b e g a n a s a n a s s i s t a n t f e l l o w a t t h e N a t i o n a l C a n c e r
Inst i tute of Mi lan, focusing on or thopedic surgery appl icat ions. In the paper on page 68, he descr ibes
recent computers. on an algorithm for real-time surgical laser beam control using HP 9000 computers.

The final Conference. papers in this issue are from the 1992 HP Software Engineering Productivity Conference.
> On page devel is a descr ipt ion of a defect management system created for software and f i rmware devel
opment a t two HP d iv i s ions . The sys tem uses a commerc ia l re la t iona l da tabase management sys tem.
*â€¢ The productivity code and object-oriented programming offer potential productivity gains, including code
reuse, some there can be pit fal ls. The art icle on page 85 discusses these as wel l as some new features of
the language. > In developing real - t ime sof tware, i t may be di f f icu l t to go f rom a st ructured analys is
model ul trasound one HP design. To help make this transit ion for HP medical ul trasound software, one HP
div is ion used a high- level design methodology cal led ADAPTS. I t 's d iscussed on page 90.

R.P. Dolan
Editor

Cover
T h i s H P i l l u s t r a t e s m a n y o f t h e f e a t u r e s o f t h e n e w H P A l l n G a P l i g h t - e m i t t i n g d i o d e s , i n c l u d i n g
thei r range of co lors, the i r package types, the i r narrow-beam l ight output , and thei r br ightness when
v iewed head-on. A l though we took the p ic ture in the dark, the main appl icat ions are day l ight -v iewable
displays and automot ive l ight ing.

What's Ahead
Featured family, the October issue will be the design of the HP 54720 sampling digitizing oscilloscope family,
which of fers sample rates up to 8 g igasamples per second and bandwidths f rom 500 megahertz to 2
gigahertz, the HP E1430A 10-megahertz analog-to-digi ta l converter module, which has 1 10-dB l inear i ty
and bui l t - in memory and f i l ter systems, and the HP 4396A 1.8-gigahertz vector network and spectrum
analyzer , a combinat ion analyzer wi th laboratory-qual i ty per formance in a l l funct ions.

August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

High-Efficiency Aluminum Indium
Gallium Phosphide Light-Emitting
Diodes
These devices span the color range from red-orange to green and have the
highest luminous performance of any visible LED to date. They are
produced by organometallic vapor phase epitaxy.

by Robert Robbins Fletcher, Chihping Kuo, Timothy D. Osentowski, Jiann Gwo Yu, and Virginia M. Robbins

Since light-emitting diodes (LEDs) were first introduced
commercially in the late 1960s, they have become a common
component in virtually every type of consumer and indus
trial electronic product. LEDs are used in digital and alpha
numeric displays, bar-graph displays, and simple on/off sta
tus indicators. Because of their limited brightness, LEDs
have tended to "wash out" under sunlight conditions and
have not generally been used for outdoor applications. (Re
call the quick demise of digital watches with LED displays in
the early 1970s.) However, the introduction of bright red-
light-emitting AlGaAs LEDs in the mid and late 1980s par
tially eliminated this drawback. Now, another family of
LEDs, made from AlInGaP, has been introduced. These
LEDs surpass the brightness of any previous visible LEDs
and span the color range from red-orange to green. With this
breakthrough in brightness in a broad range of colors, we
should see a wide variety of new applications for LEDs
within the next decade.

History
Although the various LED display and lamp packages are
familiar to many (for example, the usual LED single-lamp
package with its hemispherical plastic dome, or the seven-
segment digital display package), the diversity of materials
used in the chips that go into these packages is not as famil
iar. Fig. 1 summarizes the various semiconductor materials
used in LEDs and charts the evolution of the technology
over the past 25 years. In the figure, luminous performance,
measured in lumens of visible light output per watt of elec
trical power input, is plotted over time starting from 1968
and projected into the mid-1990s.

The first commercial LEDs produced in the late 1960s were
simple p-n homojunction devices made by diffusing Zn into
GaAsP epitaxial material grown by vapor phase epitaxy on a
GaAs substrate. l GaAsP is a direct-bandgap semiconductor
for compositions where the phosphorus-to-arsenic ratio in
the crystal lattice is 0.0 to 0.4. Above 0.4, the bandgap be
comes indirect. The composition of 60% As and 40% P
produces red near-bandgap light at about 650 nm. Quantum
efficiency in a simple homojunction device such as this is

' A lumen is a measure of visible l ight f lux that takes into account the wavelength sensitivity of
the human eye. An LED's output in lumens is obtained by multiplying the radiant flux output of
the LED in watts by the eye's sensitivity as defined by the Commission Internationale de
rEclairage(CIE).

low, but these so-called "standard red" LEDs were and still
are inexpensive and relatively easy to produce. The red
numeric displays in the first pocket calculators were made
of standard red LEDs.

At around the same time, GaP epitaxial layers doped with
zinc and oxygen and grown on GaP substrates by liquid phase
epitaxy were introduced. The GaP substrate, unlike GaAs, is
transparent to the emitted light, allowing these devices to be
more efficient than the GaAsP standard red diodes. How
ever, the emission wavelength at 700 nm is near the edge of
the visible spectrum, which limits their usefulness.

A major breakthrough in LED performance came in the
early 1970s with the addition of nitrogen to GaAsP and GaP
epitaxial materials.2'3'4 Nitrogen in these semiconductors is
not a charge dopant; rather it forms an isoelectronic impurity
level in the bandgap which behaves as an efficient radiative
recombination center for electrons and holes. In this way,
even indirect-bandgap GaP and indirect compositions of

' In a e lectrons semiconductor , the recombinat ion of e lectrons and holes has a h igh
probability of occurring through a band-to-band radiative process in which a photon is
emitted. In an indirect-bandgap semiconductor, radiative band-to-band recombination re
quires this interaction of a lattice vibration (a phononl with the electron and hole. For this
interaction the probability is low, and consequently nonradiative recombination processes
dominate.

1 0 0 T

10

0.1

Fig. 1

/ R e d , Y e l l o w ,
D H A l G a A s / a n d G r e e n
o n A l G a A s Â ¡ A l I n G a P

R e d A u t o m o b i l e
T a i l L i g h t

â€”
1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5

Time evolution of light-emitting diode technology.

6 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

GaAsP can be made to emit sub-bandgap light efficiently. By
the mid-1970s, orange and yellow LEDs made from various
alloys of GaAsP and green LEDs made from GaP appeared
on the market.

The next breakthrough occurred almost a decade later with
the introduction of AlGaAs red-light-emitting LEDs, grown
by liquid phase epitaxy. These provided two to ten times the
light output performance of red GaAsP.0-6 The reason for the
range of performance of AlGaAs is that it can be produced
in various structural forms: a single heterostructure on an
absorbing substrate (SH AS AJGaAs), a double heterostruc
ture on an absorbing substrate (DH AS AlGaAs), and a
double heterostructure on a transparent substrate (DH TS
AlGaAs). (See page 8 for an explanation of heterostruc-
tures.) This was an important milestone in LED technology
because for the first time LEDs could begin to compete with
incandescent lamps in outdoor applications such as automo
bile tail lights, moving message panels, and other applica
tions requiring high flux output. Included in Fig. 1 is the flux
required for a red automobile tail light, which is well within
the performance range of AlGaAs LEDs. Unfortunately,
AlGaAs LEDs can efficiently emit only red (or infrared)
light, which makes them unsuitable for many applications.

The latest technology advance, and the subject of this paper,
is the development of AlInGaP double-heterostructure
LEDs. These devices span the color range from red-orange
to green at light output performance levels comparable to or
exceeding those of AS and TS AlGaAs.7'8 The AJInGaP mate
rials are grown by a technique called organometallic vapor
phase epitaxy. This growth technology has been used for the
production of optoelectronic semiconductors, especially laser
diodes, for a number of years, but it has not been previously
used for the mass production of LEDs.

Hewlett-Packard's AlInGaP devices currently being intro
duced to the market have the highest luminous performance
of any visible LED to date. As the technology matures
through the 1990s, performance levels are expected to in
crease further and reach into the tens-of-lumens-per-watt
range.

Properties of AlInGaP
The bandgap properties of several compound semiconductors
used in LED technology are shown in Fig. 2. Illustrated is
the bandgap energy as a function of crystal lattice constant.
In a diagram such as this, binary compound semiconductors,
such as GaP and InP, are plotted as single points, each with
a unique bandgap and lattice constant. Ternary compounds,
such as AlGaAs, are represented by a line drawn between
the two constituent binary compounds, in this case AlAs and
GaAs. Finally, quaternary compounds, such as AlInGaP, are
represented by an enclosed region with the constituent
binary compounds at the vertices. The complex nature of
the crystal band structure and the transition from a direct-
bandgap semiconductor to an indirect-bandgap semiconduc
tor are what give the enclosed region its characteristic
shape. Properties such as this are usually obtained from
both experiment and theory.

This type of diagram is useful for designing LED materials
for at least two reasons. First, it shows what compositions
of AJInGaP are direct-bandgap and therefore readily useful
for making efficient LEDs. Second, for high-quality epitaxial

3 . 0 -

2.5-

I J

A l A s

A l InGaP Compos i t i ons
La t t i ce Ma tched to GaAs

GaAs

450

500

550

600

650

700

8 0 0

5.4 5.5 5 . 6 5 . 7

Lat t ice Constant (A)
5.8 5.9

Fig. 2. AlInGaP alloy system.

growth it is necessary for the epitaxial layers to have the
same lattice constant as the substrate on which they are
grown. This diagram shows what compositions of AlInGaP
will provide this lattice matching condition for a given sub
strate. For visible LEDs, the two common substrates used
are GaAs and GaP. Clearly GaP is not immediately useful
here because it is at the indirect-bandgap end of the
AlInGaP composition region. This leaves GaAs as the only
suitable substrate. A vertical line drawn from the x axis
through the GaAs point intersects the AlInGaP region and
indicates the compositions that lattice match to a GaAs
substrate. The composition that gives this lattice match
condition is written as:

(AlxGai_x)o.5ln0.5P

This notation, which is typical for describing compound
semiconductors, indicates the proportions of the constituent
atoms within the crystal lattice. In this case, half the group
III atoms are indium and the other half are some mixture of
aluminum and gallium. By coincidence, aluminum and gal
lium have approximately the same atomic size within the
lattice. As long as the amount of indium remains fixed at 0.5,
the aluminum-gallium mix can vary continuously from all
aluminum to all gallium, and the lattice constant will not
change appreciably. What will change is the bandgap of the
material. If the aluminum is kept below x = 0.7, the band-
gap is direct; above values of x = 0.7, the bandgap becomes
indirect. This case is illustrated in Fig. 2 where the line of
lattice match crosses from the direct region into the indirect
region.

The bandgap diagram indicates the potential of a material
for making LEDs, that is, whether a material has a direct
bandgap and whether the bandgap energy is within the
proper range for producing visible photons. The actual per
formance of a device depends on a number of additional
factors. First, the growth of high-quality epitaxial material
must be possible. Ideally, the growth should take place on a
commonly available, inexpensive substrate and should be
lattice matched to that substrate. Second, it must be pos
sible to form a p-n junction in the material. Third, to obtain
the highest quantum efficiency, it should be possible to grow
a double heterostructure. In the case of AlInGaP, all three of
these conditions are satisfied.

August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Structure of LEDs: Homoj unctions and Heteroj unctions

Light-emitting diodes come in a variety of types, differing in materials and in
epitaxial structure. GaAsP and GaP are used for the majority of red, orange, yellow,
and green LEDs currently in use. All these LEDs are homojunction p-n diodes with
either 1 junctions or junctions grown-in during the epitaxial process. Fig. 1
shows a material section of a typical GaAsP homojunction chip. In other material
systems, such as AIGaAs and AllnGaP, it is possible to grow layers of different
compositions (heterostructures) and therefore different bandgaps while keeping
the lattice constant the same in all the layers. This capability means that more
complex and efficient LED structures can be grown with these materials.

Fig. The illustrates an AIGaAs single-heterostructure (SH) chip. The epitaxial part of
the device consists of an n-type active layer where the light is generated, and a
single p-type window layer on top. The composition of the window layer is chosen
to have trans significantly larger bandgap than the active layer, and as such it is trans
parent layer). the light generated in the active layer (hence the name window layer).
The single heterojunction (excluding the one with the substrate), which in this
case is also the p-n junction, is what defines this as a single-heterostructure
device. The efficiency increase is a result of the transparency of the window layer
and increased injection efficiency at the p-n heterojunction.

A modification of the single heterostructure is the double heterostructure (DH)
shown in Fig. 3, again using AIGaAs as an example. In this case an additional
layer hetero grown between the active layer and the substrate. In a double hetero
structure, the two high-bandgap layers surrounding the active layer are referred to
as confining layers. Together they act to confine electrons and holes within the
active efficiently where they recombine radiatively. The lower confining layer efficiently
injects of into the active layer and helps channel some of the light out of
the chip, while the upper confining layer acts as a window for the generated light.

p Contact

p Contact

n Contact

Fig. 1. GaAsP standard red homojunction LED.

V///////////A

p-type AlxGag_xAs Window Layer
(x > 0.6)

n-type Al 35Ga 65As Active Layer

n Contact

Fig. substrate. AIGaAs single-heterostructure LED on an absorbing GaAs substrate.

p Contact

Y / / / / / / / / / / / / A

p-type AlxGai_xAs Upper Confining Layer
(x > 0.6)

p-type Al 35Ga 65As Active Layer

n-type AlxGai_xAs Lower Confining Layer
(x > 0.6)

n-type GaAs Absorbing Substrate

n Contact

Fig. substrate. AIGaAs double-heterostructure LED on an absorbing substrate.

OMVPE Growth of AllnGaP
AllnGaP and its related compounds GalnP and AllnP have
been the subject of study since the 1960s. Only within the
last eight years, however, have researchers been able to
grow AllnGaP controllably and with high quality. Double-
heterostructure AllnGaP semiconductor lasers that have a
GalnP active layer have been commercially available for at
least five years. The development of techniques for produc
ing AllnGaP LEDs has been slower because of the greater

epitaxial layer thicknesses required and because of the
larger quantities needed to supply market demand. Also,
high-performance LEDs require higher-quality epitaxial
growth than semiconductor lasers. This is because LEDs
generally operate at much lower current densities than
semiconductor lasers (tens of amperes per square centime
ter versus hundreds or thousands of amperes per square
centimeter), and nonradiative defects can dominate the
recombination process.

8 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

n Contact p Contact

n-type AlxGa|_xAs Confining Layer
(x >0.6|

p-type Al 35Ga 65As Active Layer

p- type GaP Window Layer

p-type AllnP Upper Confining Layer

Undoped AllnGaP Active Layer

p-type AlxGa]_xAs Confining Layer
and Transparent Substrate

(x > 0.6)

n-type AllnP Lower Confining Layer

p Contact

Fig. substrate. AIGaAs double-heterostructure LED on a t ransparent substrate.

I f t h e u p p e r c o n f i n i n g l a y e r i s g r o w n e s p e c i a l l y t h i c k , i t c a n a c t a s a m e c h a n i c a l
" s u b s t r a t e , " a n d t h e o r i g i n a l a b s o r b i n g G a A s s u b s t r a t e c a n b e r e m o v e d b y c h e m i
c a l e t c h i n g . T h i s i s a t r a n s p a r e n t - s u b s t r a t e d o u b l e - h e t e r o s t r u c t u r e (T S D H) d e v i c e
a n d i s t h i c k i n F i g . 4 . I n F i g . 4 t h e c h i p i s t u r n e d u p s i d e d o w n s o t h a t t h e t h i c k
A I G a A s L E D l a y e r i s o n t h e b o t t o m . T h i s i s t h e m o s t e f f i c i e n t t y p e o f L E D
c h i p , w i t h e x t e r n a l e f f i c i e n c i e s a p p r o a c h i n g 1 5 % f o r r e d A I G a A s l a m p s .

F i n a l l y , t h e r e i s t h e A l l n G a P L E D s t r u c t u r e . T h i s d e v i c e i s s h o w n i n F i g . 5 . I t
r e s e m b l e s t h e A I G a A s d o u b l e h e t e r o s t r u c t u r e e x c e p t f o r t h e p r e s e n c e o f t h e G a P
w i n d o w l a y e r . I n t h e c a s e o f A I G a A s , t h e u p p e r c o n f i n i n g l a y e r c a n b e g r o w n m a n y

n-type GaAs Absorbing Substrate

n C o n t a c t

Fig. substrate. Al lnGaP double-heterostructure LED on an absorbing substrate.

m i c r o m e t e r s t h i c k , e n o u g h t o c o u p l e l i g h t o u t o f t h e c h i p e f f i c i e n t l y . W i t h A l l n P ,
h o w e v e r , f o r e p i t a x i a l g r o w t h r e a s o n s i t i s n o t p o s s i b l e t o p r o d u c e a t h i c k e n o u g h
l a y e r s p r e a d t h e A l l n G a P t o a c t a s a n e f f i c i e n t w i n d o w , o r e v e n t o s p r e a d t h e
c u r r e n t e f f e c t i v e l y t o t h e e d g e s o f t h e c h i p . B y g r o w i n g a t h i c k G a P l a y e r o n t o p o f
the ac t i ve dev ice s t ruc tu re , an e f f i c ien t w indow i s p roduced and the shee t res is tance
o f t h e p l a y e r s i s r e d u c e d e n o u g h t o p r o m o t e a d e q u a t e c u r r e n t s p r e a d i n g .

Vapor phase epitaxy (VPE) and liquid phase epitaxy (LPE)
are the commonly used techniques for the mass production
of LED materials. GaAsP is best grown using the VPE
method, and AIGaAs and GaP are grown using the LPE
method. Neither of these techniques works well for the
growth of AllnGaP. A third technique called organometallic
vapor phase epitaxy (OMVPE) does work well. OMVPE is
similar to conventional VPE in which the reactant materials
are transported in vapor form to the heated substrate where
the epitaxial growth takes place. The main difference is that
instead of using metallic chlorides as the source materials
(GaC1.3 or InCIs, for example), OMVPE uses organometallic
molecules. The materials used in the case of AllnGaP are
trimethylaluminum, trimethylgallium, and trimethylindium.
Other similar organometallic compounds are sometimes
used as well. As in VPE, phosphine gas is used as the source
of phosphorus. By controlling the ratio of constituent gases
within the reactor, virtually any composition of AllnGaP
can be grown. The reactor is designed in such a way that
the thicknesses of the epitaxial layers can be precisely
controlled.

The schematic diagram in Fig. 3 shows a typical research-
scale OMVPE reactor. In this example, the substrate sits flat
on a horizontal graphite slab inside a quartz tube. Outside
the tube and surrounding the graphite is a metal coil con
nected to a multikilowatt radio frequency generator. The
graphite is heated to around 700 to 800Â°C by RF induction.

There are many variations on the design of the reactor
chamber. For example, in some existing commercial

OMVPE systems, the wafers sit on a horizontal platter and
rotate either slowly or at high speed to achieve uniform
growth across the wafer. Other systems use a barrel-type
susceptor inside a large bell jar, similar to VPE and silicon
epitaxy reactors. The method for heating the substrates can
be RF induction, resistance heaters, or infrared lamps.
Whatever the configuration, the conceptual nature of the
growth process remains essentially the same.

The organometallic sources under normal room temperature
conditions are either high-purity liquids or crystalline solids
and are contained in small stainless-steel cylinders measur
ing about eight inches long by two inches in diameter. (Be
cause they are pyrophoric, these materials are never ex
posed to air and require careful handling.) The cylinders are
equipped with an inlet port connected to a dip tube, and an
exit port. Hydrogen gas flowing through the dip tube and up
through the organometallic liquid or solid becomes saturated
with organometallic vapors. (This type of container is com
monly called a "bubbler," referring to the action of the hydro
gen bubbling through the liquid.) The mixture of hydrogen
and vapor flows out of the cylinder and to the reactor cham
ber. The exact amount of organometallic vapor transported
to the reactor is controlled by the temperature of the bubbler,
which determines the vapor pressure of the organometallic
material, and by the flow of hydrogen. The temperature of
the bubblers is controlled by immersion in a fluid bath in
which the temperature is regulated within Â±0.1 Â°C or better.
Special regulators called mass flow controllers precisely
meter the flow of hydrogen to each bubbler.

August 1993 Hewlett-Packard Journal 9
© Copr. 1949-1998 Hewlett-Packard Co.

Phosphine

Diethyltel lur ide
(n-type Dopant)

Purified
Hydrogen

At the entrance to the reactor chamber, the reactant gases
are mixed. These gases consist of phosphine, a mixture of
hydrogen and the organometallic vapors, dopant gases, and
additional hydrogen added as a diluent. As the gases pass
over the hot substrate, decomposition of the phosphine,
organometallics, and dopant sources occurs. If all the condi
tions are correct, proper crystal growth takes place in an
orderly atomic layer-by-layer process. Hydrogen, unreacted
phosphine and organometallics, and reaction by-products
such as methane are then drawn out of the reactor and
through the vacuum pump for treatment as toxic exhaust
waste.

The growth of III-V epitaxial materials is typically complex,
and the successful production of high-quality films is depen
dent on many factors. The growth of AlInGaP is definitely
no exception. Since this is a quaternary material system and
is not automatically lattice matched to the substrate (unlike
AlGaAs), the composition of the crystal lattice must be care
fully controlled during the growth process. This means that
each layer in the double heterostructure has to have the
proper proportions of aluminum, indium, and gallium. Fur
thermore, the transition from one layer composition to the
next often requires special consideration to avoid introduc
ing defects into the lattice. Other factors, such as substrate
temperature, total gas flow through the reactor, and dopant
concentrations require careful optimization to achieve the
best final device properties. Even after years of research
with OMVPE, there is still a certain amount of art involved
in its practice.

AlInGaP Device Structure
As mentioned previously, the high-efficiency AlInGaP LED is
a double-heterostructure device. Fig. 4 shows a cross-section
of a Hewlett-Packard LED with the individual epitaxial layers
revealed. The light-producing part of the structure consists
of a lower confining layer of n-type AllnP, a nominally un-
doped AlInGaP active layer, and an upper confining layer of
p-type AllnP. Light is generated in the active layer through
the recombination of carriers injected from the p-n junction.
The confining layers enhance minority carrier injection and
spatially confine the electrons and holes within the active

To Toxic
Exhaust

T r e a t m e n t p . g 3 S i n l p U f i e d s c h e m a t i c d i a _

gram of an organometallic vapor
phase epitaxy (OVMPE) reactor.

layer, increasing the probability for band-to-band recombi
nation. For such a structure, the internal quantum efficiency
(number of radiative recombinations per total number of
recombinations) can be very high, even approaching 100%
for the best-quality materials.

On top of the double heterostructure is grown another layer,
which serves two functions. First, it reduces the sheet resis
tance of the p-type layers, promoting current spreading
throughout the chip, and second, it acts as a window layer
to enhance coupling of the light out of the chip. Early in the
development phase of the AlInGaP LEDs it was discovered
that the thin upper confining layer of AllnP, ideal for confin
ing electrons and holes in the active layer, is resistive and by
itself prevents current from the central ohmic contact
(shown in Fig. 4) from spreading out to the edges of the
chip. of fact, with only AllnP as the top layer, virtually all of
the current flows straight down, and light generation occurs
only beneath the contact and is blocked from escaping the
chip by the contact itself. With the addition of a thick con
ductive window, such as GaP, the current is able to spread
out, and light generation occurs across the entire chip. Addi
tionally, because the index of refraction of semiconductors
is high (typically around 3.5), without the window much of
the light produced is trapped inside the chip by total internal
reflection and is eventually absorbed by the substrate. Using
Snell's law and geometric optics, it can be shown that the
thick window layer increases the amount of light that can
escape the chip by a factor of three/1

Conceptually, any transparent and conductive epitaxial ma
terial could serve as the window material. From a practical
standpoint, however, there are few epitaxial materials that
can be grown on the AlInGaP layers that satisfy the require
ments of transparency and electrical conductivity. The two
best materials are AlGaAs and GaP. AlGaAs is a lattice
matched material with good epitaxial growth characteristics
and acceptable conductivity. However, it is transparent only
in the red and orange spectral range. At wavelengths below
about 610 nm, AlGaAs begins to absorb significantly. GaP, on
the other hand, although mismatched to the AlInGaP lattice
by 4%, is highly conductive and transparent in the spectral

10 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

region from red to green, which is perfect for the spectral
range of AlInGaP.

From an epitaxial standpoint, the successful abrupt growth
of lattice mismatched GaP on an AlInGaP heterostructure is
an interesting phenomenon. Normally, one would not expect
GaP to grow as a single crystal layer directly on a mis
matched "substrate" such as an AlInGaP heterostructure. It
usually takes special growth techniques, such as alloy grad
ing from one composition to the other to achieve a gradual
change from the substrate lattice constant to that of the de
sired layer. (This is the common technique used for GaAsP
epitaxy on GaAs and GaP substrates. The grading takes
place over a distance of tens of micrometers of epitaxial
material.) We have developed a technique for growing the
GaP window directly on the AlInGaP heterostructure. The
GaP at the interface with the AllnP contains a dense net
work of crystal defects (dislocations) caused by the lattice
mismatch. The defect-rich layer is only a few hundred nano
meters thick. It appears to have no effect on the transpar
ency or conductivity of the window and the defects do not
propagate down into the high-quality heterostructure where
the light is generated.

Instead of growing the thick GaP window using the OMVPE
technique, after the heterostructure growth is completed the
wafers are removed from the OMVPE reactor and trans
ferred to a conventional hydride VPE reactor where a

Top Contact Metal l ization
(Bond Pad) GaP Window Layer (p-type)

AllnP Upper Confining
Layer (p-typel

Al InGaP Active Layer
(Nominal ly Undoped)

AllnP Lower Confining
Layer In-type)

GaAs Absorbing
Substrate (n-type)

Backside Ohmic
Contact Metal l izat ion

T
Metal Lead Frame

Fig. 4. AlInGaP LED structure.

45-micrometer layer of GaP is deposited to complete the
structure. The reason for the two-step growth process is to
save time and cost. Organometallic sources are expensive,
whereas hydride VPE requires only metallic gallium as a
source. Also, the crystal growth rate using VPE can easily be
ten times higher than with OMVPE. which is desirable for
the growth of thick layers.

Device Fabrication
The fabrication of LED chips is relatively simple compared
to 1C chip technologies. There is generally no high-resolution
photolithography involved, and often there is no multilayer
processing. The main problems arise because of the inherent
difficulties in working with iri-V semiconductor materials.
These processes are notorious for working one day and not
working the next, often without a clear explanation for the
change. Processing operations, such as premetallization
cleaning, metal etching, contact alloying conditions, and
dicing-saw cut quality are constantly monitored and adjusted
for optimum device performance.

In its simplest form, the process for making AlInGaP chips
involves a metallization for the anode front contact pattern
(usually a circular dot with or without fingers to promote
current spreading), mechanical and/or chemical thinning of
the wafer to achieve the proper die thickness, metallization
on the back of the substrate for the cathode contact, and
sawing the wafer into individual dice. The dice are assem
bled into the various lamp or display packages using auto
mated pick-and-place machines. Conductive silver epoxy is
used to attach the die to its leadframe, and gold-wire ther-
mosonic bonding is used to bond to the top dot contact. In
the case of a lamp package, the manufacturing process is
completed by casting an epoxy dome around the leadframe.
A cross-sectional view of a chip in a lamp package is shown
in Fig. 4. Every device is tested to check the electrical char
acteristics, including the forward voltage at a specified cur
rent (usually 20 mA) and the reverse breakdown voltage at a
specified current (usually -50 \iA). Optical performance is
also measured to check for light output flux, on-axis intensity,
and dominant wavelength.

AlInGaP Performance
The operating characteristics of AlInGaP devices have al
ready been briefly described, especially their high light out
put performance compared to other technologies. A more
detailed analysis of AlInGaP performance is shown in Figs. 5
and 6. Fig. 5 shows the external quantum efficiency for
AlInGaP T-l-Mi lamps as a function of emission wavelength
from about 555 nm to 625 nm. (These LEDs have the same
double-heterostructure configuration except for the com
position of the active layer which is adjusted to vary the
emission wavelength.) Other types of T-1Y4 LED lamps are
included for comparison. Drive current is 20 mA in all cases.
External quantum efficiency is a measure of the number of
photons emitted from the device per electron crossing the
p-n junction and is dependent on the efficiency of the semi
conductor device at producing photons (the internal quantum
efficiency) and on the ability to get those photons out of the
chip and out of the lamp package (package efficiency). If
every electron-hole pair produced a photon and every photon
were extracted from the device and measured, the external
quantum efficiency would be 100%.

August 1993 Hewlett-Packard Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

Green â€” â€¢â€¢ â€¢Â«â€” Orange
â€” Yel low â€” -

- Green - - O r a n g e -
- Y e l l o w -

1.0

0.8

0.4 â€¢Â£

560 5 8 0 6 0 0 6 2 0 6 4 0

Peak Wavelength (nm|

660 680

Fig. 5. External quantum efficiency of T-1% AlInGaP lamps compared
to other technologies. Also shown is the CIE human-eye response
curve.

Internal quantum efficiency is limited by the crystalline qual
ity of the semiconductor, by the bandgap properties of the
semiconductor, and by the device structure (home-junction
or heterojunction). In the spectral range between 625 and
600 nm, the efficiency is almost flat. Here, crystalline quality
is good, and the bandgap of the active layer is direct and
well away from the indirect crossover. Also, the bandgap
difference between the active layer and the upper and lower
confining layers is large, providing adequate trapping of
electrons and holes within the active layer and efficient
radiative recombination.

As the wavelength is reduced by increasing the aluminum-
to-gallium ratio in the active layer, several effects begin to
lower the overall internal quantum efficiency. First, as the
direct^indirect-bandgap crossover is approached, there is a
greater probability for indirect-bandgap nonradiative transi
tions. is effect increases dramatically as the wavelength is
reduced. Second, because aluminum is such a highly reac
tive atomic species, it has the tendency to bring undesirable
contaminants, especially oxygen, into the crystal lattice with
it. These impurities act as nonradiative recombination cen
ters for electrons and holes. Consequently, as the proportion
of aluminum in the active layer is increased to reduce the
emission wavelength, more nonradiative recombination oc
curs. Finally, as the bandgap of the active layer is increased,
the upper and lower confining layers become less efficient
at keeping electrons and holes contained within the active
layer before they recombine.

The relative importance of these three effects is still being
investigated. Models describing direct/indirect-bandgap
effects, defect-related nonradiative recombination, and con
fining layer efficiency exist. However, these models are de
pendent on an accurate knowledge of the bandgap of the
material. For AlInGaP, there is still uncertainty about the
exact bandgap properties, notably the exact location of the
direct^indirect crossover. It is commonly believed that
higher efficiencies at the short wavelengths should be
achieved with improved epitaxial growth techniques,
possibly by improving the purity of the organometallic
source materials.

10

E C

1 1
O . C u o

GaP:N on GaP

Red â€”

AIGaAs:
O D H T S

O D H A S

O S H A S

A A
G a A s P : N G a A s P : N

G a P o n G a P o n G a P o n G a R

Unfiltered
Incandescent

Lamp t
â € ¢
Yel low-Fi l tered

Incandescent

5 4 0 5 6 0 5 8 0 6 0 0 6 2 0 6 4 0

Peak Wavelength (nm)
6 6 0 6 8 0

Fig. 6. LED luminous performance for AlInGaP compared to other
technologies. Luminous performance is the product of power effi
ciency (roughly equal to quantum efficiency, Fig. 5) and the eye's
response.

Once the light is produced in the active layer the task be
comes one of getting the light out of the chip. Because the
index of refraction of semiconductors such as AlInGaP is
high (n = 3.5, approximately), most of the generated light
that strikes the sidewalls of the chip is trapped within the
chip of because of total internal reflection or because of
Fresnel reflection. In the case of an absorbing substrate chip,
such as the present AlInGaP device, reflected rays generally
are lost to absorption in the substrate. We have minimized
the losses from total internal reflection with the addition of
the thick GaP window layer. Nevertheless, even the best
external quantum efficiency theoretically possible for a
cubic-shaped double-heterostructure absorbing substrate
chip in air is only about 2%.

The effects of total internal reflection and Fresnel reflection
are mitigated by encapsulating the chip within clear epoxy
plastic shaped with a hemispherical dome (the typical LED
lamp package configuration). The plastic acts as an index-
matching medium between the semiconductor and the air,
reducing the effects of total internal reflection and Fresnel
reflection. The hemispherical shape of the plastic eliminates
total to reflection within the plastic itself and acts to
focus the light from the chip. Generally, the external quan
tum efficiency of an encapsulated chip is increased by a
factor of three, bringing the theoretical maximum external
quantum efficiency to between 6% and 7% for an absorbing
substrate chip.

From Fig. 5 it can be seen that at the longer wavelengths,
the external quantum efficiency of AlInGaP is about 6%,
comparing favorably with absorbing substrate DH AIGaAs at
7%. Only TS AIGaAs has a higher external quantum efficiency
owing to the lack of absorption by the substrate. All other
LED materials are less efficient than AlInGaP from 625 to
555 nm. In the yellow-to-orange wavelength range, this
difference is an order of magnitude or more.

Included in Fig. 5 is the CIE relative eye sensitivity curve
which shows that the eye is most sensitive to green photons
and much less so to red photons. This curve is used to con
vert external quantum efficiency data to the luminous per
formance data in Fig. 6. Fig. 6 shows lumens of visible light

12 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Lamp Type D o m i n a n t
C o l o r n m

592

592

592

592

615

615

615

622

V i e w i n g A n g l e

3

7

30

45

7

30

45

30

T y p i c a l I n t e n
s i ty (on-ax is ,

m i l l i c a n d e l a s l

8400

2600

1000

200

2600

600

emitted from the LED lamp per watt of power applied to the
diode (y axis) as a function of emission wavelength (x axis).
This data is representative of how the eye actually responds
to various types of LEDs. The effect of the CIE curve is to
depress performance in the red part of the spectrum, result
ing in a dramatic increase in apparent performance of the
AlInGaP lamps compared to even TS AlGaAs lamps. It
should be pointed out that the AlInGaP data shown in Figs. 5
and 6 represents the best reported results, whereas the data
for the other technologies shows typical production values.
Production performance values for AlInGaP are not yet es
tablished. Initially the performance will be lower than the
data shown here but is expected to increase and surpass
this data as the technology evolves and matures.

Also indicated in Fig. 6 are the luminous performance levels
for automotive incandescent lamps, both filtered and unfil-
tered. These benchmarks are useful because of the interest
in using LEDs instead of incandescent lamps for tail lights,
brake lights, turn signals, and side marker lights on automo
biles and trucks. The high efficiency of AlGaAs and AlInGaP
LEDs and their long lifetimes make them attractive alterna
tives to incandescent light bulbs in the automotive industry.
Because LEDs can be assembled into a smaller package
than an incandescent bulb, automotive design can be more
flexible and overall manufacturing costs lower.

The reliability of AlInGaP LEDs is generally good compared
to other types of LEDs. Stress tests in which devicer are
driven at currents up to 50 mA at ambient temperatures
ranging from -40 to +55Â°C show good light output and elec
trical stability beyond 1000 hours. Since AlInGaP LEDs have
not existed for very long, device lifetime data as long as
10,000 hours is scarce. However, indications are that there
are no inherent reliability problems associated specifically
with AlInGaP.

For some stress conditions, AlInGaP performs significantly
better than other products. For example, in high-temperature,
high-humidity conditions, AlGaAs LEDs fail rapidly because
of corrosion of the high-aluminum-content epitaxial layers.
Since the overall aluminum content of AlInGaP devices is
less than for AlGaAs, this corrosion problem does not ap
pear, and AlInGaP LEDs perform very well in high-humidity
conditions. Also, it is well-known that standard yellow
GaAsP LEDs exhibit serious light output degradation when
operated at low temperatures. AlInGaP LEDs demonstrate
excellent low-temperature stability.

Typica l Vf a t
2 0 m A

1.9V

1.9V

1.9V

1.9V

1.9V

1.9V

1.9V

1.9V

Typ ica l V , a t
-100 MA

25V

25V

25V

25V

25V

25V

25V

25V

Fig. 7. Hewlett-Packard
AlInGaP lamp products.

Of course, good LED device performance and reliability do
not happen automatically. There are many conditions that
occur during the growth of the epitaxial material and during
device processing that affect initial light output, electrical
characteristics, and device longevity. In fact, many factors
affecting performance are not completely understood at this
time. With ongoing analysis of the problems that occur, addi
tional insight into the properties of AlInGaP epitaxial growth
and device design will follow.

HP AlInGaP Products
The proliferation of AlInGaP chips into various LED packages
will be an ongoing process over the next few years. Initial
market demands are for T-l3/4 lamp packages for moving
message signs, highway warning markers, and automotive
and truck lighting applications. As of this writing, several
AlInGaP lamp packages are available in three colors from
amber to red-orange. These products are listed in Fig. 7.

Conclusion
We have attempted to provide a general description and
understanding of HP's new family of LEDs made from
AlInGaP. We have compared the performance and production
of AlInGaP devices with other LED technologies. We have
also tried to give the reader a general understanding of LEDs
and the III-V processes necessary for their manufacture.

HP's AlInGaP devices represent the brightest visible LEDs
that have ever been made. Interest in them is quickly grow
ing as manufacturers come up with new applications for
them. Although comparably bright red AlGaAs LEDs have
been available for several years, the appearance of bright
orange and yellow lamps has made possible total LED re
placements in applications where low-wattage filament
lamps have been used exclusively. The benefits of LEDs
include long lifetime, performance reliability under a broad
range of operating conditions, and overall cost savings over
traditional incandescent lamps.

Acknowledgments
The development of the AlInGaP LEDs took a number of
years, starting from the initial R&D phase when we strug
gled to grow even single layers of not-very-good epitaxial
material. Since then we have come a long way towards
bringing AlInGaP out of the laboratory and into the product
line. The authors wish to thank Chris Lardizabal, who has
worked on processing AlInGaP wafers and testing devices

A u g u s t U H m i r w l H l - l ' a r k a r d . I i m r n a l 1 3

© Copr. 1949-1998 Hewlett-Packard Co.

from the very start of the project, and Tia Patterakis, Susan
Wu, Anna Vigil, and Charlotte Balassa for processing the
wafers, helping with epi growth, and endless testing of
AlInGaP chips and lamps. Other people who deserve recog
nition for helping to develop and understand AlInGaP LEDs
include Doug Shire, Dan Steigerwald, and Frank Steranka.
Finally, we would like to thank our R&D manager, George
Craford, for his continuous support and encouragement,

References
1. N. Light Jr., and S.F. Bevacqua, "Coherent (Visible) Light
Emission from GaAsP Junctions," Applied Physics Letters, Vol. 1,
1962, p. 82.
2. R.A. Logan, H.G. White, and W. Wiegmann, "Efficient Green
Electroluminescence in Nitrogen-Doped GaP p-n Junctions,"
Applied Physics Letters, Vol. 13, 1968, p. 139.
3. W.O. Groves, A.J. Herzog, and M.G. Craford, "The Effect of Nitro
gen Doping on GaAsP Electroluminescent Diodes," Applied Physics

Letters, Vol. 19, 1971, p. 184.

4. M.G. Craford, R.W. Shaw, W.O. Groves, and A.H. Herzog, "Radia
tive Recombination Mechanisms in GaAsP Diodes with and without
Nitrogen Doping," Journal of Applied Physics, Vol. 43, 1972, p. 4075.
5. J. Nishizawa and K. Suto, "Minority-Carrier Lifetime Measure
ments of Efficient GaAlAs p-n Heterojunctions," Journal of Applied

Physics, Vol. 48, 1977, p. 3484.
6. F.M. 'Steranka, et al, "Red AlGaAs Light-Emitting Diodes,"
Hewlett-Packard Journal, Vol. 39, no. 8, August 1988, pp. 84-87.
7. C.P. Kuo, et al, "High Performance AlGalnP Visible Light-Emitting
Diodes," Applied Physics Letters, Vol. 57, 1990, p. 2937.
8. R.M. Fletcher, et al, "The Growth and Properties of High-
Performance AlGalnP Emitters Using a Lattice Mismatched GaP
Window Layer," Journal of Electronic Materials, Vol. 20, 1991,
p. 1125.
9. K.H. Huang, et al, "Twofold Efficiency Improvement in High-
Performance AlGalnP Light-Emitting Diodes in the 555-to-620-nm
Spectral Region Using a Thick GaP Window Layer," Applied Physics

Letters, Vol. 61, 1992, p. 1045.

14 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Task Broker: A Tool for
Distributing Computational Tasks
Intelligent distribution of computation tasks, collective computing, load
balancing, and heterogeneity are some of the features provided in the
Task Broker tool to help make existing hardware more efficient and
software developers more productive.

by Terrence P. Graf, Renato G. Assini, John M. Lewis, Edward J. Sharpe, James J. Turner,
and Michael C. Ward

HP Task Broker is a software tool that enables efficient
distribution of computational tasks among heterogeneous
computer systems running UNIX*-system-based operating
systems. Task Broker performs its computational distribu
tion without requiring any changes to the application. Task
Broker relocates a job and its data according to rules set up
at Task Broker initialization. The other capabilities provided
by Task Broker include:

â€¢ Load balancing. Task Broker can be used to balance the
computation load among a group of computer systems.
Since Task Broker has the ability to find the most available
server for a computation task transparently, it can effec
tively level the load on a compute group, thus helping to
make existing hardware more efficient.

â€¢ Intelligent targeting. Task Broker can transparently target
specific servers most appropriate for a specialized task. For
example, a graphics simulation application may be more
efficiently executed on a machine with a graphics accelera
tor or fast floating-point capability. These targeting charac
teristics can be built into the Task Broker group definition
without requiring the user to have any machine-specific
knowledge. Thus, expensive resources don't need to be
duplicated in a network.

â€¢ Collective computing. Task Broker allows a network of
workstations to form a computational cluster that can re
place a far more expensive mainframe or supercomputer.
This approach offers multiple advantages over the single
compute server model. Some of these advantages include
increased availability (no single point of failure), improved
scalability (ease of upgrade), and reduced costs. See "HP
Task Broker and Computational Clusters," on page 16.

' Heterogeneity. Task Broker can be used to create a hetero
geneous cluster, allowing a network of machines from mul
tiple vendors to interoperate in a completely transparent
fashion. Task Broker will run on several different work
station platforms, all of which can interoperate as servers
and clients.
DCE Interoperability. Task Broker is able to take advantage
of many of the services provided by HP's DCE (Distributed
Computing Environment) developer's environment. See
"Task Broker and DCE Interoperability," on page 19.

HP Task Broker runs on HP 9000 Series 300, 400, 600, 700,
and 800 computers running the HP-UX operating system,
and the HP Apollo workstations DN2500, DN3500, DN4500,

DN5500, and DN10000 running Domain/OS. In addition,
Scientific Applications International Corporation (SAIC) has
ported Task Broker to the Sun3, Sun4, and SPARCstation
platforms.

Automated Remote Access
The need to access remote computer resources has existed
ever since computers were tied together by local area net
works. Remote access gives the user a means of increasing
productivity by allowing access to more powerful or special
ized computer resources.

To access a remote resource, computer users have had to
rely on guesswork for determining optimal placement and
have been saddled with the tedious activity of manually
moving files to and from a resource.

Task Broker effectively automates the manual tasks required
for distributing computations by:

â€¢ Gathering machine-specific knowledge from the end user
â€¢ Analyzing machine-specific information and selecting the

most available server
â€¢ Connecting to a selected server via telnet, remsh (remote

shell), or crp (create remote process)
â€¢ Copying program and data files to a selected server via ftp

(file transfer protocol) or NFS (Network File System)
> Invoking applications over the network
â€¢ Copying the resulting data files back from the server via ftp

or NFS.

