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ABSTRACT 

Source Lines of Code (SLOC or LOC) is one of the most widely used sizing metrics in industry and 

literature.  It is the key input for most of major cost estimation models such as COCOMO, SLIM, and 

SEER-SEM.  Although the SEI and the IEEE have established SLOC definitions and guidelines to 

standardize counting practice, inconsistency in SLOC measurements still exists in industry and research.  

This problem causes the incomparability of SLOC metric among organizations and the inaccuracy of cost 

estimation.  This report presents a set of counting standards that defines what and how to count SLOC.  

Our experience with the development and use of the USC CodeCount™ toolset, a popular utility that 

automates the SLOC counting process, suggests that this problem can be alleviated by the use of a 

reasonable and unambiguous counting standard guide and with the support of a configurable counting 

tool. 

1. INTRODUCTION 

Size is one of the most important attributes of a software product.  It is not only the key indicator of 

software cost and time but also a base unit to derive other metrics for project status and software quality 

measurement.  According to Boehm et al’s survey on cost estimation approaches, size metric is used as an 

essential input for most of cost estimation models [1].  For example, COCOMO, SLIM, SEER-SEM, and 

PriceS all use SLOC; Checkpoint and other functionality based models use function points or other 

functional sizing units as size input.   

SLOC is the traditional and the most popular sizing metric.  Its long-standing tradition is due to the 

fact that SLOC is the direct result of programming work.  In the early age of software development, most 

of software cost was spent on programming, and SLOC emerged as the most perceivable indicator of 

software cost.  Unfortunately, SLOC has a number of shortcomings [3].  One significant deficiency is the 

lack of precise and methodical guideline for determining what SLOC means.  To mitigate this problem, 

researchers and practitioners have attempted to establish counting rules and framework.  In his COCOMO 

book in 1981, Dr. Boehm gave definitions of delivered source instructions (DSI) or delivered source lines 
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of code (DSLOC) to be used as primary size parameter for COCOMO model.  IEEE Standard for 

Software Productivity Metrics also provided definitions and attributes of SLOC size metrics [4].  Park 

with the Size Subgroup of the Software Metrics Definition Working Group and the Software Process 

Measurement Project Team of the Software Engineering Institute (SEI) at Carnegie Mellon University 

significantly extended SLOC metrics into a counting framework (hereafter SEI framework) which 

contains a set of counting definitions and checklists to use as a guideline [5].  The framework’s main 

objective is to provide counting methods that could be used to define a consistent and repeatable SLOC 

measurement.  However, because the framework focuses on what to count rather than on how many to 

count, it opens the door to a variety of interpretations and ambiguity in the development of counting tools.  

In this report, we present a set of counting rules that is adapted in the CodeCount™ toolset 

developed by USC’s Center for Systems and Software Engineering [6].  Our primary goal is to improve 

the applicability of SLOC metrics by clarifying and standardizing the process of counting SLOC.  The 

source of inconsistency in source code size is primarily attributed to ambiguity in counting logical rather 

than physical SLOC, hence the standard places emphasis on both what and how many to count for logical 

SLOC.  The SLOC counting standard is an extension of the SEI framework definition checklist set, 

whereby definitions of terms and classifications are analogous to those defined in the framework, IEEE 

standard, and COCOMO Source Statement Definition.  

Section 2 of this paper discusses the reasons and needs of a detailed code counting standard, 

Section 3 describes our proposed set of counting rules, and Section 4 offers some discussions and 

conclusions on the subject. 

2. NEEDS OF A DETAILED COUNTING STANDARD 

Determining what and how many to count is a problem that is not unique to software engineering.  

