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Chapter 1

Introduction to Interest Rates

1.1 Introduction

In equity option pricing we make the assumption throughout that interest rates were previsible.

This greatly simplifies discussions of hedging and replication, and allows the use of the Black-

Scholes analysis and framework. The major implication of this assumption concerns the numeraire

in the martingale pricing formula. Recall that the chosen numeraire is the money-market account

(continuous investment/borrowing at deterministic interest rates). On application of the assump-

tion, we could bring the numeraire B (T ) in the martingale pricing formula: f(0)
B(0) = Eℚ

0

[
f(T )
B(T )

]
1 out

of the expectation to evaluate the price of the derivative as: f (0) = B(0)
B(T )E

ℚ
0 [f (T )].

This equation forms the basis of the Black-Scholes solution. The measure Q is the so-called Risk

Neutral Measure, is unique, and implies that the stochastic processes for the underlying (default-

free) securities and their derivatives have an expected drift rate of r (the prevailing risk-free rate),

under Q. (In fact, under Q, ALL traded securities have an expected return of r!)

Despite our reservations, the model is extensively used, as seen for example in the extensive use of

the Black-Scholes formula for short-dated options. This is a consequence of the underlying stochastic

process (for the stock) being fairly remote from the stochastic process for the interest rate.

1Some notation: B(T ) is the amount of money that 1 at time 0 has grown to by time T , by continual reinvestment

at the short dated rate: B(⋅) is called the money market account, or simply the bank account. Usually this short

dated rate is taken to be the overnight rate, so money is placed in the overnight account, and left there, compounding

each day. Of course, by this, we mean the usual international meaning of the overnight account, in South Africa, a

true overnight rate does not exist, as discussed in West [2009].

Z(t, T ) is the discount factor for time T as observed at time t. It is known when we reach t, from the bootstrap of

the yield curve at that time. Often, t = 0, in which case we might abbreviate Z(0, T ) to Z(T ).

Z(0; t, T ) is the forward discount factor from time t to time T . As proved in West [2009], it is equal to
Z(0,T )
Z(0,t)

.

C(t, T ) is the capitalisation factor for time T as observed at time t. The same comments apply. C(0; t, T ) is the

forward capitalisation factor from time t to time T . As proved in West [2009], it is equal to
C(0,T )
C(0,t)

. Note that Z(⋅)
and C(⋅) are inverse.

We do not know the value of B(T ) at time 0 because interest rates are stochastic. When we price equity derivatives,

we assume that this stochasticity is removed, so B(⋅) = C(⋅).
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However, this cannot be the case when options and derivatives are written either on interest rates,

or on securities whose values are dependent on interest rates (e.g. bond options, swaps, caps, floors

etc.) In these cases, it is exactly the fluctuation of interest rates that the option buyer seeks to

hedge; so an assumption of constancy of interest rates makes little sense. In particular, the bond

option model we saw in West [2009] is very problematic.

As we saw in West [2009] vanilla type interest rate derivatives such as deposits (JIBAR deposits),

FRAs and swaps do not require interest rate modelling, as they are priced using pure no arbitrage

considerations. They can be replicated using instruments that pay certain cash flows in the future

and consequently require no statistical modelling at all. They do require an accurate yield curve,

though. Producing this is not always as simple a task as it would appear. We saw a (naively) simple

method in West [2009]. For more information on the subtle difficulties that can arise, see Hagan

and West [2006], Hagan and West [2008].

It will be assumed that you are perfectly familiar with all of the interest rate material dealt with in

West [2009].

In order to price more complicated interest rate products that include optionality, we need to arrive

at a statistical model of the evolution of the yield curve. The models we will consider in this course

model all interest rates as dependent on a single rate, often termed the short rate. The evolution

of the short rate then governs the evolution of all rates along the entire curve. However, this is

quite a task, as a change in the yield curve is a complicated phenomenon, since it may undergo

combinations of parallel shifts, slope changes and curvature changes.

These models are roughly divided into two categories: equilibrium models and no arbitrage models.

In the equilibrium approach, if the model can be trusted to give a fundamentally correct, albeit

necessarily simplified, description of economic reality then there will be discrepancies between model

and market values. According to the model these discrepancies will reflect trading opportunities!

Equilibrium Models attempt to describe the economy of interest rates as a whole. Clearly this

approach is quiet abstract, and is not much used - although there are some equilibrium models that

can be reformulated as no arbitrage models.

The pure no arbitrage approach seeks to represent the value of a complicated interest rate derivative

in terms of vanilla instruments or cash instruments. The prices of these vanilla instruments will be

taken as given and any model must recover their actual traded prices. No Arbitrage Models take the

market prices of vanilla products as basic building blocks, and infer from them more complicated

derivative prices. However, different models could give different prices of the more complicated

instruments, even though they recover the same prices for the vanilla instruments!

Another complicating feature is that we cannot buy and sell interest rates. THE UNDERLYING

OF THE MODEL IS NOT A TRADEABLE INSTRUMENT. The construction of a “replicating”

portfolio requires more thought: it isn’t just the delta and cash, as it is for equity: both of these

factors don’t perform as we would naively like. What we can buy and sell is bonds, whose prices

are themselves derivative of interest rates.

Initially, we examine default-free securities and the term structure of interest rates. Once we have

done this, we are in a position to model the movements of the yield curve.
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1.2 Day count conventions

Denote the generic period between two payment dates as � parts of a year. The rules could be

different for bonds and swaps, and even for the floating and fixed legs of the swaps. Moreover, the

rules differ by jurisdiction. The relevant markets are

• The bond market: the market for the issuing of treasury bonds. Day count conventions are

relevant for the accrual of interest and hence the conversions between clean and dirty price.2

• The money market: the market for FRAs and hence the market for the floating leg of swaps.