Each of the above steps is done automatically by Task Broker
without the user needing to be aware of, or having to deal
with, the details of server selection and data movement.

Server selection is one of the most significant contributions
provided by Task Broker. For the user to determine the most
appropriate server for a job manually, all of the dynamic
variables of server availability would have to be captured
before every job submittal. Because this is a time-consuming,
cumbersome process, developers trying to run a job would
spend very little time selecting an appropriate server.

Instead, developers would revert to using either their own
machine for compute jobs or just a few popular machines,
overloading those machines and underloading others. In
addition, having to manage several network connections

August 199; i Hewlett-Packard Journal 15
© Copr. 1949-1998 Hewlett-Packard Co.

HP Task Broker and Computational
Clusters

A computational cluster is a group of workstations networked together and used
as a single virtual computational resource. This notion is an extension of the Task
Broker cluster concept, since it is based on the idea that a cluster of workstations
can actually replace a mainframe.

The motivation behind this concept comes from customers who are downsizing
from a single compute server, such as a mainframe or supercomputer, or customers
who have a intensive tasks that can execute more ef fect ively on a
cluster of workstations.

The advantages of the computational cluster over the resource that it is intended
to replace are several:

â€¢ The cluster can be considerably less expensive then a mainframe.
â€¢ The cluster is modular and therefore more easily upgradable.
â€¢ The in can consist of workstations that may already exist in the environment.

Task the has an obvious role in this area of computing, since the computational
cluster is really a special case of the Task Broker solution. However, it is important
to note that, in terms of distributing computations, only a portion of the mainframe
replacement solution would be provided by Task Broker in its current form.

Task mechanism represents the class of solutions that provide a mechanism for coarse
grained parallelism (i.e., giving the user the ability to run multiple tasks or applica
tions parallelism without The goal of this type of solution is to achieve parallelism without
impacting the application, or to maximize the use of hardware.

A finer applica of parallelism can be provided by tools that can break up an applica
tion be subtasks and run them in parallel. The subtasks can be procedures, loops,
or even instructions. The goal of these solutions is to have an application com
plete coarse-grained the minimum time possible, as opposed to those of the coarse-grained
alternative.

This covered of computing is obviously more involved then can be covered here. The
point to be made is that customers are in need of new ways of optimizing their
use of solution. and Task Broker can, in its current form, provide a solution. Task
Broker of provide parallelism at the application level, which is a major portion of
the computational cluster solution.

simultaneously to try to balance the workload is also
cumbersome, and tends to lead to the same result. The end
result is increased frustration and decreased productivity.

Task Broker automates these services, which most developers
find difficult to manage manually.

Bidding and Execution
A machine running Task Broker can act as a client, a server,
or both. A Task Broker client is a submitter of jobs into the
compute group, and a Task Broker server is a machine that
provides services for clients. A single instance of Task Bro
ker, called the Task Broker daemon, resides on each client
and server.

Each server provides one or more services for the work
group, each of which represents a specific compute job.
Servers can provide any number of services, and services
can be provided by one or more servers (which would be
necessary to load balance the compute group).

Task Broker clients and servers interact to distribute and
execute jobs in the following manner:

1. A user submits a request for a service to the local Task
Broker daemon (client daemon).

2. The client daemon sends a message to the group of
servers, requesting bids to service the submitted job.

3. The servers compute their bids, or affinity values, for the
requested service, based on their availability to accept the
job. The bids are returned to the client.

4. The client waits a preset amount of time for the servers to
return their bids and selects the server with the highest bid.

5. The client transmits the necessary files (if necessary) to
the selected server.

6. The server executes the job according to instructions in
the local execution script.

7. At the completion, the server returns the output files to the
client, which are then placed in the user's working directory.

Since every job submitted to the work group involves bid
ding before acceptance by a server, and the bids can be
computed dynamically based on the server's availability at
that time, the jobs are automatically serviced by the most
appropriate machine. A failing machine will automatically
be avoided by this bidding mechanism, increasing the fault
tolerance of the group. The basis for the bids or affinity
values is described later.

If there are no available servers when bids are requested, or
if the returned bids do not exceed a preset threshold because
the servers are all being heavily used, the job will be put into
a local queue. The jobs in the local queue will be resubmitted
for bidf liter a preset time limit or by receiving a callback
from a newly available server. In addition, the job may exe
cute locally if the submitting machine can also provide the
requested service.

Each daemon maintains a log file that is used to record
daemon activity. These can be used to analyze the machine
use in the work group and can be the basis for fine tuning
the Task Broker installation.

Task Broker Setup
Task Broker setup takes place when the product is installed.
Installation and setup are performed by a Task Broker ad
ministrator. The Task Broker administrator is a user with the
appropriate permissions to initialize and modify the Task
Broker installation of daemons and setup files.

When hardware changes are needed in the network the ad
ministrator needs to make sure the Task Broker setup files
are kept current. In addition, the administrator can make
changes to the daemon's setup files to fine tune the installa
tion. To assist the administrator in this analysis, Task Broker
can collect information about daemon and service activity
through the use of its logging feature or its accounting file.
Administrator duties are given in reference 1.

Each machine running a Task Broker daemon needs some
or all of the following files to operate as either a client or a
server:

Configuration File. This file specifies what services are pro
vided, when the services are available, and who has access
to these services. It also specifies how services are to be
provided, and under what conditions (see Fig. 1). The con
tents of a configuration file are divided into the following
categories:

16 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

M a c h i n e A
N e t w o r k - L A N

Machine B

Service
Definition

Fig. 1. An overview of Task Broker configuration files.

1 Global parameters. These parameters specify changes to
Task Broker default values that govern the global conditions
on the local Task Broker computer. The parameter that gov
erns the waiting period for the task placement process and
the parameter that specifies whether to record CPU time
used by local tasks are examples of global parameters.
Class definition. This definition specifies the maximum
number of services belonging to a named class that can run
on the local server at one time. Every service specified must
be a member of the specified class. For example, Spice
might be a member of a class specified as cadtools.
Client definition. This definition specifies the servers that
can provide service to a client.
Service definition. This definition specifies items such as
the local server's ability to provide a particular service, how
the service will be processed, the affinity value or affinity
script, and a list clients that have access to the service.

Service Script. This is a shell script that defines how each
service being provided by the server is carried out. This script
typically invokes an application that provides the requested
service. This script is specified by the ARGS parameter in the
service definition portion of the configuration file.

Spice
Object
Code

Affinity Script. This script defines the algorithm to be used by
the server to compute the affinity value when a job is bid on.
If a constant is used to define the affinity value, this script is
not needed.

Submit Script. This script, which is invoked from a Task
Broker client, submits a service request for a Task Broker
service. A service request contains information such as op
tional parameters or data files that cause the service to be
run in a specific manner.

Affinity Value
The affinity value is an integer from 0 to 999 that quantifies a
Task Broker server's ability to provide a specific service.
The value may reflect the availability of certain computer
resources such as disk space or other factors essential to
perform the service.

Affinity values can either be hard-coded into the service
script, which resides in each server's configuration file, or
can be calculated before each bid submittal through the use
of an affinity script. For example, the following script uses a
hard-coded affinity value.

Augn.sl !!)!):) I lewloll-Packard Journal 17
© Copr. 1949-1998 Hewlett-Packard Co.

#Task Broker Serv i ce De f in i t i on

Serv ice too

CLASS = serv ice_tasks
MAX_NUMBER = 2
ALLOW = (12.34.567.*)
MIN_FREESPACE = 30000
AFFINITY =10

Endserv ice

In the above case, when the server daemon receives a service
request for the foo service, it checks the service definition in
its configuration file. In this case, the daemon checks several
parameters for each service request it receives. Some of
these checks ask the following questions:

1 Is the number of tasks running less than the maximum
(MAX_NUMBER)?

1 Is the requester allowed to run the service here (ALLOW)?
1 Are there 30M bytes of free disk space (MII\I_FREESPACE)?

If the answer to all the above questions is "yes," the server
daemon sends the affinity value of 10 as its bid for the re
quested service. If any of the answers is "no," no bid is
returned to the requesting client.

The service definition can also invoke an affinity script as in
the following example.

#Task Broke r Serv i ce De f in i t i on

Serv ice foo

CLASS = serv ice_tasks
AFFINITY = " /users / tb roker / l ib / foo .a f f "

Endservice

The shell script foo.aff could possibly include the parameters
specified in the first example's service definition such as
MAX_NUMBER, ALLOW, and MIN_FREESPACE. It could also include
checks on the machine or user submitting the request and
checks on whether the data to be accessed is locally resi
dent. The result is that depending on the outcome of the
checks, the script will or will not send an affinity value to a
requesting client.

For load balancing to take place properly, the affinity scripts
should be identical on every computer in the compute
group. Since the affinity values returned by the server dae
mons directly affect the placement of jobs in a work group,
proper parameter selection in the affinity scripts is the key
to optimal server selection.

Example: A Distributed Make Facility
This example will show how Task Broker can be used to
create be distributed make facility, enabling compilations to be
distributed to different workstations on the network so that
they can execute concurrently, resulting in linked binaries
when i s i s comple ted success fu l ly . The procedure i s
summarized in Fig 2.

The process begins with the user on the client machine
creating C program source files (a in Fig. 2) and placing
them in the source file directory. At b compiles are initiated
at the a by executing a makefile, which in turn invokes a
submit script (tbmake in this example). The submit script

M a c h i n e A
Network (LAN)

make. exec

Configuration File on
M a c h i n e A

Global Parameters
Service make6.5_serv

A R G S = -
EndService

File System on
M a c h i n e A Â ±

M o u n t e d ^ f ' 7 \ \ ^ ' ~ Â ©
D i r e c t o r y ~ \

Machine C

Configuration File on
Machine C

Global Parameters
Service make6. 5 serv

ARGS = -
EndService

m a k e . e x e c

Machine B

Configuration File on
Machine B

Global Parameters
Client make6.5 .serv

SERVERS = [A C)
EndClient

tbmake

User

Current Working
Directory Containing

Source Files

Fig. 2. The flow of activities dur
ing a remote program compilation.

18 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

submits a compile request to the local daemon, and at ' the
client daemon submits a make6.5_serv request, including infor
mation about the directory containing the source files. The
servers each bid on the compile request and when the se
lected server is available (machine A in this case) its daemon
accepts the compile request and invokes its local cc service
script (ri in Fig. 2). The service script can access the client's
file system via NFS with Task Broker performing the file
system mounts if necessary (<â€¢ in Fig. 2).

The client's submit script is written such that it will wait for
successful completion of all compiles before requesting bids
for the link service. When the server accepts the link request,
the compiled code is linked to create an executable program.
Finally, the file system containing the source files and the
executable program file is unmounted.

This example demonstrates several key features of Task
Broker:

â€¢ Multiple instances of existing applications can be executed
concurrently in a work group with very little effort.

> Task Broker provides a flexible way of delaying the exe
cution of an application until conditions necessary for its
execution are in place. In this case, the link operation
was delayed until the distributed compiles completed
successfully.

1 The service scripts can be written to access remote data via
mechanisms such as NFS mounts of client file systems.

Configuration Strategies
The following two examples of Task Broker configurations
will demonstrate different philosophies of its use.

Task Broker with a Mainframe. The first example, which is
shown in Fig. 3, illustrates how a group of Task Broker dae
mons can have their services augmented by a mainframe.

Task Broker and DCE Interoperabili ty

T h e H P D C E (D i s t r i b u t e d C o m p u t i n g E n v i r o n m e n t l d e v e l o p e r ' s e n v i r o n m e n t p r o
v i d e s a a p p l i s t a n d a r d s - b a s e d f r a m e w o r k f o r d i s t r i b u t e d a d m i n i s t r a t i o n , a p p l i
c a t i o n d e v e l o p m e n t , a n d e x e c u t i o n i n a n e t w o r k o f h e t e r o g e n e o u s c o m p u t e r
s y s t e m s . D e s i g n e d t o s u p p o r t t h e H P 9 0 0 0 S e r i e s 7 0 0 a n d 8 0 0 c o m p u t e r s y s t e m s
runn ing t he HP-UX 9 .0 ope ra t i ng sys tem, HP 's DCE deve lope r ' s env i ronmen t i s an
imp lemen ta t i on o f t he Open So f twa re Founda t i on (OSF) DCE deve lope r ' s se r v i ces
w i t h a d d i t i o n a l t o o l s f o r D C E - b a s e d a p p l i c a t i o n d e v e l o p m e n t .

The DCE d i rec se rv i ces i nc lude secu r i t y se rv i ce , remote p rocedure ca l l (RFC) , d i rec
t o r y s u c h t i m e s e r v i c e , a n d t h r e a d s . E x t e n d e d s e r v i c e s s u c h a s t h e d i s t r i b u t e d
f i l e sys tem a re a l so p rov i ded .

T h e c u r r e n t T a s k B r o k e r a l r e a d y b e n e f i t s f r o m , a n d c a n m a k e u s e o f m a n y o f t h e s e
D C E s e r v i c e s . S i n c e D C E w a s d e s i g n e d t o p r o v i d e b e n e f i t s w i t h o u t n e c e s s a r i l y
r e q u i r i n g c h a n g e s t o e x i s t i n g a p p l i c a t i o n s . T a s k B r o k e r c a n i n v o k e a p p l i c a t i o n s
t h a t e x p l i c i t l y u s e s o m e D C E s e r v i c e s w i t h o u t m o d i f i c a t i o n s t o T a s k B r o k e r o r t h e
app l i ca t i ons i nvoked by Task B roke r These DCE se rv i ces i nc l ude :

â€¢ Remote Procedure Ca l l (RFC) . An app l ica t ion wr i t ten us ing RFC can be d is t r ibu ted
i n a work g roup by Task B roke r .

â€¢ T ime Serv ice . The hos t mach ines in a compute g roup can use the t ime serv ice to
k e e p t h e c l o c k s s y n c h r o n i z e d . T h i s c a n g r e a t l y s i m p l i f y t h e m a n a g e m e n t o f a
T a s k B r o k e r i n s t a l l a t i o n b e c a u s e i t e m s s u c h a s t h e T a s k B r o k e r d a e m o n l o g f i l e s
w i l l h a v e t h e i r t i m e s t a m p s s y n c h r o n i z e d .

â€¢ D i r ec to r y Se rv i ces . App l i ca t i ons t ha t make use o f d i r ec to r y se r v i ces can be
m a n a g e d b y T a s k B r o k e r w i t h o u t r e s t r i c t i o n .

â€¢ Threads . As w i th RFC, a mu l t i th readed app l i ca t ion can be d is t r ibu ted by Task
B r o k e r w i t h o u t m o d i f i c a t i o n .

â€¢ D i s t r i bu ted F i l e Sys tem. Th i s f ea tu re i s no t on l y compa t i b l e w i t h Task B roke r ,
b u t w i l l g r e a t l y s i m p l i f y d i s t r i b u t e d a c c e s s i n t h e T a s k B r o k e r w o r k g r o u p .

â € ¢ D i s k l e s s S u p p o r t . T a s k B r o k e r w i l l o p e r a t e o n d i s k l e s s m a c h i n e s w i t h o u t
m o d i f i c a t i o n .

Fo r Task B roke r t o t ake advan tage o f o the r DCE se rv i ces such as t he secu r i t y
se rv i ce w i l l r equ i re i n te rna l changes t o Task B roke r .

N e w
Cluster

Workstat ion
Client

Surrogate Server
(with Task Broker)

Workstat ion
Client

Workstat ion
Client

Workstat ion
Client

Under Task Broker Control, Virtual
Application C Seems to Run Here

Under Task Broker Control, Virtual
Application B Seems to Run Here

Under Task Broker Control, Virtual
Application A Seems to Run Here

Ex is t ing
Compute r

M a i n f r a m e
(w i t h o u t T a s k B r o k e r)

r emsh

Application A Really Runs Here

rernsh

Application B Really Runs Here

Application C Really Runs Here

Fig. 3. A group of Task Broker
daemons having their services
augmented by a remote main
frame.

Angus! 19'tt Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

Diskless Workstat ions
or X Terminals

Workstations that Can Be Clients or Servers

Daytime Use Server Server

(al
Server

Workstat ion

Workstat ion

Server

Server

(b)

Each of the Task Broker daemons acts as a server represent
ing a mainframe service in the work group. The bids made
by the daemons indicate the ability of the mainframe to take
on additional work. Using Task Broker to combine a group
of workstations with a mainframe in this way has several
key advantages:
The mainframe resources can become transparently and
seamlessly included in the work group without porting any
of its applications.
The workstation users can gain access to mainframe re
sources without machine-specific knowledge, or even any
knowledge that the mainframe is being accessed in their
calculations.
A Task Broker daemon does not need to be present on every
host in a work group because a host can have a surrogate
server in the group acting on its behalf.

The result in this example is that Task Broker allows overall
hardware use to increase along with the group's productivity
with minimal impact on either hardware or software and
little added expense.

Flexible Work Group. The second example of a Task Broker
configuration demonstrates how Task Broker can be used to
create a flexible work group. During the day the clients
shown in Fig. 4 access a dedicated server group, and during
the evening hours, when most users have gone home, some
of the clients become servers.

This example makes use of Task Broker's ability to delay the
submittal or acceptance of jobs until after a certain time of

Server

Fig. 4. A flexible Task Broker
work group in which certain
workstations are configured to be

LAN either clients only or servers only
depending on the time of day. Of
course these systems have the
software and hardware capabili
ties to be clients or servers, (a)
During the daytime these dual-
role systems are configured to be
clients only, (b) In the after hours
the systems are used as servers
only.

day has passed. This can be done either in the submit script,
delaying the time when clients request bids for the service,
or by setting the "time-of-day" parameter in the affinity
script, delaying the time when certain server daemons will
begin generating bids for any service.

Using Task Broker to implement this form of flexible
configuration can contribute to a group's productivity in
several ways:
Workstation users can access dedicated compute services
during the day (in this case the server pool) and can have
their machine automatically added to the server pool after
work hours.
Large jobs requiring a large amount of compute power can
be queued to execute after hours to take advantage of the
increased size of the server pool.
Once the Task Broker work group has been set up as de
scribed, no intervention is needed to maintain a flexible
configuration. If a user wishes to remove a machine from
the server pool, a quick change to its affinity script is all
that is necessary.

These two examples are intended to show that Task Broker
can be used to add flexibility to an existing network as
well as increase access to computer resources that were
previously inaccessible.

Task Broker and Other Alternatives
The strategy behind the Task Broker design is that in most
cases the user is interested in:

20 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Having a job placed and executed as efficiently as possible
and not in controlling the placement of a job

> Distributing tasks at the application level rather than the
procedure level

â€¢ Having a tool that will require no changes to the application
to perform its function.

Job Placement. Although Task Broker provides the user with
the ability to target specific machines for specialized tasks,
its primary emphasis is to free the user from concerns about
job placement. In environments using scarce resources,
such as a single supercomputer, there is a similar need for a
tool to provide a way of preventing users from monopolizing
that resource.

For example, suppose some installation has a tool that con
trols job queues on a mainframe. In this case, the user sub
mits a request to one of several queues along with a set of
options specifying execution limits, priority, and so on. The
tool then accepts or rejects the queued job based on re
source limits and other factors. If accepted, and there are
available slots for immediate execution, the tool removes

the request from the head of the queue and the request is
serviced. The request Â«ill execute concurrently with other
accepted jobs, based on an administrative limit.

Task Broker provides a more general solution to this prob
lem. It \iews the entire network of machines as a scarce
resource, and by load balancing the resources, it prevents
any one machine in the group from being monopolized, or
any user from monopolizing too many resources. Thus.
Task Broker will not forward a job to a server unless one
is sufficiently available.

hi addition, Task Broker provides mechanisms such as file
transfers, remote file system mounts, and affinity calculations
based on configuration that obviate the need for concerns
about job placement.

Granularity of Distribution. Task Broker distributes tasks at the
application level. Alternate strategies of distributed compu
tation, such as remote procedure call (RFC), provide remote
placement at the procedure level.

HP Task Broker Version 1.1

T h e a c c o m p a n y i n g a r t i c l e d e s c r i b e s t h e f e a t u r e s p r o v i d e d i n t h e f i r s t v e r s i o n o f
T a s k B r o k e r T h e n e w v e r s i o n o f T a s k B r o k e r c o n t a i n s a l l t h e f e a t u r e s c o n t a i n e d i n
Ve rs i on 1 . 02 and adds t he f o l l ow ing f ea tu res :
A g r a p h i c a l u s e r i n t e r f a c e (G U I) h a s b e e n a d d e d t o i m p r o v e t h e p r o d u c t ' s e a s e o f
use . The GUI p rov i des a v i sua l i n t e r f ace t o mos t o f t he Task B roke r ' s command se t
a n d c o n f i g u r a t i o n i n f o r m a t i o n . F i g . 1 s h o w s s o m e o f t h e w i n d o w s p r o v i d e d i n t h i s
n e w G U I f o r c o n f i g u r a t i o n m a n a g e m e n t .
C e n t r a l i z e d c o n f i g u r a t i o n m a n a g e m e n t h a s b e e n a d d e d t o a l l o w t h e e n t i r e T a s k
B r o k e r b e t o b e i n i t i a l i z e d u s i n g a s i n g l e g r o u p c o n f i g u r a t i o n a n d t o b e

a d m i n i s t e r e d f r o m a n y s i n g l e m a c h i n e s i t e . W h a t t h i s m e a n s i s t h a t t h e d a t a i n
t h e c o n f i g u r a t i o n f i l e s d e s c r i b e d i n t h e a c c o m p a n y i n g a r t i c l e c a n b e l o c a t e d a t o n e
mach ine s i t e .

> A n i n t e g r a t e d f o r m s - b a s e d c o n f i g u r a t i o n e d i t o r i s p r o v i d e d . T h e c o n f i g u r a t i o n
s y n t a x i s s i m p l e r a n d c h e c k i n g i s d o n e d u r i n g t h e e d i t i n g s e s s i o n .
F i n a l l y , a n o n l i n e , c o n t e x t - s e n s i t i v e h e l p s u b s y s t e m h a s b e e n a d d e d .

Fig. 1. The new Task Broker graphical user
interface.

August 1993 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

The difference represents a trade-off of computational con
trol versus ease of implementation. RFC requires procedure
calls in an application to be replaced by call stubs in an inter
mediate definition language. These stubs handle the remote
placement of the actual procedure call. As such, RFC requires
customized application source code, most of which must be
redesigned and reimplemented if not originally implemented
using RFC.

With RFC the procedure is usually located on a centralized
server, or replicated in several places (requiring the servers
to keep the replicas synchronized). While the server side of
the application is executing, the client side is not, reflecting
the synchronous nature of procedure calls.

In summary, Task Broker is nonintmsive to application
source code (satisfying the third user interest above) and
allows the execution of the applications it distributes to take
place concurrently. It does, however, limit the user to remote
placement at the application level. RFC gives a finer level of
computational control, but requires source code changes and
does not provide a mechanism for concurrent execution.

Conclusion
Task Broker can provide many benefits to an organization
with a network of computers. Because of its flexibility, Task
Broker can easily be tailored to provide a simple distributed

solution to many additional types of situations. As a tool for
distributing computation tasks, Task Broker can provide a
way to make existing hardware more efficient by increasing
its level of use, and software developers more productive by
providing a way to access an expanded set of computing
resources.

Acknowledgments
The author wishes to acknowledge the contribution of the
following people in HP's User Interface Technology Division
in Fort Collins, Colorado who preceded us as the caretakers
and spokespersons for Task Broker: Ken Sandberg, John
Metzner, David Wright, Stewart Mayott, Gary Thundquist,
Sean Tracy, Mark Ostendorf. In addition, Gary Kessler and
Bob Murphy, of HP's Chelmsford Systems Software Lab and
the Workstation Group respectively, have contributed to this
article.

Reference
1. Task Broker Administrator's Guide, HP Part Number
B1731-90003.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications
UNIX in countries registered trademark of UNIX System Laboratories Inc. in the U.S.A and other countries
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

22 August IDS:? Hewlett-Packard. Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The HP-RT Real-Time Operating
System
An operating system that is compatible with the HP-UX operating system
through compliance with the POSIX industry standards uses a multi
threaded kernel and other mechanisms to provide guaranteed real-time
response to high-priority operations.

by Kevin D. Morgan

HP-RTt is Hewlett-Packard's real-time operating system for
PA-RISC computers. It is a run-time-oriented product (as
opposed to a program-development-oriented product) based
on industry standard software and hardware interfaces.
HP-RT is intended to be used as a real-time data acquisition
and system control operating system. It is designed around
the real-time system principles of determinism (predictable
behavior), responsiveness, user control, reliability, and fail-
soft operation. These characteristics distinguish a real-time
operating system from a nonreal-time operating system.
This article reviews some of these characteristics of HP-RT
and discusses the specific designs used to provide these
features.

HP-RT runs on the HP 9000 Model 742rt VMEbus board-level
computer, which is based on HP's PA-RISC 7100 technology
(see Fig. 1). The 742rt is designed to fit into a VMEbus card
cage or an HP 9000 Model 747i industrial workstation
cabinet. '

The HP-RT kernel is compatible with the HP-UX operating
system through compliance with the following industry
standards:

â€¢ POSIX (Portable Operating System Interface) 1003.1, which
defines a standard set of programmatic interfaces for basic-
operating system facilities

â€¢ POSIX 1003.4 draft 9, which defines the standards for
real-time extensions

â€¢ POSIX 1003.4a draft 4, which defines the standards for
process-level threads.

HP-RT also supports C/ANSI C, C++, PA-RISC assembly lan
guage, and many SVID/BSD (System V Interface Definition/
Berkeley Software Distribution) commands and functions.

HP-RT Software
The HP-RT software is divided into two main categories: the
HP-RT kernel and the optional HP-RT services (see Fig. 2).

HP-RT Services. The optional HP-RT services include the
following components:

â€¢ Network services including the Network File System (NFS),
TCP/IP, Berkeley sockets, and ARPA/Berkeley networking
services

t HP-RT Lynx derived from a third-party operating system called LynxOS from Lynx Real-Time
Systems based All kernel-level algorithms and data structures described in this paper are based
on LynxOS features.

> Libraries for developing OSF/Motif graphical user interfaces
and X clients

â€¢ Development tools to help users create applications to run
in the HP-RT environment
Cross debuggers hosted on an HP-UX development work
station for debugging the HP-RT kernel or applications
running on an HP-RT target system.

(a)

(b)

Fig. 1. (a) The HP 9000 Model 742rl board level computer,
(b) An HP 9000 Model 747Ã industrial workstation with a Model
74'Â¿rl loaded in.

fiusi 1993 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

HP-RT Services

â€¢ Development Tools
â€¢ Cross Debuggers

â€¢ Graphical User Interface
(GUI) Tools

. TCP/ IP , NFS

HP-RT Kernel

â€¢ File System
â€¢ I/O Drivers
â€¢ Semaphores
â€¢ Memory Management

â€¢ System Clock and Timers
â€¢ Scheduling, Multitasking, Multithreading

â€¢ Interrupt Handling
â€¢ Character I/O

â€¢ Interprocess Communication

Application Program

Fig. 2. The HP-RT kernel and services.

Kernel Software. The HP-RT kernel is designed so that it can
be scaled to balance memory and performance requirements.
It is small to reduce overhead. The kernel components
include:

â€¢ A counting semaphore mechanism for process synchroniza
tion of to help ensure atomicity around critical sections of
code.

â€¢ A system clock that generates time interrupts every 10
milliseconds. Thus, time events using standard software

interfaces have a 10-millisecond resolution. For higher
timing accuracies, drivers and user processes can access
the hardware timers on the Model 742rt. These timers have
l-[js resolutions and are 16 and 32 bits wide.
I/O drivers for Ethernet, SCSI II, RS-232-C, and parallel I/O
for the Model 742rt computer, and guidelines for writing
VMEbus drivers
Standard operating system services such as:
o Scheduling, multitasking, and multithreading
c Memory management
& Interrupt handling
o Character I/O
o Interprocess communication

POSIX 1003.1, .4, and .4a kernel services.

Many of these components are described in more detail later
in this article.

HP-RT Development Environment. The development environ
ment for HP-RT is shown in Fig. 3. Programs created to run
on the Model 742rt in the HP-RT environment are developed
(using PA-RISC compilers and linkers) on an HP 9000 Series
700 or 800 HP-UX system. The executable programs can be
downloaded via LAN to a local disk on the target system
(Model 742rt), or implicitly downloaded when the program is
executed via NFS mounting between the HP-RT and HP-UX
systems. The user can debug the downloaded program from
the host system via the RS-232-C and LAN connections be
tween the two systems. Users can customize the SoftBench
software development environment2 on the development
host to launch programs to a remote HP-RT system and to
launch the correct program debugger for HP-RT program
debugging.

HP 9000 Series 700/800
(HP-UX Operat ing

System)

X Display

LAN

Parallel I /O

HP 9000 Model 742rt
(HP-RT Operating

System)
Printer

SCSI

RS-232-C
(for Kernel Debugging)

Serial Terminal Disk

Fig. 3. The HP-RT development
environment.

24 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The items that come with the HP-RT development toolkit
include:

â€¢ Libraries for building HP-RT kernels and user programs
â€¢ Include files for compiling user programs and I/O drivers for

executing in an HP-RT operating environment
â€¢ Installation and user program compilation scripts
â€¢ A pair of source-level debuggers: one for user program de

bugging and one for I/O driver and kernel-level debugging.

The two remote debuggers included with the HP-RT develop
ment kit are derived from the standard xdb debugger product
provided with the HP-UX operating system. The debugger
used for user program debugging is capable of debugging
multithreaded user processes and communicating with the
target HP-RT system using a TCP (Transmission Control
Protocol) virtual circuit socket. The kernel debugger is for
kernel-level and I/O driver debugging and communicates with
the target HP-RT system via a dedicated RS-232-C serial
communication link. Using a dedicated communication link
allows the kernel debugger to operate without interfering
with the normal operation of the target operating system.

A set of user commands, a bootable kernel, and miscella
neous files are included with the HP-RT system. These items
can be installed via LAN on a disk connected to the target
system. The HP-RT kernel can also be booted across a LAN
and commands and user programs can either reside in RAM
memory (via a RAM disk facility) or be accessed across the
network via NFS mount points. The command set on the
HP-RT target system is oriented around run-time operations
and system administration. Commands related to program
development (such as cc and the res and sees tools) are not
supported and can only be used on the host.

HP-RT Hardware
The hardware that supports execution of the HP-RT operat
ing system is the HP 9000 Model 742rt VMEbus board com
puter shown in Fig. 1. This system consumes consumes two
slots of a VMEbus backplane. The system processing unit
and onboard I/O features of the Model 742rt include:

â€¢ PA-RISC 7100 processor, which has a clock frequency of
50 MHz and is capable of executing 61 MIPS

â€¢ 8M bytes of ECC (error correction code) RAM for main
memory, which can be upgraded to 64M bytes of ECC RAM
(The ECC RAM comes in a pair of SIMMs and provides
single-bit error correction and multiple-bit error detection.)

â€¢ 64K-byte external instruction cache and 64K-byte external
data cache

â€¢ Onboard I/O ports for one SCSI II interface (up to seven
devices), two serial RS-232-C interfaces, one parallel
interface, and one Ethernet LAN interface

â€¢ VMEbus D64 interface, which provides an asynchronous,
32-bit data bus that is capable of transfer rates of up to
40 Mbytes/s.

The Real-Time Kernel
The HP-RT kernel and I/O drivers are designed for real-time
response and determinism at a level never before accom
plished in a Hewlett-Packard operating system product. The
HP-RT are ensures that the highest-priority operations are
serviced within 50 to 110 microseconds in the worst case and
typically much faster depending on the specific operation.
To accomplish this, the HP-RT kernel uses a fully reentrant

and interruptable design and makes extensive use of full
kernel support for threads for user and kernel processes.

Multithreaded Kernel
The fundamental unit of an executing task in HP-RT is the
concept and structure of a thread. A thread contains a pro
gram counter (next instruction pointer) and a stack for re
cording local subroutine variables and calling sequence pa
rameters. Threads do not own a specific address space or a
specific set of code. Threads typically share address space
(data area) and code with other threads. The concept of a
process is simply a combination of a single thread, a code
segment, and a data area (see Fig. 4a). HP-RT extends this
concept by allowing a single process to create multiple
threads (see Fig. 4b). These additional threads execute code
in the same process code area and have identical access
rights to all data areas in the process. See "An Overview of
Threads," on page 27 for a brief tutorial on threads.

HP-RT also implements the concept of a kernel thread. A
kernel thread is a thread of execution that only executes
kernel code at a kernel privilege level. Kernel threads are
used in HP-RT to provide kernel services asynchronously
for any specific user process or thread with each service
executing at a user-specified priority.

Reentrancy and Interruptability
The HP-RT kernel's general model is to execute on behalf of
a thread of execution with interrupts enabled and context
switching allowed. The specific thread executing may be a
thread associated with a user process or a kernel thread. All
threads, regardless of type, have their own user-specified
priority, scheduling policy (time-sliced versus run-to-
completion), and system level.

The system level is a specification of the mode in which a
thread is executing. At system level zero, a thread runs in
user mode, with user-level privileges. Kernel threads by defi
nition never use this system level. At system level one, a
thread executes kernel code with kernel-level privileges and
with all interrupts enabled and context switching allowed.
At system level two, a thread executes kernel code with
context switching disabled, but interrupts enabled. Finally,
at system level three, a thread executes kernel-level code
with I context switching and interrupts disabled. Table I
summarizes these system levels and execution modes.

Context switching and interrupt handling in HP-RT are
described in more detail in the article on page 31.

Stacks

PC=Program Counter

(a) (b l

Fig. 4. Thread configurations, (a) A typical single-lhrc;i<l process,
(b) A multiple-thread process.

August !!)!):) Hewlett-Packard .Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

T a b l e I
S y s t e m L e v e l s a n d E x e c u t i o n M o d e s

The HP-RT system supports one nonthread mode of execu
tion, which is based on execution using a single interrupt
stack. However, unlike timesharing systems and many real
time systems, HP-RT makes very limited use of interrupt-
stack-based execution because this mode of execution is
always at a higher priority than thread execution. Execution
using an interrupt stack means that a full thread context is
not established, which means that a context switch to a
thread cannot be allowed until the interrupt-stack-based
execution is complete. Most interrupt service routines, such
as the handlers for the SCSI bus and LAN interrupts, are
instead handled by a specific kernel thread. These threads
are scheduled when their corresponding interrupt occurs at
their specific priority and are not executed until all higher-
priority thread execution is complete.

Because of the general reentrancy of HP-RT, explicit calls
are used in kernel code and I/O drivers for managing reen-
trancy.t The macros sdisablel), srestoreO, disabled, and restored
are used to move a process to system levels two (context
switch disabled) or three (both context switching and inter
rupts disabled) and back to the premove system level. Turn
ing context switching off guarantees atomicity with respect
to the execution of other threads. Turning off interrupts guar
antees atomicity with respect to execution of both threads
and interrupt-stack-based handlers.

Data structures used by the kernel are generally global to the
entire kernel and nonreentrant operations must be properly
protected. A simple example of this is the use_count field of
the in-core inodett data structure. The use_count field indi
cates the number of instances of a particular file that are
active (e.g., open). When anew process accesses an Â¡node, the
equivalent of the code statement Â¡node_ptr->injjse++ (incre
ment use_count) must be executed. On PA-RISC (and most
RISC processors), this code translates to a sequence of in
structions that loads the use_count value, increments it, and
then stores the value to the memory location it came from.
Interleaving such operations, which can easily happen be
cause of a context switch from one thread to another, will
cause the use_count to miss an increment, producing devas
tating long-term results.

For example, Fig. 5 shows what can happen when a thread
is interrupted before finishing incrementing the use_count
field for a particular Â¡node. The use_count field is represented

t A reentrant process consists of logically separate code and data segments and a private stack.
Multiple instances of a reentrant process can share the same code segment but each instance
has its own data segment and stack

tt An Â¡node is the internal representation of a fi le in a UNIX'-system-based operating system.
An in-core inode is one that resides in main memory.

by the variable X, which is initially equal to one (i.e., some
other thread or process is accessing the same file). At *
Thread 1 begins executing the instructions to increment X,
but just before storing the result in X, Thread 2 interrupts at
b and the scheduler hands control over to Thread 2. Thread

2 increments the same use_count field. When Thread 2 is fin
ished, X = 2 and the scheduler returns control back to
Thread 1 at ' . At d Thread 1 finishes its work on the
use_count field by storing the value it computed before being
interrupted into X. At this point X should be equal to three,
but because Thread 1 was interrupted before it finished its
critical section, X = 2.

The need for atomic increment and decrement operations
is so pervasive in the HP-RT kernel that special macros
called ATOMICJNCO and ATOMIC_DEC() are used. These macros
generate inline assembly code that disables interrupts, per
forms the increment or decrement operation, and reenables
interrupts.

Use of an interrupt disable versus a context switch disable
is a key design decision for every critical section of HP-RT
kernel code. The main question asked in arriving at a deci
sion is whether the operation is critical relative to execution
of code that can run on the interrupt stack. Since very little
code in HP-RT executes on the interrupt stack, a context
switch disable usually suffices for protection. However, a
context switch disable is a more expensive operation than
an interrupt disable operation. A context switch requires
memory access and an interrupt disable only requires exe
cution of an inline assembly statement which turns off the
interrupt enable bit in the PA-RISC processor status word.
Thus, very short operations are better protected with
interrupt disables.

This raises the question of how HP-RT solves the problem of
long critical sections for which a context switch or an inter
rupt disable last too long. In the analysis of customer re
quirements and competitive systems, it was determined that
context switch off times should be held to as close to 100
microseconds as possible, and ideally less, and interrupt
disables should be held as close to 50 microseconds as pos
sible, and ideally less. Longer critical sections are managed
using kernel-level semaphores.

(a) X = l

T h r e a d 1 T h r e a d 2

X - use .count Field in Â¡node Data Structure
r10, Ml = Registers

Fig. 5. What can happen when a thread is context switched in the
middle of a critical operation. Thread 1 is interrupted and context
switched just before it is about to increment the use.count value. As a
result, when Thread 1 is finally able to finish its operation, the wrong
value is stored in usejount.

26 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An Overview of Threads

When stored process is running it executes a sequence of instructions stored in its
address space in memory. This execution of a sequence of instructions is called a
thread of execution, or simply a thread. The execution of a thread requires that it
have its own program counter to point to the next instruction in the sequence,
some variables to hold variables, and a stack to keep track of local variables and
procedure call information. Although threads have some of the same characteris
tics as a be process, they are sometimes called a "lightweight" process be
cause processes. don't carry around the overhead (or extra weight) of regular processes.
Table I process. some typical items associated with each thread and each process.

Fig. processes models processes and threads running in a computer. The processes in Fig.
1a have spaces thread of execution each. They also have their own address spaces
making them independent of each other. To communicate with each other (for
example, to share resources] they must do so through the system's interprocess
communication primitives, such as semaphores, monitors, or messages. In Fig. 1 b
the three threads are in one process. Thus they share the same address space and
have access to all the per-process items listed in Table I.

One of the reasons threads were invented was to provide a degree of quasiparallel
execution to be combined with sequential execution and blocking system calls. For
example, consider a file server that must block occasionally to wait for the disk. In
a single-process situation the server would get a request and service it to comple
tion would moving on to the next request. Thus, no other requests would be serv
iced a the server is waiting on the disk. If the machine is a dedicated file
server, the CPU is also idle while the server process is waiting on the disk.

Computer

Processes

Computer

Process

(b)

Fig. Multiple Models of processes and threads running in a computer (a) Multiple processes,
(b) Multiple threads in one process.

Table I
Items Associated with Threads and Processes

Per-Thread Items

Program counter

Stack

Registers

Per-Process Items

Address space

Global variables

Files

Child processes

Signals

Semaphores

* All per-thread items are also per-process items.

If the server is a multithreaded process, one thread could be responsible for read
ing and thread incoming requests and then passing the request to a thread
that will do the work. When a thread must block waiting on the disk, the schedul
ing thread can get another request and invoke another thread to run. The result of
using threads in this case would be higher throughput because the CPU would not
sit idle, and better performance because it is much faster to switch threads than
to switch processes.

In a real-time system where a quick response to interrupts and other events is
critical, threads offer some definite advantages, especially if one considers
context II between processes versus switching between threads. Table II
summarizes some of the main differences between threads and processes.

Table II
Differences between Threads and Processes

Processes

Program-sized

Context switch may be slower

Difficult to share data

Owns resources such as files and memory

Threads

Function-sized

Context switch may be faster

Easy to share data

Owns stack space and registers
only

Bibliography
1 . T. Alternative et al, "The Performance of Thread Management Alternative for Shared-
Memory December IEEE Transact ions on Computers, Vol . 38, no. 12, December 1989,
pp. 1631-1644.
2. A. 1992, pp. Modem Operat ing Systems. Prent ice-Hal l , 1992, pp. 507-523.
3. P. Dasgupta, et al, "The Clouds Distributed Operating System," IEEE Computer, Vol. 24,
no. 11, November 1991, pp. 34-44.
4. R. Schuster, and P. Norton, Peter Norton's Inside OS/2, Simon & Schuster, Inc., 1988, pp.
134-174.

Kernel Semaphores and Priority Inheritance
An example of an extended critical section is the manipula
tion the an in-core Â¡node. Critical Â¡node operations such as the
addition of a file to the directory data of a directory Â¡node
must be performed atomically. Each Â¡node holds a sema
phore which is locked and unlocked around these critical
operations.

The HP-RT kernel uses the simple semaphore primitives
swaitO and ssignaK) (corresponding to Dijkstra's P and V op
erations)3 for process synchronization, mutual exclusion,
and atomic resource management. A single 32-bit integer is
used as a kernel semaphore data structure. This data struc
ture supports two semaphore types: counting semaphores
and priority-inheritance semaphores. With an additional

August, 1993 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

Locked Semaphore

Linked List of
Wait ing Threads
in Priority Order

Fig. 6. A locked counting semaphore and waiting threads.

level of lock and unlock code and using a separate integer as
a counter, priority-inheritance semaphores can also be used
as the basis for counting semaphores. Priority-inheritance
semaphores are described later in this paper.

The semaphore primitives ssignal and swait have the code to
interpret the contents of the kernel semaphore data struc
ture and are able to differentiate between counting and
priority-inheritance semaphores.

A counting semaphore in HP-RT holds a positive count value
when the semaphore is unlocked and a resource is available.
An swaÂ¡t() operation on a positive-valued semaphore causes
the semaphore to be atomically decremented, and the calling
thread continues execution. An swaitO on a zero or negative-
valued semaphore (the resource is not available) causes the
thread to block (suspend) on the semaphore.

When one or more threads are blocked on a counting sema
phore, the threads are placed into a priority-ordered linked
list with the semaphore heading the list. To identify a sema
phore that is locked and has one or more waiting threads,
the semaphore is set to the negative address of the first
waiting thread (see Fig. 6). The sem and owner fields shown
in Fig. 6 are described below.

An ssignalO on an unlocked or locked-with-no-waiters count
ing semaphore merely causes the nonnegative value of the
semaphore to be atomically incremented. An ssignalO on a
locked semaphore with one or more waiters (one that holds
a negative thread structure address) causes the first (highest-
priority) waiting process to be unlinked and scheduled.
Table II summarizes the different states of HP-RT counting
semaphores.