Albert Einstein once stated "Everything that can be counted does not necessarily count; everything that 

counts cannot necessarily be counted".  This statement may resonate with software metric developers who 

are faced with this dilemma when they try to establish rules for counting SLOC.  In almost 40 years of 

software development we went from a complete non-existence of means to estimate the size, 

performance, or complexity of software [3] to a multitude of software measures and tools [4].  Capers 

Jones, in the October 2004 CrossTalk article, stated that at least 75 commercial software cost estimating 

tools exist on the market, including COCOMO II, SEER-SEM, SLIM, True-S and CostExpert [7].  There 

are at least 20 SLOC counting applications, each producing different logical and physical SLOC count 

results.  This peculiarity demonstrates the deficiencies in current methods and techniques, and suggests 

that better tools are required to satisfy the needs of the software industry.  It is particularly true for 
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projects of large magnitude, where cost estimation depends on automatic procedures to generate 

reasonably accurate predictions. 

Conceptually, software is intangible.  How can we put a number on an abstract thought or a piece of 

logic that go into development of a product?  One solution to this conundrum is to simply count physical 

lines of code.  They are visible; they have clear beginning and ending points; they are not language-

dependent, and therefore could be counted rather easily.  On the other hand, this approach could be 

problematic as not all lines represent logical statements, the focal point of the counting software.  Some 

are used for formatting purposes while others guide the eye of a reader through the code or serve as 

separators between sections.  An alternative solution is to count logical SLOC. This method is less 

sensitive to format and programming styles, but its imprecise definition has been the source of contention 

among tool developers.  

Table 1. SLOC values of large files from three open source products 

CodeCount™ RSM LocMetrics Product (partial source 

code) 

 

Physical Logical Ratio Logical Ratio Logical Ratio 

OpenWbem 14,000 7,100 1.97 4,700 2.98 6,600 2.12

FlightGear 14,000 10,800 1.30 7,600 1.84 9,900 1.41

wxWidgets 50,300 30,700 1.64 21,300 2.36 27,300 1.84

 

Despite the enormous contributions by the IEEE, the SEI, and many industry specialists in 

formalizing and standardizing the counting process, tool developers have not reached consensus on a 

universal SLOC counting standard.   

Table 1 confirms this statement by showing SLOC values of a set of source files from three large 

open-source products generated by three popular counting applications: CodeCount™[10], RSM[11], and 

LocMetrics[12].  (The reason we chose those tools is because they support logical SLOC count and are 

readily available; RSM is a commercial application).  Logical SLOC counts produced by each tool for the 

same product differ significantly: CodeCount™ results are approximately 150% higher than the RSM 

counts, and are 110% higher than the LocMetrics numbers.   

Assuming that all drivers are nominal, COCOMO II effort calculation of logical SLOC values for 

wxWidgets product is 127 person-months for CodeCount™, 85 for RSM, and 112 for LocMetrics.  In 

other words, the effort estimate of logical SLOC counted by RSM and LocMetrics is respectively 67% 

and 88% of the CodeCount™ estimate.  This variation is significant considering that it is caused by the 
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use of the counting tool alone.  The main reason for this divergence is due to the use of different 

definitions for logical SLOC.  For example, CodeCount™ counts each compiler directive as a logical 

SLOC while LocMetrics does not.  Although each tool could have a set of defects that would account for 

some discrepancies, this prospect alone is not sufficient to produce these variances. 

Another observation that is worth noting is that the physical and logical ratios vary considerably 

from one product to another, attesting to differences in formatting and programming conventions among 

these projects.  The observations made with the products that we selected suggests that converting from 

physical to logical count using a fixed ratio is not a reasonable approach.    

Even though a vast difference in results is likely to be observed when one method is chosen over 

the other, it is a common practice for researchers and practitioners to simply use generic terms like SLOC 

or LOC, and to use physical and logical SLOC interchangeably.  Some papers cite the SEI framework as 

the baseline for their SLOC measure, without clarifying the fact that the framework includes both logical 

and physical SLOC and allows for variations in those counts. 