• The swap market: the market for the fixed leg of swaps.

The day count conventions in the various markets are as follows

spot/value date bond money fixed swap

RSA t, t+ 3 Actual/365 Actual/365 Actual/365

USA t+ 2 Actual/Actual Actual/360 30/360 3

UK t Actual/Actual Actual/365 Actual/365

Euro t+ 2 Actual/Actual Actual/360 30/360

Japan t+ 2 Actual/365 Actual/360 Actual/365

Canada t Actual/365 Actual/365 Actual/365

Australia t Actual/Actual Actual/365 Actual/365

where Actual/Actual appears in International Swaps and Derivatives Association [25 November

1998]. This is rather tricky, they point out that at the time there were three conflicting interpre-

tations of this rule. The approach taken thus needs to be recorded when a deal is made. The

approaches are a follows:

(i) ISDA Actual/actual (historical). Split the period of interest into the years in which it occurs.

For each year, divide the number of actual days in the period by the number of days in that

year. Day count is equal to the sum of these fractions.

For example, if the period is from 20 September 2003 to 20 March 2004, and we are now at

13 January 2004, then the period day count is 102
365 + 80

366 and the time elapsed day count is
102
365 + 13

366 .

(ii) AFB Actual/Actual Euro. The numerator is the actual number of days, the denominator is

either 365 or 366 depending on whether or not the period includes a 29 February.

In the above example, the period day count is 182
366 and the elapsed day count is 115

366 .

(iii) ISMA Actual/Actual Bond. This is the actual number of days, divided by the product of the

number of days in the period and the number of periods in the year.

2In fact it is unlikely that there will ever be a need for modelling the US Treasury curve. This is because then the

so-called TED spread needs to be measured i.e. the spread between the treasury and AAA curve, which is determined

by the swaps. Secondly, the US Treasury is retiring a lot of its debt, so the treasury curve is very illiquid.
3Actual/Actual and Actual/360 also occur.
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In the above example, the period day count is 1
2 (as there are two periods in a year) and the

elapsed day count is 115
182⋅2 .

This may be the most common convention, and is also known as ISMA Rule 251. Thus, for

this calculation let the start date of the period of interest be t1, the date of interest t, and the

end date of the period of interest be t2. Then on an Actual/Actual basis

Accrued period =
t− t1

(t2 − t1) ⋅ round( 365
t2−t1 , 0)

(1.1)

Period remaining =
t2 − t

(t2 − t1) ⋅ round( 365
t2−t1 , 0)

(1.2)

The EURIBOR quotation will be a representative rate for euro deposits based on quotations from

a pan-European panel of banks. The euro-LIBOR quotation will be a representative rate for euro

deposits based on quotations from a panel of 16 banks in the London market. The conventions for

both of these are the ‘Euro’ conventions above.

1.3 Coupon Bonds

Coupon-bearing bond issuers pay regular fixed interest payments to the holder of the bond on

specific dates (these are the coupons) as well as the par or face value at maturity. The bond value

at any time t must be the present value of both its face value and its coupons (the coupon rate is

pre-fixed e.g. the r153 has a 13% annual coupon, i.e. 6.5% of par value is paid out to the holder

every 6 months).

Suppose a bond pays amounts p1, p2, . . . , pn at times t1, t2, . . . , tn. (pi does not necessarily

mean coupon here, for example, cn could be the coupon and bullet.) The current bond price V is

the sum of the present values of all payments i.e.

V =

n∑
i=1

piZ(0, ti) (1.3)

The act of regarding each coupon as a separate zero ensures arbitrage-free pricing. If this were not

true, the coupon bond could be synthetically replicated using zero-coupon bonds. This replication

is obviously not practically as straightforward as is made out here.

1.4 Yield-to-Maturity

Coupon-bearing bond prices are often quoted in terms of their yield-to-maturity. This is defined as

an interest rate per annum that equates the present value of the bond’s associated cash flows to the

current market price. There exists a terminology confusion here because the yield-to-maturity of a

coupon bond does not correspond directly to any value on the zero-coupon yield curve, in particular,

it is not the value at the maturity (or duration, to be defined later) on the yield curve, even taking

into account possible conversion between different NAC* quoting methods.

The yield-to-maturity is merely a convenient way of expressing the price of a coupon-bearing bond

in terms of a single interest rate. In some rough sense, the YTM represents a weighted average of

the interest rates along the current zero-coupon yield curve.
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If payments are made semi-annually (the most common) then y - the semi-annually compounded

yield-to-maturity - is implicitly defined by:

V =

n∑
i=1

pi
(1 + y

2 )2ti
(1.4)

where there are payments p1, p2, . . . , pn; the payment pi occurs at time ti, and time is measured

in years.

The market observables are the bond prices V , so the value for y must be calculated numerically.

(1.4) cannot be inverted, but Newton’s method comes to the rescue. The yield-to-maturity is the

holding period return per annum on the coupon bond.

Using the effective yield-to-maturity as the interest rate offered by the bond, implicitly assumes

that coupon reinvestment takes place at the semi-annual yield-to-maturity over the bond life. In a

world of changing interest rates it is unlikely that this will happen: there is no guarantee that the

ytm was an actual market rate at any reinvestment date, even if the yield curve does not change.