T a b l e I I
D i f f e r e n t S t a t e s o f C o u n t i n g S e m a p h o r e s

S t a t e M e a n i n g

0 L o c k e d w i t h n o w a i t e r s

-Address Locked with waiters (The address
points to the first thread in the list of
waiting threads.)

> 1 U n l o c k e d

One drawback of this semaphore methodology is that there
is no clear ownership of a locked semaphore. The second
drawback is the risk of priority inversion.

Priority Inversion
In most real-time operating systems, a priority-driven pre
emptive scheduling approach is used. This scheduling
method works well when a higher-priority process (or
thread) can preempt a lower-priority process with no delays.
One important problem that sometimes hampers the effec
tiveness of this scheduling algorithm is the problem of
blocking caused by the synchronization of processes that
share physical or logical resources.

The most common situation occurs when two processes
attempt to access shared data. In a normal situation, if the
higher-priority process gains access to the resource first,
then good priority order is maintained. However, if a higher-
priority process tries to gain access to a shared resource
after a lower-priority process has already gained access to
the resource, then a priority inversion condition takes place
because the higher-priority process is required to wait for a
lower-priority process to complete.

The following example, which is loosely based on an example
first described by Lampson and Redell,4 shows how a prior
ity inversion can occur. Although the term process is used in
the following example, the executing entity could just as
well be a thread.

Let PI, P2, and P3 be three processes arranged in descending
order of priority. Let processes PI and P3 share a common
data structure which is guarded by the binary semaphore X.
Fig. 7 and the following sequence shows the events that can
lead to a priority inversion:

1. P3 locks X and enters its critical section.

2. PI arrives, preempts P3 and begins its processing.

3. PI tries to lock X, but because X belongs to P3, PI is
blocked.

4. P3 again attempts to finish its critical section.

5. P2 arrives and preempts P3 before it finishes its critical
section.

6. Assuming there are no more preemptions at some point
P2 finishes, then P3 finishes, and PI finally is unblocked on
resource X and allowed to finish its critical section.

hi this scenario the duration of Pi's blocking is unpredictable
because other processes can show up before P3 finishes its
critical section and is able to release X.

28 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

P I B l o c k e d

P1

Executing

Id le or
Blocked

Â ©
PI I s B locked

P1 Done

Â ®

P2

P 2 D o n e

P3

Priority (P1) > Priority (P2) > Priority (P3|

P 3 D o n e
Fig. 7. A time line illustrating
priority inversion.

Priority Inheritance
The methodology used in HP-RT to avoid the priority inver
sion problem employs priority-inheritance semaphores. The
basic concept of priority-inheritance semaphores is that
when process P blocks a higher-priority process, it executes
its critical section at the highest priority level of all of the
blocked jobs. Process P returns to its original priority level
when it completes its critical section, which then allows the
highest-priority blocked process to execute.

From the example above if PI is blocked by P3 then accord
ing to the priority-inheritance concept, P3 inherits the same
priority as PI while it executes in its critical section. When
process P2 arrives (while P3 is in its critical section) it
would not be able to preempt process P3 because P3 would
be running at a higher priority than P2. Thus, process P2 will
not begin execution. When P3 finishes its critical section,
process PI can preempt P3 and run to completion. Then
process P2 can begin execution.

Priority-inheritance semaphores can become quite complex
when nested semaphore locks are allowed as they are in the
HP-RT kernel. Not only must the current owner and all wait
ers for a semaphore be known, but given the owner of a
particular semaphore, the highest-priority waiters of all
semaphores currently owned by that owner must be known.
This allows the system to manipulate priority properly as
semaphores are released. The priority must revert to the
priority of the current highest-priority waiter of all still-owned
semaphores.

To manage this complexity and yet retain a single interface
and data structure for semaphore operations, HP-RT uses
the semaphore value -1 to indicate unlocked for a priority-
inheritance semaphore. A value of one is not a possible
thread structure address, so this value cannot be confused
with the negative address of the first waiter of a counting
semaphore.

Two fields in the thread structure are used to differentiate
between the various states of priority-inheritance and count
ing semaphores when they are locked. A counting semaphore
that is locked and has waiters will have the sem field in the
first waiter thread holding the address of the semaphore
and an owner field containing zero (see Fig. 6). A priority-
inheritance semaphore that is locked and has no waiters will
hold the negative address of the owner thread, which has a
sem field with a value of zero (see Fig. 8a). Lastly, a locked

priority-inheritance semaphore that has waiters will hold the
negative address of the highest-priority waiting thread. This
thread structure has a sem field holding the address of the
semaphore and an owner field holding the address of the
owning thread (see Fig. 8b).

To keep track of the highest-priority waiters for all owned
priority-inheritance semaphores, a doubly linked list contain
ing the highest-priority waiters for each owned semaphore is
attached to the thread structure of each semaphore owner.

Semaphore

(a)

Semaphore
List of Waiting

Threads

List of Highest-Priority
Waiters for Al l Semaphores

Owned by Owner

Semaphore
Owner

Semaphore
W a i t e r

Semaphore
W a i t e r

(b)

Fig. sema Data structures associated with priority-inheritance sema
phores, (a) A locked semaphore with no wailing threads, (b) A
locked semaphore with waiting threads.

August 1993 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

Executable
Threads at

Priority 1023 32 Bits

1 0 2 3 9 9 2
Two-Level Ready Mask

(32 Groups of 32 Pr ior i t ies)

32 Words

Run-Queue Table

The different states of priority-inheritance semaphores are
summarized in Table III.

Table III
Different States of Priority-Inheritance Semaphores

S t a t e M e a n i n g

- 1 U n l o c k e d

-Address of thread owner

-Address of highest-priority
waiting thread (sem field in
highest-priority waiting thread
= semaphore address and owner
field = thread owner address)

Locked without waiters
(sem field in thread
owner = 0)

Locked with waiters

Process Scheduling
HP-RT currently uses 64 distinct priority levels with the abil
ity to extend support to 1024 distinct priority levels. Half of
all HP-RT priorities are reserved for use by kernel manage
ment software. There is no explicit user program interface
provided for placing a priority at these reserved levels. The
reserved priorities are interleaved with the user priorities
and are considered a "priority boost" on a user priority.
Thus, between any two user priorities N and N + 1 lies a
priority N + boost, which is more important than priority N
and less important than priority N + 1. Boosted priorities are
used by kernel service threads to provide service just above
the priority of the highest-priority requesting process, but
not at the next highest user priority which may be in use by
the system user. Priority boosting is also used for temporary
elevation of the priority of processes blocking on I/O opera
tions to maximize throughput. This type of algorithm is only
used in a user-specified portion of the overall priority range.

The HP-RT kernel internally manages priorities by convert
ing from the user priority plus a possible boost value to a
run queue table index by using the formula:

Fig. 9. Data structures for process
scheduling in HP-RT.

Internal Priority = (user priority) x 2 + boost,

where boost is either zero or one. Hence, if user priorities
range from zero to 127, the internal priorities range from
zero to 255.

HP-RT maintains a run-queue table with one entry per inter
nal priority. Each entry holds a ready thread list head and a
list tail pointer (see Fig. 9). To determine quickly the highest
priority for which there is a runnable thread, HP-RT uses a
two-level bit mask called a ready mask in which a set bit
indicates a runnable thread. The top level of the ready mask
is one 32-bit word. Each bit in this word indicates that within
a set of 32 priorities, at least one thread is executable. Thus,
if as shown in Fig. 9 the high-order bit of the first word of
the ready mask is set, then there is at least one thread in the
internal priority range of 1023 to 992 that is executable. The
second level of the ready mask holds up to 32 32-bit entries
each of which indicates which of these 32 priorities holds
executable threads.

By using high-speed assembly language code to find the first
set bit in the ready mask, the highest-priority thread in the
nonempty run queue can be quickly determined.

References
1. B. Work "Mechanical Considerations for an Industrial Work
station," Heivletl-Packard -Imirnal, this issue, p. 62.
2. Hewlett-Packard Journal, Vol. 41, no. 3, pp. 36-58.
3. E. W. Dijkstra, "Co-operating Sequential Processes," Programming

Languages, F. Genuys, Editor, London: Academic Press, 1965.
4. B. W. Lampson and D. D. Redell, "Experiences with Processes
and Monitors in Mesa," Communications of the ACM, Vol. 23, no. 2,
February 1980, pp. 104-117.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

30 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Managing PA-RISC Machines for
Real-lime Systems
In the HP-RT operating system, the Â¡nterrupt-handling architecture
is especially constructed to manage the high-performance timing
requirements of real-time systems.

by George A. Anzinger

The task of an operating system is to manage the computer
system's resources. This management should be done so as
to give the best possible performance to user tasks or jobs
presented to the system. How this performance is measured
and valued differs depending on the task or mission of the
system. The three major classes of tasks or missions pre
sented to an operating system are timeshare, batch, and real
time. The important aspects of performance of these three
classifications differ, and, because they differ, require the
operating system to use different algorithms to manage
system resources.

Timeshare
Timeshare systems are usually designed to share system
resources with all contending processes. The major resource
to be shared is CPU time, which is usually sliced into small
units (called time slices) and allocated to all runnable pro
cesses in a "fair" way. Various notions of fair exist and have
been used, but in general, runnable processes contend at the
same level or priority for CPU time. Some (or even most)
systems modify this notion of fair to give more time to a
process that blocks often and less to a process that is com
pute bound. Some systems may also have preferred priori
ties for processes that run on behalf of the system. Such
processes may be handling printers, communication lines,
or other things that are shared with several processes.

Batch
Batch systems are usually designed to maximize the through
put of the system. That is to say, they attempt to get the
most work done in a given period of time. Such systems will
not usually use a timeshare scheduling algorithm because it
introduces overhead that does not add to the desired re
sult â€” throughput. To help achieve maximum throughput,
one popular batch scheduling algorithm is to run the job that
has the least amount of time left to run. The point is that
batch systems typically do not need to make any attempt to
share CPU time.

Real Time
Real-time systems, unlike timeshare or batch systems, are
usually designed to run the most important process that is
ready. Importance is assigned by the user or designer of the
system, and the operating system has little or nothing to say
about it. The system designer (i.e., the user who sets up the
system) decides the order of process importance and assigns

priorities for all processes on the system. The operating sys
tem's job then is very simple: give the CPU to the highest-
priority process that is ready. The performance of a real-time
system is usually measured by how fast it can respond to
events that change the identity of the highest-priority ready
process. Such events are usually external and come to the
system in the form of interrupts, but can also be internal' in
the form of processes that promote other processes to higher
priorities (or demote themselves to lower priorities). Another
major event that real-time systems must respond to is the
passage of time. The indication of the passage of time also
comes to the system in the form of an external interrupt.

From this discussion, it is apparent that one major measure
of a real-time system is how quickly it can respond to an
interrupt. A response consists of:

â€¢ Recognizing that the interrupt is pending
â€¢ Processing the interrupt (i.e., deciding what to do about it)
â€¢ Taking the indicated action.

Usually the indicated action will be to switch context to the
process that is to handle the interrupt. Context switching
encompasses the actions taken when control or execution
moves from one process to another as a result of an inter
rupt or some other event (see "Context Switching in HP-RT"
on page 32 for more about context switching).

From a system's point of view the response (or response
time) is the time it takes the whole systemt to do something
that changes the environment it is monitoring or controlling.
From an operating system vendor's point of view the re
sponse stops when the user code gets control and the oper
ating system's responsiveness is no longer key to system
performance.

While the system is dealing with one interrupt and preparing
a response, it may need to contend with other interrupts that
are less urgent. The system must take the time to determine
this.

It is also possible that, at the time an interrupt arrives, the
system is in a state in which the interrupt system or context
switching is off. The system needs to go into these states to
protect shared data from corruption by contending processes
(see "Protecting Shared Data Structures," on page 33). Some
systems protect themselves and their shared data by turning
off context switching whenever they are in system code.

t This includes the operating system, the user application, and the external devices.

Augusl. 1993 Hewlett-Packard Journal 31

© Copr. 1949-1998 Hewlett-Packard Co.

Context Switching in HP-RT

Context switching can be defined as moving abruptly from one area of code to
another as the direct result of some influence outside of the program or programs
being an to or from. Usually the context switch is the direct result of an
interrupt or trap (a trap is an internal interrupt caused by some program activity
such can occur by zero or illegal memory access). A context switch can also occur
as a result of a program or thread blocking. In this case the operating system will
context switch to a program or thread that is not blocked. These two different
ways of be a context switch have different overhead costs as will be
explained below. One of the measures of a real-time system is how fast it context
switches. When used in this way the reference is to how fast one user process
can be suspended and another user process restarted.

To context switch, the operating system must save the from process's state. The
state consists of all the machine registers that the program may depend on. After
saving the from process state, the to process's state must be restored. As a result
of this the and restore, both the to and from processes have their view of the
world preserved and restored respectively even if they are suspended for a very
longtime.

For example, consider the case of a user program that has asked for some device
input. for program will be suspended or blocked on the device driver waiting for
the device to respond with the desired data. While waiting, the operating system
will find some other program that is ready to run and switch to it. When the de
sired data arrives, the processor will be interrupted and the operating system will
switch control of the processor to the waiting program.

As an external of a context switch that is strictly the result of an external inter
rupt, consider the case in which a time slice is exhausted. In this case, both the
program being switched from and the one being switched to are interrupted as
opposed to having to block and wait for a resource.

From types system overhead point of view there are four different types of context
switch:

â€¢ Both the from and the to processes enter the blocked state programmatically
â€¢ The interrupted process blocks programmatically and the to process is interrupted
â€¢ The programmatically process is interrupted and the to process is blocked programmatically
â€¢ Both processes are interrupted.

Because of calling sequence conventions, processes that are interrupted incur
additional overhead to save and restore caller registers.

To take advantage of the savings possible when processes block programmatically,
HP-RT uses a context switch routine based on this type of block. The extra work
required when processes are interrupted is performed by code in the system
interrupt handler.

This is not reasonable for a high-performance real-time
system that is trying to switch contexts in less than 50 us.
For these systems it is necessary to recognize and process
interrupts in the 25-\is range. This implies that the interrupt
off time plus the interrupt processing time must be kept
below 25 [is.

This paper will explore the problems a PA-RISC architecture
presents to real-time processing. These problems revolve
around the need for fast context switching, interrupt han
dling, and repeatability. Next, possible solutions to these
problems will be discussed, detailing the solutions used in
the HP-RT (real-time) operating system, which runs on the
HP 9000 Model 742rt VMEbus board computer. The hardware
and software components of the Model 742rt are described
in the article on page 23.

PA-RISC Architecture
The RISC architecture is used to speed up CPUs by design
ing them so that each instruction is simple and can be
executed quickly. The goal is usually to have each instruc
tion take the same amount of time to execute and to design
the machine so that several instructions can be pipelined. To
get all instructions to execute in the same time requires that
no one instruction can be complex. Operations that are com
plex and require more than one instruction time are either
handled by subroutines or by coprocessors. Coprocessors
are designed to run independently allowing the main proces
sor to do other useful work while the coprocessor does its
work. For example, HP's PA-RISC machines use coproces
sors to do floating-point math.

In HP's PA-RISC processors, the following characteristics
are important for real-time applications:

â€¢ Memory reference instructions either load or store and do
nothing else. This means that there is no read-modify-write
instruction.

â€¢ Memory reference instructions may stall if the data is not
available. To help in this regard, a cache memory is used to
speed up the average access to memory.

â€¢ Since memory accesses are potential roadblocks, 32 general-
purpose registers are available as well as 27 control registers
and 32 the f loat ing-point regis ters . This al lows the
processor to keep most of the variables of interest in
registers, avoiding slow memory access operations.

â€¢ All interrupt context is kept in control registers.

Real Time and HP's PA-RISC
From a real-time perspective, the characteristics of HP's
PA-RISC that are of concern are those that limit performance
in the real-time sense. As discussed above, a real-time system
must be able to change its mind (context switch) quickly.
This implies that the large context associated with a process
can be a problem. Also, while changing context, as well as
doing other things, the system needs to be even more re
sponsive to interrupts. This means we must not turn the
interrupt system off for long times. In particular, we must
not turn it off for the duration of a context switch.

HP-RT is the result of porting a third-party operating systemt
to the HP 9000 Model 742rt board level real-time computer.

As such, the porting team was constrained to work with the
conventions existing in the system being ported. Likewise,
the porting team was not empowered to change any of the
language or hardware conventions that exist in HP's PA-RISC
machines and the HP-UX host operating system.

To take advantage of the best of HP's PA-RISC processors,
the port team decided to restrict the system to PA-RISC 1.1
architectures. The 1.1 architecture provides shadow registers
that allow system interrupt code to be run without saving
any context (see "The Shadow Register Environment," on
page 34).

On examining the way the system we were porting recom
mends that drivers be written we found the following:

t LynxOS from fynx Real-Time Systems Inc.

32 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ After an interrupt, the system enters the interrupt service
routine. The routine should be written in C and should make
a call to the operating system function ssignal and then return.

â€¢ The function ssignal increments a counting semaphore, and
if the result is 0. the interrupt service thread is put in the
ready list (execution threads and counting semaphores used
in the HP-RT operating system are described in the article
on page 23).

â€¢ If the new entry in the ready list has a higher priority than
the current process, a flag is set indicating that a context
switch is needed. (Context cannot be switched while in an
interrupt handler.)

â€¢ When the driver's interrupt service routine returns, the
system notices whether a context switch is pending and if

so takes the required action. If not, the system just returns
to the point of the interrupt.

The problem with this picture is that to call the interrupt
service routine the system has to save most of the system
state. This is a lot of overhead for only one function call
and return.

The team decided that a better way to handle interrupt
servicing would be to code a companion ssignal function. The
new ssignal runs using only the shadow registers and still
does everything the original ssignal did. This scheme allows
the whole ssignal call to be made without establishing a C
context, which involves saving and restoring the C environ
ment (see "C Environment," on page 35). However, some
restrictions are placed on I/O drivers in that they have to
make their semaphores known to the operating system.

In some cases, calling the ssignal function is almost all that
an interrupt service routine will do. It is also possible that a
few lines of assembly code might be required to complete
the interrupt service routine. Such code might move a byte
of incoming data from the I/O device to an internal buffer.
For applications that have these kinds of interrupts, the sys
tem provides the ability to call an assembly language inter
rupt service routine. To keep overhead low, the assembly
language interrupt routine is restricted to using the shadow
registers and no system resources. The system interrupt
dispatcher calls the ssignal function if the assembly language
routine returns a nonzero semaphore.

Some I/O devices and drivers require full C-code interrupt
handlers. For these interrupts, the system establishes a C
context on an interrupt control stack. In this context inter
rupts of higher priority are turned on while the interrupt is
processed. These routines can also call a limited number of
system functions. For example, the system time base inter
rupt is handled by a C interrupt handler.

With three different possible interrupt handling situations,
the operating system needs to have the ability to decide
quickly which interrupt service routine to use. Usually this
is done by either a table index, in which the system deter
mines the method to use via a number that is an index into a
table of routines to call, or a case statement, in which the
indicated method, again expressed as a number, is used to
indicate which code to execute. A much quicker method
than these two is to put the address of the interrupt service
routine in the driver's table structure. This also allows the
system to be expanded easily to handle other interrupt
handler environments.

Protect ing Shared Data Structures

S h a r e d t h e s t r u c t u r e s a r e n e e d e d i n a n y o p e r a t i n g s y s t e m t o k e e p t r a c k o f t h e
r e s o u r c e s t h a t t h e s y s t e m i s s h a r i n g a m o n g s e v e r a l p r o c e s s e s . F o r e x a m p l e , e a c h
p r o c e s s w i l l n e e d m e m o r y f o r i t s c o d e a n d d a t a . T h i s m e m o r y i s a s h a r e d r e s o u r c e
a n d t h e t h e s t r u c t u r e s m u s t b e a c c e s s e d i n a w a y t h a t w i l l n o t a l l o w t h e
system resource lose parts of the resource. One method of keeping track of a resource
l i k e a i s t o k e e p f r e e p a g e s o f m e m o r y i n a f r e e l i s t . W h e n a p a g e o f m e m
o r y i s a n d t h e p a g e a t t h e h e a d o f t h e f r e e l i s t i s r e m o v e d f r o m t h e l i s t a n d
g i v e n t o t h e r e q u e s t i n g p r o c e s s . T h i s r e m o v a l (a n d i t s s u b s e q u e n t r e t u r n] m u s t b e
d o n e i n w e a t o m i c o p e r a t i o n w i t h r e s p e c t t o t h e c o n t e n d i n g p r o c e s s e s . B y t h i s w e
m e a n t h a t , a s f a r a s a n y p r o c e s s c a r e s , t h e r e m o v a l o f a p a g e f r o m t h e f r e e l i s t
happens ge t one i nd i v i s i b l e ope ra t i on . O the rw i se , a con tend ing p rocess cou ld ge t
c o n t r o l a n d p o s s i b l y g e t t h e s a m e p a g e .

T h e i m p o r t a n c e o f m a i n t a i n i n g a t o m i c i t y i n d e a l i n g w i t h a s h a r e d r e s o u r c e s u c h
a s m e m o r y o n a f r e e l i s t i s i l l u s t r a t e d i n t h e f o l l o w i n g e x a m p l e . T h e p r o c e s s o f
r e m o v i n g p a g e A f r o m t h e f r e e l i s t i n v o l v e s :

1 . P i ck ing up the po in te r t o page A f rom the l i s t head

2 . U s i n g t h e r e s u l t i n g p o i n t e r t o g e t t h e p o i n t e r t o p a g e B , w h i c h i s i n t h e f i r s t
w o r d o f p a g e A

3 . S to r i ng t he po in te r t o page B i n t he l i s t head .

I f t h e r e m o v a l i s i n t e r r u p t e d a f t e r s t e p 1 b u t b e f o r e s t e p 3 , a n d t h e i n t e r r u p t i n g
p r o c e s s a l s o t r i e s t o r e m o v e a p a g e f r o m t h e f r e e l i s t , b o t h p r o c e s s e s w i l l g e t t h e
s a m e p a g e a n d m o s t l i k e l y t h e s y s t e m w i l l f a i l . S i m i l a r p r o b l e m s o n r e t u r n i n g o f
pages l is ts . the f ree l is t can resu l t in los t pages or even c i rcu lar f ree l is ts .

The so lu t i on to these p rob lems i s to make a sens i t i ve opera t i on a tomic w i th respec t
t o c o n t e n d e r s . I f o n l y p r o c e s s e s c a n c o n t e n d , i t i s s u f f i c i e n t t o p r e v e n t c o n t e x t
s w i t c h e s f o r t h e s e p e r i o d s o f t i m e . I f o n e o r m o r e o f t h e c o n t e n d e r s r u n s o n a n
in te r rup t , then in te r rup ts mus t be d isab led to ach ieve the requ i red a tomic opera t ion .

T h e H P - R T s y s t e m s u p p o r t s t h r e e l e v e l s o f c o n t e n t i o n p r o t e c t i o n :
â€¢ Interrupts disabled
â€¢ Context switch disabled
â€¢ Semaphore locking.

F r o m a n a n d p o i n t o f v i e w , t h e c o s t i s l o w e s t f o r t h e i n t e r r u p t d i s a b l e a n d
h i g h e s t f o r t h e s e m a p h o r e l o c k . F r o m a n i m p a c t o n p e r f o r m a n c e p o i n t o f v i e w ,
i n t e r r u p t s s h o u l d b e d i s a b l e d o n l y f o r s h o r t p e r i o d s o f t i m e , c o n t e x t s w i t c h d i s
ab led needed. fo r s l igh t ly longer t imes, and semaphores he ld as long as needed.

F o r s h o r t o p e r a t i o n s , s u c h a s t h e l i s t r e m o v a l o p e r a t i o n d e s c r i b e d a b o v e , t h e
in te r rup t d isab le method i s the bes t to use (even i f the a tomic tes t does no t requ i re
t h i s l e v e l o f p r o t e c t i o n) b e c a u s e t h e d i s a b l e t i m e i s s h o r t a n d t h e o v e r h e a d o f
i n t e r r u p t d i s a b l e p r o t e c t i o n i s t h e l o w e s t o f t h e t h r e e m e t h o d s .

A New Interrupt Environment
The need to deal with the three interrupt handling situations
described above and the requirement to handle interrupts
from the VMEbus meant that we had to design and imple
ment a new interrupt handling environment. Fig. 1 shows a
simplified view of the logical I/O architecture that the HP-RT
interrupt handling subsystem is designed to service.

The nature of the VMEbus requires a second level of inter
rupt dispatch. This is necessary because VMEbus interrupts
come into the PA-RISC processor via one of seven lines or
PA-RISC interrupt levels. As shown in Fig. 1, each of these
lines can handle several independent devices, which implies
several interrupts.

The VMEbus standard specifies that a device requesting an
interrupt must assert its request on the interrupt line it is

August 1993 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Up to 32
I/O

Groups

VMEbus

Up to 7
- / I / O D e v i c e

Groups

Second- I
L e v e l J

Dev ices |

VMEbus Devices

Fig. 1. A logical view of the I/O architecture the HP-RT operating
system is designed to work with.

using. The interrupt responder sees the request and sends
back an interrupt acknowledgment for that interrupt line.
Each device using the same line blocks the acknowledgment
signal from being seen by devices farther away from slot Ot
while it has an interrupt request pending. When a device
with an interrupt pending sees an interrupt acknowledge it
responds by sending back an interrupt vector. The interrupt
vector is a data element (byte or word) that identifies the
interrupting device and is used by the interrupt responder to
dispatch the interrupt.

The original plan for the Model 742rt hardware was to inter
rupt the PA-RISC processor when a VMEbus interrupt re
quest was asserted and to do the interrupt acknowledgment
when the processor attempted to read the interrupt vector.
This plan required the operating system to stall in the inter
rupt handler with the interrupt system off for an unspecified
length of time because VMEbus devices are not required to
yield the bus to a requester, making the actual time required
to do an operation on the bus open-ended. To solve this
problem, the HP-RT team decided that the interrupt vector
should be prefetched by the hardware before interrupting
the PA-RISC processor. In this way a VMEbus interrupt can

t Slot 0 VMEbus a VMEbus cardcage typically houses the card or cards that contain the VMEbus
system controller and other resources.

The Shadow Register Environment

The PA-RISC 1 .1 implementation added shadow registers to the basic machine
architecture. Shadow registers are seven registers into which the contents of GRs
(general registers) 1, 8, 9, 16, 17, 24, and 25 are copied upon interruption. The
contents of these general registers are restored from their shadow registers when
an RFIR (return from interruption and restore) instruction is executed.

The shadow register environment includes code that executes between a proces
sor interrupt and the following RFIR instruction. This code is executed in HP-RT
using this the shadow registers. It is important to note that the nature of this
environment is further defined by the nature of the processor's behavior on inter
rupt. When an interrupt occurs the processor transfers control to the interrupt
code with the following state:

â€¢ Interrupt system off
â€¢ Interrupt state collection disabled
â€¢ Virtual memory system (both code and data) off
â€¢ All access protection off.

Since the virtual memory system is off, all memory for both code and data must
reside will and be accessed by physical addresses. Usually an operating system will
put the interrupt handling code in an area of memory that is "equivalently mapped."
This means that the physical and virtual addresses are the same. This also means
that access running in the shadow register environment cannot access memory with
virtual addresses that are not equivalent since to do so would require the hard
ware to map the address using its TLB (translation lookaside buffer). t The hazard
here is to the required entry may not be in the TLB, which would cause a trap to
the TLB would handler. Since traps are a form of interrupt, the miss handler would
not be provided with the interrupt state (because the interrupt state collection is
disabled) and thus would not know how to return to the point of the trap.

On the plus side, if the whole interrupt can be processed in the shadow register
environment, the RFIR instruction is all that is needed to return to the point of
interruption.

t The translation lookaside buffer or TLB is a hardware address translation table. The TLB
speeds translations. virtual-to-real address translations by acting as a cache for recent translations.

be dispatched without the PA-RISC processor having to wait
for the VMEbus processor to fetch the interrupt vector. The
current hardware always does the interrupt acknowledge as
soon as possible but has the option of asserting the proces
sor interrupt either immediately or on completion of the
interrupt acknowledgment.

Fig. 2 shows the steps involved in handling a VMEbus inter
rupt and Fig. 3 shows a portion of the system interrupt table
which is used for handling second-level VMEbus interrupts

Interrupting VMEbus I /O Card

1. Send interrupt to VMEbus processor.

3 . A c k n o w l e d g e t h e I A K a n d s e n d a n 4
interrupt vector to the VMEbus pro
cessor.

VMEbus Processor

2 . Send IAK (in te r rup t acknowledge) ~
message to the interrupting device.

4 . Store interrupt vector at the arbiter
address.

5 . Interrupt HP-RT.

HP-RT Operating System Running on a PA-RISC Processor

6 . Decode in ter rupt to determine which 10 . The code ment ioned in s tep 9 per
onÃ© of 32 interrupt lines caused the
interrupt.

7. Use the result from step 6 to index
in to the HP-RT in terrupt tab le fa in
Fig. 3).

8 . Since this interrupt is associated
with a VMEbus device, the second-
level interrupt table is accessed
(b in Fig. 3).

9 . The second- level code (c in F ig . 3)
is responsible for interpret ing the en
tr ies in the second-level interrupt
table.

forms the following:

Retrieves the interrupt vector that
had been placed at the arbi ter ad
dress in step 4 (d in Fig. 3).

Creates an index to the interrupt ac
tion pointer by ANDing the value in
the mask entry (e in Fig. 3) with the
interrupt vector.

Uses the index to f ind the handler
that wil l process the interrupt from
the interrupting device (f in Fig. 3) .

Transfers control to the handler.

Fig. 2. An example of the VMEbus interrupt handling process.

34 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Types o f In ter rup t
Hand le rs Ca l led

S ing le -Leve l I n te r rup t
Tab le (For A l l I /O Except

VMEbus In te r rup ts)

HP-RT Interrupt Table
Indexed by the Bit

Position in the
Interrupt Word

Index Interrupt Action
Pointer

Second-Level Interrupt
Table for VMEbus Interrupts

(There can be up to seven
of these structures.)

Â ®
Second-Level Code

This group of entries is
repeated 32 times (one
group for each bit in the
PA-RISC interrupt word).

Interrupt Action
Pointer

Driver Address

Repeat for Mask
+1 Entries

At this point the entries
for first and second
levels are the same.

Â ©

Assembly
Driver

Interrupt Action

Semaphore Address

Driver-Defined Data

Fig. 3. The HP-RT interrupt table structure.

and non-VMEbus interrupts. Note the correspondence be
tween the interrupt table structure and logical I/O architec
ture shown in Fig. 1. The three different interrupt handling
situations mentioned above are taken care of by allowing
one of the three types of interrupt routines to be specified in
the table (see the interrupt action entry in Fig. 3).

Second-level VMEbus interrupts are handled by reading the
returned interrupt vector, masking it, and using the result to
index to the interrupt action that will handle the interrupt
C f in Fig. 3). The masking is done to prevent indexing to a
location outside of the table and to allow the interrupting
device to pass back status information in the high part of the

C Environment

C env i ronment re fe rs to the imp l ied mach ine s ta te when execu t ing in a C language
p r o g r a m . T h i s m a c h i n e s t a t e i s r e a l l y a s e t o f r e g i s t e r u s e c o n v e n t i o n s t h a t a r e
def ined Some the sof tware archi tecture for the PA-RISC processors (see Fig. 1) . Some
o f t h e b a s i c a s s u m p t i o n s m a d e i n C a b o u t t h e s e r e g i s t e r s i n c l u d e :

â€¢ Reg is te r 30 i s the s tack po in te r and po in ts a t the f i r s t ava i lab le doub le word on
t h e s t a c k . T h e s t a c k g r o w s w i t h i n c r e a s i n g a d d r e s s e s .

â€¢ Jus t be low the cu r ren t s tack po in te r i s a s tanda rd s tack f rame w i th room fo r t he
r e t u r n t h e t o b e s a v e d (i f t h e c a l l e e n e e d s t o s a v e i t) a n d r o o m f o r e a c h o f t h e
ca l l pa rame te rs t o be saved .

â€¢ Reg is te rs 26 , 25 , 24 , and 23 (as needed) con ta in the ca l l a rguments . I f more than
f o u r a r g u m e n t s a r e p a s s e d , t h o s e a b o v e t h e f i r s t f o u r a r g u m e n t s a r e s t o r e d i n t h e
s tack f rame.

â€¢ Reg is te r 27 i s the g loba l da ta reg is te r and i s used to address any g loba l da ta
needed by t he p rocedu re .

â€¢ Reg is te r 2 con ta ins the address to re tu rn to when the p rocedure i s done .
â€¢ Reg is te rs 28 and i f needed 29 a re to con ta in the func t i on resu l t when the func t i on

re turns.

â€¢ Reg is te rs 3 th rough 18 (the ca l lee-saves reg is te rs) can be used on ly i f they a re
saved and res to red be fo re r e tu rn i ng t o t he ca l l e r .

â€¢ Reg is te rs 19 th rough 22 (the ca l le r -saves reg is te rs) and reg is te rs 1 and 31 are
ava i l ab le t o use as sc ra t ch reg i s te r s .

T h e r e a r e o t h e r c o n v e n t i o n s f o r f l o a t i n g - p o i n t a n d s p a c e r e g i s t e r s w h i c h a r e
u s u a l l y n o t i m p o r t a n t i n o p e r a t i n g s y s t e m c o d e .

The shadow reg is te r env i ronment , wh ich cons is ts o f reg is te rs 1 , 8 , 9 , 1 6 , 1 7 , 24 ,
a n d 2 5 , i s n o t c o m p a t i b l e w i t h t h e C e n v i r o n m e n t .

GRO

GR1

GR2
GR3

GR18
GR19

Zero (by Hardware Convention)

RP (Return Pointer)

Cal lee-Saves Registers

Caller-Saves Registers

SP (Stack Pointer)

MRP (Mi l l icode Return Pointer)

F i g . 1 . R e g i s t e r u s e c o n v e n t i o n s i n t h e C e n v i r o n m e n t .

word. The mask is computed at system configuration time
from the user's specification of the high number to be re
turned on a given interrupt line. This number is rounded up
to the nearest power of two (2n). For example, if the highest
number to be returned on a particular interrupt line is 12
then n is four because 24 provides the nearest power of two
greater than 12. t This results in a table that is larger than
needed but eliminates the need to check if the masked num
ber is too large. Unused entries in both the first-level and
second-level interrupt tables are filled with entries that

T h e l a r g e s t v a l u e f o r n i s 2 5 6 .

August, 1993 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

Function f1 (Caller) Stack

Caller-Saves Registers

Values that Do Not
Need to Be Saved

Across Function Calls

Callee-Saves Registers

Values that Must Be
Saved Across Function

Calls

Caller- and Callee-
Saves Registers for 12

result in system illegal interrupt messages should such an
interrupt ever happen.

Initially, the HP-RT team wanted the interrupt handler and the
interrupt off times to be "blind" to interrupts for a maximum
of 100 instruction times, including any stall states minus
cache misses. The notion of blind to interrupts was intro
duced to cover the case in which the system keeps the inter
rupt system off, but still processes the interrupt in a timely
fashion. This occurs in the interrupt handler, for example,
when after it processes an interrupt it looks at the pending
interrupts and if it finds one, processes it without turning
on the interrupt system. The operating system interrupt
dispatching code met the 100-instruction time limit.

Handling Large Contexts
The PA-RISC architecture divides a program's context into
two register sets: caller-saves and callee-saves registers. The
caller-saves registers consist of registers that are expected
to contain values that do not need to be preserved across a
procedure call, that is, values the calling function does not
care about. Therefore, these registers are available for use
as scratch registers or for parameter passing by the called
routine. The callee-saves registers are used for values that
must be preserved across a procedure call. Thus, if the
called routine wants to use a callee-saves register, it must
first save it and then restore it before it returns. The PA-RISC
architecture also specifies where these registers must be
saved on the call stack (see Fig. 4). This caller-saves and
callee-saves convention is used by the PA-RISC compilers so
that the system can depend on it.

HP-RT depends on the caller-saves and callee-saves division
to keep context management code to a minimum. In particu
lar, on system calls the system saves only the user's (caller's)
return address, global register, and stack pointer. The system
call handler then calls the requested system call function

Fig. 4. The relationships between
function (or procedure) calls, the
caller- and callee-saves registers,
and the stack area. The caller
puts data it wants to preserve in
the callee-saves registers before
making a call. If the called routine
(callee) needs to use any of the
callee-saves registers, it saves the
value contained in the register
and restores the value back into
the register before returning to
the caller.

depending on that function to save and restore any callee-
saves registers it may want to use. Likewise, on interrupts or
traps where control must be transferred to the kernel stack,
only the caller-saves registers need to be saved because
HP-RT depends on callee-saves registers to be saved by any
function called. Therefore, since the context switch code is
called as a function, all it has to save are the callee-saves
registers. By saving only what needs to be saved at each
step, the system keeps the overhead low for register saves
and restores.

HP-RT also takes advantage of the fact that the floating
point coprocessor is enabled by setting bits in a control
register. If the coprocessor is not enabled, the system will
generate an emulation trap when a process attempts to use
any floating-point instructions. Processes start with the
floating-point coprocessor disabled. When a process at
tempts to use floating-point instructions, the code in the
emulation trap handler saves the old process's floating-point
registers and loads the current process's floating-point regis
ters. In this way, the overhead of floating-point context
switching is limited to only the times when it is needed.

In deference to maintaining a low interrupt-off time, the
system checks for pending interrupts once it has stored the
old process's floating-point registers. If any external inter
rupts are pending at this time, the system will set the floating
point ownership flags to show that the coprocessor is not
owned and then handle the interrupt. The current process
will be redispatched still not owning the floating-point co
processor, but will immediately end up in the emulation trap
which will finish the context switch. Of course the interrupt
could cause the current process to lose the CPU, possibly
even to the process whose state the system just saved. For
this reason, a flag is kept to show that the registers were not
changed so the process may proceed with only a quick pass

36 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

\

through the emulation code to get the coprocessor bits set
again.

S e t j m p a n d L o n g j m p S o l u t i o n s

On rare occasions the operating system is required to abort
a system call. This occurs when the user sets up a signal
handler and the signal handler is specified as requiring the
termination of any system call that is pending when the sig
nal is delivered. As mentioned above, the system takes ad
vantage of the fact that functions called on a system call will
restore the callee-saves registers. These registers are saved
on the stack by each function in the call chain, starting from
the system call handler to the code that delivers the signal to
the user. The problem then is how to recover these registers
so the user code will have the correct register set when con
trol is returned to it The normal way to handle this kind of
situation is to do a setjmp call to save the callee-saves regis
ters in a local buffer and then do a longjmp call (which re
stores the saved registers) from the signal delivering code.
The porting team decided that the overhead of a setjmp on
every system call was too high.

One solution that was considered was to identify all possible
places in the kernel where such a signal could be delivered.
Code could then be put in place to do a setjmp only when the
signal delivery was possible. This approach was abandoned
when it was found that these calls could come from user-
written drivers. The solution used is to unwind the stack,
picking up each of the saved registers until the stack is back
to the system call handler. This solution takes more time in
the rare case of a call being aborted, but does not put over
head in the path of all system calls.

Hardware Help
It was mentioned above that the VMEbus hardware holds off
interrupts until the information needed to process the inter
rupt is available. The HP-RT team also requested and re
ceived a real-time mode in the interrupt convention for on
board I/O device interrupts. The normal convention was that
all onboard device interrupts were collected into one bit
(each bit corresponds to one interrupt line). Under this con
vention the software interrupt handler would first decode
the interrupt source to this bit and then read an I/O space
register that contained a bit map of all the onboard devices
requesting interrupt service. The hardware convention used
was to clear this register when it was read. This required the
software to keep track of all the bits that were set and to
call the handler for each bit. The software management task
for this convention would have been fairly high because the
real-time system wants the interrupt system on most of the

time, which means that it is possible for another interrupt to
be received from another onboard device before the current
interrupt is completely processed. At the same time, the rest
of the main processors interrupt register would not be in use.

The HP-RT team asked for an interrupt mode in which each
onboard device has its own interrupt bit on which it can
interrupt the main processor. This convention not only elim
inates the need to remember which bits were set, but also
eliminates a level of decoding in the interrupt path.

Conclusion
One of the main goals of the HP-RT project was to minimize
the time to handle interrupts. Table I, which shows the re
sults of these efforts, is a task response time line that shows
the time consumed by each activity in the path from an in
terrupt to the task (e.g., user code) that does something to
respond to the interrupt. For cases in which an interrupt is
handled by an interrupt service routine in the operating sys
tem and not user code, the interrupts disabled and dispatch
interrupts times shown in Table I are the only tunes involved
in determining the total task response time. Their worst-
case times in this situation are 80 [is and 6 (is respectively,
giving a total task response time of 86 us. The 80 \is time is
rare and work is continuing to reduce this time.

T a b l e I
T i m e L i n e f o r H P - R T R u n n i n g o n t h e H P 9 0 0 0 M o d e l 7 4 2 r t

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX is a countries. trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

Aligns!. 1993 Hewlett-Packard Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

The HP Tsutsuji Logic Synthesis
System
A new by synthesis system has reduced the time to design ASICs by a
factor of ten.

by W. Barry Culbertson, Toshiki Osame, Yoshisuke Otsuru, J. Barry Shackleford, and Motoo Tanaka

Logic synthesis assists and automates the process of refining
digital designs from high-level, abstract conceptions to low-
level, concrete specifications for physical implementation.
The HP Tsutsuji logic synthesis system, a software package
that runs on HP 9000 Series 700 workstations, was jointly
developed by Hewlett-Packard Laboratories in Palo Alto,
California and Yokagawa-Hewlett-Packard (YHP) Design
Systems Laboratory (YSL) in Kurume, Japan. Tsutsuji, the
Japanese word for azalea, was adopted as the name of the
product because at the inception of the project, Kurume was
hosting the World Azalea Congress.

Input to the Tsutsuji logic synthesis system is expressed as
block diagrams composed of adders, multiplexers, shifters,
register files, and so forth. Tsutsuji transforms these block
diagrams into efficient, electrically and functionally correct
netlists,t which can be implemented in various technologies
(see Fig. 1).

t A netl ist is a l ist of logic gates and the interconnections, called nets, between them.

B l o c k D i a g r a m

Tsutsuji
Logic Synthesis

System

(b)
Netlist

(function (outs) (ins))
Inand |-A) (-W +X +Y)|
(inv (tA l (-A) l
(fa(+C2+S1){+A1+B1+CO|)
(nor(-W)(+A1+B1))

(0

Fig. Designs Tsutsuji is a high-performance logic synthesis system. Designs
are expressed as block diagrams, which are transformed by Tsutsuji
into a to file that can be used by gate array manufacturers to
produce an application-specific integrated circuit (ASIC).

The most obvious benefit of logic synthesis is that it reduces
the time needed to develop a new product. In a competitive
market, the time needed to develop a product often has a
greater influence on profitability than the product's perfor
mance or factory cost because of its effect on the technology
potential in the product (see Fig. 2). In addition to shortening
the design phase of the development schedule, logic synthesis
can also reduce the debugging and testing phases by elimi
nating the errors that inevitably occur when a gate-level
design is produced manually.

A disadvantage of the traditional digital design process is
that designs are not captured precisely until they have been
refined to too low a level of abstraction (Fig. 3a). At this
point, technological dependencies have been introduced and
high-level functions (Fig. 3b) have been obscured. Experi
ence has shown that these designs can almost never be re
used to take advantage of faster and cheaper technologies
when they become available. In contrast, Tsutsuji accepts a
high-level, technology-independent design and automatically
maps it to the target technology. Reusing an old design can
be as simple as rerunning the synthesis tools. Freed from

6 -

3 -

2

2 x I n c r e a s e
per 18 Months

 X One Year
to Market

Four Years
to Market

Fig. chip Assume that the technology potential, which includes chip
cost, speed, and density, grows exponentially. Then a project that
can make it to market in one year will be implemented with a tech
nology that will have four times the potential of a project that takes
four years to market.