The SEI framework intends to establish precise definitions for the SLOC metrics, but leaves the 

decision up to the user on how to treat many special and language-specific cases.  For example, how 

many logical SLOC should be counted in the following cases?  

if (x > 0) { 

printf(“x is a positive number”); 

} 

and 

if (x > 0) printf(“x is a positive number”); 

Both blocks perform the same actions, checking the value of variable x and printing the statement to 

the standard output.  Intuitively, they should produce the same number of logical SLOC.  Depending on 

the interpretation of the SEI framework guidelines, one may end up with a different count for each case. It 

is foreseeable that two organizations follow the same SEI framework guidelines for counting the same 

product but may come up with a different SLOC measurement.    

Lack of specific details can result in ambiguity even when the same checklist or reference is being 

applied in the estimation effort.  In his classic PSP: a Self-Improvement Process for Software Engineers 

book, Watts Humphrey provides an example of C++ SLOC counting standard [9].  The standard requires 

one count for every occurrence of DO, WHILE, {} or };.  Strict adherence to the rule will produce three 

logical SLOC for the following statement.   
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do { 

} while(i!=0); 

Intuitively, one would likely count this block as a single logical SLOC. 

The results clearly demonstrate the effects of existing ambiguities in code counting methodology. 

Our intention is to fill this gap by providing an approach to counting SLOC.  Considering the fact that one 

of the top causes of software project failures is inaccurate estimates of required resources [8], which can 

result in a waste of billions of dollars, the development of better cost estimation models and techniques is 

in high demand.  

3. A DETAILED CODE COUNTING STANDARD 

3.1 What to Count  

Although SLOC count is not the sole contributor to cost estimation techniques and only serves as 

one of many inputs to common productivity assessment tools, it is a good measuring stick for several 

reasons.  SLOC serves as a foundation for a number of metrics that are derived throughout the software 

development cycle.  Given a well defined set of rules, the actual process of SLOC counting can be 

automated, reducing the time and effort required to produce an estimate.  Computed counts can be stored 

and re-used for future estimates and provide a good foundation for creating a baseline for new projects.   

Although there are many source-code-based metrics that are being proposed and used, such as 

McCabe’s Cyclometic Complexity or Halstead’s operand and operator, the examination of these metrics 

is beyond the scope of this paper.  Instead, we will concentrate our discussion on what to include and 

exclude in SLOC counting measures.  

The two most popular and accepted SLOC measures are the number of physical and logical lines of 

code.  The common definition of physical SLOC describes them as the lines that do not contain blanks or 

comments.  This count can be viewed as language-independent as it does not take in account syntactic and 

other variations between multitudes of programming languages.  The common definition of logical SLOC 

specifies the intention to measure statements, which would normally include lines that terminate by a 

semicolon.  Counting logical SLOC is performed independently of the physical format of the statements 

that are being counted.  It means that multiple logical statements could reside on one line, or that one 

logical statement could span multiple lines. Because of its advantages over physical SLOC, logical SLOC 

is recommended as a standard size input for COCOMO II cost estimation model [2]. 
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Table 2 below contains a modified portion of the Definition Checklist for Source Statements Count 

from the SEI framework, which lists a set of program elements to be included as contributors to SLOC 

measures. 

Table 2. Program elements included in physical and logical SLOC measures 

Measurement Unit 

Source statement type 

Executable 

Nonexecutable 

Declarations 

Compiler directives 

Comments 

Blank lines 

How produced 

Programmed 

Converted with automated translators 

Copied or reused without change 

Modified 

Origin 

New work 

Previous work: taken or adapted from 

A previous version, build, or release 

A reuse library (software designed for reuse) 

Other software component or library 

Usage 

In or as part of the primary product 

Delivery and Development status 

Delivered as source 

System tests completed 

Functionality  

Operative (accessible, in-use code) 

Functional (intentional dead code, reactivated for special purposes) 

Replications 

Master source statements (originals) 
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Physical replicates of master statements, stored in the master code 

Language 

Separate totals for each language 

 

3.2 How Many To Count 

In USC CodeCount™, logical SLOC measures the total number of source statements in the source 

program.  A source statement is considered as a block of code that performs some action at runtime or 

directs compilers at compile time [2][5].  Statements are classified into three types: executable, 

declaration, and compiler directive.  Executable statements are eventually translated into machine code to 

cause runtime actions while declaration and compiler directive statements affect compiler’s actions.   