Nevertheless, the yield to maturity is a very useful concept: it enables a first order fair comparison

of different bonds trading simultaneously. So,

• Typically, the market will trade on price, but market participants will want to know the yield

to maturity of the instruments they are trading - they require a yield-given-price algorithm.

Here they use Newton’s method.

• Less typically (such as in South Africa) the market will trade on yield. We then require a very

precise formula for converting from yield to price, in order to determine the cash flows required

at the bond exchange. For repos/carrys, the yield-given-price algorithm will be needed anyway.

1.5 Term Structure of Default-Free Interest Rates

The term structure of interest rates is defined as the relationship between the yield-to-maturity on

a zero coupon bond and the bond’s maturity. If we are going to price derivatives which have been

modelled in continuous-time off of the curve, it makes sense to use continuously-compounded rates

from the outset.

Building a yield curve from existing data is a difficult task. The liquidity of the market plays a

large part in determining whether the exercise can be done. For US Bond market it is only on-

the-run bonds (last auctioned) which will give the most accurate indication of where yields are. In

South Africa this task is doubly difficult and requires some econometric artistry. South Africa has

a sophisticated and liquid swap market. This makes swap rates a better starting point for a yield

curve model.

The results of bootstrapping will be near unique in liquid markets, but there may be significant

variation in less liquid markets or markets with fewer inputs.

In so-called normal markets, yield curves are upwardly sloping, with longer term interest rates being

higher than short term. A yield curve which is downward sloping is called inverted. A yield curve

with one or more turning points is called mixed. Constructing a yield curve consists of solving (1.3)

for the discount factors Z(0, t) in a piecewise fashion starting with the shortest maturity instruments

8



and progressing to the longer-dated coupon-bearing instruments. A mixed yield curve is shown in

Figure 1.1. The discount factors are also shown.

The South African yield curve typically has two to four turning points. It is often stated that such

mixed yield curves are signs of market illiquidity or instability. This is not the case. Supply and

demand for the instruments that are used to bootstrap the curve may simply imply such shapes.

However, many of the models that we see later in this course are driven by one factor - and intuitively

this is clearly best suited to a normal or inverted curve (because, essentially, the model dictates that

when the curve moves, it more or less moves in parallel). Thus, these models need to be analysed

carefully for their suitability in the South African market: see Svoboda [2002].

Figure 1.1: Some yield curves and their discount functions

The shape of the graph for Z(0, t) does not reflect the shape of the yield curve in any obvious way.

The discount factor curve must - by no arbitrage - be monotonically decreasing whether the yield

curve is normal, mixed or inverted. Nevertheless, many bootstrapping and interpolation algorithms

for constructing yield curves miss this absolutely fundamental point. See Hagan and West [2006],

Hagan and West [2008].

1.6 The par bond curve

Suppose the bond pays ANNUAL coupons of Rn at times t1, t2, . . . , tn, with the bullet being at

time tn. The inter-coupon times are �i, so the itℎ payment is in fact Rn�i. For it to be a par bond,

we must have

1 = Z(0, tn) +

n∑
i=1

Rn�iZ(0, ti) (1.5)

We now have a function tn → Rn which maps maturity dates to the requisite coupon size. This

function is called the par bond curve.

But this should look familiar, and we didn’t choose Rn as the notation for the annual coupon size

by chance. You see that this is EXACTLY the curve of fair swap rates trading in the market.
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Remember that the value of the itℎ floating payment is

V ifloat = Z(t, ti−1)− Z(t, ti)

= Z(0, ti)

[
C(0, ti)

C(0, ti−1)
− 1

]
= Z(0, ti)�if

s
i

where fsi is the simple forward rate for the period [ti−1, ti]. Thus

Vfix = Rn

n∑
i=1

Z(t, ti)�i

Vfloat =
n∑
i=1

Z(0, ti)�if
s
i

as as these are equal, we have

Rn =

n∑
i=1

wif
s
i (1.6)

wi =
Z(t, ti)�i∑n
j=1 Z(t, tj)�j

(1.7)

Thus the par coupon rates are a weighted average of the simple forward rates along the life of the

bond, where the weights are decreasing. On the other hand, we have

er� =

n∏
i=1

ef
c
i �i

and so

r =

n∑
i=1

�i
�
f ci (1.8)

where now f ci is the continuous forward rate for the period [ti−1, ti], and so the zero rates are an

almost equally weighted average of the continuous forward rates along the life of the bond.

Allowing for the difference in compounding conventions, we see in general that if the yield curve is

normal then the par curve is below the zero curve which is below the forward curve, while if the

yield curve is inverted, then the par curve is above the zero curve which is above the forward curve.

1.7 Reminder: Forward Rate Agreements

These are the simplest derivatives: a FRA is an OTC contract to fix the yield interest rate for some

period starting in the future. If we can borrow at a known rate at time t to date t1, and we can

borrow from t1 to t2 at a rate known and fixed at t, then effectively we can borrow at a known rate

at t until t2. Clearly

C(t, t1)C(t; t1, t2) = C(t, t2) (1.9)
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is the no arbitrage equation: C(t; t1, t2) is the forward capitalisation factor for the period from t1

to t2 - it has to be this value at time t with the information available at that time, to ensure no

arbitrage.

In a FRA the buyer or borrower (the long party) agrees to pay a fixed yield rate over the forward

period and to receive a floating yield rate, namely the 3 month JIBAR rate. At the beginning of

the forward period, the product is net settled by discounting the cash flow that should occur at the

end of the forward period to the beginning of the forward period at the (then current) JIBAR rate.

This feature - which is typical internationally - does not have any effect on the pricing.

t t1 t2

?