38 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

,

(b)

Fig. of Designs that are expressed directly in the technology of
implementation (a) are often difficult or impossible to remap effec
tively. Conversely, designs that are created by logic synthesis from
high-level modules (b) are inherently easy to remap.

the tedious low-level design tasks, a designer can devote
increased time to the more profound system-level design
issues, which can more significantly influence performance.
Research into the art of implementing a specific function,
for example a multiplier, needs to be performed only once
to embed it into the logic synthesis system, after which it
becomes available to all users of the system.

Logic Synthesis
The initial focus of Tsutsuji is to assist the design of
application-specific integrated circuits (ASICs). ASIC vendors
typically provide low-level tools for placement and routing,
rule checking, and so forth. Tsutsuji is intended to comple
ment and augment such tools rather than duplicate them.
Thus, the output of Tsutsuji is the set of files a vendor needs
to produce an integrated circuit.

After it is entered with a graphical editor, the block diagram
describing the circuit is translated to a technology-specific
netlist in two steps. In the first step, module generators,
driven by parameters supplied from the block diagram, ex
pand the blocks into a generic netlist of simple gates. At this
stage, the gates have no restrictions on fan-in and fan-out
and are essentially equivalent to logic equations. However,
some modules such as multipliers can take advantage of
higher-level primitives like full adders. If it is known at this
stage that the target technology contains these higher-level
primitives, then the modules can be instructed to emit them

rather than the lower-level logic gates. This makes the task
of technology mapping substantially easier and quicker.

During the second step, a technology backend manipulates
the generic netlist into a new netlist that satisfies the design
rules of the target technology (such as fan-in and output drive
restrictions) and exploits the technology's special features.

Module Generators
The heart of Tsutsuji is a library of module generators, each
of which can translate blocks of a single functional type into
a collection of simple generic gates. The library contains
module generators for all of the kinds of blocks that are typ
ically used to construct computer data paths and control
logic. There are currently about fifty module generators,
including:

It is important to stress that the library is not composed of
fixed designs, as are standard cell and gate array libraries.
Instead, it is composed of generators that can produce an
endless variety of fixed designs. For example, blocks are
synthesized with exactly the desired operand lengths. By
adjusting the parameters given to the module generators,
the designer tunes the synthesized circuit to achieve the
project's cost and performance objectives. The speed of the
synthesis process permits many design choices to be tried,
with actual cost and performance data gathered for each. To
produce a product upgrade, the current design can be reused,
with blocks regenerated using synthesis parameters that
yield higher performance. The new product is functionally
equivalent to the first; consequently, the need for simulation
and testing is reduced.

Extensive literature exists describing the implementation of
data path and control logic functions, and much of this
knowledge has been incorporated into the generators. Often
there exist several algorithms that can be used to implement
a given function. For example, the module library includes
ripple-carry adders, carry-lookahead adders, and conditional-
sum adders. Multipliers can be synthesized using iterative
cellular arrays or carry-save adder arrays. Best of all, the
designer needs little understanding of the alternatives since
all are functionally the same and since fast synthesis provides
a quick comparison of cost and performance.

Example: Shifter
Once an algorithm is chosen, there often remain a number
of structural choices that can influence cost and perfor
mance. As an example, a 16-bit unidirectional shifter will be
considered in detail. The shifter has 16-bit input and output
data buses. There are also four weighted shift-amount inputs
and a shift-in input.

In the case of the shifter, the library has only one algorithm â€”
the shifter will be implemented as a collection of n-to-1 multi
plexers. On the other hand, there are many possible struc
tural arrangements of the multiplexers that will produce the

August 1993 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. shown organizations possible organizations for a 16-bit, unidirectional shifter are shown in this topology graph mosaic. The organizations derive
from the composed of 16, the bit width. The factorization (2 4 2) results in a shifter composed of a level of 2-to-l multiplexers followed
by a level of 4-to-l multiplexers and finally followed by a level of 2-to-l multiplexers.

desired shifter. For example, the shifter could be structured
as one level of sixteen 16-to-l multiplexers, or two levels,
each composed of sixteen 4-to-l multiplexers. Each factor
ization of the number sixteen yields a different way to struc
ture the shifter. For example, the factorization (2 8) corre
sponds to a shifter with a level of 2-to-l multiplexers and a
level of 8-to-l multiplexers. Fig. 4 shows topology graphs of
the first-level (generic gates) implementations of all eight
possible organizations of a 16-bit unidirectional shifter. For
an explanation of topology graphs see "Netlist Topology
Visualization" on page 44.

Table I contains data for a selection of structures for the
shifter. The speed advantage of the (16) structure, which is
significant in the technology-independent (generic gates)
form, is not very pronounced after the CMOS technology
backend corrects the excessive fan-in and fan-out. Good
compromises between gate count and speed are offered by
both (2222) and (4 4); (2222) may be favored in a tech
nology providing only two-input gates. The organization of
the shifter is specified on the module's tuning page. The tun
ing page is made visible by selecting the module in the block

diagram and then clicking on the tuning page button to the
left of the drawing area. Note in Table I that the (4 4) organi
zation of the CMOS shifter is only about four percent slower
than the (16) organization and requires only 41 percent as
many cells for implementation.

To summarize, module generators provide designers with
custom-produced functional blocks with exactly the required
operand sizes. Designers can choose from a large number of
functions. Given a function, a number of algorithmic and
structural choices are usually available.

Technology Backends
The technology backends perform two functions: optimiza
tion and mapping. Optimization improves the cost and perfor
mance of a circuit. Mapping converts the netlist of generic
gates produced by the module generators into an electrically
correct netlist of gates that can be implemented in the target
technology. Mapping is necessary because the module gen
erators use gates chosen from a fixed set of functions, which
may be different from those available in the target technol
ogy. Also, the module generators assume gates may have

40 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Table I
16-Bit Unidirectional Shifter

(16)

Organization

(2 8) (4 4) (2 4 2) (2 2 2 2)

unlimited fan-in and fan-out. The technology backends allow
Tsutsuji to realize an important goal: the ability to implement
one design efficiently in multiple technologies.

Our experience with Tsutsuji has shown that relatively simple
backends are most effective. We have tried other systems
with far more sophisticated optimization features. These
systems can considerably improve a poor design, although
often the result still leaves much to be desired. For example,

no system we have seen will convert a ripple-carry adder to
a carry-lookahead adder. However, if the design is nearly-
optimal to begin with, then the best optimizers can improve
it very little. Furthermore, these systems are so slow, even
working on small circuits, that they discourage the exper
imentation and iterative design approach that we wish to
promote.

Tsutsuji designs are, in fact, nearly optimal before they
reach the technology backends. Because the implementa
tion of data-path structures like adders has evolved to a very
high art, and because our module generators have captured
that ait. circuits produced by the generators typically have
excellent fan-in, fan-out, and cost-performance characteris
tics. For control logic, Tsutsuji uses generators that include
their own optimization algorithms. Since these blocks typi
cally contain relatively few gates, the optimization per
formed by the module generators is quick and effective.

The mapping and optimization applied by the backends in
volve only small numbers of adjacent gates at a time. These
transformations, called peephole optimizations, can be per
formed far more quickly than the global optimizations used
in some other systems. Most of the transformations can be
specified as rules, each of which is a pair of patterns. The
design is searched for collections of gates that match the
first pattern in a rule. The collection of gates is then re
placed with the second pattern in the rule (see Fig. 5).

A gate with excessive fan-in must be replaced by the Tsutsuji
backends with trees of low-fan-in gates that implement the
same function. To avoid increasing delay, nets on the critical
path should enter the fan-in tree at its root while nets with
plenty of slackt can enter the tree at a deeper level. Fixing
excessive fan-out is analogous: the net with too many loads
is replaced with a tree of buffers plus the original driver,
which serves as the root. In this case, loads should be driven

t Slack most a measure of how critical the timing is at a gate or net, with zero slack being most
crit ical It is defined as the difference between the length of the longest path through the gate
or net and the length of the critical path.

3~'

j 'â€¢

Q â€¢* B
Fan-out = O

X Delete
Gate

jiM 2 B 7->x B '
Fig. 5. matches rules arc pairs of patterns. IT I lie firsl pal tern of a rule matches a IVagmeni of the design, the fragment is replaced by
the second paiicni. (EQL = equal, the opposite of XOR.)

August 1993 Hewlett-Packard Journal 41
© Copr. 1949-1998 Hewlett-Packard Co.

by gates at a tree depth not greater than the slack through
the load. An algorithm has been developed that builds opti
mal fan-in and fan-out trees. Optimal in this case means that
no tree can be found that has less impact on the critical path.
Fig. 6 illustrates the construction of an optimal fan-in tree.

Human Interface
As massive VLSI becomes more prevalent, a way must be
found to manage the complexity of million-gate systems on
a chip. We wish to elevate the designer's perspective by en
couraging optimization at the system level rather than at the
gate or transistor level.

A great deal of effort was put into creating a system that
would both encourage system-level thinking and synthesize
and map designs rapidly. To complement this system, we
wished to design a human interface that would evoke the
intuition and even the playfulness of the designer. Our intent

Fig. 6. A single gate with exces
sive fan-in is replaced by a tree of
gates by the technology backend.
In this example the fan-in limit is
two. The shape of the tree and
the points where the nets enter
it are carefully chosen to avoid
increasing delay.

was that the designer would read the instructions after using
the system.

The analogy that the YSL design team chose for the Tsutsuji
human interface was that of the engineer's design notebook
(see Fig. 7). At a level above this is the concept of the library,
which is simply a collection of notebooks and component
catalogs that can be used in any design.

Design notebooks are broken down into pages. The first page
is the index page, by which all other pages can be accessed.
As the design progresses, pages are automatically added to
the design notebook. For example, in a hierarchical design, a
number of lower-level components would be created. Each of
these components along with the top-level design would then
automatically be added and appear in the index. Subsequent
pages would be added to reflect the results of technology
mapping, timing, and topological analysis.

Fig. 7. Tsutsuji presents the
design as an engineer's design
notebook. At the level above the
notebook is a library consisting of
other notebooks and component
catalogs.

42 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Block Diagram Design Entry
Nearly all substantial designs start out as block diagrams. We
have chosen this natural form of expression as the principal
form of design specification within Tsutsuji.

The design is entered by means of a block diagram drawing
editor. The editor allows the designer to create, copy, move,
delete, and connect graphical block diagram objects freely.
A block diagram object can be a wire or bus connecting two
or more modules, a module, or even a list of logic equations.
Objects can be readily copied from other block diagrams in
other design notebooks. To connect modules, the designer
need only point at the appropriate connection points and
Tsutsuji will automatically route the line. Modules that
are already connected can be moved and Tsutsuji will
automatically reroute the connections to the module.

Hierarchical designs can be created by entering a design in
the normal manner and then putting the design in the design
book where it can accessed via the Tsutsuji index page. Tsu
tsuji automatically constructs a symbol for the user. How
ever, fastidious users who want a more distinctive symbol
can use the drawing editor to alter the symbol shape.

Tuning parameters for modules are specified by first selecting
the module with the mouse and then clicking on the tuning
page button to the left of the drawing area. A special page
for the selected module will appear and then the parameters
can be entered (see Fig. 8).

Certain modules such as bus distributors, carry-save adders,
and multiplexers require a different symbol depending upon
t h e i r t h e R a t h e r t h a n f o r c e t h e u s e r t o s p e c i f y t h e
shape for each configuration, Tsutsuji has a class of symbols
that are mutable â€” the form changes as a function of the
tuning parameters (see Fig. 8).

Fig. 8. The tuning page for a
module is accessed by selecting a
module with the mouse and then
clicking on the tuning page button
to the left of the drawing area.
Some symbols such as the carry-
save adder automatically change
their form as a function of the
tuning parameters.

Textual Design Entry
Usually the data-path portion of a design is most naturally
expressed graphically. Text is sometimes appropriate, how
ever, for specifying the control portion of a design. Logical

Description Format, or LDF, is the Tsutsuji language for
specifying designs textually. LDF is similar to the C pro
gramming language, so it looks familiar to many users.

To use LDF, the user places a box in the graphical design and
connects signals to it. With the mouse, the user then executes
a command that causes an editor window to appear. By typ
ing LDF text into the window, the designer specifies the
function of the box.

The first two examples in Fig. 9 both specify the same func
tion, an adder, but do so using two different features of LDF:
random logic and truth tables.

The first line in Fig. 9a lists the four signals that connect the
adder subdesign to the rest of the design. The last two of
those signals are prefixed with an ampersand to indicate that
they are outputs; the first two are inputs. The third line,
which begins with the word net, creates and names two wires,
which will be internal to the subdesign. Other internal signals
will be created automatically if they are needed to implement
the random logic expressions. The line carry = a & b as one
might expect, creates an AND gate, connects its output to the
signal carry, and connects its two inputs to the signals a and b.

Fig. 9b shows a truth table for an adder plus LDF text that
implements the truth table. The truthtable feature in LDF is
merely a textual structure for expressing a truth table.

The automaton structure in LDF allows the user to specify a
state machine. It consists of a list of states. For each state,
expressions are given for the outputs, and conditions are

August 1993 Hewlett-Packard .Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

Random Logic

adder (a , b , Ssum, &carry)
1

n e t l o c a L n e M . l o c a L n e t _ 2 ;

carry = a & b;
l o c a L n e t J = - a & b ;
l o c a l n e t _ 2 = a & - b :
s u m = l o c a l n e t 1 I l o c a l n e t 2 ;

(a)

adder (a , b , &sum. &carry)
Ã

t ruthtÃ ih le a, b: sum, carry

c a s e 0 , 1 : 1 , 0 ;
case 1, 0: 1, 0;
case 1, 1: 0, 1,
default: 0. 0;

(b)

Sta teMachine la , b , next , SOnt l
{

automaton {
STATE J :

Out = 0;
i f (next) goto STATE 1;

STATE_1:
Out = a I b;
g o t o S T A T E J ;

(cl

Fig. 9. Most design entry is done graphically in Tsutsuji. However,
some text. of designs are more naturally expressed using text.
Tsutsuji provides the LDF language for this purpose. This figure
gives logic examples of LDF: (a) specifies some combinational logic
to implement an adder, (b) describes the same adder using a truth
table, and (c) specifies a simple state machine.

given for changing to other states. Fig. 9c illustrates a simple
state machine with two states.

Netlist Topology Visualization
The topology graph is a new means we developed for view
ing a gate-level design. Unlike a traditional schematic, a
topology graph can display a large design in a single window
and can make the performance characteristics of the circuit
easy to understand. The topology graph also makes it easy
to trace the automatically generated gates back to modules
in the user's high-level design.

Fig. 10 is an example of a topology graph. Circuit inputs are
placed in a column on the left side of the graph. The horizon
tal coordinate of a gate is set to be proportional to the delay
of the longest path from the inputs to the gate. Registers ap
pear twice on the diagram. They are drawn first in the input
column with only the register outputs shown (register out
puts are inputs to the logic gates). They appear again with
only the register inputs drawn at the right-hand endpoint of
one or more paths through the circuit. Circuit outputs also
appear at the right end of paths.

A straight line is drawn between two gates if an output of one
of the gates drives an input of the other. The brightest colors
are used to show connections with the lowest slack. For ex
ample, the critical path in Fig. 10 is drawn in yellow. This
emphasizes the part of the circuit that limits the speed, which
is usually the part of the circuit the designer most wants to
see. Because delay information is inherently graph-oriented,
we have found this graphical presentation of delay informa
tion to be an enormous improvement over the traditional
textual delay report.

Tsutsuji users typically make their high-level designs func
tionally correct before they bother to examine their designs
at the gate level. Once the design is functionally correct,
there rarely is any need to look at the gate-level design in
detail. Nevertheless, the topology graph program includes
features for scrolling to any part of the design and zooming
to any desired level of detail.

A particular gate can be selected by clicking with the mouse
or typing the name of the gate. The green circle in Fig. 10
indicates a selected gate. Once selected, the gate can be
brought to the center of the screen and magnified. A pop-up
window of information about the gate can be requested; it
gives information like the type and name of the gate, the
gate's fan-in and fan-out, the slack at the gate, and so forth.
The tree of signals driving the selected gate and the tree of
signals driven by the selected gate can be highlighted, as
shown by the red portion of Fig. 10.

Once a gate has been selected, it is possible to request a
pop-up window showing the names of the gates that drive
and are driven by the selected gate. Clicking on one of the
names causes the corresponding gate to become the se
lected gate. This makes it easy to navigate through the
design, following the circuit's interconnections.

When the user types a name into a module selection win
dow, the named module is then highlighted, as shown in red
in Fig. 11. This allows the designer to correlate blocks in the
high-level design with gates in the gate-level design. The
user can also request a pop-up window of information about
the selected module.

The ability to see a particular high-level module within the
topology graph of the entire circuit is invaluable for setting
module tuning parameters. For example, the designer might
use the mouse to select a gate on the critical path. From the
gate information window, the user would learn the module
from which the gate was synthesized. Then the user would
select that module to highlight it on the topology graph. If
the module were contributing significant delay to the design,
the user might retune the module for higher performance. In
another scenario, the user might select a module that was
not on the critical path and retune it for a slower but
cheaper implementation.

Simulation
To achieve our project goal of substantially increasing
designer productivity, it was imperative to develop a fast
simulator for Tsutsuji. Traditionally, simulation has been a
process for verifying designs that were nearly complete.

44 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Computers were left unattended for hours or days while
simulations ran and produced reams of paper. We wanted
the Tsutsuji simulator to aid the early phases of design, pro
ducing results in real time and presenting them in the con
text of the application. We wanted designers to be able to
experiment with significant design changes and see the
effects instantaneously.

Fig. 10. The topology graph lets
a Tsutsuji user view an entire
gate-level design on a single
screen. Signals flow from left to
right in the diagram and the long
est paths horizontally have the
most delay. The critical paths are
colored yellow. A gate has been
selected as indicated by the
green circle. Many features of the
topology graph program relate to
the selected gate; in this case, the
fan-in and fan-out trees for the
selected gate have been high
lighted in red.

A previous YSL product included a simulator that evaluated
about a thousand gates per second. The Tsutsuji simulator
has achieved simulation rates as high as twenty-three million
gate evaluations per second, t Some of this increase is the

t This was 9000 whi le s imulat ing a 5000-gate f loat ing-point mul t ip l ier us ing an HP 9000
Model 730 computer

Fig. 11. In this topology graph, a
name has been typed into the
Highlight Module pop-up window.
This causes all the gates and in
terconnections within the named
module to be highlighted in red.
A Module Information window displays
information about the highlighted
module. The ability to see how
one module is situated within the
entire topology graph is useful for
setting the module's tuning param
eters. For example, if the critical
path flows through the module,
the designer may want to tune it
for higher speed. Conversely, if
no critical paths flow through the
module, the designer may want to
I tine it for lower cost.

August 199:i Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

result of an impressive leap in workstation performance that
occurred between the releases of the two products. Several
other factors also contributed.

The most significant factor was the development of a special-
purpose compiler that produces efficient simulation code.
Much of the work performed on each simulation cycle by
the previous simulator is now performed once during the
compiling phase. Also, Tsutsuji produces circuits that adhere
to strict design rules that make it possible to simulate the
circuits accurately with a much simpler simulation strategy.
For example, the delay in the circuits can be completely and
quickly characterized by a separate static timing analyzer
program; hence, the simulator can ignore all timing issues.
Since Tsutsuji circuits use simple clocking and two-state
Boolean logic, each gate only needs to be evaluated once
per simulation cycle. A gate typically can be evaluated by
a single, simple, machine-level instruction on the host
computer.

When the user wishes to simulate a design, Tsutsuji displays
the graphical simulation window. The user can choose buses
to observe and can specify virtual instruments for driving or
viewing values on the buses. Tsutsuji then automatically
runs the simulation compiler and starts the simulation and
the virtual instruments. The simulation program and the
virtual instruments run as separate UNIX processes that
pass vectors through UNIX interprocess communication
channels. This approach provides a flexible means for users
to add new virtual instruments. To do so, the user needs
UNIX programming skill but does not need to know anything
about the internal structure of Tsutsuji.

Simulator Register Allocation
One of the interesting algorithms developed for the simula
tion compiler is the register allocation strategy. Computers
store data in memory and registers. Registers are scarce and
fast; memory is abundant and slow. Register allocation at
tempts to minimize the movement of data between memory
and registers and to maximize the amount of calculation
that is done in registers.

One of the first things the compiler does is transform the
netlist into a list of instructions for a simple, idealized com
puter. These instructions are similar in function to instruc
tions executed by real computers and are simplified mostly
in the way they refer to data. Many optimizations that are
complex to perform on real computer instructions can be
performed easily and effectively on the simplified instruc
tions. The compiler removes the simplifications in several
stages until, finally, the simplified instructions become real
computer instructions.

Typical ICs have at most several hundred input and output
signals but have thousands of internal signals. In the simula
tion program, the values of the internal signals are stored in
temporary variables. In the list of instructions, there is a
point where a temporary variable first appears and another
point where it is last used. The number of instructions be
tween these points is called the lifetime of the variable.
Storage (memory or registers) can be used for multiple
variables if their lifetimes do not overlap.

A temporary variable is often used in many instructions. The
first few instructions calculate the value of the variable, while

the rest use the value to calculate other values. The number
of instructions that use a variable is called the reference

count of the variable.

A variable's lifetime and reference count can be used to
measure the desirability of storing the variable in one of the
scarce registers. If the lifetime is long and the variable is in a
register, then many other variables are prevented from using
the register. Hence, a long lifetime argues against putting a
variable in a register. If a variable has a high reference count
and is stored in a register, then many time-consuming memory
references are avoided. Thus, a high reference count argues
in favor of storing a variable in a register. Combining these
ideas, we define the cost of putting a variable in a register to
be the variable's lifetime divided by its reference count.

Our register allocation algorithm attempts to store low-cost
variables in registers. During register allocation, the compiler
passes sequentially over the instruction list. When a variable
appears for the first time, it is assigned a register if its cost
is low and a register is available; otherwise, it is assigned a
location in memory. After a temporary variable appears for
the last time, its storage becomes available again.

One question remains: how should low cost be defined?
Rather than try to choose a specific threshold to separate
high and low cost, we use an adaptive strategy. Whenever
the compiler tries to allocate a register to a low-cost vari
able but finds none available, the threshold is lowered.
Whenever a high-cost variable is assigned to memory and
registers are available, the threshold is raised.

Our register allocation algorithm produces simulation code
that runs almost four times faster than code that keeps all
variables in memory. Yet, it is simple and requires minimal
time and memory while compiling.

Virtual Instruments
By providing a set of versatile virtual instruments, we hope
to move the designer closer to the application domain and
away from the Boolean logic domain. Presently, Tsutsuji
includes benchtop accessories and instruments that range in
complexity from a simple on/off switch to a network ana
lyzer. These are all instruments that the user can interact
with in a real-time fashion as the simulation is progressing.
The high speed of the simulator makes the concept of virtual
instruments practical and allows the designer to participate
in an interactive environment.

Probe. Probes are automatically attached to all primary input
and output nodes when Tsutsuji is placed into simulation
mode. The user can optionally connect probes to internal
circuit nodes to aid in monitoring and debugging.

Switch. The switch (see Fig. 12) is a simple one-bit input
port. It provides a convenient way for designers to interact
with the logic simulation.

Constant Generator. The constant generator (see Fig. 13) is
the equivalent of a potentiometer connected across a fixed
voltage source and feeding an analog-to-digital converter.
The degree of quantization of the constant generator is auto
matically determined by the width of the bus to which it is
connected. Just like a laboratory potentiometer, the constant
generator has coarse and fine adjustments: the outer ring on
the knob is the coarse setting and the inner ring acts as a

46 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. and Switches are a simple way for the user to interact with and
control the simulation. The switch is activated by use of the mouse.
The name of the input port becomes the title displayed on the
switch panel.

vernier. For exact setting, the user can click on the displayed
value with the mouse and then type the value from the key
board. The output can be changed between two's comple
ment and unsigned by clicking on the selector button.

Function Generator. The function generator (see Fig. 14) is a
means of applying stimuli to the simulator. It is modeled after
a conventional analog signal generator. Multiple variable-
period, variable-amplitude waveforms are available (e.g.,
sine, triangle, square, ramp). Data can also be read directly
from a file. The function generator's output bus width (i.e.,
quanfeation) is determined automatically by the width of the
bus to which it is connected. The binary output of the func
tion generator can be presented in either unsigned or twos
complement form. An additional useful feature is that the
output of one generator can be used to modulate a second

TimeConst

TimeConst

Fig. to The constant generator provides a means for the user to
vary sim to the circuit while the simulation is under way by sim
ply turning a knob. The resolution of the output is automatically
determined by the width of the bus to which it is connected. The
output can be presented in either twos complement or unsigned
integer form.

one to create complex waveforms. The modulation includes
amplitude, frequency, phase, and simple summation.

Data Viewer. The data viewer (see Fig. 14) is a multimode,
multichannel data display instrument. Each channel can be
individually configured to display data as a conventional
logic analyzer, as an oscilloscope, or in hexadecimal format.
Each channel can represent the data as twos complement or
unsigned. The trace speed is variable and can be optionally
controlled by an external sync pulse. The data viewer auto
matically increases the number of display channels as more
input buses are connected to the instrument. Changing the
size of the window automatically rescales the data display.

i rLnJuuuuuinjmn/uuTj â€” i__j â€” LnjuuuuuuuinnAnjun TLT
: n n n n m m l M Â » M a i n i n n i i n n n r L J u l n | u u [n B u n U U n l U ! l J u l n /

Fig. 14. Several function genera
tors connected to a data viewer.
The top trace shows an amplitude
modulated waveform supplied by
the top two function generators.
The function generator at the left
is supplying the modulation signal
for the generator to its right. The
second trace is a frequency mod
ulated waveform supplied by the
two function generators in the
center. The next four traces show
sine and triangle waves in both
oscilloscope mode and logic
analyzer mode.

August li)Â»;i Hewlett-Packard Journal 47
© Copr. 1949-1998 Hewlett-Packard Co.

Input
Inpu t

| = D

G a i n 0

Phase 0

GAIN S A M P L E P O I N T S ^
151

101
)201
) LG101

5 d B / D I V 3 0 1 / 1 O L G 2 0 1
BITWIOTH

P H A S E W A I T
BUSTYPE

â€¢ UNSIN
O 2 s C M P

4 5 d g / D I V 5 0 I / I

START FREQ S T O P _ F R E Q I N P L V L

X103

x I O 6

10000 Hz 1000000 Hz 5 0 % O S T A R T
 /

Fig. to The network analyzer provides a swept-frequency signal to
analyze a circuit's frequency response with respect to both phase
and gain.

Network Analyzer. The network analyzer (see Fig. 15) auto
matically analyzes a circuit's frequency response in terms of
both phase and gain. The instrument provides a signal whose
frequency is swept between the start and stop frequencies as
indicated on the front panel. The scale of the display can be
varied, as can the nature of the sweep (linear or logarithmic)
and the number of samples to be taken at each step.

Pixel Viewer. The pixel viewer (see Fig. 16) provides the user
with a virtual color CRT that can be configured to any geome
try and pixel size. There are a number of types of pixel view
ers, but they fall primarily into two classes: those that accept
a stream of pixels to be written in raster fashion and those
that allow individual pixels to be addressed and written.

* .

Fig. CRT The pixel viewer provides the user with a virtual color CRT
that can be configured to any geometry and pixel size.

Examples
Tsutsuji is now being sold in the Japanese market by VHP.
Customers have used Tsutsuji to implement a wide variety
of ASICs ranging from digital signal processors to control
lers to digital TV systems. The largest design to date has
170,000 gates, although Tsutsuji can easily handle designs of
one-half million gates or more. The following examples illus
trate how Tsutsuji readily involves the user in the domain of
the application.

Television Decoding Filter. Many Tsutsuji customers are in the
business of designing television receivers. Fig. 17 illustrates
how Tsutsuji can be used to make fundamental design deci
sions during the earliest stages of design. The example
shows an experiment to compare two TV decoder filters.
One filter is less expensive to build than the other but pro
duces f i l ter resul ts . Whether the less-expensive f i l ter
would be good enough is an aesthetic question that is almost

Fig. 17. In this example, Tsutsuji
Â«as used to compare two televi
sion decoder filters. A design was
created that, included both filters.
During simulation, both filters de
coded the same image, producing
the two images on the right side
of the screen. The designer could
then compare them Â«Â¡111 the orig
inal image, in the center of the
screen, and choose the most
appropriate filter.

48 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

impossible to answer without looking at the images the filter
would produce. Tsutsuji, with its friendly simulation environ
ment, provided an ideal means for answering that question.

A design was entered into Tsutsuji that included both filters.
A switch, labeled Sel, lets the user switch between the two
filters during simulation. The function generator to the left
of the switch in this example merely reads the original
image from a file and feeds it to the simulation. The image in
the center of the screen is the original image before encod
ing and decoding. The tall pixel viewer on the right displays
the output of the simulation. The instrument labeled viewer
has been placed in oscilloscope mode and shows the input
NTSC television signal, the signal after it is decoded into
chroma and luminance (C and Y), and the signal again after
it is decoded into red, green, and blue.

The simulation was started with the switch set to select the
low-quality filter. The decoded image began filling the output
pixel viewer. Once an entire image had been simulated, the
high-quality filter was selected and another image was drawn.
Once both decoded images were complete, the user could
compare them with the original and make a well-informed
decision about which filter to build.

Image Processing ASIC. Fig. 18 shows an image compositor
ASIC that was designed using Tsutsuji for an image process
ing system. The compositor ASIC merges two input images,
producing one output image. The images are merged using
one of two modes. In the first mode, the input images are
treated as though they were transparent, and the output
image is a blend of the two images. In the second mode, the
input images are considered to be opaque. If two objects in
the two input images overlap, then the object that is closest
to the viewer is shown in the output image. The image pro
cessing system includes a tree of identical compositor

Fig. 18. This screen shows a de
sign for an image processing chip
that was designed with Tsutsuji.
The designer spent two hours en
tering the design, which was then
automatically synthesized into
8596 CMOS gate array cells in
less than a minute. Actual
images, appropriate in the image
processing domain, were used
when simulating the design. The
upper two pixel-viewer virtual in
struments show the input images;
the lower viewer shows the
blended image produced by the
simulation.

ASICs. The tree has much the same function as an individual
compositor ASIC except that it combines many images (not
just two) into a single image.

Fig. 18 shows part of the compositor design and the result of
simulating the design in its blending mode. The simulation
inputs and outputs are viewed as images so that the designer
will neither waste time interpreting the simulation nor risk
misinterpreting it. Three pixel-viewer virtual instruments
can be seen. The two upper viewers show the input images
and the third viewer shows the blended result. The simula
tion, which required evaluation of about 5000 gates for each
of the 900 pixels in the output image, was completed in less
than a second.

The compositor design was entered into Tsutsuji by an inex
perienced designer in two hours. The design consisted of
approximately thirty high-level modules. The high-level de
sign was synthesized into a design at the generic gate level
in twelve seconds. It took an additional thirty-eight seconds
to accomplish the following: the design was mapped into a
commercial CMOS gate array library, the mapped design
was translated into the file format that the gate array vendor
accepts, and an exhaustive delay analysis was performed on
the circuit. The resulting design uses 8596 gate array cells
and 169 I/O pads.

Low-Pass Filter. Fig. 19 illustrates a logic synthesis session
that has progressed to the point of logic simulation. The
example is that of a simple low-pass filter. Instead of the
streams of ones and zeros that are normally associated with
logic simulation, we see waveforms â€” an appropriate form in
which to view the input and output of a digital filter.

The illustrated low-pass filter takes a percentage of the
previous input and sums it with one minus that percentage

Augusi 1993 Hewlett-Packard Journal 49
© Copr. 1949-1998 Hewlett-Packard Co.

v i e w e r

^ ^ â € ” ^ ^ ^ ^ ^ ^

Fig. 19. A simple low-pass filter
design example. The function
generator on the left provides a
high-frequency signal to be added
to the low-frequency signal of the
function generator on the right.
The filter will remove varying
amounts of this high-frequency
signal as a function of the percent
age feedback, which is controlled
by the constant generator. The
logic simulation is performed at
the gate level so the real circuit
will perform exactly as observed
on the data viewer.

times the current output to form the next output. We can see
that the major design parameters are indeed parameters, so
the designer can, for example, explore the effects of quanti
zation by changing the input bus width parameter and then
resynthesizing the design â€” a process that takes less than a
minute. The other major parameter is the percentage of the
previous output used to compute the next output. Rather
than laboriously type the constant and one minus the con
stant for each trial, the designer has added hardware to the
circuit to compute these two values. The constant can then
be applied from a constant generator and varied in real time
while the simulation is progressing.

After the design has been simulated to satisfaction, the final
synthesis can be performed. Here, the actual binary con
stant no during simulation will be entered. There is no
need to remove the superfluous adder. Since both of its in
puts are now constants, all of its gates will be removed by
the optimizer. The multipliers will also be affected by the
optimizer, since each multiplier has a constant as one of its
inputs. The final task is then to select a particular technology-
specific library and perform the technology mapping. For
this example, a nine-bit filter, the initial synthesis resulted in
a design of 1401 gates. After mapping and optimization, the
design was reduced to 649 gates.

In this example, a designer who was familiar with filter de
sign was not necessarily familiar with multiplier design) was
able to enter and synthesize a design for a low-pass digital
filter in about ten minutes. Subsequently, different bit-width
designs were explored by simply changing the bus width
parameter. To observe the effect of the feedback constant in
real time, extra hardware was added to the design to save the
designer's time. This hardware did not penalize the design

because it was later completely removed by the optimizer. In
an hour the designer was able to intuitively explore literally
dozens of designs without becoming enmeshed in the intri
cacies of gate-level design. Essentially all of the designer's
creativity and intuition was focused in the application
domain.

Conclusion
Tsutsuji is a product from YHP in Japan that provides a set
of fast and efficient tools for logic synthesis, simulation, and
design visualization. The graphical nature of the human inter
face allows designs to be expressed quickly by the designer.
Rapid synthesis and mapping encourage the designer to ex
plore the design space interactively in search of an optimum
system configuration. Applying creativity where it will have
the greatest impact, the designer remains focused in the
application domain, knowing that optimization and mapping
into the chosen technology will be automatic. Designs
produced by Tsutsuji are inherently reusable.

Acknowledgments
Without the vision, dedication and hard work of the YSL staff,
Tsutsuji would have never been more than a lab curiosity.
Listed all too briefly here are then- names and principal con
tributions. Takako Inoue: database maintenance and devel
opment of the cell library editing tool. Yoshimasa Jimba:
early development work on Tsutsuji. Hiroyuki Kitayama:
worked on the simulator compiler and many real designs
including DLX-CPU and the H261. Masaya Khono: worked
on the parser language operation with Toshiki Osame, par
ticipated in the design of the database language and devel
oped the symbol editor. Kazuhiro Maehara: key member
who turned the prototype editor into a real product and was

50 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

leader of the user interface team. Koji Marume: at HP Labo
ratories for one year, created some high-level modules and
participated in the module compiler development. Yoshihiro
Matsuda: helped with the early Tsutsuji concept design and
designed the first ASIC with Tsutsuji. Satoshi Naganawa: at
HP Laboratories for three years, created the module compiler
and converted innumerable modules from LISP prototypes
to C++ products. Hideki Nonoshita: developed the path ana
lyzer. Yasufumi Otsuru: original member of the YSL team,
worked in all aspects of Tsutsuji, including interprocess
communication and logic minimization. Miki Ohyama: con
veyor of concepts through graphic arts. Takashi Okuzono:
developed the text editing portion of the block diagram editor
and contributed to the aesthetic presentation of Tsutsuji.

Ichirou Sasaki: was in charge of the simulation environment.
Norio Tanaka; his clear descriptions made it possible for
other people to use Tsutsuji. Yasumasa Teshima; developed
the physical mapper. Koji Yamamoto: worked on the VHDL
front-end prototype.

At HP Laboratories we would like to thank John Morris for
allowing a project to start without a project number, David
Horine for obtaining a project number, Ralph Patterson for
signing a last-minute trip request to Kurume, and for all these
years, a special note of gratitude is owed Dick Lampman for
his vision, guidance, and support.

UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

August 1993 Hewlett-Packard Journal 51
© Copr. 1949-1998 Hewlett-Packard Co.

Designing a Scanner with Color Vision
The challenge for personal computer imaging today is to duplicate human
color vision, not only in scanners but also in monitors and printers so that
colors look the same in all media. The HP ScanJet lie scanner uses a
proprietary color separator design to provide fast, single-scan, 400-dpi,
24-bit color Â¡mage scanning.

by K. Douglas Gennetten and Michael J. Steinle

The function of a desktop scanner is to digitize an image or
a document and send the information to a computer, a fac
simile card, or a printer. This allows the digital information
to be processed, printed, and stored for archival purposes. A
desktop scanner can be used for many different job func
tions and must be able to scan various types of documents,
photographs, line-art drawings, and three-dimensional ob
jects that may be placed on the scanner platen. The wide
variety of material that can be scanned presents challenges
for the scanning device.

HP ScanJet He Scanner
The HP ScanJet He scanner is a 400-dot-per-inch (dpi) flatbed
scanner with black and white, color, and optical character
recognition (OCR) capabilities. It is compatible with PCs
and Apple Macintosh computers and with desktop publish
ing, offers and text recognit ion applicat ions. I t offers
fast single-pass scanning, easy-to-use software, print path
calibration, a legal-sized platen, HP AccuPage technology
for text scanning, and low cost. Print path calibration opti
mizes the quality of the final output by compensating for
differences in output devices and software applications. HP
AccuPage technology, when combined with a software ap
plication that supports it (such as Caere's OmniPage Profes
sional 2.0), uses special page recognition techniques and
automatically sets the intensity to improve accuracy on text
with nonwhite backgrounds. AccuPage also includes logic
that joins broken characters.

The ScanJet He provides 8-bit grayscale and 24-bit color
scanning capabilities. It uses an SCSI (Small Computer
System Interface) for Macintosh computers and a dedicated
SCSI adapter for PC-compatibles and MicroChannel PCs.
Optimum brightness and contrast settings are selected auto
matically. Custom scaling is available in one-percent incre
ments. Online help provides reference and tutorial informa
tion. An optional document feeder handles up to 50 pages
automatically.

HP DeskScan II, the image scanning software included with
the HP ScanJet He scanner, has a layered user interface for
both beginning and expert users. Advanced functions are
easily accessed as pull-down menus or floating tools. Image
editing software is included, and a live preview feature
shows the results of changes immediately on the screen.

Color Science

The experience of color is universal, transcending cultures
and oceans. This experience always has one common thread:
there are three elements in the experience of color vision.
The first element is a source of illumination, the second is
an object being illuminated, and the third is a detector to
measure the reflected illumination from the object.

Illumination
Humans and many but not all animals see electromagnetic
energy falling between 400 and 700 nanometers as visible

light. Any energy within this range radiating from an object
will influence its color appearance. Sources of illumination,
whether natural or man-made, are characterized by their
spectral power distribution, that is, their strength along the
electromagnetic energy spectrum between 400 and 700
nanometers. The nature of this spectral distribution can pro
foundly effect the color of an illuminated object. A common
illustration of this is the color shifts that occur under tung
sten street lights. An extreme example would be laser light:
all objects that are not black are red when illuminated in red
laser light. To have a good color observation environment,
the source of illumination must be broadband, that is, it
must contain a relatively flat and broad spectrum of energy
over the range of visible light. If any areas of the spectrum
are weak or missing, it will not be possible to illuminate
those portions of an object's spectral reflectance character
istic. The fluorescent bulb in the HP ScanJet He is designed
with a mixture of phosphors to produce a broad spectrum of
light energy.

The Object
Photons from the source of illumination arriving at the object
can be affected in one of three ways. They can be transmitted
through the object, reflected from the object, or absorbed
within the object (and reradiated as heat or, in the case of
fluorescence, reradiated as light of a different wavelength).
Reflection is most relevant to the human experience of color.
Colored objects are characterized by their spectral reflec

tance distribution. A vast variety of spectral reflectance
distributions are found in the natural world.

52 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Objects viewed with scanners such as the HP ScanJet He are
usually in the form of documents. (In the case of the HP
ScanJet He, a noteworthy exception is three-dimensional
objects. The ScanJet lie's illumination, optics, and single-
pass color separation make it unusually capable as a three-
dimensional object scanner.) Colors found on documents
are usually generated with offset-press inks or photographic-
dyes. These colorants come in four varieties: cyan, magenta,
yellow, and black. With only these four colors to work with,
very few of the spectral reflectance curves found in nature
can be even approximately reproduced. Fortunately, because
of a phenomenon in human vision called metamerism, this is
not necessary. Without metamerism, any picture containing
grass would have to be created with chlorophyll to provide a
matching color.

The Detector
In the case of human vision, all of the infinite degrees of
freedom found in an object's spectral reflectance distribution
are reduced to only three dimensions. This is the root of the
phenomenon of metamerism. Because of this, colors can
always be described with just three numbers. For example,
a color can be described by three numbers representing
amounts of red, green, and blue. The same color can be just
as precisely and unambiguously described by numbers rep
resenting its hue, saturation, and lightness. Any of several
other three-dimensional color systems could be used as well.

Like the human vision system, the human hearing system is
a spectral waveform processor. Unlike the vision system,
however, the hearing system retains all of the spectral con
tent of audible sound all the way to the brain. This provides
a very important capacity: when one listens to a chord
played on a piano, one can easily discern the individual
notes composing the chord. Also, from the character of the
sound, it is obviously a piano chord rather than an organ or
flute chord played from the same notes. An expert ear can
even tell the brand and sometimes the vintage of the piano!
In stark contrast, the eye cannot see chords. A white paper
illuminated with a yellow light can appear exactly the same
as the same paper illuminated with a mixture of green and
red light. The spectral content, observable with a scientific
instrument, can be radically different while the appearance
is identical to a human. It is this mammoth simplification
(loss) of information that allows us to reproduce the color
of grass green exactly with only four inks or dyes. Unfortu
nately, there is a catch. This exact match is, strictly speak
ing, guaranteed under one and only one type of illumination.
More on this later.

From Man to Machine
Scanners like the HP ScanJet He bring the gift of sight to
computers. Producing any color image capture device such
as this requires a partial duplication of the human vision
system in the form of electronics and optics. The central
task in this effort is the accurate description of the human
vision system's method of converting spectral energy into
three dimensions of color. This was done many years ago.
Around 1930, primarily for the incipient color television in
dustry, a group of people were tested for their sensitivity to
monochromatic wavelengths over the visible spectrum.

Â¡
--

5 0 0 6 0 0 7 0 0
Wavelength (nm)

Fig. 1. CIE standard observer color matching curves.

Each person adjusted the intensity of three lights until a
match of the test wavelength was achieved. A series of such
matches produced a set of three curves called the color
matching functions. An averaged set became the interna
tional standard called the CIE standard observer (see Fig. 1).
These curves form the basis of color television and the HP
ScanJet He.