USC CodeCount™ treats the source statement as an “atomic” and relatively independent unit, at 

least at source code level.  In other words, the statement is considered as the smallest increment of work 

that a programmer performs at a given unit of time.  In that sense, when the programmer constructs a 

statement, he has to write the statement and its sub-statements completely in order to be compliable; and 

when he deletes the statement, he has to delete its sub-statements.  Thus, simple and compound or 

structured statements end up with the same number of logical SLOC.   For example, the for statement, 

which consists of initialization, condition, and increment statements, is counted as one logical SLOC 

rather than three (one for each enclosed statement).  

The challenge of determining the beginning and the end of each statement complicates the method 

of counting logical SLOC. This difficulty stems from the syntactic and style differences in programming 

languages. At first glance it would appear that counting semicolons would solve the problem.  That is not 

so.  There is an abundance of popular languages that do not use semicolons or where semicolons are 

optional (SQL, JavaScript, Unix scripting languages, etc.)  In addition, semicolons do not always play a 

role of a statement terminator.  George E. Kalb, the original developer of USC CodeCount™, provided a 

list of definitions for the “almighty” semicolon; it included the following types: non-literal, terminal, 

limited terminal, essential, package body, all, and mixtures of the above [6].  Which ones should be 

counted and which ones should not be?  

Using the SEI framework and COCOMO II SLOC counting standards as our baseline, we took a 

step further and defined “how many of what” for a set of commonly used languages.   The effort included 

identification and grouping of different statement types within the category of executable instructions, 

defining the delimiters for each statement type, considering other source statements like data declarations 

and compiler directives. We attempted to provide as much commonality between the languages as 



 

 8  

possible to ensure consistency.  Tables 3 and 4 illustrate the summary of SLOC counting rules for logical 

lines of code defined for C/C++, Java, and C# programming languages.  Information for other common 

languages is provided in the Appendix.  (Each statement is classified into only one type.  The order of 

precedence specifies the priority a line is classified if it contains more than one type). 

Table 3. Physical and Logical SLOC Counting Rules 

 

Table 4. Logical SLOC Counting Rules for C/C++, Java, and C# 

Structure 
Order of 

Precedence 
Logical SLOC Rules 

SELECTION STATEMENTS: 

if, else if, else, “?” operator, try , 

catch, switch 

1 Count once per each occurrence. 

Nested statements are counted in the similar 

fashion.  

ITERATION STATEMENTS: 

For, while, do..while 

2 Count once per each occurrence. 

Initialization, condition and increment within the 

“for” construct are not counted. i.e.  

for ( i= 0; i < 5; i++)… 

In addition, any optional expressions within the 

“for” construct are not counted either, e.g.  

for (i = 0, j = 5; i < 5, j > 0; i++, j--)…  

Braces {…} enclosed in iteration statements and 

semicolon that follows “while” in “do..while” 

Measurement Unit 
Order of 

Precedence 
Physical SLOC Logical SLOC 

Executable lines 

Statements 1 One per line 
Language-specific 

(see Table 4) 

Non-executable lines 

Declaration (Data) lines 2 One per line One per declaration 

Compiler directives 3 One per line One per directive 
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Structure 
Order of 

Precedence 
Logical SLOC Rules 

structure are not counted. 

JUMP STATEMENTS:  

Return, break, goto, exit, continue, 

throw 

3 Count once per each occurrence. 

Labels used with “goto” statements are not 

counted. 

EXPRESSION STATEMENTS:  

Function call, assignment, empty 

statement 

4 Count once per each occurrence. 

Empty statements do not affect the logic of the 

program, and usually serve as placeholders or to 

consume CPU for timing purposes. 

STATEMENTS IN GENERAL:  

Statements ending by a semicolon 

5 Count once per each occurrence. 

Semicolons within “for” statement or as stated in 

the comment section for “do..while” statement 

are not counted. 