Figure 1.2: A long position in a FRA.

In South Africa FRA rates are always quoted for 3 month forward periods eg 3v6, 6v9, . . . , 21v24

or even further. The quoted rates are simple rates, so if f is the rate, then

1 + f(t2 − t1) = C(t; t1, t2) =
C(t, t2)

C(t, t1)
(1.10)

Thus

f =
1

t2 − t1

(
C(t, t2)

C(t, t1)
− 1

)
(1.11)

1.8 The continuous forward curve

Using continuous rates, the forward rate governing the period from t1 to t2, denoted f(0; t1, t2)

satisfies

exp(−f(0; t1, t2)(t2 − t1)) = Z(0; t1, t2) :=
Z(0, t2)

Z(0, t1)

Immediately, we see that forward rates are positive (this is equivalent to the discount function

decreasing). We have either of

f(0; t1, t2) = − ln(Z(0, t2))− ln(Z(0, t1))

t2 − t1
(1.12)

=
r2t2 − r1t1
t2 − t1

(1.13)

Let the instantaneous forward rate for a tenor of t be denoted f(t), that is, f(t) = lim�↓0 f(0; t, t+�),

for whichever t this limit exists. Clearly then

f(t) = − d

dt
ln(Z(t)) (1.14)

=
d

dt
r(t)t (1.15)

11



So f(t) = r(t) + r′(t)t, so the forward rates will lie above the yield curve when the yield curve is

normal, and below the yield curve when it is inverted. By integrating,4

r(t)t =

∫ t

0

f(s) ds (1.16)

= r(ti−1)ti−1 +

∫ t

ti−1

f(s) ds (1.17)

Z(t) = exp

(
−
∫ t

0

f(s) ds

)
(1.18)

Also

fdi :=
riti − ri−1ti−1

ti − ti−1
=

1

ti − ti−1

∫ ti

ti−1

f(s) ds (1.19)

which shows that the average of the instantaneous forward rate over any interval [ti−1, ti] is equal

to the discrete forward rate for that interval.

1.9 The raw interpolation method for yield curve construc-

tion

This method corresponds to piecewise constant forward curves. This method is very stable, is trivial

to implement, and is usually the starting point for developing models of the yield curve. One can

often find mistakes in fancier methods by comparing the raw method with the more sophisticated

method.

By definition, raw interpolation is the method which has constant instantaneous forward rates on

every interval ti−1 < t < ti. From (1.19) we see that that constant must be the discrete forward

rate for the interval, so f(t) = riti−ri−1ti−1

ti−ti−1
for ti−1 < t < ti. Then from (1.17) we have that

r(t)t = ri−1ti−1 + (t− ti−1)
riti − ri−1ti−1

ti − ti−1

By writing the above expression with a common denominator of ti − ti−1, and simplifying, we get

that the interpolation formula on that interval is

r(t)t =
t− ti−1

ti − ti−1
riti +

ti − t
ti − ti−1

ri−1ti−1 (1.20)

which explains yet another choice of name for this method: ‘linear rt’; the method is linear interpo-

lation on the points riti. Since ±riti is the logarithm of the capitalisation/discount factors, we see

that calling this method ‘linear on the log of capitalisation factors’ or ‘linear on the log of discount

factors’ is also merited.

This raw method is very attractive because with no effort whatsoever we have guaranteed that all

instantaneous forwards are positive, because every instantaneous forward is equal to the discrete

forward for the ‘parent’ interval. This is an achievement not to be sneezed at. It is only at the

points t1, t2, . . . , tn that the instantaneous forward is undefined, moreover, the function jumps at

that point.

4We have r(s)s+ C =
∫
f(s) ds, so r(t)t = [r(s)s]t0 =

∫ t
0 f(s) ds.
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1.10 Traditional Measures of Interest Rate Risk

Traditionally interest rate (bond) traders used two measures of interest rate risk.

1.10.1 (Macauley) Duration and Modified Duration

Bonds might alternatively be priced not off of the yield curve but using a NACS yield to maturity.

What happens then? Suppose our bond is priced NACn, then

V (y) =

n∑
i=1

pi
(1 + y

n )nti

This time

wt =

pi(
1+

y
n

)nti

V

and D =
∑n
i=1 tiwi is as before. But now something changes. This time

dV

dy
= − 1

1 + y
n

n∑
i=1

tipi
(1 + y

n )nti

so it is not true that dV
dy = −DV . So what we do is define a new quantity, called modified duration

Dm, by:

DmV =
1

1 + y
n

n∑
i=1

tipi
(1 + y

n )nti
(1.21)

so

dV

dy
= −DmV (1.22)

We also have the definition of the dollar duration

D$ = DmV (1.23)

Also, note that

Dm =
D

1 + y
n

(1.24)

As n → ∞, the correction between duration and modified duration disappears, and they become

the same thing for NACC rates.

1.10.2 Convexity

Of course there is a non-linear relationship between the bond price and the yield-to-maturity. For

small shifts in yield, the first order duration calculation is a good measure of the sensitivity of the

bond price. If Δy is large, the approximation is no longer accurate.

Using a Taylor expansion to second-order we can define convexity.

ΔV = V (y + Δy)− V (y)

=
dV

dy
Δy + 1

2

d2V

dy2
(Δy)

2
+O

(
Δy3

)
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and now convexity C is defined as

CV =
d2V

dy2
(1.25)

so we have
ΔV

V
= −DmΔy + 1

2CΔy2 +O
(
Δy3

)
(1.26)

1.10.3 Problems with these measures

Because the yield-to-maturity is, in some sense, a measure of the average rate of interest represented

by the yield curve with respect to the bond in question, information about more subtle yield curve

shifts is lost. It is possible for the change in the yield-to-maturity to mask the underlying zero

coupon curve fluctuations.