The color matching functions of the standard observer can
be converted into a new and equally valid set of three curves
by multiplying the original curves by a 3-by-3 matrix. The
U.S. National Television Standards Committee (NTSC)
adopted one such set of curves for use in color television
(see Fig. 2). This NTSC standard is used frequently by the
computer graphics industry and was chosen for the design
of the HP ScanJet lie. To achieve a spectral sensitivity
matching the NTSC curves, a combination of the spectral
characteristics of all the optical elements must be consid
ered. For the ScanJet He this includes the document glass
platen, the lamp, the lens, three color separation filters,
three mirrors, and the photosensitive charge-coupled device
(CCD) detector. To duplicate the human color separation
process, the net combination of all these elements must pro
duce three color channels that are directly related to the
standard observer through a 3-by-3 matrix operation.

The curves shown in Fig. 2 illustrate the ideal camera sensi
tivities for NTSC color television. Note the presence of sev
eral negative lobes. Because of these lobes, a perfect cam
era would require more than three detectors (adding one for
each negative lobe) and in fact the very high-end broadcast
cameras often have five or six detectors instead of the three
found in home video cameras. The inability to include nega
tive lobes slightly diminishes the accuracy of the color sepa
ration process. This degradation also exists for color film.
The result is "instrument metamerism": some colors that
match when viewed by a human observer do not match
when viewed by the instrument, and vice versa.

August 1993 I lowlctt-Pai'kanl Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

0 .5 â€ ” I
5 0 0 6 0 0

Wavelength (ntn)
700

Fig. 2. NTSC color matching curves.

HP ScanJet He Color Separation
Of all of the elements along the optical path of the HP Scan
Jet He, the lamp and the filters have the most conveniently
alterable spectral behavior, and in the case of the dichroic
filters, this is very restricted. Because of the color separa
tion method used (see "Color Separator Design," page 55),
each color channel has access to three mutually exclusive
bands of the color spectrum. The curves in F^ig. 2 (and any
other set of color matching curves) contain a great deal of
overlap. Some wavelengths are visible to more than one
channel. Only a small amount of overlap is possible with the
method used in the ScanJet He, resulting in a slight degrada
tion of the color performance. However, this color separa
tion configuration has strong advantages in scanning speed
and single-pass operation. Fortunately, the degradation made
unavoidable by this configuration is small and is minimized
through the optimization process described in the next sec
tion. The HP ScanJet lie's color performance competes well
with the other desktop scanners in the marketplace.

Measuring and Optimizing
The lamps in the HP ScanJet He are fluorescent. They are
produced with a custom mixture of phosphors that are spe
cifically designed to aid in the recreation of the NTSC spec
tral sensitivities. This ability to create custom spectral char
acteristics (see Fig. 3) helps offset the limitations of the
filters. The color separation filters are a dichroic design (see
"Color Separator Design," page 55). Their spectral charac
teristics can be altered primarily by moving the crossover
frequencies. They have a fairly square passband perfor
mance that does not match the shapes of the NTSC curves

very well. However, the combination of the filters and the
lamp produces a much closer approximation of the desired
result. Extensive measurement and characterization of the
scanner was performed using a spreadsheet model of all the
spectral characteristics throughout the optical path. This
model was used to optimize the choice of lamps and filter
crossovers. Additional optimization was achieved through
the selection of a carefully determined default 3-by-3 matrix
which is applied to all scanned pixels. This 3-by-3 matrix
provides a closer approximation of NTSC color.

Color Matching
The low-cost color scanners and printers available today
contribute to a growing demand for accurate color image
reproduction. Users of desktop systems having color image
capture, display, and printing capabilities are demanding
better color image reproduction fidelity. Many factors con
tribute to the challenges of color matching.

Scanner Limitations. Scanner inaccuracies are most com
monly caused by imperfect color matching functions in the
color separation process. Another less obvious source of
error is that typical document scanners provide their own
light source. Any color scan from such a device can only
give color measurement data for documents viewed under
that particular light. Once the original document's spectral
reflectance is reduced to the three dimensions of color, it
cannot be reversed. The necessary information required for
accurately determining the document's color under a differ
ent light source is irretrievably lost. This is true even for a
scanner with perfect human-like vision and is unavoidable
without increasing the number of dimensions (sensor col
ors) within the scanner. The result is that all color matches
are conditional. They may, and often do, fail when the view
ing conditions are changed. The only way to produce an
invariant match â€” one that holds regardless of viewing con
ditions â€” is to capture and reproduce not the color of the
original but its spectral reflectance. Scanners and color
printers are not capable of this today.

Monitor Limitations. Color monitors produce a wide range of
colors by mixing three different colored phosphors. Espe
cially in a well-lighted office, these monitors are limited in
their a to recreate the range of visible colors. First, a
three-gun monitor, no matter how perfect, can never recre
ate the colors of the rainbow or any of a large region of
other saturated colors. Second, because of the surrounding

Wavelength

Fig. 3. Spectrum of the lamp in the HP ScanJet He scanner.

54 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

light, a typical monitor cannot produce a good black. Third,
such a monitor has difficulty producing a pure, bright white.
These last two points can easily be illustrated with a com
puter monitor and a laser-printed page. When the printed
page is held near the monitor, it will typically appear
brighter and whiter than the monitor's white. If the monitor
is turned off (to reveal its blackest black) the black toner on
the page will typically be much darker than the black of the
monitor. An accurate reproduction of a monitor display of a
white page with a black and yellow square would produce a
printed page with many dots in the "white" areas, magenta
dots in the "yellow" areas, and white dots in the "black"
areas. This is rarely the desired result. WYSIWYG (what you
see is what you get) is definitely not desired. Instead, it's
"what you want is what you get" that is desired.

Printer Limitations. Further compounding the problems of
color matching is the color gamut limitations of low-cost
color printers (a printer's color gamut is the set of all of the
colors it can print). Many displayable and scannable colors
fall outside of the capabilities of most printers. Areas of
images that contain these colors must be modified to ac
commodate the printer limits. Once again, the most accurate
reproduction is often not the most desirable.

Managing all of these color matching issues and limitations
is a very complex task. However, advancements continue to
be made, and there is reason to hope for steady improve
ment in the disquieting situation that exists today on the PC.

Color Separator Design

The objective of a scanner is to digitize exactly what is on
the document that is being scanned. However, this is not a
realistic goal because it would require a CCD (charge
coupled device) detector with an infinite number of pixels
and a lens with a modulation transfer function (MTF) equal
to 1.0, which does not exist. (Modulation transfer function is
a measure of the resolving power or image sharpness of the
optical system. It is analogous to a visual test that an optom
etrist would use to determine a human eye's resolving
power.) Most important, the scanner user does not require
an exact reproduction of the original because the human eye
does not have infinite resolving power. The HP ScanJet He
scanner is designed to obtain very fine-detailed images for a
variety of color and black and white documents and objects
that are typically scanned.

To design a high-performance, low-cost desktop scanner
required a team effort involving the disciplines of optical,
mechanical, electrical, firmware, and software engineering.
Some key decisions that affected the design architecture
were resolution (dots per inch), gray level depth, optical
scanning resolution, scan time, product size, image quality,
and product cost.

After the product was defined, a color separation technique
was decided upon. This affected all the engineering disci
plines involved in the product design. Various color separa
tion techniques are used in the image reproduction industry.
A few of the common techniques are:

â€¢ Colored dyes deposited on the CCD substrate. Used in
camcorders, scanners, and color copiers.

CCD (Charge Coupled Device)

L e n s C o l o r S e p a r a t o r C o m p o s i t e # 2

Color Separator Composite #1

Fig. 4. Lens, CCD detector, and color separator composites.

â€¢ Rotating or translating red, green, and blue filters. Used in
scanners.

â€¢ Red, green, and blue flashing lamps. Used in scanners.
â€¢ Beam-splitting prisms with multiple CCD sensors. Used in

scanners.

To meet the performance and cost goals for the HP ScanJet
He, a new HP proprietary color separation method was de
veloped and implemented. The initial development was done
at HP Laboratories in Palo Alto, California and the technol
ogy was transferred to the Greeley Hardcopy Division in
Colorado for continued development and implementation.

The color separation system consists of a lens, two color
separators, and a CCD detector as shown in the photograph,
Fig. 4. Each color separator is a laminated assembly as
shown in Fig. 5. Each assembly is made of three glass plates
that are bonded to each other with a thin layer of optical
adhesive. Red, green, and blue reflective coatings are depos
ited on the glass before lamination. Specifically, dichroic
coatings (2 to 3 \im total thickness) are deposited onto the
glass substrates. Good spectral performance is obtained using
dichroic coatings, resulting in an accurate colorimetric
device.

The distance between colors at the CCD detector (see Fig. 5)
depends on the thicknesses, index of refraction, and angles
of the glass plates separating the red, green, and blue reflec
tors. The plates are thin glass substrates that have tightly
controlled flatness, thickness, and angle tolerances. The thin
plates are laminated to a thick baseplate, which provides
mechanical rigidity and flatness. During the multilayer di
chroic coating process the thin plates are distorted, but lam
inating them to the thick plate restores the flatness of the
reflective surfaces. The first laminated plate has the color
order of blue, green, red while the second plate has the or
der of red, green, blue. This configuration equalizes the opti
cal path lengths to ensure simultaneous focus for all three
colors. The order of coatings was selected to maximize
spectral efficiency and simplify the coating process.

Each color component is focused onto a CCD row, each row
consisting of 3400 imaging pixels (additional pixels are
available and are used for light monitor control and dark
voltage correction). The CCD generates a voltage signal that
is proportional to the amount of light incident on the detec
tor. This signal is processed and then digitized. Having a

Augusi 1993 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

Color Separator Composites

CCD that integrates all three rows and senses all three colors
simultaneously yields a single-pass scanner with excellent
image quality. This color separation method also provides
high-performance scanning capability in a small integrated
package that is cost-effective and manufacturable at high
volumes.

A layout of the optical system showing the light path is
shown in Figs. 6 and 7. Fig. 6 also shows the solids model of
the carriage, which includes the dual lamp assembly, three

Scan Line

Fig. 5. HP SranJet lie color
separation method.

mirrors, the lens, the color separator, and the CCD assembly.
The carriage is translated along the length of the document
glass platen by a stepper motor drive system and a belt that
is connected to the carriage. In Fig. 7 the light path is drawn
for several rays from the scanned region. The lens is a six-
element double Gauss design that yields a very good MTF.

The optical system was designed and evaluated using a
commercially available optical design program. Unlike many
other engineering disciplines such as finite element analysis,

Mirror #2

Mirror #3

Fig. 6. Solids model of the HP ScanJet He optical path and carriage.

Color Separator Assembly

56 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Scan Line

Mirror f 1

Mirror #3
Color Separator

Assembly
Fig. 7. Ray trace of the optical
path (one color only).

for which it is more difficult to predict accurately how a
fabricated prototype will perform, the performance of an
optical system can be calculated very accurately. The effects
of tolerances on the optical system were also modeled to
ensure that the product could be manufactured at high vol
umes. Modulation transfer function (image sharpness) was
evaluated for tolerances such as lens centering, tilt, accu
racy of lens radii, index of refraction, and color separator
flatness and thickness. A typical plot of modulation at 105
line pairs per inch (object side of the lens) as a function of
position across the page is shown in Fig. 8. Modulation is
the sharpness of the image at a specific line pair frequency,
whereas MTF is the sharpness of the image as a function of
line pair frequency. Fig. 8 demonstrates that the resolving
power of the scanner varies only slightly with the location

on the glass platen. This data includes the effect of the
CCD's modulation:

Modulation = Modulationoptics x Modulationcco-

For fabricated optics tested on an optical bench, the mea
sured through-focus data agreed closely with the calculated
results.

To achieve precise optical alignment, custom tooling was
designed and fabricated to meet production goals. Transla-
tional alignment of Â±10 ^m is required for focus and for cen
tering the light path on the CCD. The alignment tools, consist
ing of translational and rotational stages, are controlled with
an HP Vectra 386 computer and software that consistently
gives optimized optical alignment.

x H o r i z o n t a l V V e r t i c a l

Left
Edge

Center
Line

Location on Scanner Glass Platen

Right
Edge

Fig. 8. Modulation for horizontal
and vertical lines at 105 line pairs
per inch (object side of lens) as a
function of platen position for
red, green, and blue.

August 1993 I lowlett-Pax-kard , Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

Acknowledgments
The development of the HP ScanJet He involved many engi
neering disciplines. Only the people who contributed to the
scanner colorimetry and optics are mentioned here. Apolo
gies to anyone who was inadvertently left off the list. Project
managers: Corry Meyer and Jerry Bybee. Section manager:
Dean Buck. R&D manager: Duncan Terry. HP Laboratories:
Kent Vincent, Hans Neumann, and Ricardo Motta. Manufac
turing optical alignment tooling and software: Bill Elder,

Duane Starner, Kurt Spears, and Ray Cole. R&D: Bob Sobol,
Steve Webb, and Dave Boyd. Materials engineering: Bruce
Zignego, Walt Auyer, Robert MÃ¡rquez, and Dave Bohn. Manu
facturing process: Tom Hacker. Optical testing: John Wunder-
lich and Kevin Martin. Optical performance evaluation: Bob
Gann. Typing manuscript: Erin Hsu. Custom assembly of
optics: several production assembly operators. Independent
optics consultant: Dr. Walter Mandler. Model shop: Chuck
Fenwick, Dean Geilenkirchen, Greg Wolf, and Roger Lucas.

Authors
August 1993

H i g h - E f f i c i e n c y L E D s

Robert M. Fletcher

R&D engineer Bob Fletcher
has been with HP's Opto
electronics Division since
1985 and has worked on
aluminum indium gallium
phosphide LEDs for most of
that time. His responsibili
ties included developing
wafer and die fabrication

processes and transferring those processes from R&D
to manufacturing. He is named as an inventor in three
patents on LED device structures and is coauthor of 17
papers related to lasers, LEDs, and materials growth
and characterization. Bob was born in Knoxville, Ten
nessee and attended Rice University, from which he
received a BSEE degree in 1978. Continuing his stud
ies at Cornell University, he received an MSEE degree
in 1981 and a PhD in the same subject in 1985. Bob's
outside interests include running, bicycling, playing
classical guitar, and remodeling his house.

C h i h p i n g K u o

C.P Kuo is an R&D engineer
and specialist in III-V crystal
growth and characterization.
He was born in Taipei, Tai
wan and attended the Uni
versity of Utah, receiving a
PhD degree in electrical en
gineering in 1985. He joined
HP's Optoelectronics Division

the same year, and his work has focused on high-
brightness LEDs. He's the author of 25 papers related
to epitaxial growth of III-V materials and is named as
inventor in three patents on AllnGaP LEDs. C.P. and
his wife have one child. His leisure activities include
music and bridge.

Timothy D. Osentowski

An R&D engineer at HP's
optoelectronics division, Tim
Osentowski is a specialist in
epitaxial growth of materials
for high-brightness LEDs. He
was born in San Jose,
California and completed
work for his BSEE degree in
1981. With HP since 1978,

he is the coauthor of more than ten articles on epi
taxial growth of III-V materials and is named as an
inventor in three patents related to AllnGaP LEDs.
Tim is married and has two children. He's active in
Little League baseball and likes golf and bowling.

Jiann Gwo Yu

Jiann Yu has been with the
Optoelectronics Division
since 1981. His duties as an
R&D engineer have included
process development for
various types of materials
for LED displays. Jiann stud
ied physics at Chengkung
University in Taiwan (BS

1 967) and at the University of Wyoming (MS 1 972)
before completing work for a PhD degree in materials

58 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

science from the University of California at Los An
geles in 1978. Before coming to HP, he was a re
searcher at Northrop, Jet Propulsion Laboratories,
and Tektronix. Jiann enjoys hiking and bicycling.

V i r g i n i a M . B o b b i n s

Born in Camden, New
Jersey. Virginia Bobbins has
a BEE degree from the Uni-
versity of Delaware (1981),
and MSEE and PhD degrees
from the University of Illinois
(1983 and 1987). She joined
HP Laboratories upon gradu
ating from Illinois and has

worked on crystal growth of AIGalnP by organometal-
lic vapor phase epitaxy. She's currently involved in
crystal growth of III-V semiconductors. Her work on
LED transparent windows has resulted in two patents
and she's the author or coauthor of several papers on
III-V semiconductor materials and properties. Virginia
is married and lists hiking, camping, and running as
leisure activities.

1 5 H P T a s k B r o k e r

T e r r e n c e P . G r a f

A project manager at HP's
Open Systems Software
Division, Terry Graf has been
with HP since the Apollo
Computer acquisition in
1989. Past HP projects in
clude work on the Apollo
Domain operating system
and the OSF/1 operating

system from the Open Systems Foundation. He was
the project manager for the HP Task Broker develop
ment team. Terry has a BS degree in electrical engi
neering from Stevens Institute of Technology (1 975)
and an MBA degree from Northeastern University
(1987). His other professional experience includes
work on operating systems at Wang Laboratories.
He's a member of the IEEE.

R e n a t o G . A s s i n i

A native of Boston, Massa
chusetts, Bon Assini has
been with HP since 1989,
when HP acquired Apollo
Computer A software engi
neer at HP's Open Systems
Software Division, he devel
oped the graphical user in
terface for HP Task Broker.

On past projects, he was a peripheral diagnostic engi
neer and contributed to the development of the Apollo
Domain operating system and to OSF/1 from the Open
Systems Foundation. His other professional experi
ence includes a stint at Honeywell/Bull as a test
technician and diagnostic engineer. Ron received a
BS degree in computer technology from Northeastern
University in 1989. He is married, has two children,
and is active in youth sports.

Edward J. Sharpe

Ed Sharpe studied computer
science at the State Univer-

[. s i t y o f N e w Y o r k a t B u f f a l o
(BA 1977) and at the Univer
sity of Southwestern Louisi
ana (MS 1980). He has been
with HP since 1989 and has
worked on several operating
systems, including Apollo

Domain, Mach, and OSF/1. He's currently an engineer
at the Open Systems Software Division and was re
sponsible for centralized configuration development
for HP Task Broker. Ed is a member of the ACM and
the IEEE.

J o h n M . L e w i s

Software engineer John
Lewis was born in Spring
field, Massachusetts and
attended Iowa Wesleyan
College (BS mathematics
1974) and the University of
Iowa (MS computer science
1977). He was a software
engineer for Data General

and Avatar Technologies before joining Apollo Com
puter. He worked on personal computer integration
products at Apollo both before and after the HP ac
quisition in 1989. John is now in the Open Systems
Software Division and contributed to software devel
opment and design for HP Task Broker. His outside
interests include fly-fishing and skiing. A certified
professional ski instructor, he conducts instructor
training clinics and is a supervisor at a local ski area.

J a m e s J . T u r n e r

Engineer James Turner
helped develop the graphical
user interface and internal
library for HP Task Broker. He
received a BS degree in com
puter science from Boston
University in 1981 before
joining Apollo Computer,
where he was a hardware

designer at the time of the HP acquisition in 1989. He
is now a member of the Open Systems Software Divi
sion. He's named as the inventor in a patent related
to high-speed memory access. James enjoys skiing,
golf, and playing ice hockey.

M i c h a e l C . W a r d

Mike Ward is an R&D spe
cialist at the Open Systems
Software Division and has
been with HP since 1989.
For the HP Task Broker proj
ect, he was involved in the
development of the hard
ware, software, and network
configuration required to

support the product quality plan. Previous HP projects
include installing, maintaining, and repairing R&D
hardware and network equipment, installing and
maintaining the Apollo Domain operating system, and
testing operating systems before product release. In
previous professional positions, he was an engineer
ing and production assistant and manager. Mike has
a BA degree in theater from the University of New

Hampshire (1 976) and an AA degree in computer
science from Hesser College (1987).

2 3 H P - R T O p e r a t i n g S y s t e m

K e v i n D . M o r g a n

â € ¢ - ' S e c t i o n m a n a g e r K e v i n
W Morgan jo ined HP in 1 980

â € ¢ ^ B k a n d h a s w o r k e d o n s e v e r a l
â€”â€¢ *Â»â€¢ |P versions of the HP real-time

executive (RTE) operating
system. He was a member
of the marketing team for HP
RISC-based computers at
the time of their introduc

tion, and was a project manager for a real-time inter
face card for RISC systems. He's currently working in
the Measurement Control Systems Division. Born in
Portland, Oregon, he studied computer science at the
University of California at Santa Barbara (BS 1980)
and the University of California at Berkeley (MS
1984) He's the author of a magazine article on real
time systems. Outside of work, he's a musician, play
ing guitar in a rock and blues band, and also enjoys
surfing. Kevin is married.

3 1 H P - R T O p e r a t i n g S y s t e m

G e o r g e A . A n z i n g e r

a With HP since 1 969, George
Anzinger is a systems soft
ware specialist for the HP-RT
operating system in HP's
Measurement Control Sys
tems Division. He was born
in Waukegan, Illinois and
received a BSEE degree from
the University of Wisconsin

at Madison in 1968 and an MSEE degree from Stanford
University in 1969. While at HP, he has worked on
DACE, a data acquisition and control executive system,
and on various functions of RTE, an HP real-time exec
utive system. For the HP-RT project, he managed the
development of the interrupt system and driver code
and services. George is married and has two daugh
ters. In his spare time he helps his wife run a video
store, and he's also interested in electric automobiles
and plans to build one.

3 8 L o g i c S y n t h e s i s S y s t e m

W . B r u c e C u l b e r t s o n

A member of the technical
staff at HP Laboratories,
Bruce Culbertson came to
HP in 1983 and has worked
on PC software products, on
an experimental real-time
computer network, and on
ICs and design software for
an HP PA-RISC processor.

For the Tsutsuji project, his contributions include
developing key algorithms and data structures and
writing the simulation compiler and topology plotter
programs. Born in Oakland, California, he studied
mathematics at the University of California at Davis
(BS 1 973) and at the University of California at San

Augusl 199IJ Hewlett-Packard Journal 59
© Copr. 1949-1998 Hewlett-Packard Co.

Diego (MA 1 976). He also completed work for an MS
degree in computer science from Dartmouth College
in 1 983. His work on the emulation of three-dimen
sional objects on a two-dimensional computer screen
resulted in a patent, and he's a member of the IEEE
and the ACM. Bruce likes skiing, especially cross
country ski racing, playing and collecting ethnic
music, mountaineering, and bicycling.

T o s h i k i O s a m e

Born in Kagoshima, Japan,
Toshiki Osame received a
BS degree in physics from
Kouchi University in 1977
and an MS degree in the
same subject from Osaka
University in 1979. He joined
the YHP Systems Laboratory
in 1986 and now is an R&D

engineer at YHP at Kurume. He contributed to the
development of a PLD design system and for the
Tsutsuji system designed compiler architectures and
developed the LDF language parser, the interface for
the module generator, and the C simulation model.
Toshiki is married and has three daughters.

Y o s h i s u k e O t s u r u

Yoshisuke Otsuru was proj
ect manager for the Tsutsuji
project at Kurume Systems
Laboratory in Japan. Born in
Kurume, Fukuoka, Japan, he
earned a degree in mechani
cal engineering from Kurume
Technical College in 1969,
and joined HP in 1985. He's

the author of a series of review articles on ASIC de
sign. Yoshisuke is married and has two children. His
leisure activities include watching movies and playing
golf.

J . B a r r y S h a c k l e f o r d

Barry Shackleford is a
principal project scientist at
HP Laboratories. He initiated
the project that resulted in
the Tsutsuji logic synthesis
system and was the R&D
project leader. He is presently
investigating new computer
structures for compilable

hardware. Born in Atlanta, Georgia, he completed
work for a BSEE degree from Auburn University in
1 971 and for an MSEE degree from the University of
Southern California in 1975. Before coming to HP in
1981, he worked for Hughes Aircraft and Amdahl. He
has worked on a variety of other projects at HP, in
cluding a Kanji computer terminal. He is named as an
inventor in two patents related to chip scan methods
and cellular arrays and in four pending patents on
cellular-arrayed computation structures. He's also the
author of two articles on neural networks and a
member of the IEEE. Barry speaks Japanese and en
joys Japanese food and culture. He hikes in the hills
near HP every day and is currently spending most of
his free time remodeling his home in PortÃ³la Valley,
California.

M o t o o T a n a k a

MotooTanaka joined
Yokogawa-Hewlett-Packard
in 1984 and has held several

*â€¢ f R&D positions. His past proj
ects include contributions to
a PLD design system and a
PLD link for an electronic
design system. For the Tsu
tsuji system, he was project

manager of the user interface team and did the con
ceptual design and prototyping of the user interface
and circuit editor. Currently, he is a technical cus
tomer support specialist. Motoo was born in Tokyo,
Japan and received a bachelor's degree in electronic
engineering in 1 984 from the University of Electric
Communications. He's married and has a son and
daughter. His outside interests include fishing and
classical guitar â€” he's a member of the Kurume
Guitar Ensemble.

5 2 C o l o r S c a n n e r

K. Douglas Gennetten
Douglas Gennetten started
at HP in 1978 as an electri
cal engineer. He has worked
on several magnetic disk
and tape products, earning
two patents on data separa
tor and phase-locked loop
design. In 1989, he com
pleted work for a degree in

imaging science and printing technology from the
Rochester Institute of Technology. He contributed to
the design of the HP ScanJet He from its original con
ception. In his spare time, Douglas dreams of work
ing part-time at HP to become a "starving artist." He
has developed an aesthetically pleasing computer-
generated sundial that maintains accurate local time
to within 30 seconds year-round. He transfers the de
sign to bronze or stone and hopes to have installations
around the globe someday.

Michae l J .Ste in le

a An R&D engineer at the
Greeley Hardcopy Division,
Mike Steinle joined HP in
1984. He designed and de
veloped the imaging optics
and illumination system for
the HP ScanJet lie and col-

^i laborated with the manufac-
1 luring staff on the carriage

assembly. His current assignment is to design and
develop a next-generation optical system. Mike was
born in Galena, Illinois and attended Augustana Col
lege, from which he received a BA degree in physics
in 1981. At Purdue University, he studied mechanical
engineering and received a BSME in 1982 and an
MSME in 1 984. He's the coauthor of four articles re
lated to the work he did on blood flow through a
heart valve prosthesis while he was at Purdue. His
work has resulted in four patents on color separator
design and scanner optical systems. Mike is married
and has two daughters. He volunteers at a local youth
center and is active in his church. His leisure activi
ties include tennis, bicycling, hiking, attending sports
events, and socializing with family and friends.

B r a d C l e m e n t s

Brad Clements received his
BSME and MSME degrees
from Brigham Young Univer
sity in 1978 and 1979. After
joining HP's Desktop Com
puter Division in 1979, he
worked in materials engi
neering and manufacturing
before moving to R&D. He

has designed mechanical packaging for the HP 9000
Model 217, the company's first HP-UX workstation,
for HP-HIL products, for the HP 9000 Series 300 work
stations, and for the HP 9000 Models 745Ã and 747Ã
industrial workstations. Brad is named as an inventor
in three patents related to these products. Born in
Idaho Falls, Idaho, he is married and has five children.

68 Laser Contro l Algor i thm

F r a n c o A . C a n e s t r i

^^^^-^ i ram o Canest r i was born
^^f ^w in Novi L|9ure- lta'y ar|d re~
i f I c e i v e d a n u n d e r g r a d u a t e

V * ~ ~ ^ J d i p l o m a i n s c i e n c e f r o m t h e
Scientific College in Genoa
in 1974. He completed work
'or a PRD degree in biophys-
ics from the State University
of Genoa in 1979 and taught

mathematics and physics in secondary schools before
serving in the Italian army. For several years, he was
an IBM systems engineer and at the same time was
an assistant fellow at the National Cancer Institute
of Milan. In 1 984, he joined HP's Boblingen Computer
Division as a business manager for the HP 1000 com
puter family, then transferred a year later to the Med
ical Products Group Europe as a critically ill patient
monitoring specialist. He is currently an application
and technical support specialist for cardiology prod
ucts in Europe. He focuses on surgical applications in
his research on medical lasers. He is the author of
ten papers on lasers in medicine and biophysics.
Franco is married and has two children. He enjoys
skiing, playing squash, languages, travel, music, and
literature.

7 3 O n l i n e D e f e c t M a n a g e m e n t

D a v i d A . K e e f e r

^ U v n f l ^ H j A s o f t w a r e e n g i n e e r , D a v e
^ r I K e e f e r h a s c o n t r i b u t e d t o

I sof tware tool development
for the software quality
department at HP's Boise

! , P r i n t e r D i v i s i o n . H e c o n t r i b -
v " V 4 u t e d t o t h e i m p l e m e n t a t i o n

of the HP defect manage
ment system tool and to

design enhancements and is now developing a next-
generation DMS user interface. Dave was born in
Reading, Pennsylvania and completed work for his BS
degree in mathematics from Boise State University in
1988. He's now doing graduate-level work for a de
gree in software engineering from National Technical

60 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

University. With HP since 1980. he has also worked
at Fairchild Semiconductor. Dave is married and has
two sons. Before becoming a software engineer Dave
was a radio announcer, an endeavor he continues
today as a hobby by providing narration for films such
as HP training videos on disk products and doing
some local radio commercials.

Brian E. Hoffmann

Brian Hoffmann was the
architect and implementer of
the original defect manage
ment system developed at
HP's Boise Printer and Net
work Printer Divisions. Pre
vious projects at HP include
software test and software
quality tools development

for HP LaserJet printers. Brian was born in Detroit,
Michigan and attended the University of Michigan,
from which he received a BS degree in chemical en
gineering with a process modeling emphasis in 1982
and an MBA degree in information systems in 1988.
Before joining HP in 1 989, he was an engineer at
Ford Motor Company, did design work at Apple Com
puter, and developed a UNIX user interface and other
tools for Andersen Consulting. He's currently develop
ing firmware for a future product. His professional
interests include database architecture and numeri
cal analysis. Brian is married and has two daughters.
He enjoys camping, hiking, and woodworking.

Doug las K . Howel l

Doug Howell is the software
quality engineering manager
at the Boise Printer Division.
He was the project manager
for the DMS project and
manages a team of software

I qual i ty engineers who are
|| responsible for developing

and supporting test process
automation and software quality management tools
for HP LaserJet products. He joined HP in 1982 at the
Desktop Computer Division in Fort Collins, where he
was a software quality engineer and manager. Doug
was born in Rushville, Indiana and graduated from
Indiana University in 1979 with a triple major in
mathematics, chemistry, and German. He completed
work for an MS degree in statistics from Colorado
State University in 1983 and also did graduate-level
work in mathematics at the Eberhard-Karls-Universitat
in Tubingen, Germany. He is named a certified quality
engineer with the American Society for Quality Control
and is a member of the American Statistical Associa
tion and the IEEE. In addition, he's the author of sev
eral papers and training classes on software metrics,
software quality engineering, statistical quality control,
and methods for customer surveys. Doug is married
and his outside interests include restoring old sports
cars, collecting antique guns, and gourmet cooking.

8 5 P r o d u c t i v i t y G a i n s w i t h C - H -

Timothy C. O'Konski

^ C 3 ^ B o r n i n O a k l a n d , C a l i f o r n i a ,
Tim O'Konski attended the

g , _ ^ U n i v e r s i t y o f C a l i f o r n i a a t
Berkeley, from which he re
ceived a BA degree in com-

 p u t e r s c i e n c e i n 1 9 7 6 . H e
joined HP's Santa Clara Divi
sion in 1984 and is now a
software designer at Tandem

Computers. His HP experience includes developing
user interface software for the Santa Clara division,
supporting C++ tool development for Corporate Engi
neering, and working on the design and development
of C++ SoftBench in the Software Engineering Systems
Division. Previously, he worked on operating system
development at Texas Instruments and application
software at Apple Computer. He's the author of a Byte
magazine article on reusable functions and a member
of the IEEE and ACM. Tim is married and has two
sons. He coaches youth soccer teams and is active in
his church. An avid rose gardener, he also enjoys
photography, sailing, and family-related activities.

9 0 R e a l - T i m e D e s i g n T o o l

Joseph M. Luszcz

Q A project manager in HP's
Ã Imaging Systems Business
I Unit, Joe Luszcz was born in

Ware, Massachusetts and
studied electrical engineer
ing and computer science at
Worcester Polytechnic Insti
tute and at Northeastern
University (BSEE 1973 and

MSEE 1 983). With HP since 1 973, he has worked on
a number of electrocardiography and ultrasound
imaging products, and has managed software develop
ment projects for the HPSONOS 1000 cardiovascular
imaging system. He is currently leading a software
engineering team that is developing a reusable soft
ware architecture for imaging products. Joe is active
in youth sports and a local cub scout pack. He is mar
ried and has five children and says family life occu
pies most of his time, but also enjoys Softball and is
learning GUI programming on his home computer.

Daniel G. Maier

I A software engineer at the
Imaging Systems Division,

I Dan Maier joined HP in
I 1989. He was born in Roch-
I ester. New York and is a

graduate of Rensselaer Poly-
Itechnic Institute (BS com

puter science, 1987]. For his
first HP project, he helped

develop an on-line quantitative analysis package for
the HP SONOS 1000 ultrasound system. He later
worked on the team that developed the software
architecture for ultrasound systems and wrote end-
user applications. Previously, he developed software
for testing graphical display device drivers at the Cal-
Comp Company. Outside HP, Dan tutors grade school
children in mathematics. His other outside interests
include Softball, basketball, skiing, golf, and music.

August 1993 Hewlett-Packard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

Mechanical Considerations for an
Industrial Workstation
Besides being a compute and data processing engine, a workstation in an
industrial and measurement environment must be mechanically designed
to handle the special requirements of these environments.

by Brad Clements

The HP 9000 Models 745i and 747i are entry-level industrial
workstations. These systems are designed for test and mea
surement, industrial process control, and electronic testing
applications. Both machines are based on HP's PA-RISC

version 1.1 architecture,1 and they both run the HP-UX 9.0
operating system. Except for dimensions and EISA and VME
slots, both machines provide the same features. Fig. 1 shows
a rear view of the Model 745i and 747i workstations.

Mass Storage
Module (Defaul t

Front Access)

Four EISA
Expansion

Slot Modules

Internal Mass Storage
SCSI Cable Connection

_ | P o w e r S u p p l y
Module

(a) SPU Modu le

Mass Storage Module
(Defaul t Back Access)

Two EISA Expansion
Slot Modules

SPU Module

SGC (Graphics)
M o d u l e

S i x V M E b u s
Expansion Slots

Internal Mass Storage
SCSI Cable Connection

(b)

Fig. 1. Rear views of HP 9000
Series 700i industrial work
stations, (a) Model 745i. Overall
size 176.75 mm high by 425.45
mm wide by 412.6 mm deep
(6.97 inches by 16.75 inches by
16.2 inches), (b) Wallmounted
Model 747i. Overall size 310.15
mm high by 425.45 mm wide by
412.6 mm deep (12.21 inches by
16.75 inches by 16.2 inches).

62 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Extruded
Frame

Captive
Spring-Loaded

Retracting
Screws

Background
At the beginning of the investigation phase for the industrial
workstation project, a team from R&D and marketing set
out to answer the question "what makes an industrial work
station different from a standard workstation?"! Dozens of
customers in the measurement and industrial automation
markets were visited to help us understand their needs that
go beyond the features provided in HP's line of standard
workstations. This article addresses the mechanical design
aspects of the differences between standard and industrial
workstations, and the design strategy we used to meet the
needs of customers in the industrial marketplace who use or
could use engineering workstations.

Serviceability
Unlike standard workstations, industrial workstations are
intended to be incorporated in large, very complex manufac
turing processes that produce products worth extremely
large amounts of money per hour. The cost of downtime
demands the highest level of serviceability. Trade-offs for
cost that compromise serviceability cannot be made. Our
goal was to provide access to all service-level components
in less than three or four minutes.

All service-level components in the Model 745i and 747i in
dustrial workstations including the backplane can be re
moved and replaced from the cable end of the computer
while the computer chassis remains mounted in the rack.
This feature sets a new standard for serviceability in this
industry. To make the serviceable modules, or bricks, tt easy
to remove, an extractor handle was developed which holds
a captive spring-loaded retracting screw (see Fig. 2). The
handle provides a trigger grip for the index finger and a ful
crum surface for the thumb when removing adjacent bricks.
The handle also provides a surface to push on while seating
the bricks. Regulatory compliance dictated the use of a tool
to remove all bricks. The captive screw, which is housed in

t A standard workstation is one that is typically used for program development or running
application programs (e.g., CAD/CAM, desktop publishing, etc.).

tt A brick is the term we use for all the modules designed for the Model 745Ã and 747Ã
workstations.

Fig. 2. CPU brick showing the
extractor handle.

the handle, visually pops forward to indicate to the operator
that the brick is unfastened. Once the bricks are removed an
internal wall (see Fig. 3) swings up to unlatch so that it can
be taken out of the cabinet to allow the customer to remove
the backplane by undoing a single captive fastener located
on the backplane.

Connectivity
In addition to the robust core I/O capabilities offered by
HP's standard workstations, the Models 745i and 747i pro
vide an HP-IB interface as part of the core I/O. To provide
I/O functionality that goes beyond that offered as core I/O,
expansion slots are provided. The number of slots requested
for industrial workstations is not only greater than for stan
dard workstations, but the types of I/O slots are mixed. Be
sides the core I/O, the current HP standard workstations
only provide EISA slots, which support several I/O proto
cols.2 In addition to supporting EISA slots, the Model 747i

Fig. the Gaining access to the Model 747i backplane by removing the
internal wall.

August 1993 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

also supports VMEbus. The package for these machines was
designed to be large enough to be able to house the larger
cards such as VXIbus cards, t

Support Life
Support life is a very important consideration to the indus
trial automation customer. Once an industrial workstation
has been designed and installed into a factory process it is
rarely replaced or upgraded for reasons other than loss of
support. Support life is not something that is designed in,
but rather a promise or commitment made to customers by
HP. The current standard workstations are supported for
five years while the Models 745i and 74 7i carry a 10-year
commitment. To reflect a long support life, the industrial
design of the Models 745i and 747i has a much plainer and
timeless look (see Fig. 4) than the new line of standard
workstations.

Reliability
In many standard workstation applications the hardware
becomes obsolete long before physically wearing out because
of reasons such as the availability of lower-cost machines or
machines with faster graphics engines. With industrial work
stations this may not be the case because certain items like
the fan may not have the same 10-year or even 20-year life
that a factory installation may have. For example, extensive
testing was done on fan bearing systems to select the best fan
for the Models 745i and 747i, but the life expectancy of the
fan is still not greater than the service life of the workstation.
Thus, the power supply carries a fan-tachometer signal and
an overtemperature signal, and is serviceable. More details
relating to fan and airflow reliability are discussed later in
this article.

t As of this writing VXIbus cards are not yet supported in the HP 9000 Series 700Ã machines.

Fig. 4. Rackmounted Model 747i with noncable end out.

Fig. 5. Rackmounted Model 747i with cable end out.

Graphics
In a typical standard workstation configuration only one
large color display needs to be supported because the user
is able to access multiple applications using windows. How
ever, in some industrial automation environments, industrial
workstations are required to support several large graphics
displays. For example, in a control room application large
monitors are used to replace walls full of critical instrument
gauges. The user or control room operator needs to monitor
more gauge images than can be seen on one monitor screen
without paging through windows. Windows are still needed
for less critical gauges and other operations.

Front-to-Back Reversibility
For measurement automation customers, the business end
or user interface end of the Models 745i and 747i is the non-
cable end of the package (see Fig. 4). All the cables and clut
ter are hidden in the rear of the machine inside of the rack-
mount cabinet, which has an access door in the back.
User-accessible mass storage bays, an on/off switch, and
diagnostic LEDs are located at the front end of the machine,
which is the most cosmetic surface of the product.

On the other hand, the industrial automation customer typi
cally wants the cable end of the machine to be the user inter
face end of the product, with the diagnostic LEDs, on/off
switch, and user-accessible mass storage bay also located at
the cable end of the machine (see Fig. 5). The Models 745i
and 747i were designed to allow HP manufacturing to con
figure the computer to meet the needs of both the measure
ment automation and the industrial automation customer.
Front-to-back reversibility is provided by redundant on/off
switches, redundant diagnostic LEDs, and a mass storage
brick that allows user-accessible devices to be located at
either end of the product.

Mounting Options
Standard workstations are designed to live in an office envi
ronment with the workstation cabinet sitting under a moni
tor on a desktop or as a minitower on the floor beside the
desk. The industrial workstation is required to live in rack-
mount and other mounted environments. The Models 745i

64 August 1993 Hewlett-Packard .Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢Fig. 6. Mastmounted Model 745i.

and 747i can be mounted in a variety of different configura
tions. They can be rackmounted from the cable end, rack
mounted from the noncable end, stacked on a bench with
other HP products, wallmounted with cables facing out from
the wall, or mastmounted close to the center of mass of the
product (see Fig. 6).

Package Form Factor
In a rackmount environment, package height is always im
portant to instrument and measurement automation custom
ers, but perhaps more important to industrial automation
customers is the package depth. The Models 745i and 747i
are designed to fit inside a 450-mm (17.7-in) deep wall-
mounted cabinet with the door closed. With the front bezel
removed the distance from the mounting wall to the I/O con
nector surface is 355 mm, leaving a 95-mm depth for cables.
The height of the package was driven by the nearest even
number of rackmount units that a 120-mm fan and line filter
stack would fit in. With feet removed the Model 745i is four
EIA (Electronics Industries Association) standard rack units
(177 mm) high and the Model 747i is seven EIA standard
rack units (310.4 mm) high. The width of the package is 425
mm to allow nonrackmounted stacking on a lab bench with
other standard HP 425-mm-wide instruments.

Airflow Management and Acoustics
The HP acoustic noise goal for office environment products is
50 dBa maximum sound power level. Standard workstations
struggle to meet this goal while not making thermal compro
mises. Industrial workstations can be found in control room
or factory-floor environments which can be wanner than a
typical office. The variety of mounting options provided by
the Models 745i and 747i introduce airflow inlet constraints
not required of standard workstations. To provide more
thermal margin at higher temperatures with constrained
airflow inlets, the 50 dBa goal was compromised. The Model
745i noise level is about 54 dBa and the Model 747i noise
level with two fans is about 57 dBa.

The Models 745i and 747i incorporate a negative pressure
airflow design. Unlike a positive pressure airflow design,
which allows airborne particulates to be filtered out through
an inlet filter, the negative pressure system has no filter.
Small inlet filters fill with airborne particulates in a rela
tively short time, greatly reducing the volume of air that
moves through the product. Experience has shown that
these small filters do not get cleaned as often as required
and lead to system reliability problems. Rather than filtering
dust, the negative pressure design passes most dust through
the product. The dust that does collect over time inside the
product is far less detrimental than a clogged filter. For ex
tremely dusty environments the product should be housed
in an enclosure that provides air filtering on a scale that can
adequately and reliably filter airborne particulates. The neg
ative pressure approach offers some additional benefits.
First, a much larger inlet area is possible which reduces
total airflow impedance through the product. Second, an
uninterrupted airflow zone in front of the fan introduces
more laminar airflow to the fan blades, which reduces
acoustic noise. Finally, airflow is more uniform. Having
more options for inlet locations provides better airflow
rationing throughout the product.

When viewed from the cable end of the product, the main air
inlet is on the left side of the product (see Fig. 7). In an in
dustrial automation installation the left side typically has far

Fig. 7. Mass storage brick with
user-accessible devices located at
the cable end. Also shown are the
;iir inlets and the carriers that
hold the mass storage devices in
place

Augusi 1993 Hewlett-Packard Journal 65
© Copr. 1949-1998 Hewlett-Packard Co.

fewer cables than the right side. This relatively small num
ber of cables on the left side of the product creates little
airflow impedance.

In addition to the inlet holes on the left side, inlet holes are
provided on the front of the product. The front holes are
redundant, allowing the air inlet on the left side to be partly
restricted as in a very tight rack installation with little plenum
space on the sides. Air flows across the bricks and into the
power supply. In an industrial automation installation, the
cables that come into the system rack and lie along the right
side of the product can be so numerous that airflow through
them can be difficult. Therefore, the air exhaust designed
into the Models 745i and 747i is out the cable end of the
product through the power supply (see Fig. 8).