BLOCK DELIMITERS, BRACES  

 

6 Count once per pair of braces {..}, except where 

a closing brace is followed by a semicolon, i.e. 

};. 

Braces used with selection and iteration 

statements are not counted.  Function definition 

is counted once since it is followed by a set of 

braces. 

COMPILER DIRECTIVE 7 Count once per each occurrence. 

DATA DECLARATION 8 Count once per each occurrence. 

Includes function prototypes, variable 

declarations, “typedef” statements.  Keywords 

like “struct”, “class” do not count.   

 



 

 10  

4. DISCUSSION AND CONCLUSIONS 

Although SLOC is the oldest and widely accepted sizing metric, there is no universal counting 

standard that enforces a consistency of what and how to count SLOC.  There is no consensus on which 

elements of code to include and on how many they should be counted.  One of the reasons of this problem 

is the difficulty in defining consistent standard across different programming languages.  Another reason 

is the lack of details in SLOC counting definitions.  

The lack of uniform counting standard results in the incomparability in the SLOC metrics in 

industry and in research.  Products that are sized in SLOC are not comparable; and therefore the SLOC 

productivity is meaningful only within a project or an organization that uses the same counting standard.  

Software estimation models generate misleading results if they are built on a SLOC counting standard 

different from the one that was used for measuring SLOC size of the project being estimated.  

With the popularity of COCOMO and other estimation models using SLOC metrics, SLOC 

counting tools have become an important part of the estimation process.  SLOC tools help to reduce time 

and efforts in gathering software sizing data.  The use of tools improves accuracy and consistency in the 

data collection task.  The USC CodeCount™ is one of the most popular tools of its type, and it is one of 

the few utilities that support the logical SLOC count.  The CodeCount™ consists of a set of tools to count 

physical and logical SLOC, along with other metrics for the source program.    Based on our statistics, 

approximately 2,500 copies of the CodeCount™ toolset are being downloaded each year.  (This number 

does not include the downloads from the USC Affiliate members who can access the early releases of the 

toolset through a password-protected website).   

We described some problems associated with the current SLOC sizing practice by reviewing the 

SEI counting framework and conducting experimental analysis on three popular SLOC counting 

automation tools.  Just as the Function Points Analysis requires counting practices manual, SLOC 

counting method is in need of the universal SLOC counting guide.  To further this goal, we presented a 

SLOC counting standard that lies at the foundation of the USC CodeCount™ toolset, and which we are 

eager to share with the user community at large.  The wide acceptance of USC CodeCount™ motivates us 

to suggest its counting definition as a standard for industry and research. 
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APPENDIX 

This section provides counting rules for three common languages: PERL, JavaScript, and ANSI SQL-92. 

Table 5. Logical SLOC Counting Rules for PERL 

Structure 
Order of 

Precedence 
Logical SLOC Rules 

SELECTION STATEMENTS: 

If, elsif, else, unless, “?” operator 

 

1 Count once per each occurrence. 

Nested statements are counted in the similar 

fashion.   

ITERATION STATEMENTS: 

For, foreach, while, do..while, 

do..until 

2 Count once per each occurrence. 

Initialization, condition and increment within the 

“for” construct are not counted. i.e.  

for ( i= 0; i < 5; i++)… 
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Structure 
Order of 

Precedence 
Logical SLOC Rules 

In addition, any optional expressions within the 

“for” construct are not counted either, e.g.  

for (i = 0, j = 5; i < 5, j > 0; i++, j--)…  

Braces {…} enclosed in iteration statements and 

semicolon that follows “while” in “do..while” or 

“until” in “do..until”  structures are not counted. 

JUMP STATEMENTS:  

Return, last, next, goto, die, exit, 

continue 

3 Count once per each occurrence. 

Labels used with “goto” statements are not 

counted. 