By using duration measurements as interest rate risk measurement across different bonds, it is

assumed that each bond experiences the same yield-to-maturity shift as the yield curve moves. This

only occurs if the zero coupon curve moves in a parallel fashion i.e. the whole curve moves up or

down. We have already discussed how, in general, this is not the case. Furthermore, for large yield

shifts, the convexity correction will not capture the price shift, so by using this measure we are

trapped in a small-movement, parallel-shift regime. This makes for näıve hedging.

1.10.4 pv01

The pv01 of an instrument is how much its price changes when the yield changes by 1 basis point.

We also discard the minus sign. Since a basis point is 0.0001, a general result is that

pv01 = −0.0001
dV

dy
(1.27)

If we are considering a bond, then using (1.23) we have

pv01 = 0.0001D$ (1.28)

Alternatively, if we have a yield curve, then it is the change in price when the curve moves in parallel

by 1 basis point. Then

pv01 = −0.0001
dV

dr
(1.29)

Duration calculations can give silly results, and usually the task at hand can best be handled with

pv01 instead.

For example, what is the duration of a swap? We can calculate ∂V
∂y , but to get the duration we must

(negate and) divide by V , which could be close to (or exactly!) 0, and hence we have numerical

instability. Rather we should stick to the pv01 calculation and be done with it.

Usually the duration calculation should be done at the portfolio level, and then a swap should be

split up as short a fixed coupon bond and long a floating rate note. The fixed coupon bond duration

is found as normal and the floating rate note has a duration which is at most the time to the next

reset.

14



If one wants to have a robust definition of the duration of a swap on a stand alone basis, one should

say it is the duration of the floating rate note minus the duration of the fixed coupon bond. The

pv01 of a just starting swap is equal to the duration of the short fixed coupon bond, because the

duration of a just starting floating rate note is 0.

1.11 Exercises

1. The current discount rate, assuming a 360 day year, on a 90-day bill is 3.5%. The face value

is $1 million.

(a) What is the price of the bill?

(b) If the discount rate increases by one basis point to 3.51%, what is the change in the price

of the bill?

(c) If the discount rate decreases by one basis point to 3.49% percent, what is the change in

the price of the bill?

(d) Is the price function symmetric?

2. The continuously-compounded yield on a deposit which pays one million ZAR in 363 days’

time is 8.55%.

(a) What is the current value of the deposit?

(b) What is the yield expressed as a simple interest rate, assuming a 365 day year?

3. The current discount rate on a 91-day bill is 3.68 percent, assuming a 360 day year. What is

the simple interest rate, assuming a 365 day year?

4. Use excel to find the ytm of a NACS bond. So, the inputs are a bunch of cash flows, their

dates of payment, today’s date, and the total cash price; the output needs to be the ytm.

Make sure that not only newly issued bonds can be catered for. Use an actual/365 day count.

Write a macro which, each time it is played, calculates the next estimate of the ytm, based

on the previous one, using the Newton-Bailey method.

5. Write a vba function that, given

(a) period start date;

(b) current date;

(c) period end date;

(d) day count convention (abbreviated name).

will calculate the portion of the year already elapsed.

6. Show that if a newly issued bond prices at par then the ytm is equal to the coupon (with the

frequency of the ytm being the frequency of the coupon).

7. Create a spreadsheet which, given the yield curve as input, calculates the par bond curve and

the forward curve. Graph and label all three curves.
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8. Create a spreadsheet that given a set of semi-annual bond cash flows with their dates, the ytm

of the bond, and today’s date, can calculate the duration, modified duration, and convexity

of the bond. The bond is not necessarily newly issued. Use an actual/36 day count. Fill out

the cash flows for the r153 and compare the answers you get with the answers you get from

your SAFM bond calculator.

9. A similar exercise: create a spreadsheet that given the yield curve values, a set of semi-annual

bond cash flows with their dates, and today’s date, can calculate the duration and convexity

of the bond. Do not calculate a ytm.
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Chapter 2

Discrete-time Interest Rate Models

2.1 Introduction

The problem of interest rate derivatives can be approached broadly in one of two ways. We can

either model the interest rate process or the bond price process. If we are modelling the interest rate

process, then we must decide which interest rate(s) it is that we will model. In either case, there

are consistency conditions that must hold because of the structure of the yield curve: in particular,

implied forward rates should be positive.

In a discrete-time framework, we can use a similar model to that used in the binomial model of stock

price movements to model the bond prices and/or the interest rates. Modelling the price of the bond

requires us to ensure that the process is arbitrage-free, consistent with the initial term-structure

and obeys the boundary condition - that the price of a maturing bond is par, plus possibly the final

coupon.

In this chapter we will model the evolution of the short-rate (defined as the continuously-compounded

rate over Δt, the discrete time period for the lattice). The yield curve evolution is then governed

by one underlying factor. Substantial literature is devoted to multifactor models, where either more

than one source of uncertainty is modelled (usually principle components or their proxies), or the

evolution of the entire forward curve is modelled.

One-factor models are simple and tractable but they are not very flexible. In particular, they will

be hampered by their inability within the model for certain yield curve shapes to occur. In the most

simple models interest rates can become negative.