The power supply is equipped with a temperature sensor
that is located near the exhaust fan. This sensor controls the
fan speed and is located downstream in the airflow path so
that the fan will speed up when the system is heavily loaded,
the ambient ah- is relatively warm, or the inlet is partially
restricted. The airflow through the Model 745i is a generous
56 ft3/min at low speed and 70 ft'Vmin at high speed. The
Model 74 7i with two fans moves 105 ft3/min of air at low
speed and 132 ft3/min at high speed.

In the Model 747i, which has two power supplies and one
sensor for each supply, each sensor can also sense when the
fan associated with one of the power supplies is not operat
ing properly. When this happens, the operating fan will be
sped up, pulling air through the power supply with the de
fective fan. This should extend the life of the power supply
with the defective fan until the controlled process can be
shut down in a graceful and less disastrous manner or until
control can be passed to a redundant computer.

Brick Strategy
The wide range of measurement and industrial automation
customer needs could not be met with just one product.
Therefore, we had to develop a strategy to offer a high de
gree of flexibility for product features. In an ideal world, the
best approach to providing different product features would

Exhaust
Holes

be to design a family of subassemblies, or bricks, which
could be mixed and matched in many different configura
tions. Each brick would adhere to standard size constraints
such as width, depth, incremental height units, and electri
cal interconnect standards. Conceptually the OEM customer
would be able to select the number, type, and mix of I/O slots,
the number and type of graphics display interfaces, the num
ber and type of mass storage devices, and the number and
type of CPU options.

For the Model 745i and 74 7i workstations, the width of the
standard brick was driven by the width of two EISA cards
laid side by side. The maximum depth of a brick was driven
by the length of an EISA card. The standard brick height
increment concept was abandoned to allow the products to
fit into a smaller package while adhering to EIA standard
rackmount increments. The electrical interconnect standard
was also abandoned because of physical connector space,
connector cost, and high insertion forces. Flexibility for
future upgrades was traded off for greater serviceability and
lower cost.

Industrial and measurement automation customers rarely
upgrade a system after it is installed. Therefore, rather than
designing a standard package with optional expanders that
carry the added cost of box-to-box interconnect and make
the removal of the backplane in the rack impossible, an ap
proach of using standard bricks housed in a variety of differ
ent sized chassis was implemented. Each brick has the same
backplane.

The Model 745i uses a 4U (four EIA instrument rack units)
high box and holds a CPU brick, a four-slot EISA brick, a
mass storage brick, and a power supply brick (see Fig. la).
The Model 747i uses a 7U package which holds a CPU brick,
a two-slot EISA brick, an SGC (standard graphic connect)
brick, a six-slot VMEbus brick, and two power supplies (see
Fig. Ib). The boxes contain two internal walls that support
the card guides, and a structure to support the bricks. These
walls can be separated from the chassis, making it possible
to design other versions of walls quickly. This feature allows
different versions of the industrial workstations to be de
signed for OEM customers. The versatility offered by the
walls allows a shorter time to market for future products and
reduces the development cost of redesigning an entire pack
age. The backplane, which provides power and bus signals
between bricks, is unique for each product developed.

CPU Brick. The HP PA-RISC processor delivers more than
enough processing for the vast majority of customers in the
industrial and measurement markets. However, customers
do want HP PA-RISC machines for the expected support life.
Standard 16M bytes of SIMM ECC (error correction code)
RAM with optional configurations up to 128M bytes is sup
ported. The core I/O includes HP-HIL, parallel, two serial
ports, audio in and out, SCSI, AUI (access unit interface)
LAN, HP-IB, and onboard 1280-by- 1024-pixel graphics mem
ory. The CPU brick is housed in an aluminum extruded
frame to provide additional mechanical board support dur
ing insertion, to protect surface mount components on the
underside when outside the product, and to offer a rugged
industrial appearance and feel. Fig. 2 shows the CPU brick.

Fig. 8. Power supply module.

66 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 9. EISA card brick with four slots.

EISA Brick. To save space in the product the EISA I/O cards
are oriented horizontally (see Fig. 9). The structure that sup
ports the cards along with the converter circuits is easily
removed for service or upgrades. Easy access to EISA I/O
cards is a feature that adds to the competitiveness of our
workstations hi the industrial marketplace. Almost all of the
PCs used in the industrial marketplace require the user to
remove the workstation cabinet from the rack and then
open a clamshell case to service or upgrade I/O cards.

Mass Storage Brick. The removable tray that holds the mass
storage devices is structurally reinforced so that the me
chanical vibration frequency response is high. The tray is
firmly supported at one end by three tight-toleranced pins
and at the other by two captive threaded fasteners. This
solid foundation approach required no additional vibration
mounts beyond those designed into the individual mass stor
age devices by the manufacturer. This approach not only is
lower in cost for the majority of customers, but provides a
significantly more rugged system. However, customers with
systems that are vehicle mounted will require very soft
vibration isolators and thus a larger shock zone around the
disk, both of which lead to higher costs and a physically
larger product. Fig. 7 shows a mass storage brick.

The individual mass storage devices are held in place by
carriers that were leveraged from the high-volume HP 9000
Model 425e workstation. These carriers, which are shown in
Fig. 7, can be oriented towards either the cable end or the
noncable end of the tray by means of interlock details
located in different places on the tray.

The SCSI interface to the mass storage devices is provided
by an external shielded cable which comes from a filtered
connector on the CPU brick. This approach was leveraged
from the design used in the HP 9000 Models 720 and 730.
Besides providing excellent EMI and ESD performance, this
design allows the user to connect to an external mass storage
device rather than the devices on the mass storage tray. This
capability is useful for diagnostics.

VMEbus Brick. The VMEbus brick, shown in Fig. 10, provides
six VMEbus slots. The entire brick, which includes the VME
bus cardcage, backplane, and translation circuit, is remov
able as one piece. Customers are delighted to have the abil
ity to remove the VMEbus brick and take it to a lab bench to
work on. With the brick removed, access to the P2 connec-
tort is convenient. A cable passage slot allows easy passage

1
A i r I n l e t / ^ i Â »

Holes

Fig. are \^\!Ebus brick Â«1th six VMEbus slots. The first two slots are
occupied by a two-slot VMEbus module.

of ribbon cable from the rear of the backplane to inside the
cardcage.

The cover shown in Fig. 10 is required to provide RFI regula
tory compliance. The customer can modify the cover to add
the desired bulkhead-style connector hole patterns and pro
vide cables with service loops as required for each different
configuration. Most customers elect to eliminate this part
when it is not required.

SGC Brick. Standard graphic connect, or SGC, allows access
to HP graphics and is a standard feature of HP 9000 Series
700 workstations.

Power Supply
The power supply delivers up to 300 watts. Once the power
supply is removed, the 120-mm fan housed inside the power
supply is accessible by removing only two screws. A floating
connector system prevents damage from mechanical shock.
The power supply is wrapped in metal. Besides protecting
the user from electrical shock, this reduces EMI between
the power supply and the CPU or other EMI-sensitive bricks.

Acknowledgments
I would like to thank the following individuals: Paul Febvre
who as project manager led the team to complete the project
on time within cost goals, Ron Dean who contributed to the
design of the CPU brick, EISA bricks, SGC brick, and back
plane, Dave Merrill who contributed to the mass storage
brick and VMEbus brick, plastic parts development designs,
and plastic mold vendor interface, and Mo Khovaylo who
contributed to the industrial design of the product.

References
1. Hewlett-Packard Journal, Vol. 43, no. 4, August 1992, pp. 6-63.
2. Hewlett-Packard Journal, Vol. 43, no. 6, December 1992, pp.
78-108.

3. L. A. DesJardin, "VXIbus: A Standard for Test and Measurement
System Apri l Hewlet t -Packard Journal , Vol . 43, no. 2 , Apri l
1992, pp. 6-14.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XP63, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

t The P2 connector is one of three VMEbus backplane connectors.

August 1993 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

Online CÃœ2 Laser Beam Real-Time
Control Algorithm for Orthopedic
Surgical Applications
New data obtained from treating polymethylmethacrylate (PMMA) with a
nonmoving, CW, 10-watt, CÃœ2 laser beam is presented. Guidelines based
on this data can be used during precision laser surgery in orthopedics to
avoid tissue. mechanical and thermal trauma to healthy bone tissue.
A computerized algorithm incorporating these guidelines can be imple
mented for an HP 9000 workstation connected to a central database for
multiple-operating-room data collection, online consultation, and analysis.

by Franco A. Canestri

The work described in this article was done to confirm in
greater detail the conclusions published in 19831 on treating
polymethylmethacrylate (PMMA) with a nonmoving, CW,
10-watt CO-2 laser beam and to investigate any possible addi
tional relationship among the ablated methacrylate volume,
the surface crater radius R(te), and its depth Z(te), where te
is the beam exposure time in seconds. Because of the very
close thermodynamic similarity between PMMA and bone
tissue (see Table I), these results may be valuable in ortho
pedic surgery, where the procedures of cutting bone and
removal of bone cement (a methacrylate polymer) are well-
known sources of complications. Carbon dioxide lasers
have been used in continuous and pulsed modes in both
cases, but bone carbonization, thermal injury, and debris
result very frequently in inflammatory response with a re
tarded rate of bone healing. Therefore, a method for clean
removal of bone cement and precise osteotomy without
mechanical and thermal trauma would have distinct
advantages over existing techniques.

In this article, equations for R(te) and Z(te) for each focal
length are presented. A very interesting relation was identi
fied between the ablated volume for a given focal length and
the values of R and Z integrated between te = 0 and te = 2
seconds. The most important result is confirmation of the
very close relationship between the areas under the R and Z
curves and the volume. With a simple equation (equation 3,
discussed later), it is possible to compare the characteristics
of craters obtained with moving and nonmoving laser beams
at different operative conditions between 0 and 2 seconds, a
time interval that covers the majority of combinations of
output powers, scanning speeds, and focal lengths reported
in the literature/3"" The close thermodynamic similarities
between PMMA and compact bone tissue have been demon
strated, except for the water content (Table I, bottom),
which strongly influences CÃœ2 laser beam absorption.

Port ions of this art ic le were or iginal ly publ ished in the Internat ionalJoumal of Cl inical
Monitoring and Computing.2 Â© Copyright 1992 Kluwer Academic Publishers. Reprinted with
permission.

Therefore, a correction factor must be applied to the main
equation to calculate the ablated volume in bone tissue.

T a b l e I
P M M A v e r s u s B o n e T h e r m o d y n a m i c P a r a m e t e r s

i n t h e N e a r t o M i d - I n f r a r e d W a v e l e n g t h L a s e r B e a m R e g i o n
(800 nm to 10,6 rim)

P M M A B o n e T i s s u e

Density

Vcm

Specific Heat
J

1.1 [19]

1.38 [7]

s â€¢ cm â€¢ C

Thermal Diffusivity
? x 10

Thermal Conduct ivi ty 0 .17 [7]

1.06 [1]

F l u e n c e A b l a t i o n 9 . 6 [7]
Threshold

Latent Heat of Ablation 3.85 [7]

- L x l O 3
Vcm"

Ablation Energy 3 . 5 [7]

Water Content

0 .8 t o 1 .3 [5]

1.3 to 23.1 [5]

0.16 to 0.34 [5]

1 .0 to 2 .2 [5]

2.1 to 3.4 [14]
8.0 to 18.0 [10]

3.7 to 13.0 [11]

3.0 to 14.0 [3]

0 . 3 [1 9] 1 0 . 0
immersed
24h @ 23 Â°C

[14]

The numbers in square brackets indicate references listed on page 72.

68 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

(FSn, Ã€,,)

(FSp, /.â€ž)

1 2 3 4 5 6 7
1 . 5 3 4 . 5 6 7 5 9 1 0 . 5
2 . 5 5 7 . 5 1 0 1 2 . 5 1 5 1 7 . 5
3 . 5 7 1 0 . 5 1 4 1 7 . 5 2 1 2 4 . 5
4 . 5 9 1 3 . 5 1 8 2 2 . 5 2 7 3 1 . 5

Fig. 1. Focal sequence matrix.

Equipment and Symbols
As described in reference 1. our group at the National Cancer
Institute of Milan obtained results for laser wavelengths of
X! = 2.5 in, X2 = 5 in, X3 = 7.5 in, and XB+ = 400 mm = 15.75 in,
using a commercial Valfivre CO? laser with a nominal output
of 10 watts on the beam spot. The transverse beam mode
was TEMn* and the focusing head was kept steady over
well-polished cubes of ester methacrylate (Vedril C from
Montedison) measuring 3 by 3 by 2 cm. The exposure inter
vals of the nonmoving CW CC/2 laser beam were set to 0.4,
0.7, 1, 1.3, 1.6, and 1.9 seconds.12-13 A nitrogen flow helped
remove powder and steam during irradiation. Knowing that
^2 = 2 Xi, X;3 = 3 Xi, and Xg+ = 6.3 Xj, a working matrix V (Fig.
1) was defined in which the elements of each row represent
focal lengths nXb, where n = 1, 2, 3, 4,. . . and Xb is the basic
focal length, varying between 1 inch and an arbitrary maxi
mum in steps of 0.5 inch (first column). The matrix W
represents a comprehensive set of commonly used focal
lengths3"11-14 structured to allow quick access to the opera
tional data on a given focal length. Each row of V defines
the concept of a focal sequence FSb of a given basic focal
length Xb.

Results
All of the existing experimental trials performed using a CW
CÃœ2 laser beam with exposure times ranging between 0.4
and 2 seconds on PMMA samples show clearly the strong
focal-length-related ablative beam effects.1-15'18 The data
points R(te) and Z(te) measured in this study can be ex
pressed for te between 0 and 2 seconds by the equations
shown in Fig. 2. The following empirical equation can fore
cast the ablated volumes in PMMA for focal lengths of 2.5 in,
5 in, 7.5 in, and 15.75 in (400 mm):

V(te,Xk,FSh) = L(Xb,Xk) â€¢ C(te,Xk) â€¢ Vb(Xb)

k .
/ . , i _ ^ A n
(h , k J - Â ¿ _ \ (1)

n-r

C(te,Xk) =
I" J o

Z(t)dt

R(t)dt

In this equation, V(te, Xk,FSb) is the ablated PMMA volume
after te seconds of Xk-focused laser beam irradiation. Vb(Xb)
is constant for each FSb. n is an integer multiple of Xb = j +
0.5 in, where j = 0.5, 1,2,3,...

Recent investigations have shown that equation 1 can be
written in a more analytical form for exposure times te of 0.4
and 2 seconds as follows:

2,2

For te = 0.4 s.

V Xki = (0.1068 + 0.5581 Xk - 0.0296 Xk)

F o r t e = 2 s , (2)

Ã -57.564 + 49.307 Xk 1
V (X k) = e x p â € ” |

[l + 14.741 Xk + 0.251 XjJ

Fig. 3 compares experimental data for these two exposure
times with plots of equations 2. For te = 0.4 s, r2 = 0.996 and
for te = 2 s, r2 = 0.987, where r2 is a measure of how well a
given a curve f i ts the exper imental data (r2 = 1 for a
perfect match). These equations can also be used to study

X = 2 . 5 i n = 6 3 . 5 m m

Z = 3 5 - 21.2
,0.2767

Z = 1 2 - t " ' ' 3 Â » 6

AZ = Â± 0.34

2R = 0.258 + 0.642 tÂ° Â°886

2R = 0 .9

A2R = Â± 0.2

0 . 5 5 < t e S 2

0 < t e S 0 . 5 5

0 < t e < 1

t B > 1

X = 5 i n = 1 2 7 m m

Z = 3 1 . 5 - 22.5
,0.4475
' e

Z = 11 tÂ»97"

AZ = Â± 0.27

2R = 0.516 + 0.784 tÂ°1519

2R = 1 .3

A2R = Â± 0.42

O < t e < 1

0.2 < te

te2r1

7 .5 in = 190 .5 mm

Z = 1 4 . 1 3 l n (1 + l e

Z = 1 8 - 8.0172
,1.1551
le

AZ = Â± 0.3

2R = 0.774 + 0.706 1Â° 14M

2R = 1 .48

A2R = Â± 0.38

O < t e < 1 . 5

te & 1 .5

O < t e < 1

X = 1 5 . 7 5 i n = 4 0 0 m m

Z = 2 5 t e O < t e S 2

AZ = Â±0.11

2 R = 1 . 6 2 5 + 0 . 5 7 5 t Â ° 7 3 9 1 O < t e < 1

2 R = 2 . 2 Â « e ^ 1

A2R = Â± 0.4

Fig. non Experimental best-fit equations for R(te) and Z(te) for non
moving, 10-watt, CW laser beams at focal lengths of 2.5, 5, 7.5, and
15.75 inches. R and Z are in mm. te is in seconds. The transverse
beam mode W;IK TEM; i*.

August 1993 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

1 S T

Focal Length (inches)

Fig. a Best-fit curves of average ablated volumes in PMMA for a
10-watt, nonmoving, CW, TEMn* laser beam.

the effects of changing focal lengths, exposure times, and
ablated volumes. It is important to notice that there is a
maximum ablated volume for each exposure time te, and
that increasing the focal length does not correspond to a
linear increase of the ablated volume.

LCA Algorithm: Preliminary Investigation and Proposal
Since PMMA7'19 and compact bone tissue have similar ther-
modynamic characteristics except for their water content, the
proposed equations can be used in a closed-loop computer-
assisted algorithm for orthopedic surgical applications. The
algorithm is named LCA after the two parameters L and C in
equation 1.

The implementation of this algorithm on a HP 9000 HP-UX
workstation would provide the surgeon with an additional
safety tool to reduce the risks of bone injury during laser
irradiation, which often results in inflammatory response
with a retarded rate of bone healing.4'15'13 This happens
quite frequently during general orthopedic surgery, especially
because of incorrect settings of laser beam focal lengths
and/or exposure times. Removal of bone cement (a PMMA-
based polymer) that is in close contact with healthy native
bone is the most critical operation in terms of potential bone
damage.7

Operation of the LCA algorithm is as follows (see Fig. 4).
The surgeon specifies the required crater diameter 2R and
depth Z and the maximum tolerances A2R and AZ, and
chooses parameters \^, te, W, v that are likely to produce the
desired ablation. (W is the output power of the laser and v is
the scanning speed of the laser beam.) The computer pro
gram checks whether A* in FSb is also included in FS2.5. The
focal sequence FS2.5 is known experimentally and is there
fore always used as the primary reference.

In parallel, the maximum ablation volume Vmax is calculated
and stored as described in reference 15, using the specified
values of R and Z. The values of V^,, L, and C are calculated
using equation 1. If ^ is not an element of FS2.5, the algo
rithm interpolates between the two closest focal lengths
belonging to FS2.5.

Equation 1 has to be corrected for a laser beam that is
moving with respect to the operating table and to take into
consideration the different CÃœ2 laser beam absorption mo
dalities of PMMA and bone tissue because of their different

Final
Recommendations

for Surg

Fig. 4. Flowchart of the LCA algorithm.

water content. A nonmoving laser beam has the same cut
ting capabilities of a moving beam if the former has an
equivalent exposure time (teqv) given by the equation:2

w JtRs (3)
' e q v

70 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

where RS is the surface radius of the beam spot, v is the
scanning speed of the laser beam. W is the output power of
the moving laser, and W^ is the output power of the non-
moving laser.

In the case of a mo\ing laser beam (v ^ 0), equation 3 is used
to determine t^. The crater diameter 2R and depth Z are
then calculated using the equations in Fig. 2. Their values
are compared with the specified values using the tolerances
A2R and AZ supplied by the surgeon as input data. The two
calculated values are corrected by adjusting the exposure
time te until they are within the specified tolerances. Finally,
the data 2R, Z, te and V(te, Xk,FSb) are proposed for valida
tion after an additional safety check between the volume
Vmax an(^ V(te, X^FSb). This last step is necessary to prevent
the ablation volume from exceeding the value Vmax calcu
lated at the beginning, which is a "not-to-exceed" ablation
volume. This can happen if the wrong A.^ and te are selected
at the beginning of the LCA simulation.

In case of a dangerous situation, a warning message appears
and a new focal length is suggested even if it belongs to a
different FSt, in W. At the end of the simulation, a compre
hensive final report is printed out for the surgeon's conve
nience. In parallel, a central data base is automatically
updated for later review. Reports and statistics can be re
quested either online for direct support in a specific case
that needs more attention or later for teaching and research
activities. Video images stored during the actual operation
can also be recalled, printed, and attached to the report for
the complete documentation of each case.

For te = 0.4 s and te = 2 s, equation 2 is used instead of
equation 1. This allows a faster determination of the final
total ablated volume for a given A.^.

System Design
By implementing a workstation-based design, each operating
room can be equipped with a COo laser mainframe which
can be interfaced to an HP-UX workstation able to perform
several tasks simultaneously in real time (Fig. 5). For exam
ple, one task is the general supervision of the laser beam
following the guidelines proposed, analyzed, and validated
through the LCA algorithm. This can be achieved by using a
laser control interface for dynamic adjustment of the laser's
output parameters and by a multiplexer which physically
checks that the laser performs as requested. This is done by
using an optical device connected to the laser output focus
ing head, which is also responsible for changing the laser's
focal length and the beam mode.

A second important task is network communication among
several similarly equipped operating rooms. Each indepen
dent node can send LCA simulations, intraoperative data,
video sequences, and other results directly to a main data
base over a multiple-user local area network. The network
also allows mutual point-to-point communication so that
operating room X can exchange data with operating room Y
for consultation. The database and the HP-UX operating
system are resident on a network server. The LCA applica
tion software together with the related check routines is
loaded on each operating room's workstation, which is phys
ically installed in a reserved area close to the operating
room but not in the patient's vicinity.

This method can increase the productivity of the operating
room suite of a hospital. It also offers the possibility of build
ing a reference center for laser applications in surgery, using
a network concept that can be extended to other institutions.

End User
Terminal 1

Operating
Table

Fig. 5. System design.

August 1993 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusions
The LCA method suggests a global but detailed set of guide
lines to be followed during orthopedic surgery using a contin
uous wave CO-2 laser beam at different operating conditions.
Critical cases can be simulated on PMMA samples first and
then transferred to bone tissue. It has also been shown how
to transfer preliminary test results from PMMA to bone sam
ples for moving or nonmoving CW laser beams. A computer
ized system can store and control in real time the operative
procedures and a convenient database can be built for later
consultation. Additional investigation is needed to test the
validity of this method over a large variety of hard tissues
and during the use of pulsed and superpulsed laser beams.

Acknowledgments
This paper is dedicated to my wife Britta and my son Fabrizio
for their continuous support and understanding.

References
1. G. Pat R. Marchesini, F. Canestri, et al, "CÃœ2 Lasers: Beam Pat
terns in Relation to Surgical Use," Lasers in Surgeiy and Medicine,

Vol. 2, 1983. pp. 331-341.
2. F. Canestri, "Proposal of a Computerized Algorithm for Continuous
Wave CÃœ2 Laser On-Line Control during Orthopaedic Surgery. Phase
I: Theoretical Introduction and First In-Vitro Trials," International

Journal of Clinical Monitoring and Computing, Vol. 9, 1992, pp.
31-44.
3. S. Biyikli and M.F. Modest, "Energy Requirements for Osteotomy
of Femora and Tibiae with a Moving CW CÃœ2 Laser," Lasers in

Surgery and Medicine, Vol. 7, 1987, pp. 512-519.
4. L. dayman, T. Fuller, and H. Beckman, "Healing of Continuous
Wave and Rapid Superpulsed Carbon Dioxide Laser-Induced Bone
Defects," Journal of Oral Surgery, Vol. 36, 1978, pp. 932-937.
5. S. Biyikli, M.F. Modest, and R. Tarr, "Measurements of Thermal
Properties for Human Femora," Journal of Biomedical Materials

Research, Vol. 20, 1986, pp. 1335-1345.
6. S.J. Nelson, et al, "Ablation of Bone and Methacrylate by a Proto
type Mid-Infrared Erbium: YAG Laser," Lasers in Surgery and

Medicine, Vol. 8, 1988, pp. 494-500.
7. C. Scholz, et al, "Die Knochenzemententfernung mil dem Laser,"
Biomedizinische Technik, Vol. 36, no. 5, 1991, pp. 120-128.

8. C. Clauser, "Comparison of Depth and Profile of Osteotomies
Performed by Rapid Superpulsed and Continuous Wave COz Laser
Beams at High Power Output," Journal of Oral Surgery, Vol. 44,
1986, pp. 425430.
9. R.C. McCord, et al, "CO2 Laser Osteotomy, Technical Aspects" in
I. Kaplan, editor, Laser Surgery: Proceedings of the Second Inter

national Symposium on Laser Surgery, Dallas, 1977, Jerusalem
Academic Press, 1978.
10. R.C. Nuss, C.A. Puliafito, et al, "Infrared Laser Bone Ablation,"
Lasers in Surgery and Medicine, Vol. 8, 1988, pp. 381-391.
1 1. A. Charlton, A.J. Freemont, et al, "Erb:YAG and Hoi: YAG Laser
Ablation of Bone," Lasers in Medical Science, Vol. 5, 1990, pp.
365-373.
12. K. Hishimoto and J. Rockwell, "Carbon Dioxide Laser Surgery â€”
Biophysical Studies," Proceedings of the Fourth Congress of the

Intel-national Society for Laser Surger-y, Tokyo, November 3-8, 1981.
13. JT Walsh, T.J. Flotte, and T.F. Deutsch, "Erb:YAG Laser Ablation
of Tissue: Effect of Pulse Duration and Tissue Type on Thermal
Damage," Lasers in Surgery and Medicine, Vol. 9, 1989, pp. 314-326.
14. J.T Walsh and T.F. Deutsch, "Erb:YAG Laser Ablation of Tissue:
Measurement of Ablation Rates," Lasers in Surgery and Medicine,

Vol. 9, 1989, pp. 327-337.
15. F. Canestri, "A Proposed Clinical Application of a Model of CÃœ2
Laser Radiation-Induced Damage Craters," Journal of Medical

Engineering and Technology, Vol. 12, no. 3, 1988, pp. 112-117.
16. F. Canestri, "Control of CÃœ2 Lasers during Surgery," Journal of

Biomedical Engineering, Vol. 9, 1987, p. 185.
17. R.J. Freiberg and AS. Hoisted, "Properties of Low-Order Trans
verse Modes in in Argon-Ion Lasers," Applied Optics, Vol. 8, no. 2,
1969, pp. 355-362.
18. E. ArmÃ³n and G. Laufer, "New Techniques for Reducing Thermo-
chemical Damage in the Course of Laser Surgery," Lasers in Surgery

and Medicine, Vol. 7, 1987, pp. 162-168.
19. C. Tribastone and C. Teyssier, "Designing Plastic Optics for
Manufacturing," Photonics Spectra, Vol. 25, no. 5, 1991, pp. 120-128.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

72 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Online Defect Management via a
Client/Server Relational Database
Management System
The ability to provide timely access to large volumes of data, ensure data
and process integrity, and share defect data among related projects are
the main features provided in this new defect management system.

by Brian E. Hoffmann, David A. Keefer, and Douglas K. Ho well

The defect management system, or DMS, described in this
article is an online transaction processing system for manag
ing defects found during software and firmware develop
ment and test. It was developed to enable HP's Boise Printer
and Network Printer Divisions to manage shared defects in
leveraged and concurrent products and to increase data
integrity and reduce overall defect processing time. The
DMS application is based on an off-the-shelf relational data
base management system, which employs a client-server
architecture running on an HP 9000 workstation. The devel
opment team employed an evolutionary delivery process to
ensure that the system met user needs and used proprietary
4GL (fourth-generation language) programming tools to
maximize productivity. This paper summarizes the rationale
for building DMS, details its implementation and design, and
evaluates the system and its development process.

Background
Since the introduction of the first HP LaserJet printer in 1984,
increasing customer demand for LaserJet products has kept
HP's printer divisions on a steady growth curve for years.
Market demand for new products with increased capability
has continually challenged the R&D and quality assurance
organizations to scale up their activities, while improving
overall product quality and reliability. Furthermore, compet
itive pressures for increased frequency of product introduc
tions with shorter development times have challenged devel
opment teams to drive out process inefficiencies so they can
develop more complex products in less time.

One of the responsibilities of the software quality organiza
tion is to provide extensive defect tracking and software
process measurement services which enable R&D manage
ment to gauge software quality and product schedule accu
racy. This also entails maintaining all historical defect data
on LaserJet and related products, which provides manage
ment information about historical product quality and past
and present project schedule trends.

As R&D activities continued to expand, we found that our
ability to support the existing defect tracking system became
limited. Foreseeing an inability to manage defect informa
tion and software metrics at this scale with existing tools,
we set out to develop a defect tracking system that could

operate under these demands as well as tackle some of the
more difficult defect tracking challenges.

Existing Problems
Many features required for the divisions' defect tracking
process were not supported by the old defect tracking soft
ware. Over time our process had evolved into a largely
manual system with limited electronic assistance. Fig. 1
gives an overview of the key elements of our old defect
tracking system.

Three physical elements were required for defect submittal:
a paper submit form, defective hardcopy (if applicable), and
source files (if applicable). Since the existing (pre-DMS)
defect tracking software was unable to translate some of
these elements into an acceptable electronic form, manual
translation and filing processes became necessary. This mix
ture of human and electronic processes created problems in
the following areas:

â€¢ Volume sensitivity
â€¢ Tracking defects through concurrent projects and code

leverages
â€¢ Data and process integrity
Â» Timeliness.

Volume Sensitivity. Among all the problems with the previous
defect tracking system, volume sensitivity was the most
notable. Because of the serial nature of the old process and
its requirement for extensive human assistance to move
defects through the system, bottlenecks would occur under
any serious load. Many steps required manual intervention
by engineers and administrative assistants to drive a defect
through its complete cycle. As a result, the labor demands
imposed by the defect tracking system became a tremen
dous burden as the number of defects submitted by projects
increased.

Concurrent Projects and Code Leverages. Nearly all the R&D
projects that tracked defects were code leverage efforts
rather than new code development efforts. In addition, many
leverages of similar code were occurring simultaneously
among projects at multiple sites. However, no utility or pro
cess in the defect tracking system dealt directly with the
problem of tracking defects in leveraged code. The problem

August 1993 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Source Files

Defect ive
Hardcopy

Submit Report Listings

Fig. 1. The original (pre-DMS)
defect tracking system.

was particularly noticeable at the beginning of a leveraged
project when R&D engineers were required to read entire
databases of defects to identify unresolved problems in in
herited code. In addition, no formal notification mechanism
existed that would notify R&D engineers, for example, that
the code they inherited last week received a new defect
today.

Data and Process Integrity. An unfortunate and costly by
product of a system without data and process integrity
checks is data corruption and unknown data states. Our old
defect tracking system was no exception to this rule. Given
the relatively open flat-file data structures and often unreli
able e-mail-based transaction schemes of this system, we
often scrambled to recover or reconstruct a lost or broken
defect record â€” an activity that often consumed all the time
of the defect tracking system administrator.

Timeliness. A final weakness of the old defect tracking system
was its inability to provide timely access to accurate defect
information and project metrics. Since portions of the pro
cess were distributed among various people and tools, instan
taneous information was not always available. Even simple
requests for defect information might require assistance from
the defect tracking administrator or specialized tools. This
serial process and its patchwork of components effectively
inhibited the free flow of defect information to R&D.

DMS Features

Implementation Guidelines
To maintain focus during the implementation of DMS, the
following guidelines were established to assess whether
DMS would achieve its design objectives:
DMS must seamlessly and automatically encapsulate our
old defect process model which has proven itself in the past.
DMS must rely on a client-server architecture to deliver its
capabilities via a network to as much of the development

community as possible, while centrally maintaining and
ensuring 24-hour, seven-day continuous operation.

> Given the rate at which R&D and quality assurance pro
cesses are adapting to keep pace with market demands,
DMS must be able to adapt and embrace additional process
refinements as they evolve.

DMS Process Encapsulation
On the surface, DMS is an online database application that
offers engineers and managers full electronic access to defect
information. DMS is much more than just a data collection
and reporting tool, it is also an electronic mechanism that
supports the defect tracking process that we have proven
and refined over time.

DMS functionality is divided into six core and six auxiliary
functions (see Fig. 2). The core functions were identified as
the minimal set required for an operational system. Auxiliary
functions were added incrementally in subsequent releases
of the tool. The core functions are Submit, Receive, Resolve,
Modify/Delete, Update, and Verify. The auxiliary functions are
Screen, Screen Resolve, Screen Update, Unreceive, Unresolve, and
Unverify. With the exception of Update, each of these functions
causes a defect to move from one state to another. The
states, which are represented by rectangles in Fig. 2, are Un
screened, Rejected Unscreened, Unreceived, Open, Unscreened Resolve,
Unverified Resolve, and Verified Resolve. Each state represents the
status of a defect record in the DMS database.

DMS functions are accessed by the user from the menu
items presented by the initial DMS screen (see Fig. 3). The
Submit, Modify/Delete, and Receive functions are accessed
through the Submit menu item, the Resolve and Screen Resolve
functions are accessed through the Resolve menu item, and
the Verify function is accessed through the Verify menu item.
The auxiliary functions are accessed through the Update
menu item. Users navigate DMS forms either through the

74 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In i t ia l Defec t En t ry

Mail to
Responsible

Engineer

Mai l to
Responsible

Engineer

Mail to
Submitter

Mai l to
Originator Fig. 2. Functions and states in

DMS. The circles represent core
functions, the octagons repre
sent auxiliary functions, and the
rectangles represent states.

control keys shown in Fig. 3 or by selecting the desired item
with a mouse.

Three roles are played by DMS users, and each role has a
different permission level. The roles are user (lowest per
mission level), screener, and manager (highest permission
level). Users typically perform the Submit, Receive, Resolve, and
Verify functions. Screeners typically perform the Screen and
Screen Resolve functions. The manager permission level is
reserved for individuals who are responsible for adding and
configuring projects in DMS.

Submit Function. This is where defect information is initially
entered into the DMS database, resulting in the defect being
placed in the Unscreened state (a in Fig. 2). The user is re
quired to enter a minimal set of information relating to the
defect. The user also has the opportunity to add optional
information at this time. Submitters have the ability to at
tach both text and object files to defects. These files may be
of particular use to engineers attempting to reproduce and
repair defects. Once a defect is submitted, the user can
continue to add additional information via the Modify/Delete
function b until the defect is screened.

Screen Function. This function is typically performed by a
person associated with the development team who has inti
mate knowledge of the product or test process. The Screen

function is the point at which the defect information is ex
amined for completeness and correctness, and the defect
severity is added to the defect record. If insufficient infor
mation is provided by the submitter then the screener may
reject the defect, placing it in the Rejected Unscreened state ' .
The act of rejecting a defect causes electronic mail to be sent
to notify the submitter that the defect was not accepted. The

DMS (Xll-Vue)

DMS MR I N MENU

SUBMIT UPDHTE RESOLWE UERIFY REPORT Utilities

Welcome to DMS

User Prof Â¡ I e La-te: Feb 2 1993

NflME: Brian E. Hoffmann

E-MftIL: bhoffmanChpdmd48

PHONE; x4338 DEPT: NPR-RS.D

MfllL: MS 528 SECTION: Mid Range

HCTIUE PROJECT:

Interrupt Program

Go to Next Field

Go to Preu i ous Field

Togg I e Menu'Form fireas

Togg I e Cho i ce List Menu

Contro I Key Summary

~ C E r a s e F i e l d E n t r y

~N<or Tab Key) Delete to End of Line

~ P P i c k I t e m (m e n u / f o r m)

A R S c r o l I E n t r y B a c k

" V S c r o I I E n t r y F o r w a r d

"E

"L

Returi

<c> Copyright Hewlett-Packard Co. 1992 IMS Version 2.8

SQL Server<tm> Sybase, Inc. 1985-1990

Fig. 3. Inilial DMS screen. UMS functions are accessed from Ihis
screen

AIIÂ«US| ld!l:j I low let I -Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. One of four pages of information presented to the user
performing a Screen Resolve function.

submitter then has the option of deleting the defect or modi
fying and returning the defect to the Unscreened state via the
Modify/Delete function b . It is important to note that this is
the only point in the DMS process where a defect can be
removed from the database. Once a defect has been screened
it is assigned an identifying number and made part of the
permanent project database upon its entry into the Unreceived
state d .

Receive Function. A defect is routed to the person who will
most likely be responsible for defect repair via the Receive
function. The name of the responsible engineer is obtained
from a database list of all possible names for a given project.
When a defect is received, the defect is moved into the Open
state and an electronic mail notice containing the defect
number and brief details about the defect is sent to the
person named as the responsible engineer e .

Resolve Function. When a defect is repaired, the Resolve func
tion is used to add fix information to the defect record and
promote the defect to the Unscreened Resolve state ' . This
function is usually performed by the engineer who enters
the resolution code, the description of the resolution, and
any relevant files. Depending on the resolution code, other
information may be required as well. For example, if the
defect is resolved as a CC (code change) then the user is
required to add the name of at least one module that was
changed.

Screen Resolve Function. This function allows the project
screener to scan the resolved defect to make sure that the
resolution information is as complete and correct as pos
sible. No additional information is added to the defect rec
ord by this function. Screen Resolve allows each project
screener to make sure that the resolution information meets
the standards set by each project team. If the resolution is
rejected by the screener, the defect is returned to the Open
state, and electronic mail is sent to the responsible engineer
stating that the resolution has been rejected & . If the resolu
tion is accepted by the screener, the defect is promoted to
the Unverified Resolve state and the submitter is sent electronic
mail stating that the defect is ready for verification h .

Fig. 4 shows one of four pages of information presented to
the user performing the Screen Resolve function. The user can
switch between pages with the View menu item. The File
menu item is used to move files between the HP-UX file

system and the defect record. The Update menu item allows
users access to the Update function. The bottom two lines of
the form show that the defect is shared between two proj
ects. The defect is in an Unscreened Resolve state for project
TrainingJ (pr = Unscreened Resolve) and in an Unverified Resolve
(r = resolve) state for project Training_2.

Verify Function. The submitter uses the Verify function to deter
mine to the defect is fixed. If the resolution is acceptable to
the submitter, a verification code is added to the defect and
it is promoted to the Verified Resolve state (Â¡ in Fig. 2). If the
submitter decides that the defect is not repaired then the
project screener is notified. The screener has the capability
to return the defect to the Open state via the Unresolve function.

Undo Functions. Screeners also have the ability to move
defects from the Verified Resolve state to the Unverified Resolve
state via the Unverify function and from the Open state to the
Unreceived state via the Unreceive function. When a defect is
moved to a previous state all information that was added by
the previous function is lost. For example, when a defect is
unresolved the information added by the Resolve function is
lost.

Update Function. When a defect is in the Unreceived state and
beyond, changes are made to the defect via the Update func
tion. Changes made to defects by this function are either
applied directly to the defect record or placed in an update
queue based on the following criteria:

' If the person performing the update is a screener or is listed
as a responsible engineer for the project that owns the defect
then the update is applied to the defect record.

' If the person performing the update does not meet the above
criteria then the modified defect record is placed in the up
date queue where a screener must approve the modifications
before they are applied to the defect database.

There is also a set of configurable rules that may force an
update into the update queue. If the screener rejects the
update, electronic mail is sent to the originator of the update
about the rejection (J in Fig. 2).

There is an additional process step not shown in Fig. 2. It was
pointed out to the DMS developers that in the early stages of
a project, engineers frequently find and fix a great many
defects in a very short period of time. The engineers found it
very time-consuming to submit a defect and wait for another
individual (perhaps two) to screen and receive a defect so
that it could be resolved, hi this case the DMS process was
seen as a deterrent to collecting complete defect history. The
process model was modified in the third release of DMS to
allow the responsible engineer to move a defect from the
Unscreened state to the Unscreened Resolve state via the Resolve
Unscreened function. This function can be performed only if
the submitter and resolver are the same person, and the
resolver is the responsible engineer for the project that
owns the defect.

Users can readily determine the distribution of defects for a
project through the project snapshot screen (see Fig. 5).
Accessed from the Report menu item shown in Fig. 3, the
snapshot shows the number of defects in each DMS state
and the bugweight. The bugweight metric is calculated as
the sum of severities squared for all defects in the Open and
Unreceived states.

76 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Project A

Fig. 5. Project snapshot screen.

DMS fully encapsulates this six-step process and subjects all
incoming defect information to rigorous process checks.
Users can rely on the knowledge that defects are in predict
able states and benefit from the valuable process metrics
that are derived by measuring transitions from state to state.

Client/Server Architecture
Another DMS characteristic that provides the foundation for
many DMS services is the fact that it is built on a commer
cially available cliemYserver RDBMS (relational database
management system). Among the many benefits of a client/
server database architecture are distributed processing,
heterogeneous operating environments, and elimination of
many configuration management problems. An additional
database feature that enables DMS to guarantee data and
process integrity is transaction management. Since DMS
uses the OLTP (online transaction processing) capabilities
of the underlying database, all operations that modify data
in DMS are nested in real-time transactions. Modification
requests that fail as a result of invalid data or hardware fail
ure, for example, do not corrupt existing data. Bad transac
tions are automatically rolled back to known previous
states. See "Client/Server Database Architecture," on page 78.

Defect Sharing. One of DMS's most important implementa
tion By is the relational structure of a defect record. By
making use of traditional relational design guidelines, defect
record implementation in DMS enables information for one
project to be shared easily with a record from another proj
ect. As Fig. 6 indicates, the pre-DMS implementation of a
defect record consisted of project-dependent submit and
resolve information, which could not be easily shared
between projects.

In DMS, relational structuring has been used to separate
submit information from project-specific resolve data. One
submit record can be shared among many different projects,
with each project having a potentially unique resolution re
cord. This model is shown in Fig. 7. The major benefits of
this structure are twofold. First, all projects charged with
the same defect automatically share project independent
submit information. Second, the structure provides an auto
matic communication path for project dependent resolve
information to all the projects that share the defect. Thus,
each project can quickly obtain another project's status
information for a shared defect.

No Sharing

Project B

Fig. 6. A pre-DMS defect record consisted of project dependent
submit and resolve information tied together in one record structure.
Sharing defect information between projects was difficult.

Flexible Architecture. DMS has been able to derive several
benefits from its relational implementation. Of these bene
fits, structural extensibility is perhaps the most important.
Given that the system was designed and implemented in an
evolutionary delivery model, a relational architecture
proved to be an ideal complement. Existing structures can
be easily reused and new structures can be added without
massive structural rewrites. For example, elaborate user
configurability was not supported in early releases. For sub
sequent releases, however, it was a simple matter to add
user configuration tables to the schema without altering
existing defect record structures.

Connectivity. DMS's client/server architecture has also en
hanced various aspects of connectivity. The physical separa
tion of data manipulation code (back end) from user interface
code (front end) maximizes modularity, resulting in more
readable, less error-prone code. As a side benefit of the sep
aration, incremental functionality can be added to the front
or back end of the code while online without affecting either
end. From a maintenance perspective, the client/server ar
chitecture eliminates many traditional configuration man
agement headaches. Software distribution problems, for
example, are eliminated since client interface code is ex
ported to users on the network from one central location via
NFS. From a network perspective, a heterogeneous client
environment is fully supportable. Since the server requires
no knowledge of client type, multiple client platforms have
equal access to DMS.