EXPRESSION STATEMENTS:  

Function call, assignment, empty 

statement 

4 Count once per each occurrence. 

Empty statements do not affect the logic of the 

program, and usually serve as placeholders or to 

consume CPU for timing purposes. 

STATEMENTS IN GENERAL:  

Statements ending by a semicolon 

5 Count once per each occurrence. 

Semicolons within “for” statement or as stated in 

the comment section for “do..while” statement are 

not counted. 

BLOCK DELIMITERS, BRACES  

 

6 Count once per pair of braces {..}, except where a 

closing brace is followed by a semicolon, i.e. };. 

Braces used with selection and iteration statements 

are not counted.  Function definition is counted 

once since it is followed by a set of braces. 

COMPILER DIRECTIVE 7 Count once per each occurrence. 

DATA DECLARATION 8 Count once per each occurrence. 
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Table 6. Logical SLOC Counting Rules for JavaScript 

Structure 
Order of 

Precedence 
Logical SLOC Rules 

SELECTION STATEMENTS: 

If, else if, else, try , catch, with, 

switch 

 

1 Count once per each occurrence. 

Nested statements are counted in the similar fashion. 

ITERATION STATEMENTS: 

For, for..in, while, do..while 

2 Count once per each occurrence. 

Initialization, condition and increment within the 

“for” construct are not counted. i.e.  

for ( i= 0; i < 5; i++)… 

In addition, any optional expressions within the 

“for” construct are not counted either, e.g.  

for (i = 0, j = 5; i < 5, j > 0; i++, j--)…  

Braces {…} enclosed in iteration statements and 

semicolon that follows “while” in “do..while” 

structure are not counted. 

JUMP STATEMENTS:  

Break, continue 

3  

Count once per each occurrence. 

EXPRESSION STATEMENTS:  

Function call, assignment, empty 

statement 

4 Count once per each occurrence. 

Empty statements do not affect the logic of the 

program, and usually serve as placeholders or to 

consume CPU for timing purposes. 

STATEMENTS IN GENERAL:  

Statements ending by a semicolon 

5 Count once per each occurrence. 

Semicolons within “for” statement or as stated in the 

comment section for “do..while” statement are not 

counted. 

BLOCK DELIMITERS, BRACES  6 Count once per pair of braces {..}, except where a 

closing brace is followed by a semicolon, i.e. };. 
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Structure 
Order of 

Precedence 
Logical SLOC Rules 

 Braces used with selection and iteration statements 

are not counted.  Function definition is counted once 

since it is followed by a set of braces. 

DATA DECLARATION 7 Count once per each occurrence. 

Includes function prototypes, variable declarations. 

 

Table 7. Logical SLOC Counting Rules for ANSI SQL-92 

Structure 
Order of 

Precedence 
Logical SLOC Rules 

DATA STATEMENTS: 

SELECT  

UPDATE 

INSERT 

DELETE 

ALTER TABLE 

ALTER USER 

DECLARE 

FETCH 

CLOSE  

1 Count once per each occurrence. 

Nested statements are counted in the similar 

fashion.  Note that a SELECT may contain sub-

queries, which each is counted as one logical 

SLOC.  

SCHEMA STATEMENTS: 

CREATE 

CREATE TRIGGER 

CREATE SEQUENCE 

CREATE INDEX 

CREATE SYNONYM 

REPLACE 

COMMENT 

TRUNCATE 

RENAME 

2 Count once per each occurrence. 
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Structure 
Order of 

Precedence 
Logical SLOC Rules 

DROP 

GRANT 

REVOKE 

TRANSACTIONAL  STATEMENTS:  

COMMIT 

ROLLBACK 

3 Count once per each occurrence. 

CONDITIONAL STATEMENTS:  

WHERE 

GROUP BY 

ORDER BY 

HAVING  

LIMIT 

JOIN 

UNION 

4 Count once per each occurrence. 

 

DATA DECLARATION 5 Count once per each occurrence. 

Includes function prototypes, variable declarations, 

“typedef” statements.  Keywords like “struct”, 

“class” do not count.   

 

 