2.2 The basic lattice construction

Consider the following NACC term structure, with Δt = 1:

i 1 2 3 4 5 6 7 8

ri 6.1982% 6.4030% 6.8721% 7.0193% 7.2000% 6.9000% 6.9000% 7.0000%

�i 1.7000% 1.5000% 1.1000% 1.0000% 1.0000% 1.0000% 1.1000%
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The risk free rate ri is the NACC rate for the period [0, ti].

The volatilities are not the bond price volatilities. They are also not the volatilities of the risk free

rates that are from my yield curve bootstrap. They are the forward volatilities of the spot rate

(over Δt) over the time period [ti, ti+1], given the spot rates at time t = 0. In other words, they are

the volatilities for the short rate for the period [ti, ti+1] that will be observed at time ti.

Of course, there is no �0: the spot rate for the period from time 0 = t0 to time t1 = Δt is known.

Similarly, given that the horizon in the above example is t8, the volatility in the period [t8, t9] is

irrelevant.

We use binomial trees for the Δt rate, the general notational convention of a tree will be as in Figure

2.1.

(0, 0)��*HHj

(0, 1)��*HHj

(1, 1)��*HHj

(0, 2)��*HHj

(1, 2)��*HHj

(2, 2)��*HHj

(0, 3)��*HHj

(1, 3)��*HHj

(2, 3)�
�*
HHj

(3, 3)�
�*
HHj

(0, 4)�
�*
HHj

(1, 4)��*HHj

(2, 4)��*HHj

(3, 4)��*HHj

(4, 4)��*HHj

(0, 5)��*HHj

(1, 5)��*HHj

(2, 5)��*HHj

(3, 5)�
�*
HHj

(4, 5)�
�*
HHj

(5, 5)�
�*
HHj

(0, 6)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

Figure 2.1: General node notation for binomial trees

Using the binomial assumption the spot rate in Δt time takes one of two values: rt(0, 1) or rt(1, 1),

corresponding are the discount factors Zt(0, 1) and Zt(1, 1).1

2.3 Normal Distribution (Ho-Lee model)

The values we use here will be seen to be consistent with assuming that the spot rate process is

normally distributed: this is the Ho and Lee model Ho and Lee [1986].

1The superscript t means ‘tree’, in order to avoid confusion with the original discount factors from the original

yield curve. Zt(i, j) is the discount factor for the following Δt period given that we have evolved to node (i, j). So

Zt(0, 0) = Z(0, t1) (!!).
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Using martingale pricing theory on bond prices (analogously to stock prices) we know that there

exists a unique probability measure Q = {�} such that the bond price normalised by the money-

market account follows a martingale. Under the martingale measure, the current forward bond price

is the expected price. Then

Z(0, 2) = Eℚ
0 [Z(1, 2)Z(0, 1)]

= Z(0, 1)Eℚ
0 [0]Z(1, 2)

= Z(0, 1)[�Zt(0, 1) + (1− �)Zt(1, 1)] (2.1)

where � denotes the probability of an up move and 1− � the probability of a down move.

Now the interest rates rt(1, 1) and rt(0, 1) must match the volatility term structure. Note that in

general, if a variable r can take on two values, a and b, with a > b, and with probabilities � and

1− � respectively, then the variance of r is given by

variance(r) = Eℚ[r2
]
− (Eℚ[r])2

= �a2 + (1− �)b2 − (�a+ (1− �)b)2

= (a− b)2�(1− �) (2.2)

So, it is very good idea to assume that � = 1
2 . (As usual, the model has three free parameters and

is matching two characteristic equations, the mean and variance. So there is one degree of freedom,

which we now use up.) Then

Z(0, 2) = Z(0, 1) 1
2 [e−a + e−b]

stdev(r) = 1
2 (a− b)

which is two equations in two unknowns, and solves easily:2 rt(1, 1) = 8.3223%, rt(1, 0) = 4.9223%.

Now extend the lattice from one to two years, and assume that the volatility is time-dependent

but not state-dependent (i.e. volatility varies from left to right and not from top to bottom).

Furthermore, we will require that the tree recombines. This information is enough to calibrate the

tree in closed inductive form.

But first, in order to explore a bit further, some information from heaven: guess that the values for

the short-rate at time t = 2 are rt(2, 2) = 10.8523%, rt(1, 2) = 7.8583% and rt(0, 2) = 4.8583%.

What do we need to do to check that this heavenly information is correct? First, and easily, the

volatility structure:

1
2 (rt(2, 2)− rt(1, 2)) = 1

2 (0.108583− 0.078583) = 0.015

1
2 (rt(1, 2)− rt(0, 2)) = 1

2 (0.078583− 0.048583) = 0.015

Now,

Z(0, 3) = Z(0, 1)Eℚ
0 [Z(1, 3)]

= Z(0, 1)Eℚ
0 [Z(1, 2)Z(2, 3)]

= Z(0, 1)[ 1
2Z

t(1, 1)Eℚ
0 [Z(2, 3)∣(1, 1)] + 1

2Z
t(0, 1)Eℚ

0 [Z(2, 3)∣(0, 1)]]

= Z(0, 1)[ 1
2Z

t(1, 1) 1
2 [Zt(2, 2) + Zt(1, 2)] + 1

2Z
t(0, 1) 1

2 [Zt(1, 2) + Zt(0, 2)]

2It doesn’t solve easily because it is two equations in two unknowns; that fact means that there should be a

solution. The ease of the solution comes from convenient facts of the exponential.

19



Exercise 2.3.1. We know from the previous steps the values of Z(0, 1), Zt(1, 1) and Zt(0, 1). Check

that the heavenly values work in the above equation.

This makes the model parameters consistent with all the market information provided, and hence

the model is arbitrage free.