Robust Operation. Transaction management capabilities
round out the list of major DMS features. Given that DMS
was a migration to a multiuser online transaction processing
system, full transaction arbitration became a must. During

(continued on page 80)

Unlimited Sharing

Fig. 7. The relational structuring of DMS records allows submit
information to be shared between different projects.

Augusl, 1993 I lewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

Client/Server Database Architecture

D a t a b a s e m a n a g e m e n t s y s t e m s i m p l e m e n t e d u n d e r c l i e n t / s e r v e r c o m p u t i n g
models network ing enjoyed increasing popular i ty in recent years. Advanced network ing
c a p a b i l i t i e s c o u p l e d w i t h p o w e r f u l m i n i c o m p u t e r a n d m i c r o c o m p u t e r s y s t e m s
c o n n e c t e d t o n e t w o r k s h a v e f a v o r e d c l i e n t / s e r v e r d a t a b a s e a r c h i t e c t u r e s o v e r
m o r e W h i l e c e n t r a l i z e d d a t a b a s e m a n a g e m e n t s y s t e m s . W h i l e t h e s p e c i f i c
b e n e f i t s o f i m p l e m e n t a t i o n s v a r y , c l i e n t / s e r v e r d a t a b a s e s t y p i c a l l y d i s t i n g u i s h
t h e m s e l v e s i n f o u r g e n e r a l c a t e g o r i e s :

â€¢ Separa t i on o f p resen ta t i on se rv i ces f rom da ta man ipu la t i on se rv i ces
â€¢ Scalable high performance
â€¢ Server-enforced in tegr i ty and secur i ty
â€¢ Heterogene i ty and d is t r ibu t ion au tonomy.

S e p a r a t i o n o f P r e s e n t a t i o n a n d D a t a M a n i p u l a t i o n S e r v i c e s

U n l i k e c l e a n l y c e n t r a l i z e d d a t a b a s e s , c l i e n t / s e r v e r d a t a b a s e e n v i r o n m e n t s c l e a n l y
s e p a r a t e p r e s e n t a t i o n (u s e r i n t e r f a c e) s e r v i c e s f r o m d a t a m a n i p u l a t i o n s e r v i c e s . A
d a t a b a s e c l i e n t p e r f o r m s a l l a p p l i c a t i o n o r u s e r - s p e c i f i c s e r v i c e s n e c e s s a r y t o
c o n v e y t h e t o a n d f r o m a u s e r . T h e d a t a s e r v e r f o c u s e s a l l s e r v i c e s o n t h e
e f f i c i e n t a n d s e c u r e m a n i p u l a t i o n o f d a t a c o n v e y e d t o i t f r o m t h e c l i e n t . F i g . 1
i l l u s t r a t e s t h e l a b o r d i v i s i o n i n t r a d i t i o n a l a n d c l i e n t / s e r v e r a r c h i t e c t u r e s .

The net management of this separation is an optimum division of labor: data management
and t r ansac t i on f unc t i ons a re managed i ndependen t l y f r om use r i n t e r f ace and p re
s e n t a t i o n f u n c t i o n s . T h e b e n e f i t s o f t h i s a p p r o a c h a r e t w o f o l d . F i r s t , d i s t r i b u t i o n o f
c l i e n t s e r v i c e s t o e a c h c l i e n t C P U e n a b l e s t h e s e r v e r t o m a i n t a i n a r e s p e c t a b l e
r e s p o n s e t i m e p e r f o r m a n c e a d v a n t a g e o v e r t r a d i t i o n a l d a t a b a s e s . F i g . 2 s h o w s
t y p i c a l c l i e n t / c u r v e s f o r t r a d i t i o n a l v e r s u s c l i e n t / s e r v e r d a t a b a s e s . S i n c e c l i e n t /
s e r v e r d a t a b a s e s a r e l e s s d e m a n d i n g o f o p e r a t i n g s y s t e m o v e r h e a d , t h e y t e n d t o
p e r f o r m b e t t e r u n d e r l o a d .

T h e s e c o n d m a j o r b e n e f i t o f t h e c l i e n t / s e r v e r s e p a r a t i o n i s t h e l e v e r a g e o f e x i s t
i n g C P U s o n t h e n e t w o r k . C l i e n t / s e r v e r a r c h i t e c t u r e s s t r e t c h a n o r g a n i z a t i o n ' s

Host Computer

Presentation
Logic

Presentation
Loaic

Ilrte9ri|Ã¯/
T r a n s a r o n

Transaction
Logic

Data
Manipulat ion

Logic

(a)

Client

Client

Presentation
Logic

Presentation
Logic

LAN

Server

I n t e g r i t y / D a t a
T r a n s a c t i o n M a n i p u l a t i o n

L o g i c L o g i c

(b)

Fig. client/server Division of processing labor in traditional versus client/server architectures,
(a) Traditional architecture, (b) Client/server architecture.

Ã

Throughput Response Time

Traditional

Cl ient/Server

N u m b e r o f U s e r s N u m b e r o f U s e r s

Fig. and architectures and response time performance in traditional and client/server architectures

o v e r a l l C P U i n v e s t m e n t b y e n s u r i n g t h a t o v e r a l l p r o c e s s i n g l o a d s a r e p r o p e r l y
b a l a n c e d b e t w e e n c l i e n t a n d s e r v e r p r o c e s s i n g .

S c a l a b l e H i g h P e r f o r m a n c e

A u n i q u e p e r f o r m a n c e t r a i t o f m o s t c l i e n t / s e r v e r d a t a b a s e a r c h i t e c t u r e s i s t h e i r
a b i l i t y t o e n h a n c e s e r v e r p e r f o r m a n c e m u c h m o r e t h a n t r a d i t i o n a l d a t a b a s e a r c h i
t ec tu res . As seen i n F i g . 2 , r esponse t ime as a f unc t i on o f use r l oad t ends t o sca l e
m o r e l i n e a r l y u n d e r c l i e n t / s e r v e r a r c h i t e c t u r e s . T h i s p e r f o r m a n c e a d v a n t a g e i s
o f t e n r o o t e d i n t h e f o l l o w i n g d e s i g n f u n d a m e n t a l s :

â € ¢ U s e f l o w t o d a t a b a s e p r o c e d u r e s , w h i c h o f t e n i n c l u d e c o n t r o l f l o w e x t e n s i o n s t o
t h e d a t a m a n i p u l a t i o n l a n g u a g e

â€¢ Use communication remote procedure calls (RPCs) for server-to-server communication
â€¢ Imp lemen ta t i on o f t he se rve r as a s ing le mu l t i t h readed p rocess i n the ope ra t i ng

sys tem

S t o r e d e x i s t a r e t h e h a l l m a r k o f c l i e n t / s e r v e r d a t a b a s e s . T y p i c a l l y , t h e y e x i s t
a s s p e c i a l i z e d d a t a b a s e e x e c u t a b l e s . T h e s e e x e c u t a b l e s a r e c o n s t r u c t e d b y c o m
p i l i n g s o u r c e s t a t e m e n t s f r o m t h e s a m e d a t a m a n i p u l a t i o n s t a t e m e n t s (e . g . , S Q L)
u s e d w i t h t h e s e r v e r i n a n i n t e r a c t i v e f a s h i o n . O n c e a p r o c e d u r e i s c o m p i l e d a n d
s t o r e d t o t h e d a t a b a s e ' s d a t a d i c t i o n a r y , a n a p p l i c a t i o n c a n i s s u e a r u n - t i m e c a l l t o
t h e p r o c e d u r e . T h e p r o c e d u r e t h e n e x e c u t e s t h e s a m e d a t a m a n i p u l a t i o n o r q u e r y
t h a t w a s d e f i n e d b y t h e s o u r c e s t a t e m e n t s t h a t b u i l t t h e p r o c e d u r e .

S t o r e d c o m m u o f f e r m a n y m a j o r p e r f o r m a n c e b e n e f i t s . F i r s t , n e t w o r k c o m m u
n i c a t i o n s a r e d r a m a t i c a l l y r e d u c e d s i n c e o n e p r o c e d u r e c a l l r e p l a c e s m a n y i n d i v i d
u a l d a t a m a n i p u l a t i o n s t a t e m e n t s . S e c o n d , s i n c e s t o r e d p r o c e d u r e s a r e a l r e a d y
c o m p i l e d a t r u n t i m e , p e r f o r m a n c e m e a s u r e m e n t s i n d i c a t e t h a t t h e y c a n p r o c e s s
d a t a s e q u e n c e s t a t e m e n t s f i v e t o t e n t i m e s f a s t e r t h a n a s e q u e n c e o f s i n g l e
d a t a m a n i p u l a t i o n s t a t e m e n t s . F i g . 3 i l l u s t r a t e s t h e e x e c u t i o n d i f f e r e n c e s b e t w e e n
s t o r e d p r o c e d u r e s a n d t r a d i t i o n a l d a t a b a s e s e r v e r s .

Th i rd , da tabase p rocedures o f ten possess the ab i l i t y to con t ro l l og ic f l ow in da tabase
o p e r a t i o n s . C o n t r o l c o n s t r u c t s s u c h a s b r a n c h i n g a n d l o o p i n g c o m b i n e d w i t h t h e
a b i l i t y a s d e c l a r e l o c a l v a r i a b l e s a n d c r e a t e t e m p o r a r y d a t a b a s e o b j e c t s , s u c h a s
tab les , enab le s to red p rocedures to pe r fo rm comp lex da ta man ipu la t i on sequences .
S t o r e d a c a n a l s o b e n e s t e d t o i n v o k e a s e r i e s o f d a t a b a s e e v e n t s w i t h a
s i ng le f unc t i on ca l l .

A n o t h e r f e a t u r e h i g h - p e r f o r m a n c e s e r v e r s p o s s e s s i s t h e i m p l e m e n t a t i o n o f t h e
se rve r s imu l a s i ng le ope ra t i ng sys tem p rocess wh i l e accommoda t i ng mu l t i p l e s imu l
taneous be tween p rocesses . F ig . 4 i l l us t ra tes the a rch i tec tu ra l d i f fe rences be tween
s i n g l e - t h r e a d e d a n d m u l t i t h r e a d e d s e r v e r i m p l e m e n t a t i o n s .

A m u l t i t h r e a d e d s e r v e r d e s i g n f r e e s t h e d a t a b a s e f r o m n e a r l y a l l o f t h e o p e r a t i n g
s y s t e m e x a m p l e , t h a t l i m i t s t r a d i t i o n a l d a t a b a s e a r c h i t e c t u r e s . F o r e x a m p l e , t h e
a m o u n t o f m e m o r y r e q u i r e d f o r a d a t a b a s e u s e r c o n n e c t i o n i n a m u l t i t h r e a d e d
i m p l e m e n t a t i o n i s a r o u n d 5 0 K b y t e s . I n c o n t r a s t , t r a d i t i o n a l s i n g l e - t h r e a d e d s e r v
e r s c a n s y s t e m u p t o 2 M b y t e s o f m e m o r y p e r u s e r c o n n e c t i o n , o p e r a t i n g s y s t e m

78 August 19!W Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Client/Server

Procedure Call

Locate Procedure

Check Protection

I
â€¢ '

1

Substitute Parameters

Traditional

Submit Query

T
Parse Query

Val idate Object Names

.
Generate Relations

Fig. architectures. Execution profiles in traditional and client/server architectures.

o v e r h e a d i n c l u d e d . H e n c e , m u l t i t h r e a d e d s e r v e r i m p l e m e n t a t i o n s m a k e m o r e
m e m o r y a v a i l a b l e f o r d i s k c a c h i n g a n d o t h e r a p p l i c a t i o n s .

S e r v e r - E n f o r c e d I n t e g r i t y a n d S e c u r i t y

T h e c l i e n t / s e r v e r a p p r o a c h a l s o h a s m a n y a d v a n t a g e s i n p r e s e r v i n g t h e i n t e g r i t y
o f i n f o r m a t i o n i n a d a t a b a s e . U n l i k e t r a d i t i o n a l a p p r o a c h e s t o m a i n t a i n i n g d a t a
a n d p r o c e s s i n t e g r i t y , b u s i n e s s r u l e s a n d d a t a t r a n s a c t i o n c h e c k s i n a c l i e n t / s e r v e r
d a t a b a s e e n v i r o n m e n t a r e e x c l u s i v e l y e n f o r c e d b y t h e s e r v e r . O p p o r t u n i t i e s f o r
d a t a c o r r u p t i o n r e s u l t i n g f r o m m a i n t e n a n c e e f f o r t s a r e s i g n i f i c a n t l y r e d u c e d , s i n c e
b u s i n e s s r u l e s a n d t r a n s a c t i o n s o n l y h a v e t o b e m o d i f i e d i n t h e s e r v e r i n s t e a d o f
i n e v e r y c l i e n t a p p l i c a t i o n u s i n g t h e m .

A s p e c i f i c m e c h a n i s m o f t e n e m p l o y e d b y a c l i e n t / s e r v e r d a t a b a s e f o r e n f o r c i n g
i n t e g r i t y c o n s t r a i n t s i s k n o w n a s t h e t r i g g e r . A t r i g g e r i s a s p e c i a l t y p e o f s t o r e d
p r o c e d u r e t h a t i s a t t a c h e d t o a t a b l e a n d a u t o m a t i c a l l y c a l l e d , o r t r i g g e r e d , b y a n
a t t e m p t t o i n s e r t , d e l e t e , o r u p d a t e d a t a i n a t a b l e . S i n c e t r i g g e r s r e s i d e i n t h e
server mechanisms the database, they are part icular ly effect ive as integri ty mechanisms
s ince they adopt a da ta - and bus iness- ru le -d r i ven approach to in tegr i t y , as opposed
t o a n a p p l i c a t i o n - c o n t r o l l e d i n t e g r i t y a p p r o a c h . T r i g g e r c o d e i s w r i t t e n o n l y o n c e ,
i n s t e a d o f m a n y t i m e s i n m u l t i p l e c l i e n t a p p l i c a t i o n s . A n a p p l i c a t i o n c a n n o t a v o i d
f i r i n g a t r i g g e r w h e n i t a t t e m p t s t o m o d i f y d a t a i n a t a b l e .

A n o t h e r c o m m o n u s e o f t r i g g e r s i s f o r t h e m a i n t e n a n c e o f i n t e r n a l d a t a b a s e c o n
s i s t e n c y , o r r e f e r e n t i a l i n t e g r i t y . F o r e x a m p l e , d u p l i c a t e d a t a r o w s i n r e l a t e d t a b l e s
c a n b e e i t h e r b y a u n i q u e n e s s c o n s t r a i n t d e f i n e d i n a n i n s e r t t r i g g e r o f e i t h e r
o r b o t h b e t o g u a r a n t e e t h e o n e - t o - o n e u n i q u e r e l a t i o n s h i p t h a t e x i s t s b e
t w e e n t w o t a b l e s . S i n c e c l i e n t a p p l i c a t i o n s c a n n o t b e r e l i e d o n t o m a i n t a i n t h e
c o n s i s t e n c y o f a d a t a b a s e , t r i g g e r s p r o v e t o b e t h e i d e a l m e c h a n i s m f o r t h i s t a s k .

Some env i ronments mechanisms seen in c l ien t /server database env i ronments impose
d a t a c o n s t r a i n t s o n s i n g l e d a t a f i e l d s d i r e c t l y . T h e s e m e c h a n i s m s i n c l u d e r u l e s ,
d e f a u l t s , a n d u s e r - d e f i n e d d a t a t y p e s . A r u l e i s a p r o g r a m m a b l e m e c h a n i s m f o r
p e r f o r m i n g c o n d i t i o n a l d a t a c h e c k s s u c h a s d a t a r a n g e c h e c k s o r c o n d i t i o n a l
c o m p a r i s o n s a s w e l l a s s t r u c t u r a l c h e c k s o n d a t a s y n t a x . D e f a u l t s s i m p l y p r o v i d e
a u s e r - s p e c i f i e d v a l u e o n i n s e r t s i n t h e e v e n t t h a t o n e i s n o t p r o v i d e d w i t h t h e
i n s e r t s t a t e m e n t . U s e r - d e f i n e d d a t a t y p e s p r o v i d e i n t e g r i t y o n v a l u e s t h a t a r e a t
h i g h e r l e v e l s o f a b s t r a c t i o n t h a n n u m e r i c a l t y p e s a l o n e p r o v i d e . S o m e h i g h e r - l e v e l
u s e r - d e f i n e d d a t a t y p e s m i g h t i n c l u d e m o n e y , c o l o r , o r p o s t a l c o d e .

Traditional
Single-Threaded

One Process
per User

Users

One Process for
Mult iple Users

Users

Fig. design per designs. (a| Traditional, single-threaded design with one process per user. (
Client/server, multithreaded design with one process for multiple users.

H e t e r o g e n e i t y a n d D i s t r i b u t i o n A u t o n o m y

C l i e n t / s e r v e r d a t a b a s e s d e l i v e r a n o p e n a r c h i t e c t u r e t h a t f a c i l i t a t e s p o r t a b i l i t y t o
a n d m a n a g e m e n t o f t h e m u l t i v e n d o r c o m p o n e n t s w i t h i n a n e t w o r k e d c o m p u t i n g
e n v i r o n m e n t . H a r d w a r e i n d e p e n d e n c e i s m u c h m o r e e a s i l y a c h i e v e d i n c l i e n t /
s e r v e r f r o m s i n c e t h e a r c h i t e c t u r e c a n c l e a n l y d i v i d e c l i e n t h a r d w a r e f r o m
s e r v e r d a t a b a s e F u r t h e r m o r e , m o s t c o m m e r c i a l v e n d o r s o f c l i e n t / s e r v e r d a t a b a s e
e n v i r o n m e n t s o f f e r m e c h a n i s m s f o r e a s i l y l i n k i n g d i f f e r e n t o p e r a t i n g p l a t f o r m s
t o g e t h e r . T h u s , e x i s t i n g a n d n e w h a r d w a r e r e s o u r c e s h a v e a m u c h h i g h e r c o m p a t i
b i l i t y h a r d w a r e a n d c a n t h e r e f o r e b e u s e d m o r e e f f i c i e n t l y . A d d i t i o n a l l y , h a r d w a r e
b u d g e t s c a n b e s p r e a d f u r t h e r a n d t a k e f u l l a d v a n t a g e o f d o w n s i z i n g t o w o r k
s t a t i o n s a n d s u p e r m i c r o c o m p u t e r s y s t e m s .

I n a d d i t i o n t o s u p p o r t i n g h a r d w a r e i n d e p e n d e n c e i n n e t w o r k e d d a t a b a s e e n v i r o n
men ts , he te rogeneous i n te r faces a l so pe rm i t open commun ica t i on i n he te rogeneous
s o f t w a r e e n v i r o n m e n t s T h e s a m e f o r m a l i z e d s o f t w a r e i n t e r f a c e s t h a t c o n n e c t a
c l i e n t t o a s e r v e r c a n b e l e v e r a g e d b y o t h e r a p p l i c a t i o n s o r s o f t w a r e e n v i r o n
m e n t s . a d a t a s o u r c e s a n d a p p l i c a t i o n s c a n b e s e a m l e s s l y i n t e g r a t e d i n t o a
c l i e n t / s e r v e r d a t a b a s e e n v i r o n m e n t .

A l t h o u g h t h e c l i e n t / s e r v e r a p p r o a c h b r e a k s d o w n t h e t r a d i t i o n a l b a r r i e r s t h a t
p r e v e n t c o m d i s t r i b u t i o n , i t s i m u l t a n e o u s l y c r e a t e s p o t e n t i a l f o r e x c e s s i v e c o m
p l e x i t y i n d i s t r i b u t e d d a t a b a s e p r o c e s s i n g . A s t h e r i s k o f d a t a c o r r u p t i o n i n c r e a s e s
w i th the comp lex i t y o f d i s t r i bu t ion schemes , the o ld "cen t ra l i ze ve rsus decen t ra l i ze "
d e b a t e c l i e n t / j u s t i f i a b l y f u e l e d . F o r t u n a t e l y , i m p l e m e n t a t i o n u n d e r a c l i e n t /
s e r v e r t h e d o e s n o t r e q u i r e a n a l l o r n o t h i n g a p p r o a c h t o d i s t r i b u t i o n o f t h e
d a t a b a s e s y s t e m . D e v e l o p e r s a r e f r e e t o c h o o s e t h e l e v e l t o w h i c h t h e d a t a b a s e
sys tem issue to be d is t r ibu ted , thus re ta in ing a h igh degree o f au tonomy on the issue
o f d i s t r i b u t i o n . F u r t h e r m o r e , t h e c l i e n t / s e r v e r a p p r o a c h a l l o w s d e v e l o p e r s t o
e v o l v e b y s y s t e m i n c r e m e n t a l l y t o w a r d m o r e o r l e s s d i s t r i b u t i o n a s r e q u i r e d b y
t h e a p p l i c a t i o n . I n t r a d i t i o n a l d a t a b a s e a r c h i t e c t u r e s , t h e c h o i c e i s f i x e d , w i t h
e v o l u t i o n t o m o r e d i s t r i b u t e d a n d h e t e r o g e n e o u s e n v i r o n m e n t s m a d e v i r t u a l l y
imposs ib le .

August 1993 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

heavy operation, the server reliably conducts more than 50
simultaneous client sessions. A beneficial side effect of
transaction management for DMS is that the integrity of all
process steps can be maintained. Any process change that
fails will simply be rolled back. Transaction management
also provides the capability to assign user permissions to
process transactions. With transaction rules and user roles
fully defined in DMS, all process rules can be enforced
through user permissions.

Physical Overview
DMS is implemented in two distinct components: a data
server and a user interface client (see Fig. 8). In addition,
mail clients and report clients exist that can also interact
with the server. The data server is a commercially available
relational database that contains the procedures, triggers,
rules, and keys that control data manipulation. These ele
ments are stored in the server as part of the DMS build
process.

Stored Procedures. Stored procedures are database routines
that are constructed from individual data manipulation state
ments. They reside in the data server as database executable
routines. Similar to function calls in programming languages,
stored procedures can accept input arguments and return an
exit status. However, unlike traditional functions, stored pro
cedures can return a variable-length stream of data, which
is organized into rows and columns. Columns typically rep
resent data fields, which are placeholders for information in
a database table. Rows usually represent the data records
that are stored in a database table. Results are typically re
turned in ASCII tab-delimited format for presentation or
postprocessing.

A stored procedure may contain one or more batches of SQL
(Structured Query Language) statements. The SQL state
ments make use of input arguments (if any), perform some
data manipulation operation, and return a stream of for
matted data (if any) to the client application that made the
call. In addition, stored procedures can make use of control
flow constructs such as if... else, while, and so on to perform
complex data manipulation tasks. Stored procedures can
also call other stored procedures performing a series of data
manipulation operations with a single function call. In DMS

Fig. 8. Software components of
the client/server architecture
used in DMS.

stored procedures are used extensively. For example, the
entire DMS process shown in Fig. 2 is supported as a series
of stored procedures.

DMS clients are able to call stored procedures and receive
data returned from them via a bidirectional communications
protocol. In DMS, this protocol is fully supported by the
database manufacturer in the form of a series of libraries
that link the user interface forms code with the database
manipulation language (e.g., SQL).

Triggers. Operations performed by stored procedures that
modify data may cause the execution of a server trigger. A
trigger is a special type of stored procedure installed on the
server to ensure the relational integrity of the data in the
DMS database. Any operation on a table or column that modi
fies data will cause a trigger to be executed. Triggers are used
in DMS to ensure that all operations that modify data are
carried out consistently throughout the database. For exam
ple, a trigger will prevent a user from being deleted from the
DMS database if that user is referenced in an open defect.

Rules. Rules are another database object used in the DMS
process to enforce integrity constraints that go beyond
those implied by a particular data type. Rules are applied to
individual columns of tables to ensure that the values ap
plied by insert or update operations conform to a particular
set or range of possible values. For example, the table col
umn that denotes the state of a defect is a character data
type of up to two characters. The rule applied to this column
ensures that a prospective insert or update will not succeed
unless the new value corresponds to one of the seven states
shown in Fig. 2. The following example illustrates this rule:

create ru le s ta tus_ru le
as Â©status in ("n ", "nr" "p r

The states "n" and "nr" refer to the Unscreened and Rejected
Unscreened states respectively. The remaining states repre
sent (in order) Unreceived, Open, Unscreened Resolve, Unverified
Resolve, and Verified Resolve.

Tables. The DMS database is constructed of a number of
tables. The tables serve to gather data items into logically
related groups. Separate tables exist to contain information
relating to the submit and resolve portions of defects. Other

80 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Defau l t T r igger

p r o j e c t s m a t l i n t
s i t e _ i d t i n y i n t
p r o j e c t _ n s m e v a r c h a r t 2 0)
p r o j e c t _ s i t e t i n y i n t
d e s c r i p t i o n v a r c h a r t 3 2)

u s e r _ i d s m a l l i n t
s i t e _ i d t i n y i n t
l a s t _ n a m e v a r c h a r (2 0)

ne varchar (2C I)

D e f a u l t T r i g g e r

R u l e D e f a u l t T r i g g e r s u b m i t _ n u m
site J d
s u b m i t t e r i d
primary_proj
found_date
h o w j o u n d

max+1
s r v n a m e l o o k u p

lookup
lookup

getdate
lookup

" * " l o o k u p

n .. . 1 = Many-to-One Relationship

tables exist to maintain information about fixed modules,
attached files, and auxiliary information. There is another
group of tables that maintain information about projects,
users, and DMS server sites. These tables are related to one
another via server keys which serve to map the relationships
between tables in the database and help ensure relational
integrity (see Fig. 9). When a stored procedure that returns
rows from more than one table is executed, keys are used to
make sure that the information is joined properly and that
the data returned does not contain any unwanted rows.

User Interface Client. The user interface client is constructed
from a commercially available 4GL forms language and a
custom C language run-time executive. The forms language
development environment allows the rapid construction and
evaluation of groups of atomic user interface objects like
input fields, pull-down menus, and form decoration. Stored
procedure calls are triggered by these atomic objects caus
ing the server to generate rows of result data. The forms
language is designed to manage returned data rows effi
ciently with a minimal amount of client coding. The C lan
guage run-time executive provides the interface client with
access to HP-UX commands and custom C functions. Mail
generated by DMS originates from the client interface
through the mailx(l) command. Files that are attached to de
fects are loaded into the server via a call to a C function by
the interface client.

The user interface client can be compiled to execute on a
number of hardware platforms. In addition to HP 9000
Series workstations, users routinely execute the tool from
networked Macintosh computers running Mac-X and PC-
compatible computers running X server software or VT100
terminal emulation. The latter is particularly convenient for
users who wish to run the tool from home via modem. Fig. 10
shows the DMS interface as seen from a VT100 terminal emu
lator. The example in Fig. 10 shows the lookup choices given
to the user for the "how found" field of the submit function.
The main difference between this and the XI 1 presentation
is that the user must navigate the forms via control keys
instead of a mouse.

Utility Clients. Other types of clients, typically report clients,
can be created using C language libraries purchased from the
database manufacturer. Programs generated using these
libraries differ from other types of host language interfaces

Fig. 9. A portion of the relational
table structure hierarchy in DMS.

that rely on embedded SQL. The libraries do not require a
host language precompiler to process the source code into
some intermediate form. These libraries have been used to
generate custom reporting tools which can be executed from
any suitably configured workstation as illustrated below:

$ subnum - f i le parms -p ro jec t SUNFLOWER -sor t submi t te r I
ex t rac t I csv_repor t > repor t_ f i le

The client subnum generates the key values for every defect
belonging to project SUNFLOWER which meets the criteria
contained in file parms ordered by the name of the submitter.
These key values are piped to the client extract which pulls
information about each defect from the database. This infor
mation is then piped to a text processing script and deposited
in a file. Using this scheme, data can be extracted from the
DMS database and readily formatted for spreadsheet appli
cations as well as plain ASCII text reports. Additionally, there
are a number of third-party software vendors that provide
products that are designed to interact with DMS provided
that the PC has network access to the data server.

Execution Environments. DMS data servers are typically set up
on dedicated hosts. The server at our division server is cur
rently installed on an HP 9000 Model 710 computer config
ured to connect with up to 200 simultaneous clients (see

XTera - DMS (wtlOO)

SUBMITTER INFO
NftME: Brian E
BRIEF DESCRIPT

SHOWSTOPPER
HOST C

OPER. SYST

bb Black Box test
ex Outside Source
fi Formal Inspection
95 Gestalt/Inspiration
ot Other: Please Explain

vf Verifying Fix
ub White Box

OP. ENVIRONMENT: *
flPPLICflTION ENV: *
LONG BESCRIPTION:

Fig. 10. I)MS interface as seen from a VT100 terminal emulator
screen.

August 199.3 Hewlett-Packard. Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

LAN â€¢*
Client/Server Communication {Using Tabular Rate Stream Protocol)

Dedicated
Data Server

HP 9000
Model 710

HP 9000
Model 380

Raw Disk I /O

HP 9000
Series 400

HP 9000
Series 300

Data Storage

â€¢ Procedures
â€¢ Rules
â€¢ Triggers
â€¢ Keys

(HP-UX File
System)

Fig . 11. The hardware compo
nents of the DMS cl ient /server
architecture.

Fig. 11). Client code may reside on any suitably configured
workstation. For convenience and maintainability we have
placed the user interface client code on a single HP 9000
Model 380 server which distributes the code to other client
hosts via NFS.

Reporting and Searching. Reports can be generated from DMS
via the Report menu item from the top-level form shown in
Fig. 3. A variety of canned reports are available as an ad-hoc
query mechanism. Fig. 12 shows how a user might generate
a report of all open defects for a particular engineer. When
initiated, the interface prompts the user for the name of a
responsible engineer from a list of responsible engineers
who have open defects for a given project. Users can readily
generate reports of open defects ordered by submit number,
submit date, severity, and others. Fig. 13 shows a summary
list of open defects ordered by submit number. These reports
can be printed or saved to a file in a number of formats.

The ad hoc query mechanism allows customized summary
reports to be generated based on any combination of selec
tion criteria. This utility can be used to produce, for example,
a list of resolved defects for a given project with a particular
submit version, resolution code, and fix time greater than
eight hours. These customized reports are generated by the
Search Editor selection shown in Fig. 12.

We use PC-based and HP-UX-based spreadsheet packages to
produce custom graphic reports for project management.
These reports are generated and distributed on a weekly
basis. The reports can also be generated on a demand basis
by the individual project teams. Figs. 14 to 18 show samples
of some of these reports.

Current Status
DMS is currently in its fourth release after two years of de
velopment. The latest release, version 2.0, contains all of the
original target functionality and a significant number of user-
requested enhancements. This latest release contains features
that allow online project configuration, user configuration,
and defect modification. These features, along with other
new features, reduced the amount of system administration
time to expected levels. Enhancements in version 2.0 include
changes to make similar operations exhibit more consistent
behavior throughout the tool and changes to the defect man
agement process to satisfy the demonstrated needs of proj
ect teams. Finally, the enhancements provided in version 2.0
of DMS that have evolved over several releases reflect the
maturity of the product and the relative stability of the
feature set.

Currently DMS is in use at six HP divisions on four sites.
More than seven hundred users in R&D, QA, and technical

Fig. a A screen for generating a list of defects belonging to a
particular engineer. Fig. 13. Summary list of open defects.

82 August lf)9:i Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Actual Resolved

Estimate Resolved

Date

Fig. defect This report shows how the ratio of defect find rate to defect
fix rate can be used to track ongoing project progress.

support have logged over 7500 defects against 25 major
projects in 18 months of use.

Lessons Learned
As anticipated in early design sessions, choosing an interface
toolset with incomplete graphical user interface capabilities
proved to be a significant hurdle for many users. In its cur
rent form, DMS employs a character-based windowing
scheme that runs in both XI 1 and ASCII keyboard environ
ments. While this interface style maximizes connectivity,
allowing virtually anyone with LAN access to use DMS, it
has proven to be a tough sell to R&D users who expect tools
to exhibit an OSF/Motif look and feel. As a result of the deci
sion to trade off connectivity for XI 1 and OSF/Motif support,
more non-Xll users have access to DMS at the expense of
XI 1 users who are inconvenienced by a more primitive
interface.

While an evolutionary delivery can be used to deliver just-in-
time functionality to users, one cannot underestimate the
importance of user involvement in making design decisions
and prioritizing implementation tasks. The users group and
steering committee proved to be successful tools in guiding
the evolution of DMS. The users group is an open forum that

7 0 T

Fig. of This report tracks open defect counts against estimates of
projected open defects necessary to meet a scheduled completion
deadline.

allows communication between users and developers. The
steering committee consists of a group of expert users who
ensure that the tool evolves in a consistent direction.

Conclusion
DMS has achieved its objective as an "industrial-strength"
defect management solution. Since its introduction, it has
been used to manage defect information for many flagship
products over many divisions. It has proven itself as a
24-hour-a-day workhorse, serving as many as 40 to 50 simul
taneous users during normal business hours. In fact, the
real-time reliance on DMS has necessitated scheduled main
tenance during late night and weekend hours. DMS enabled
us to extend its contribution into the R&D community by
providing the services of a self-contained software process
tool with minimum administration. As a result, DMS has
increased the scale at which we can provide defect tracking
services without incurring significant personnel increases.

Date

Resolved Five Week Average

Fig. 16. This report shows over
all project weekly defect fix rates
as well as a moving average for
the same.

August 1993 Hewlett-Packard Journal 83
© Copr. 1949-1998 Hewlett-Packard Co.

Bugweight of Estimated
Unresolved Defects

Date

Fig. 17. This report gives a measure of overall software quality
(bugweight) over time.

Another major success for DMS is the degree to which re
lated projects can now share defect information. Based on
the immediate acceptance and use of the defect-sharing ca
pabilities of DMS, users now actively treat defect informa
tion as sharable, and are conscientiously communicating
with other projects via this mechanism. For multisite opera
tion, DMS successfully demonstrated the ability to cross-
submit and cross-track over multiple sites transparently. By
making use of passive server-to-server communication
mechanisms, DMS servers at different sites can easily be
configured to communicate defect information.

An area where DMS has greatly assisted R&D management is
in metrics analysis. Using SQL, raw defect data is much more
readily analyzed and converted into a digestible form. The
rate at which more extensive ad hoc analyses can be deliv
ered has greatly increased. In addition, protecting process
and data integrity has enhanced the accuracy and reliability
of all queries, ad hoc or standard.

Timeliness has been another major success of DMS. As can
be seen in Fig. 19, DMS has succeeded in shortening much
of the defect life cycle time from an average of days to hours.

250 T

e u
15
Q

1 2 - 2 4 1 - 2 2 - 3 3 D a y s - 1 - 2 2 +
H o u r s H o u r s D a y s D a y s 1 W e e k W e e k s W e e k s

DMS V / / M P r e - D M S

Fig. 18. This report provides a cumulative segmented view of
unresolved defects by severity.

Fig. and The difference between the defect life cycles before and
after DMS. This shows the elapsed time between defect find date
and engineer assign date.

In addition to the direct benefits DMS has provided, we have
observed some interesting cultural shifts in the R&D and test
communities in the printer divisions at our site. Project team
members have come to place great reliance in the ability to
get instantaneous defect information. The rigorous process
imposed by DMS ensures that all defects contain the mini
mally required set of information and that all of the informa
tion has been validated against centrally maintained lookup
tables. Users have come to appreciate the ease with which
defect information can be located and manipulated 24 hours
a day, seven days a week.

DMS has also empowered users to manage defects within a
proven process model. Given that the number of projects
and the defects they generate will continue to increase, it is
clear that the number of individuals needed to move a de
fect through the process needed to be minimized. DMS has
been successful in that it has encapsulated a defect manage
ment process known to work for the laser printer firmware
development process and has decreased the number of indi
viduals needed to manage defect information. DMS allows
project teams to manage all aspects of the defect process
without the need for the intervention of defect tracking
experts or other outside agencies.

In an unanticipated use, DMS has allowed us to share defects
with third-party software vendors and still maintain security
of internal defect information through the passive server data
exchange mechanism. We have successfully used this mecha
nism to import and track defects that originated from a pub
lic DMS database server that was accessible to third-party
engineers. This capability has generated much interest from
project teams that use DMS and have extensive interaction
with third-party software vendors.

Acknowledgments
We would like to thank all members of the HP Boise Printer
Division and Network Printer Division teams for their assis
tance and perseverance in helping us refine DMS. Additional
thanks to Craig Denson, Rick Smith, Virginia Pollack, Larry
Allen-Tonar, and all members of the R&D teams in the San
Diego hardcopy divisions.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX is a countries. trademark of UNIX System Laboratories Inc. in the U.SA and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

84 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Realizing Productivity Gains with C++
Although C++ contains many features for supporting highly productive
software development, some characteristics of this object-oriented
programming language tend to slow the realization of these
productivity gains.

by Timothy C. O'Konski

In many cases there is a long delay between starting to work
in the C++ language and realizing the potential productivity
gains of the object-oriented paradigm, including code reuse.
Before this delay can be shortened or eliminated entirely,
practical issues relating to the multiparadigm nature of C++
and its C ancestry must be understood.

The object-oriented benefits of data abstraction and inheri
tance coupled with type checking give C++ a natural advan
tage when attempting to build both system and application
software. Additional productivity gains can be obtained by
reusing a class library if the following considerations can
be met:

â€¢ Programming mechanisms contained within the class library
must be understood by the programmer before they can be
expanded and reused correctly.

â€¢ When selecting a C++ library class or class template, the
size, performance, and quality characteristics of each class
or class template component must be apparent to the
programmer.

â€¢ Appropriate class or class template definitions must first
be properly located by the programmer so they can be in
corporated into the program currently under development.

â€¢ The time taken by the programmer to learn how to use the
library correctly must be much less than the time necessary
for the programmer to create new code. Otherwise, the pro
grammer might attempt to rewrite the C++ library, inhibiting
the productivity gain.

This paper describes our experiences with developing new
C++ software and modifying existing C++ libraries. It also
looks at possible uses of templates and exception handling
defined in the new emerging ANSI C++ standard X3J16.

Mixing Programming Paradigms
The following discussion describes some standard C++
programming paradigms and their associated problems.

Concrete Data Types. Concrete data types are the representa
tion of new user-defined data types. These user-defined data
types supplement the C++ built-in data types such as inte
gers and characters to provide new atomic building blocks
for a C++ program. All the operations (i.e., member func
tions) essential for the support of a user-defined data type
are provided in the concrete class definition. For example,
types such as complex, date, and character strings could all
be concrete data types which (by definition) could be used
as building blocks to create objects in the user's application.

The following code shows portions of a concrete class
called date, which is responsible for constructing the basic
data structure for the object date.

typedef boolean in t ;
#define TRUE 1
fdef ine FALSE 0

c l ass da te {
public:

date (in t month, in t day, in t year) ; / /Constructor
- d a t e d ; / / D e s t r u c t o r

boolean set_date(int month, int day, int year) ;

/ /Add i t i ona l member func t i ons cou ld go he re . . .

pr ivate:
Â¡ntyear;
in t numer ica l_date ;

/ /Add i t i ona l da ta members cou ld go he re . . .

Designers of concrete data types must ensure that users of
this class will not want to add functionality to the class
through derivation. Otherwise, the class must be designed to
handle incremental additions in advance. Failing to do so
could cause an ill-defined set of functions (for example, a
missing assignment or copy constructor1) which in turn
would cause a defect to be uncovered by unsuspecting users
of the concrete data type.

Abstract Data Types. Abstract data types represent the inter
face to more than one implementation of a common, usually
complicated concept. Because an abstract data type is a base
class to more than one derived class, it must contain at least
one pure virtual function. Objects of this type can only be
created through derivation in which the pure virtual function
implementation is filled in by the derived classes.

The following is an example of an abstract base class:

class polygon {
public:

/ / cons t ruc to r , des t ruc to r and o ther member func t ions
/ / cou ld go here . . .
v i r tual void rotate (int i) = 0; / /a pure v i r tual funct ion
/ /o ther f unc t ions go here . . .

August 1993 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

Although the terminology associated with object-oriented programming and C++
has become reasonably standardized, some object-oriented terms may be slightly
different depending on the implementation. Therefore, brief definitions of some of
the terminology used in this paper are given below. For more information on these
terms see the references in the accompanying article.

Base Class. To reuse the member functions and member data structures of an
existing class, C++ provides a technique called class derivation in which a new
class The derive the functions and data representation from an old class. The old
class for referred to as a base class since it is a foundation (or base) for other
classes, and the new class is called a derived class. Equivalent terminology refers
to the base class as the superclass and the derived class as the subclass.

Catch Block. One (or more) catch statements follow a try block and provide
exception-handling code to be executed when one (or more) exceptions are
thrown. Caught exceptions can be rethrown via another throw statement within
the catch block.

Class. the class is a user-defined type that specifies the type and structure of the
information needed to create an object (or instance) of the class.

Constructors. A constructor creates an object, performing initialization on both
stack-based and free-storage allocated objects. Constructors can be overloaded,
but they type, be virtual or static. C++ constructors cannot specify a return type,
not even void.

Derived Class. A class that is derived from one (or more) base classes.

Destructors. A destructor effectively turns an object back into raw memory. A
destructor takes no arguments, and no return type can be specified (not even
void). However, destructors can be virtual.

Exception Handling. Exception handling, which is a feature defined in the ANSI
X3J16 Draft and implemented in HP's 3.0 C++ compiler, provides language support
for synchronous event handling. This feature is not the same as existing asynchro
nous mechanisms such as signals which are supported by the underlying environ
ment. The C++ exception handling mechanism is supported by the throw statement,
try blocks, and catch blocks.

Member a Member functions are associated with a specific object of a
class. functions is, they operate on the data members of an object. Member functions
are always declared within a class declaration. Member functions are sometimes
referred to as methods.

Multiple Inheritance. A derived class can be derived directly from one or more
base at Any member function ambiguities are resolved at compile time.

Object. Objects are created from a particular class definition and many objects
can be associated with a particular class. The objects associated with a class are
sometimes called instances of the class. Each object is an independent object
with its own data and state. However, an object has the same data structure (but
each functions has its own copy of the data) and shares the same member functions
as all other objects of the same class and exhibits similar behavior. For example,
all the objects of a class that draws circles will draw circles when requested to do
so, but the of differences in the data in each object's data structures, the
circles may be drawn in different sizes, colors, and locations depending on the
state of the data members for that particular object.

Template. A class template provides a mechanism for indicating those types that
need to with with each class instance. The generic algorithm associated with
the class remains invariant. Later in the class instantiation, these types are bound
to built-in or user-defined types.

Throw Statement. A throw statement is part of the C++ exception handling mech
anism. anomaly throw statement transfers control from the point of the program anomaly
to an exception handler. The exception handler catches the exception. A throw
statement takes place from within a try block, or from a function in the try block.

Try Block. A try block defines a section of code in which an exception may be
thrown. A try block is always followed one or more catch statements. Exceptions
may also be thrown by functions called within the try block.

Virtual Functions. A virtual function enables the programmer to declare member
functions in a base class that can be redefined by each derived class. Virtual
functions provide dynamic (i.e., run-time) binding depending on the type of object.

Other classes, such as square, triangle, and trapezoid, can be
derived from polygon, and the rotate function can be filled
in and defined in any of these derived classes. Note that
polygon objects cannot be constructed. The C++ compiler
will prevent this from happening because there is at least
one pure virtual member function not yet defined.

Abstract data types sometimes suffer from too many func
tions being declared virtual. This adds both size and some
slight overhead to the program's speed of execution. Inlining
will usually compensate for the speed overhead incurred by
a virtual function, but will add even more to the size of the
program or library object file.