2.4 Formalising the Lattice Construction

We will have the binomial lattice of discount factors Zt(i, j), which are the discount factors over the

following period if at time j we are in state i. Typically the periods are three months apart. Here

i is a state (vertical) index and j is a time (horizontal) index.

Let �(j) be the annualised volatility of the Δt month forward rates for the period [tj , tj+1]. In the

absence of implied information, the volatilities can only be calibrated via an historical analysis of

the yield curve. This volatility will be calibrated under the Ho-Lee type assumption of normality of

interest rates i.e. one takes differences of rates rather than log differences of rates in the calculation

estimating standard deviations. Nevertheless, the square root of time rule for volatilities still applies,

because we are assuming a Brownian evolution of the rate.

In the Ho-Lee model, there are equal probabilities for evolving to the two subsequent nodes in the

tree, and furthermore by a normality assumption the difference in adjacent interest rates at time j

for the period from then to time j + 1 is independent of the state i, so

rt(i+ 1, j) = rt(i, j) + 2�(j)
√

Δt (2.3)

Hence

Zt(i+ 1, j) = Zt(i, j)E(j) (1 ≤ i ≤ j − 1) (2.4)

E(j) := exp
[
−2�(j)Δt3/2

]
(2.5)

To proceed, define new variables �(i, j). This variable is called the Arrow-Debreu price, and is the

price at time 0 of a security that pays off exactly one if we pass through the node (i, j), the payoff

occurring at the moment of passing through. Thus

�(0, 0) = 1 (2.6)

�(0, j) = 1
2�(0, j − 1)Zt(0, j − 1) (2.7)

�(i, j) = 1
2�(i− 1, j − 1)Zt(i− 1, j − 1) + 1

2�(i, j − 1)Zt(i, j − 1) (0 < i < j) (2.8)

�(j, j) = 1
2�(j − 1, j − 1)Zt(j − 1, j − 1) (2.9)

Now, by no arbitrage we have

Z(0, (j + 1)Δt) =

j∑
i=0

�(i, j)Zt(i, j) (2.10)

and now recalling (2.4) we have

Z(0, (j + 1)Δt) =

j∑
i=0

�(i, j)Zt(i, j) = Zt(0, j)

j∑
i=0

�(i, j)E(j)i
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�(i, j) 0 1 2 3 4 5 6 7 8

0 1.0000 0.4699 0.2237 0.1065 0.0511 0.0245 0.0122 0.0060 0.0030

1 0.4699 0.4399 0.3099 0.1963 0.1170 0.0692 0.0396 0.0223

2 0.2162 0.3003 0.2830 0.2230 0.1636 0.1113 0.0724

3 0.0970 0.1813 0.2126 0.2061 0.1737 0.1342

4 0.0435 0.1013 0.1460 0.1627 0.1553

5 0.0193 0.0552 0.0914 0.1151

6 0.0087 0.0285 0.0533

7 0.0038 0.0141

8 0.0016

Zt(i, j) 0 1 2 3 4 5 6 7

0 0.9399 0.9520 0.9526 0.9586 0.9606 0.9946 0.9891 0.9971

1 0.9201 0.9244 0.9377 0.9416 0.9749 0.9695 0.9754

2 0.8971 0.9173 0.9229 0.9556 0.9503 0.9541

3 0.8974 0.9046 0.9366 0.9315 0.9334

4 0.8867 0.9181 0.9130 0.9131

5 0.8999 0.8949 0.8932

6 0.8772 0.8738

7 0.8547

rt(i, j) 0 1 2 3 4 5 6 7

0 6.198% 4.922% 4.858% 4.231% 4.023% 0.545% 1.100% 0.295%

1 8.322% 7.858% 6.431% 6.023% 2.545% 3.100% 2.495%

2 10.858% 8.631% 8.023% 4.545% 5.100% 4.695%

3 10.831% 10.023% 6.545% 7.100% 6.895%

4 12.023% 8.545% 9.100% 9.095%

5 10.545% 11.100% 11.295%

6 13.100% 13.495%

7 15.695%

Figure 2.2: The Ho-Lee trees associated with the given data

Zt(0, j) =
Z(0, (j + 1)Δt)∑j
i=0 �(i, j)E(j)i

(2.11)

Thus our recursion is as follows, at time step j:

(a) Calculate �(i, j) for 0 ≤ i ≤ j from (2.6), (2.7), (2.8) and (2.9).

(b) Calculate Zt(0, j) from (2.11).

(c) Calculate Zt(i, j) for 1 ≤ i ≤ j from (2.4).

Exercise 2.4.1. Verify Figure 2.2 for the given data.
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2.5 Lognormal Distribution (Black-Derman-Toy model)

Discrete time models of interest rates where the forward rates are lognormally distributed are usually

taken to be some variation of Black et al. [1990]. The problem with the normality assumption in the

previous section is that it is possible for interest rates to become negative (even if a mean reversion

factor is introduced). Clearly, a lognormal assumption precludes this.

Assume now that the logarithm of the spot rate is normally distributed, and the volatility parameter

pertains to the logarithms of the interest rates rather than the interest rates themselves. So now

ln rt(i+ 1, j) = ln rt(i, j) + 2�(j)
√

Δt

rt(i+ 1, j) = rt(i, j) exp(2�(j)
√

Δt) (2.12)

Hence

Zt(i+ 1, j) = Zt(i, j)E(j) (1 ≤ i ≤ j − 1) (2.13)

E(j) := exp
[
2�(j)

√
Δt
]

(2.14)

which are calculated in advance. To proceed, again define new variables �(i, j) exactly as before:

(2.6), (2.7), (2.8), (2.9) and (2.10) are unchanged. Thus

Z(0, (j + 1)Δt) =

j∑
i=0

�(i, j)Zt(i, j) =

j∑
i=0

�(i, j)Zt(0, j)E(j)i

which does not have a closed form solution. Hence, we need to solve this for Zt(0, j) numerically.