Node Classes. Node classes are viewed as a foundation
class component upon which derived classes can be built.
Designed to be part of a hierarchy, a node class relies on
services from other base classes and provides some unique
services itself. A node class defines any virtual functions
necessary to change the object's behavior or fill in any pure
virtual function definitions still left undefined in the derived
class. Additional functions are also added by a node class to
widen the behavior of an object. Node classes, by their very
nature, will not suffer the fate of misconstrued concrete
data types described above, but may suffer from some
programming errors.

Common problems in declaring node classes stem from the
fact that they are designed to be sources of object deriva
tion. Because of this, the presence of any virtual functions
(in either the base or any derived classes of the node class)
will require the presence of a virtual destructor to ensure
proper class cleanup. Because one cannot determine if and
when a virtual function might be added by a class deriva
tion, it is better to be safe and declare the destructor virtual
in the base class. This is because the "virtualness" of the
destructor cannot be added in any derived class. It must be
part of the base class destructor declaration.

An additional problem common to a node class is improper
verification of protected data members. Because a derived
class can modify or change protected data members, they
could be invalidated by any derived class. Adding assert
statements to a special "debug" version of the node class
that validates the protected data can detect this type of
programming error.

Interface Classes. Interface classes are the most humble but
important and overlooked of all classes. The purest form of
an interface class doesn't cause any code to be generated.
Consider the following unsafe class called List, which is
wrapped by the class template SafeList:

86 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

t e m p l a t e < c l a s s T >
class SafeÃ¼st : private Ã¼st<void*> {
publ ic:

void insert!!* p) { Ã¼st<void*x:Â¡nsert(p); }
vo id append(T p) { L is t<vo id*>: :append(p) ; }
T get () { re turn (T*) LJst<void*x:get () ; }

};

Here, a class template called SafeList is used to convert an
unsafe generic list of void pointers into a more useful family
of type-safe list classes.2 Type-safe means that the compiler
checks for correct pointer types instead of allowing any
pointer (e.g., void*) to be used within a list template. The
very nature of a void pointer is that it may contain a pointer
to any object. By adding the SafeList template, we are ensur
ing that a List template can only contain pointers to classes
that we have defined for use with a List template.

Interface classes are used to adjust an interface, provide
robustness with a greater degree of type safety, or prevent
member function names from two different class hierarchies
from clashing.

Handle Classes. Handle classes provide an effective separation
between an object interface and its implementation. Handle
classes provide a level of indirection via pointers. Additional
benefits include an interface to memory management and
the ability to rebind iterators for a class representation. An
iterator is a function that returns the next element in a list,
array, string, or any collection of items each time it is called.

A handle class is a good candidate for a class template:

templa te <c lass T> c lass hand le_c lass {
T r e p r e s e n t a t i o n ;

public:
T o p e r a t o r - > () { r e t u r n r e p r e s e n t a t i o n

This code fragment shows how a handle class is used to
manipulate pointers to objects of type T, instead of actual
user-defined class representations of objects of type T. A
problem with handle classes is that they require cooperation
between the class being handled and the handle class itself.

C Roots
The fact that C++ is based on the C programming language
is evident throughout the language. C is retained as almost a
subset of C++ and so is the emphasis on C facilities that are
low-level enough to deal with the most demanding system
programming tasks.

Once a class definition has been agreed upon by a program
ming team, the programmers have the ability to proceed with
implementation by using member function code stubs when
ever necessary. This practice of filling in stubs with real func
tion code when necessary in conjunction with C++'s static
type checking enables a form of rapid prototyping via incre
mental development.3 C++ allows iterative design and im
plementation to proceed in parallel, facilitating a more rigor
ous design methodology than conventional C programming.4

Because of the C roots of C++, most or all of the low-level
programming tasks that are within the range of C are still
within the scope of C++. However, some of the problems that
have plagued C programmers also effect C++ programmers.

The problems encountered in this regard include: uninitial
ized pointers, data narrowing, memory leaks, and conflicting
Â¿defines, typedefs, and enums.

Uninitialized Pointers. An uninitialized pointer might contain
a garbage address, and if used in its uninitialized state may
cause the program to abort.

i n t * p i n t

/ / o ther code (*p int is not in i t ia l ized to any address)

*p in t = 9 ; / / may resu l t in a "Bus er ror (coredump)"

Data Narrowing. On a system where sizeof(short) is two, the
code:

unsigned short s = 65535;
signed int i = s;

will silently change the value of s to be -1 when i is printed.
This to because in the unsigned version, the high bit is used to
increase the value of the unsigned short, while in the signed
(i.e., int i) version, the sign bit is used to signify a negative
number. When the unsigned value s is assigned to the signed
int value Â¡, the number changes from a large unsigned value to
a small negative value because its high-order bit is interpreted
in a different manner.

Memory Leaks. When a location that contains a pointer to
memory is deallocated, a "memory leak" occurs (just as in
C). This means that the location that contained the pointer
to memory allocated out of free storage is no longer valid.
Thus, the allocated memory cannot be accessed for the
duration of the program. For example, in the sequence:

{
char *s = new char [10] ;
/ / s o m e c o d e h e r e . . .

}
/ / the var iable s Â¡s no longer accessible

the pointer s is out of scope and a memory leak will occur
immediately after this code segment if a delete s operation is
not performed before the end of this code fragment.

Â«defines, typedefs, and enums. Problems with these declarations
occur on a per-program basis when declared at file scoping.
For example,

/ /header f i le #1:

typedef Â¡nt boolean;
/ / . . .

<eof>

and then:

/ /header f i le #2:

typedef uns igned boo lean;
/ / . . .

<eof>

will cause the linker to issue an error and abort because of
conflicting typedef declarations in two different source files.

Typical Problems with Libraries
The ANSI C++ Committee X3J16 and a parallel ISO (Interna
tional Standards Organization) committee are currently
standardizing the C++ language. Over the past six years the
C++ language has continued to evolve through five major

August 1993 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

releases. This moving target has resulted in libraries and
programs that typically have upgrades that accommodate
the new language features without taking full advantage of
them.5 This means that the programmer must make deci
sions regarding which feature is the correct one to use with
each new release of a class library.

Requiring C++ library users to be conversant with both the
previous and current C++ versions is a hardship on the C++
programmer. As a result some programmers have completely
avoided new versions of C++ and stayed with the C++ release
upon which their product is based. This problem will sub
side significantly when the X3J16 committee work becomes
solidified into a draft standard.

The traditional object-oriented approach of using class deri
vation not inheritance) to reuse existing functionality is not
necessarily the best way to make use of C++ classes to pro
vide a has-a relationship as opposed to the traditional inher
itance use to provide an is-a relationship. Is-a relationships
are provided for by C++ via inheritance, which is commonly
known as a class derivation. For example, if class B is
derived from class A, B has all the characteristics of A plus
some of its own, and we can safely say that B is-a kind of A.
Has-a relationships are supported by composition rather
than by inheritance. Composition is implemented by making
one class a member of another class.6 For example, we have
a has-a relationship if B is contained in A.

It is still not clear whether to use multiple inheritance to
combine the features of two different class libraries (i.e.,
both via is-a relationships) into a new class. One school of
thought argues that multiple inheritance gives the class de
signer much more flexibility than single-inheritance class
relationships. 5> 7>8

Classes that incorporate the new exception handling mecha
nism (described below) and also reside in multiple libraries
do not yet exist on the marketplace. Therefore, conclusive
evidence regarding the utility of multiple inheritance as a
language feature to be used when combining classes from
multiple libraries cannot be constructed until such C++
libraries exist and are successfully reused.

Templates
Templates provide a type-safe way of creating what is essen
tially a macro-like textual substitution mechanism and manip
ulating different types in a generic fashion. Templates provide
a way to define those types that need to change with each
class instance. Templates are created by parameterizing
types in a class definition. These parameters act as place
holders until they are bound to actual types such as Â¡nt,
double, short, and char. For example, in the following code
fragment, which is a template for an array class, Alphanum is
the parameterized type.

const Â¡nt arraysize = 16;
t emp la te <c lass A lphanum>
c l a s s a r r a y {
publ ic:

ar ray l in t sz=arrays ize)

{s ize=sz; indx=new Alphanum [s ize] ; }
v i r tua l -ar ray!) {de lete indx; }

pr ivate:
in ts ize;
A lphanum * indx ;

When this template is used, objects of the array class might
look like:

main ()
{

ar ray < in t> in tx (2) ; / / in teger ob jects . . .
array <double> doublex (21; / / double objects. . .
array <char> charx (2); / / character objects. . .

This shows that the actual type is substituted for the generic
Alphanum defined in the template.

Using template classes creates a need for specific configura
tion management and tool support.6 Additionally, template
syntax is complicated and makes the code more difficult for
others to understand. Tool support is needed to help cover
the template syntax issues and for manipulating the interac
tions between templates, classes, and exceptions.

Exceptions
An exception is an event that occurs during program execu
tion that the program is typically not prepared to handle. This
event to results in the program transferring control to
another part of the program (exception handler) that can
handle the event. Exception handling is necessary for robust,
reusable libraries. Since exceptions may cause resources to
be released in an unexpected manner, acquisition of re
sources and appropriate cleanup is a new requirement on
class libraries. The typical mechanism of acquisition and re
lease of files can easily be handled by using object construc
tors and destructors as shown in the following example.

c lass F i lePt r {
F I L E * p ; / / d e c l a r e p o i n t e r t o a f i l e . . .

public:
F i l eP t r f cons t cha r n , cons t cha r a) / / c l ass cons t r uc to r
(p = fopen(n , a) ; }

F i l eP t r (F ILE*pp) {p = pp ; }
~F i l eP t r () { f c l ose (p) ; }

operator FILE () { return p; }

/ / c lass des t ruc tor c loses f i le . . .

With this object class, a file pointer p can be constructed
with In a File or the arguments required for an fopen(). In
either case FilePtr will be destroyed at the end of its scope
and the destructor will close the file. A simple example of
this programming technique would look like:

vo id use_ f i l e (cons t cha r name)

Fi lePtr f (name, "r") ;
/ / u s e f . . .

88 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The destructor will be called regardless of whether the
function is exited normally or an exception occurs.

Other C++ language issues that need to be considered when
reusing C++ libraries that incorporate exceptions include:
Converting existing libraries to handle exceptions properly
Remapping unexpected!) and terminated functions
Combining the exceptions of one library with those of
another library in a single program
Handling asynchronous events (e.g., signals) and
synchronous C++ exceptions simultaneously.

The following example program shows how multiple threads
of control, which are represented by HP-UX asynchronous
signals and synchronous C++ exceptions, do not work to
gether simultaneously. The second throw statement (re
throw) in the myhandler portion of the code, which tries to
transfer control outside the exception handler, will not work
at this time. The compiler cannot detect this condition be
cause of the possibility of separate compilation of the signal-
handler code and the code that traps to the signal handler.

#inc lude <unis td.h>
/ i nc lude <s t ream.h>
inc lude <signal .h>

r
* types needed be low (used to be in <s ignal .h>, but were removed in
* HP-UX 8.0)

* Note: an program (and the other code in th is ar t ic le) was compi led on an
* HP 9000 Model 730 running HP-UX A.08.07 using HP C++ A.03.00
* /

t ypedef vo id S IG_FUNC_TYP(in t) ; / * fo r UNIX Sys tem V compat ib i l i t y * /
typedef SIG_FUNC_TYP *SIG_TYP;
#de f ineSIG_PFSIG_TYP

inti = 0;
/ The func t ion myhand le r i s ca l led when the S IGINT is de tec ted by the
* p rogram; a f te r wh ich a "s leep" and then a " th row" is per fo rmed (i .e . , in
* a synchronous manner) . PLEASE NOTE: This s ignal handler could res ide
* in a compi ler compi la t ion un i t , mak ing i t imposs ib le for a compi ler to
* check for th is er ror cond i t ion.
* /

vo id myhandlerO
{

t r y {
(void) signal (SIGINT, (SIG_PF) myhandler);
cou tÂ« " i n myhand le r now . .An " Â« f l ush ;
s leepd) ;
throw i ; / / er ror : NO throws a l lowed in s ignal handlers i f they

/ / a re not caught in the s igna l handler
}
catch (Â¡nti){
cou tÂ« " ca tch i ns ide myhand le r now. . . \ n " Â« f l ush ;
th row; / / th i s i s an e r ro r because re th rows (o r th rows)

/ / a re not a l lowed to propagate outs ide a s igna l hand ler

* Therefore , th is const ruc t should be avo ided.
* /

in t ma in()
{

cout Â« "s tar t ing the program.An" Â« f lush;

/ / Arm our s ignal handler . . .
(void) signal (SIGINT, (SIG_PF) myhandler);

/ / f o r E V E R I o o p . . .
f o r y

t ry { / / Now that we are in a t ry b lock, le t 's throw something. . .
throw i ;

}

ca tch (in t i)
{ / / Now we' re in the catch b lock, so le t us not i fy the user and

/ / s l eep fo r a momen t . . .

cou tÂ« " i n ma in ca tch now. . . \ n "Â« f l ush ;
s leep(l) ;

/ /we ' l l never ge t he re , bu t fo r comp le teness . . .
return 0;

Conclusion
C++ is an effective language for promoting both incremental
development and code reuse. The additional capabilities of
templates and exceptions need to have more idioms formal
ized for their proper use. Because of C++'s increasing com
plexity, stronger environmental support is critical for the
continuation of the language's success.

Acknowledgments
I would like to thank Tony Fanning, Walter Underwood,
Marv Watkins, Dan Hoffman, and Susan Meade for their help
and guidance in making this paper a reality.

References
1. J. O. Coplien, Advanced C++ Programming Styles and Idioms,
Addison Wesley, 1992.
2. B. Stroustrup, The C++ Programming Language, Second Edition,
Addison Wesley, 1991.
3. G. Booch, Object-Oriented Design, Benjamin Cummings, 1991.
4. T. Yen, D. Durham, B. Lin, J. Schofield and Pau-Ling Yen,
Object-Oriented Languages Evaluation Report, HP Internal
Document, 1986.
5. J. in "Controversy: The Case for Multiple Inheritance in
C++," Computing Systems, Vol. 4, no. 2, 1991.
6. S. B. Lippman, C++ Primer, Second Edition, Addison Wesley,
1991.
7. T.A. Cargill, "Controversy: The Case Against Multiple Inheritance
in C++," Computing Systems, Vol. 4, no. 1, 1991.
8. S. C. Dewhurst and K. T. Stark, Programming in C++, Prentice
Hall, 1989.

/ This main program wai ts for a SIG_PF, (i .e. , usual ly CTRL/C)
* wh ich causes a co re dump because o f the th row p ropaga t ion res t r i c t ion
* ment ioned above. Th is mix ture o f asynchronous s igna ls and the
* synchronous except ion handl ing causes C++ to exh ib i t a rout ine fa i lu re .

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open countries. a trademark of X/Open Company Limited in the UK and other countries.

August 1993 Hewlett-Packard Journal 89

© Copr. 1949-1998 Hewlett-Packard Co.

Bridging the Gap between Structured
Analysis and Structured Design for
Real-Time Systems
A real-time software design technique has been applied to the design of
the software architecture for ultrasound imaging products.

by Joseph M. Luszcz and Daniel G. Maier

Structured analysis (SA) and structured design (SD) are
two widely used methodologies for software development.1'2
Structured analysis specifies the functionality to be imple
mented by a software system, and structured design is used
for partitioning a single task into a set of functional modules.
See "Structured Analysis and Structured Design Refresher"
on page 92 for a brief review of the structured analysis and
structured design notation and terminology used in this
paper.

When designing and implementing a software system repre
sented by a structured analysis model, it is usually necessary
to partition the functionality among a number of concurrent
tasks to meet the timing constraints placed on the software
system. In addition, to achieve a design with the characteris
tics of low coupling and high cohesion, it is desirable to
partition the functionality into objects or packages for data
hiding.

Although structured techniques provide designers with a
methodology for partitioning a complex system into manage
able pieces for analysis and design, there are some problems
in making the transformation from SA to SD for real-time
systems design. For example, the transformation from SA to
SD does not easily support concurrency. Processes need to
be grouped into concurrent tasks before detailed design.
Another example is related to object-oriented design. SA
and SD do not strongly support producing well-encapsulated
objects.

Because of these problems a software developer, after
specifying a real-time system using SA techniques, is often
not sure how to proceed to a design and typically resorts to
ad hoc design techniques. A methodology is needed to help
the designer bridge the gap between SA and SD.

The ADARTS Solution
AD ARTS (Ada-based Design Approach to Real-Time Sys
tems) is a high-level design methodology that effectively
fills the gap between SA and SD by providing a systematic
means (called process steps) for partitioning an SA specifi
cation model into a set of tasks, packages (objects), and
communication links, which can then be designed using SD.

' Although ADARTS uses Ada constructs, its use is not limited to Ada. ADARTS was created by
a group versions companies called the Software Productivity Consortium (SPC). Two versions of the
ADARTS specification have been produced by the consortium. This paper is based on the first

The deliverables from ADARTS include a set of high-level
architectural diagrams and a set of specifications called
component interface specifications for each task and pack
age. These deliverables are described later in this article.
Fig. 1 shows a simple overview of how ADARTS fits into the
software development process with SA and SD. The nota
tion and graphic symbols for the ADARTS diagram shown in
Fig. 1 are described in more detail later in this paper.

We have been using ADARTS for embedded software devel
opment at Imaging Systems Division (ISY) since early 1990.
ADARTS helped us deal with the complexity inherent in the
design of the ISY shared software architecture, and we found
it indispensable in turning SA models into realizable designs.

While the ADARTS technique supports the synchronizing
constructs inherent to the Ada programming language, it is
not necessary to program in Ada to derive the majority of
the benefits from ADARTS. We easily adapted the methodol
ogy and its diagramming terminology to a more conventional
operating environment consisting of high-level language
programs running under the control of a real-time operating
system. At ISY, we develop software in the C language run
ning under the pSOS-68K operating system. However, our
approach to using ADARTS works with any language.

The diagramming notation used in ADARTS is based on the
Buhr notation,4 which is used to represent the tasks, pack
ages, and communication paths resulting from the design
decisions made in ADARTS (see Fig. 2). This diagramming
notation is supported in commercially available CASE tools.

The rest of this paper gives a brief overview of the ADARTS
methodology (defining the notation shown in Fig. 2 along
the way) and then presents an example of our experience
with using ADARTS for software architecture design.

ADARTS Process Steps
The ADARTS process involves following the steps listed
below to create the ADARTS deliverables mentioned above
and then using the deliverables to design and implement the
system.

1. Develop a real-time structured analysis specification, and
level the data flow diagrams to create a single (flat) diagram
from the hierarchical set of data flow diagrams in the original
model.

90 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Context
Diagram

Data Flow
Diagrams

Customer
Requirements

Specify
Using

Structured
Analysis

High-Leve l
Design
Using

ADARTS

p S p e c p S p e c p S p e c

Process Specif ications

Data
Dictionary

Component
Design
Using

Structured
Design

Component Interface
Specif ications

Structured Specif icat ion Model
(Structured Analysis)

H igh- leve l Design Model
(ADARTS Architectural Design)

Detai led Design Models
(Structured Design)

Fig. 1. The role of ADARTS in the software development process.

2. Identify concurrent tasks by applying task structuring
criteria, and determine the kind of communication and syn
chronization mechanisms for the data and events passed
between tasks. Task structuring involves combining those
processes that should be combined or keeping separate
those processes that must be separate.

3. Identify packages (objects) by applying the package
structuring criteria to produce well-encapsulated software
objects.

4. Add support tasks to provide required synchronization
and message buffering services. An example of a support
task is a task that synchronizes access to a data store that
is accessed by multiple tasks.

5. Package the tasks (we skipped this Ada-specific
requirement).

6. Develop an NRL (Naval Research Laboratory method)
module hierarchy (we skipped this step).

7. Define component interface specifications.

8. Perform the detailed design of task and package internals
using structured design or an alternative methodology.

9. Implement (code) the tasks and packages.

10. Store the completed components and design
documentation in a (reuse) library.

Note that the ADARTS process steps are all-inclusive, cover
ing the development of the software system from conception
to delivery. Steps 2 through 7 are the contributions of
ADARTS that are above and beyond SA and SD.

Loosely Coupled
Communication

Message
Queue

Task
Tightly Coupled
Communication Task

Parameter
Fig. 2. ADARTS notation.

August 1993 Hewlett-Packard Journal 91
© Copr. 1949-1998 Hewlett-Packard Co.

Structured Analysis and Structured Design Refresher

Structured analysis and structured design concepts have been in use for several
years now, and thus the concepts, terminology, and graphic symbols are fairly well
known. The following are some very brief definitions of the SA and SD graphics
symbols shown in Figs. 1 and 2 and used in the accompanying article. Fig. 3 shows
the process flow from customer requirements to code when SA and SD are used
in software development. References 1 and 2 in the accompanying article contain
much more information about SA and SD techniques.

Structured Analysis Notation
Structured analysis notation and methodology provide:

> A graphic and concise representation of software functionality
â€¢ A technique for partitioning a problem into manageable pieces
â€¢ A way to represent software functionality in a nonredundant fashion
â€¢ A way to create a logical model of what the software system does rather than

how to do it.

Context Diagram

S o u r c e / S i n k A c c o u n t N u m b e r
and Deposit

Bank
Customer

Sink

Process or
Transformation

Error List

Fig. using transactions essential elements of structured analysis notation using bank transactions as an
example.

The following definitions are associated with the notation in Fig. 1.

Data functions Diagram. A data flow diagram is a network of related functions or
processes and the corresponding data interfaces between these components. The
notations shown in Fig. 1 that are used to depict a data flow diagram consist of:

â€¢ Labeled arrows, which show the data flows (information flow) between processes
â€¢ Circles (or bubbles), which represent the processes or transformations being

modeled by the system
â€¢ Two where lines, which represent data stores, or places where information can

stored
â€¢ Rectangles, which represent the data sources and destinations (sinks) in the system.

Account
Number

O - " - D a t a F l o w

â€¢â€” Flag

Fig. structured notation structure chart showing the essential elements of structured design notation for the
bank example.

Task Structuring Criteria
Task in c r i t e r i a a re ru les tha t gu ide the des igner in
combining SA process transformations (process bubbles or
pSpecs) and control transformations to form concurrent
tasks, while separating those transformations that need to
be separate into independent tasks. These criteria reflect
the same reasoning that an experienced real-time system
designer might use when deciding on a concurrent task
structure. AD ARTS organizes these criteria for systematic
application to software design.

The following are AD ARTS task structuring criteria for
combining transformations to create concurrent tasks:

â€¢ Sequential cohesion. Combine transformations that execute
in sequence with other transformations, such as a state ma
chine and the processing that occurs on a state transition
(see Fig. 3).
Temporal cohesion. Combine transformations that must run
at the same time as other transformations, such as trans
formations that must respond to the same event (interrupt)
or the same time tick. Fig. 4 shows the transformations that
take place when a sensor monitoring patient temperature
senses an out-of-limits temperature.
Functional cohesion. Combine transformations that perform
one or more related functions. These functions typically
operate on the same data structure or same I/O device. For

92 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Context
Diagram

Leveled
Data Flow
Diagram

Customer
Requirements

pSpec pSpec pSpec pSpec

Structure
Charts

Design
Using

Structured
Design

m S p e c m S p e c m S p e c

Implement and Test
Each Module

Process Specif ications

Data
Dictionary

Minispeci f icat ions

Structured Specif icat ion Model
(Structured Analysis)

Fig. the development role of structured analysis and structured design in the software development process.

Context Diagram. This is the top-level diagram which shows the environment in
which the software system being designed is supposed to work. The context
diagram consists of one circle and the sources and sinks in the system's operating
environment. This diagram forms the basis from which the rest of the system is
designed. One or more levels of data flow diagrams can be derived from the con
text the Multiple levels are created by partitioning the processes in the data
flow diagrams.

Data flows The data dictionary is used to define all data flows and compo
nents of data flows and data stores. It provides a single place to record information
that is necessary to understand the data in the data flow diagram.

Process Specifications. When a process can no longer be partitioned, the
resulting processes are called primitive processes. Process specifications, or
pSpecs, are used to describe these primitive processes. The notations commonly
used in tables. include structured English, decision trees, and decision tables.

A data dictionary and process specifications are symbolically represented in Fig. 3.

Detai led Design Model
(Structured Design)

S t r u c t u r e d D e s i g n

Structured design is the process of refining the output from the structured analysis
phase to design the module structure that will lead to a particular implementation
of the software system. The steps in the process include:

Â» Derive a representation of the program structure with a structure chart. While the
structure chart can be created from any system specification, it is typically created
from a flattened data flow diagram. The structure chart consists of three basic
features: boxes representing modules, arrows connecting the modules, and short
arrows with circular tails representing data passed from one module to another
(see Fig. 2).

â€¢ Expand the high-level definition by identifying lower-level modules needed to
carry out the higher-level functions,

â€¢ Improve the representation by employing the design principles of cohesion and
coupling. Coupling measures the degree to which modules depend on each other,
and cohesion measures the degree to which elements within a single module are
related to each other.

> Complete the detailed module design by employing a procedural logic description
such pSpec processes minispecification (mSpec). An mSpec is similar to a pSpec for processes
in structure analysis, except this time each module is being documented.

example, a process that computes trip statistics contains
functions that access a database of collected trip data and
then compute the required statistics (see Fig. 5).

The criteria for separating transformations into independent
tasks include:

â€¢ Event dependency. Use a separate task for each transforma
tion or group of transformations dependent on:
o Device I/O constraints such as responding to asynchronous

I/O requests
o User interface constraints such as independent users or

user interface sequential activities such as windows
o Periodic events (events that initiate transformations at

regular time intervals).

> Control Transformation. Use a separate task for each
independent control transformation such as a state machine
controller or a transformation that is enabled and disabled
by a control transformation.

' Task Priority. Use separate tasks for time-critical or
computation-intensive activities.

> Multiprocessing. Use separate tasks for transformations
that must execute on separate physical processors.

AD ARTS specifies the order in which task structuring criteria
should be applied so that the first criterion assigned to a
transformation is usually the predominant one. However,
subsequent criteria may contradict the original classifica
tion, and when that happens the original decision should be

August 1993 Hewlett-Packard Journal 93
© Copr. 1949-1998 Hewlett-Packard Co.

Structured Analysis Model Structured Analysis Model

Shaft
Rotation Speed

Request

Average
Speed

Compute
Fuel

C o n s u m p
tion

Fuel
Consumption

Read
Request

ADARTS Model

Monitor Travel Parameters ADARTS Mode l

Compute Trip Statistics

Increment
Count

Travel
Statistics

Compute
Distance

Compute
Average

Speed

Compute
Fuel

Consump
tion

Read Trip
Data

Fig. 3. An example of sequential cohesion in which two transforma
tions that occur in sequence are combined into one task.

reconsidered using good engineering judgment to decide
which criterion is dominant.

Intertask Communication and Synchronization
Once the task structure has been defined, the data and event
interfaces between tasks must be determined. The ADARTS

Structured Analysis Model

Temperature Too High

Take
More

M e a s u r e
ments

A D A R T S M o d e l

Fig. 4. An example of temporal cohesion in which three processes
activated by the same event are combined into a single task.

Fig. 5. An example of functional cohesion in which two transforma
tions performing functions related to trip data are combined into a
single task.

process provides guidelines for choosing how each data and
event flow will be passed between tasks:

â€¢ Tightly coupled communication. This type of communication
involves sending messages or events and then waiting for a
response. A model of tightly coupled communication is
shown in Fig. 6a.

< Loosely coupled communication. This type of communica
tion is implemented by a message or event queue with no
response. In the producer-consumer model, the producer
would continue to send messages to a queue without waiting
for a response from the consumer, which extracts messages
from the queue at its own pace (see Fig. 6b).

â€¢ Loosely coupled communication with multiple producers.
This communication style is implemented by a FIFO buffer
or a priority queue. This is the case in which many produc
ers might try to communicate with one consumer at the
same time (see Fig. 6c).

Each communication or synchronization flow is represented
in ADARTS architecture diagrams by a distinguishing symbol,
and each type of flow is implemented by a specific mecha
nism within the run-time environment of the system being
designed.

Package Structuring Criteria
The package structuring criteria are rules for creating pack
ages, or objects. The application of these criteria produces
well-encapsulated software objects using the concept of
information hiding. The ADARTS package structuring pro
cess does not contain many original ideas, but represents a
compilation of existing ideas and strategies applied to a new
domain (real-time systems). These rules fall into one of the
following categories:

94 August 1993 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Produce r

Display
Statistics

(a)

Produce r

Consumer

Formatted
Statistical

Data

Consumer

Producers

Fig. and AD ARTS diagrams modeling intertask communication and
synchronization, (a) Tightly coupled communication, (b) Loosely
coupled communication, (c) Loosely coupled communication with
multiple producers.

â€¢ Hardware hiding modules. These modules are used to en
capsulate parts of the virtual machine such as the operating
system or communications mechanisms or interfaces (e.g.,
device drivers) to particular I/O devices (see Fig. 7).

â€¢ Data abstraction packages. Each structured analysis data
store becomes the basis for a data abstraction package,
which hides system behavior requirements or software
design decisions associated with data (see Fig. 8).

â€¢ Servers. Servers are passive modules that provide services
for other tasks. Files servers and print servers are examples
of these types of modules.

Component Interface Specifications
Component interface specifications (CIS) are textual de
scriptions of each AD ARTS task and package containing
information that is needed to inspect the high-level design
and move to the detailed design and implementation of that
component. Each component interface specification contains
the name and type of the component, what the component
does and when it does it, the operations provided by the com
ponent (including individual access procedures or functions

S t r u c t u r e d A n a l y s i s M o d e l

Sensor Inpu t

> T o C o n s u m e r

A D A R T S M o d e l

Internal
Representation
of Sensor Data

Sensor Input Driver Task

To Consumer

Input Sensor
Access Procedure

Fig. 7. An example of a hardware hiding module showing the
interface to an input sensor.

Structured Analysis Model

Signal Signal

Limits

Current
Temperature

ADARTS Model

Temperature
Limits

Temperature
Limits

Package

Set
Temperature

Limits

Read
Temperature

Limits

Fig. 8. A model of a data abstraction package.

August 1993 Hewlett-Packard Journal 95
© Copr. 1949-1998 Hewlett-Packard Co.

N A M E : S c a n n i n g s t a t e o b j e c t

DESCRIPTION:
The scanning state object takes a state stimulus as input and produces the
new scanning state (or an error code) as output (in the form of the scanning-
state particular The object also has the ability to go explicitly to a particular
state.

Errors state be explicitly l isted in the state tables. This will make the state
tables a better reflection of system operation.

A script wil l be writ ten to compile descript ions of the scanning-state tables
into system data tables. The scanning-state tables for various system configu
rations should all be explicit ly present in the source fi les, then compiled by
the script to produce the C source for the state tables.

DATA STORES:
Scanning-state transit ion table.
Init ial scanning state - for use at power on/reset.

OPERATIONS:
S c n s l j n i t i a l i z e l }

This state point should be called at power-on/reset to set up the state
transit ion table and init ial ize scanning state variables.

S c n s t c h g s t a t e (s t i m u l u s }

"Stimulus" is one of an enumeration of possible stimuli. This entry point
chooses a new scan state based on the stimulus or produces an error
code if the stimulus is not allowed in the current scan state. If the scan
state is changed the new scan state is output as an event.

S c n s t . g o t o s t a t e (s t a t e)

"State" is one of the possible scanning states.
This the scan to be used by internal applications. I t causes the scan
ning state to be changed to the indicated state.

Fig. 9. An example of a component interface specification.

with parameter definitions), and the effects of the compo
nent's operations. Fig. 9 shows an example of a component
interface specification.

Experience with AD ARTS

Architecture Design
We used ADAETS in the design of a software architecture
for new ultrasound imaging products. This project was di
vided into two parts. The first part dealt with the develop
ment of the system software that provides a framework for
application development and all generic services required in
the application domain. The second part of the project dealt
with the development of the software applications that pro
vide the specific functionality required by a target system.
Each of these two parts of the project used SA and
ADAETS, but in slightly different ways.

First, the architectural structure and system components
were developed. The high-level functions of the architecture
were specified using structured analysis. This specification
treated all functionality in terms of the general processing
flow required for any application, without defining the spe
cifics of any particular application. The specification model
was validated by walking through test cases derived from a
number of representative applications.

After the SA specification was complete, the AD ARTS
technique was applied to design the task and package struc
ture and identify the communication mechanisms to be
used. Component interface specifications were created, de
tailing the interfaces and functionality of each system com
ponent, followed by the detailed design and implementation
of each component. Fig. 10 illustrates a key part of the
AD ARTS process, in which functionality is grouped into
coherent tasks and packages using the appropriate structur
ing criteria. The sacks drawn around the various groups of

data flow diagram elements in Fig. 10 show the application
of the task and package structuring and intertask synchro
nization criteria described above. After several iterations
these sacks were transformed into the simplified AD ARTS
architectural diagram shown in Fig. 11. The letters in Figs.
10 and 11 show the correspondence between the two system
representations.

After the architecture was specified, designed, and imple
mented, attention was turned to the second part of the
project â€” development of applications to run within the new
architecture. Once again, structured analysis was used for
specification of the software. However, we enhanced the
design step by adding supplemental criteria to guide the
designers in allocating application functionality to pre
viously designed architectural components. For example,
within certain architecture components places were left
open to plug in application software that:

â€¢ Processes a keystroke (see vk (virtual key) functions in
Fig. 11)

â€¢ Defines an application-specific parameter (see the agents
data structure in Fig. 11)

â€¢ Adjusts an application parameter value when other parame
ters it depends on change (see the check routines function in
Fig. 11).

The supplemental criteria helped the application designers
determine where each aspect of the application functional
ity should reside within the architecture. The AD ARTS
methodology was thus used as a template for creating a
more specific high-level design method. Detailed design for
each component of the application then proceeded in the
usual way.

Package Design
The degree to which the package structuring procedure of
AD ARTS was used during the project varied significantly, hi
some cases, the structuring criteria were applied rigorously.
For example, in the continuous loop review application,
which is an ultrasound application that supports acquiring
video images into memory and playing them back as contin
uous loops, the criteria were applied to a leveled data flow
diagram, leading to a highly modular AD ARTS design
consisting of objects with cohesive operations.

In many cases, AD ARTS was used simply as a notation to
show an object representation of a system's functionality.
Some AD ARTS designs were derived from a complete and
leveled SA and others were derived from a high-level or
abbreviated SA. Although the package structuring criteria
were not explicitly used here, designers still applied the
information hiding concepts recommended by ADARTS. For
example, the Interpret Stimulus component shown in Fig. 11,
which encapsulates the user interface functionality of the
system, is quite complex. The ADARTS design for this com
ponent, although not derived from a complete SA, is very
useful for showing the interactions between the packages.
The component interface specifications for this component
made it easier to understand the individual packages
contained in the component.

Similarly, while the criteria developed to guide engineers in
allocating specification functionality to architecture compo
nents were not always used explicitly, they communicated

96 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Map Physical
Events to Rel
ative Events

r e l a t i v e _ e v e n t

3.2.9
Handle Hard

Keys
.13

use r_feed back
A

event jn fo

â€¢v

d u m p _ h a r d _ k e y s

3.2.1
Convert Event

to Routine
.7

3.4
Sequence and
Map Events to

Methods
.4

m t i t r i o d c a l l r e q u e s t m e t h o d c a l l r e q u e s t

i m a g i n g p a r a m e t e r s

Â ® ~ Â ® = E x a m P l e s o f T a s k S t r u c t u r i n g (J) - (J) = E x a m p l e s o f P a c k a g e S t r u c t u r i n g - - + â € ¢ = C o n t r o l o r E v e n t F l o w s

Fig. software A ultrasound structured analysis representation of the software architecture for the ultrasound imaging products.

August 1993 Hewlett-Packard Journal 97
© Copr. 1949-1998 Hewlett-Packard Co.

Scan Controls

Support Task

Display Feedback Process

Typical Input Device
Inter face Package

(DIP)

u s e r s t i m u l u s

/ K e y \
Feedback

V D a t a /

Interpret Stimulus

u s e r j e e d b a c k

Key
Feedback

Data

Dynamic
Mapping

T a b l e
Object

Scanning
State

Object * *

/Scann ing^
State

 M a t r i x /

Interpret
Stimulus

Applications

vk Functions*

Imager Stimulus
Routines

C h e c k R o u t i n e s *

Synchronize
Imager

Event
Attributes

Perform Actions

event_subgroup

* Some of the places left open in packages for plugging in application software.
* The component interface specif icat ion shown in Fig. 9 is for this package.

Fig. several The ADARTS architectural diagram obtained, after several design iterations, from the structured analysis diagram shown in Fig. 10.

to designers the choices that had to be considered when
assigning the functionality of the application being designed
to the appropriate components.

Tools and Techniques
We used a commercially available CASE product to generate
the ADARTS diagrams. Since the product was targeted for

Ada users, we had to deal with several drawbacks in using
the tool because we were using the C language and a real
time operating system. For example, the product provided
no direct support for the message queue symbol (used to
show loosely coupled communication between processes),
so we constructed the required symbol from primitive line
structures. In addition, there was no integrated mechanism

98 August 1993 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

for creating component interface specifications and tying
them to AD ARTS components. Also lacking was a traceabil-
ity mechanism for tracing system requirements from SA to
ADARTS to SD.

Since the architecture software is a key part of the imaging
product, we paid extra attention to using the development
process to attain high-quality software. We adopted a gen
eral software development framework for the project. The
steps in our process and the deliverables are summarized in
Table I.

Table I
Development Process Using ADARTS

Phase

Requirements Generation

System Specification

Architecture Design

Detailed Design

Implementation

Deliverable

Software Requirements
Specification

Structured Analysis

ADARTS

Structured Design

Source Code

Each step in this process was usually followed by an inspec
tion by the appropriate individual or group.

Summary
The following is a list of the strengths and weaknesses we
found by using this version of ADARTS in our environment.

Strengths. Some of the contributions and positive aspects of
the ADARTS technique include:

â€¢ Continuity and task structure. ADARTS provides a linkage
between an SA model and the detailed design of individual
software modules by partitioning the specification into the
optimal set of concurrent tasks and the appropriate commu
nication mechanisms between them. SA and SD alone do not
aid in the design of the overall concurrent task structure.

â€¢ Package structure. ADARTS, through its package structur
ing criteria, provides a method for achieving a reasonable
object structure for the functionality represented by the SA
model. SD alone, through its transform analysis and trans
action analysis techniques, is not effective for building
encapsulated objects. Encapsulation is the predominant
object-oriented design concept applied to our software
development activities, and ADARTS supports this design
aspect very well.

â€¢ Visibility. ADARTS design deliverables (architecture diagrams
and component interface specifications) make a software
design more visible, promoting more effective design inspec
tions and making design concepts clear to other engineers
who have a need to understand or maintain the software.

â€¢ Systematic approach. The steps used in ADARTS provide a
systematic approach to system-level design, reducing the
thrashing that can occur when following unstructured or ad
hoc system design methods.

â€¢ Intuitive. ADARTS is easy to understand for new and expe
rienced software engineers and intuitive to those familiar
with real-time software design.

â€¢ Transaction analysis is a design strategy based on a study of the transactions the system must
process a analysis is a design strategy based on the study of the data flows in a
system and the transformations performed on that data.

â€¢ Acceptance. ADARTS was accepted by the engineers using
it at ISY, although their reasons varied widely. Each of the
strengths stated above was cited by one or more engineers
as the most valuable contribution of ADARTS.

Weaknesses. Just as we found many strengths in the
ADARTS technique, we also found some weaknesses in us
ing ADARTS in our environment. These weaknesses include:

â€¢ Object orientation. ADARTS falls short in its support for
several of the currently accepted object-oriented design
characteristics. For example, there is no provision for
defining object classes or inheritance.

â€¢ Tools. Manipulating the architecture diagrams used in
ADARTS (as well as the data flow diagrams and structure
charts used in SA and SD) with the currently available CASE
tools is time-consuming and has been a frequent complaint
from engineers using these methods.

â€¢ Ada. We didn't have a need for the Ada-specific structures
discussed in the ADARTS paper, and therefore we did not
gain the full benefit inherent in the ADARTS methodology.

Conclusion
We found ADARTS to be an extremely effective technique
for bridging the gap between a structured analysis specifica
tion and the structured design of the software modules that
make up a software system. By providing a path between
the two techniques, it makes both far more valuable than
they would be otherwise. For structured analysis, the con
tribution to the definition of concurrent tasks and communi
cation mechanisms is indispensable, but even if there is no
concurrency required, ADARTS helps in identifying an ob
ject structure before applying the next detailed design step.
Even if ADARTS is used on an SA specification that requires
neither concurrency nor objects, it produces the trivial-case
high-level design consisting of a single task in a single pack
age which can then be constructed using SD. Thus, there is
no harm in applying the technique to all designs.

Acknowledgments
The dedicated efforts of the members of the software archi
tecture project team were key to the successful application of
ADARTS within HP's Imaging Systems Division (ISY): Stephen
Agyepong, Janice Bisson, Risa Bobroff, Marc Davidson,
Paula Hart, Bill Harte, Peter Kelley, Martin Moynihan, and
Kris Rovell-Rixx. We also thank Joe Kobrenski and Paul
Kelly for their contributions in promoting the use of ADARTS
within the project during its formative stages, and BUI Koppes
and Arthur Dickey for supporting the group in its efforts to
improve our development process during the project. Finally,
we thank Dr. Charles Butler of Colorado State University for
his guidance in the proper use of structured methods at ISY.

References
1 . T. DeMarco, Structured Analysis and System Specification,

Yourdon Press, 1978.
2. M.P. Jones, The Practical Guide to Structured Systems Design,

Yourdon Press, 1980.
3. H. Gomaa, ADARTS â€” An Ada-based Design Approach for Real

Time Systems, SPC-TR-88-021 Version 1.0, Software Productivity
Consortium, August 1988
4. R. 1984. A. Buhr, System Design with Ada, Prentice-Hall, Inc., 1984.

August 1993 Hewlett-Packard Journal 99
© Copr. 1949-1998 Hewlett-Packard Co.

UW Roster / 190LDC
IDR Â«98101
00106491

LEWIS, KAREN
HP CORPORATE HEADQUARTERS
DDIV 0000 20BR

A u g u s t 1 9 9 3 V o l u m e 4 4 â € ¢ N u m b e r 4

Techn ica l In format ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , P O B o x 5 1 8 2 7
P a l o A l t o . C a l i f o r n i a . 9 4 3 0 3 - 0 7 2 4 U S . A

Y o k o g a w a - H e w l e t t - P a c k a r d L t d . . S u g m a m i - K u T o k y o 1 6 8 J a p a n

HEWLETT
PACKARD

5091-B156E

© Copr. 1949-1998 Hewlett-Packard Co.

	High-Efficiency Aluminum Indium Gallium Phosphide Light Emitting Diodes
	The Structure of LEDs: Homojunctions and Heterojunctions
	HP Task Broker: A Tool for Distributing Computational Tasks
	HP Task Broker and Computational Clusters
	Task Broker and DCE Interoperability
	HP Task Broker Version 1.1
	The HP-RT Real-Time Operating System
	An Overview of Threads
	Managing PA-RISC Machines for Real-Time Systems
	Context Switching in HP-RT
	Protecting Shared Data Structures
	The Shadow Register Environment
	C Environment
	The HP Tsutsuji Logic Synthesis System
	Designing a Scanner with Color Vision
	Mechanical Considerations for an Industrial Workstation
	Online CO2 Laser Beam Real Time Control Algorithm for Orthopedic Surgical Applications
	Online Defect Management via a Client/Server Relational Database Management System
	Client/Server Database Architecture
	Realizing Productivity Gains with C++
	Glossary
	Bridging the Gap between Structured Analysis and Structured Design for Real Time Systems