Let x = Zt(0, j). Using Newton’s method, we solve

x1 = Zt(0, j − 1)

xn+1 = xn −
∑j
i=0 �(i, j)x

E(j)i

n − Z(0, (j + 1)Δt)∑j
i=0 �(i, j)E(j)ix

E(j)i−1
n

Convergence here is extremely rapid: to double precision in 3 or 4 iterations. The Newton function

above is near linear (in a very wide range). Moreover, the iteration can be performed simultaneously

across all j.

Note that the term structure of volatilities in this lognormal model will reflect higher values than

those under the normality assumption. We see this via the following:

ln[r + Δr]− ln[r] = ln[r(1 + Δr
r )]− ln[r]

= ln[1 + Δr
r ]

≃ 3 Δr
r

for small Δ. This implies that,

�lognormal = 4�normal

r
(2.15)

3Recall that the Taylor series of ln(1 + x) is x− 1
2
x2 + 1

3
x3 + ⋅ ⋅ ⋅ .

4So, the classic rule of thumb in South Africa: to get from market volatilities to ballpark Ho-Lee volatilities: knock

off a decimal place. Quoted volatilities will be lognormal because use of Black’s model is the default: see Chapter 3.
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Exercise 2.5.1. Assume the following initial data, with Δt = 1
4 :

i 1 2 3 4 5 6 7 8

ri 6.1982% 6.4030% 6.8721% 7.0193% 7.1000% 7.2021% 7.3120% 7.3000%

�i 20.0000% 18.0000% 17.0000% 17.0000% 17.0000% 17.0000% 17.0000%

Check Figure 2.1.

�(i, j) 0 1 2 3 4 5 6 7 8

0 1.0000 0.4923 0.2425 0.1193 0.0588 0.0290 0.0143 0.0071 0.0035

1 0.4923 0.4842 0.3568 0.2342 0.1443 0.0854 0.0492 0.0278

2 0.2417 0.3556 0.3496 0.2870 0.2121 0.1465 0.0966

3 0.1181 0.2319 0.2851 0.2806 0.2419 0.1912

4 0.0577 0.1416 0.2087 0.2396 0.2365

5 0.0281 0.0827 0.1422 0.1870

6 0.0136 0.0468 0.0923

7 0.0066 0.0260

8 0.0032

Zt(i, j) 0 1 2 3 4 5 6 7

0 0.9846 0.9852 0.9839 0.9858 0.9871 0.9877 0.9883 0.9903

1 0.9820 0.9808 0.9832 0.9847 0.9854 0.9862 0.9885

2 0.9771 0.9801 0.9819 0.9827 0.9836 0.9864

3 0.9765 0.9785 0.9796 0.9806 0.9839

4 0.9746 0.9758 0.9771 0.9810

5 0.9714 0.9729 0.9775

6 0.9680 0.9734

7 0.9685

rt(i, j) 0 1 2 3 4 5 6 7

0 6.198% 5.950% 6.473% 5.723% 5.213% 4.961% 4.696% 3.894%

1 7.267% 7.750% 6.783% 6.179% 5.880% 5.566% 4.616%

2 9.278% 8.041% 7.325% 6.970% 6.598% 5.471%

3 9.530% 8.682% 8.261% 7.820% 6.485%

4 10.291% 9.792% 9.270% 7.687%

5 11.606% 10.987% 9.111%

6 13.023% 10.799%

7 12.800%

Table 2.1: The Black-Derman-Toy trees associated with the given data

2.6 Options on Zero-Coupon Bonds

The procedure that we follow is the usual martingale pricing approach. We generate an (arbitrage-

free) tree of discount factors and then use risk neutral valuation. Using this basis we can also price

complicated interest rate derivatives. In general, the option will have maturity T and will be written
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on an instrument with maturity T1 where (T1 > T ).

As a simple example, consider such an option on a zero coupon bill. By arbitrage considerations,

the value of the bill at maturity of the option T will be Z(T, T1). The value of such a bill today

is Z(0;T, T1) ie. the forward discount value. But to value the option, we need to consider the

volatility. Then the European call and put boundary conditions are:

c[Z(T, T1), 0;K] =

{
Z(T, T1)−K for Z(T, T1) > K

0 for Z(T, T1) ≤ K
(2.16)

p[Z(T, T1), 0;K] =

{
0 for Z(T, T1) ≥ K

K − Z(T, T1) for Z(T, T1) < K
(2.17)

respectively.

As an example we will consider a 18 month option on a six month zero-coupon bond i.e. after 18

months we decide whether or not to buy/sell a zero-coupon bond at the strike price; the zero coupon

bond pays 1 after 2 years.

We use the Black-Derman-Toy model with the previous data. Given the tree of prices, there is very

little to do. All we need to realise is that at time t6 the bond has a value of

V (i, 6) = Zt(i, 6) 1
2

[
Zt(i, 7) + Zt(i+ 1, 7)

]
(2.18)

Thus, the payoff of the option is

V t(i, 6) = max(�(V (i, 6)−K, 0))

The value of the option now is

V (0) =

6∑
i=0

�(i, 6)V t(i, 6)

Alternatively we can induct backwards through the tree as usual. There are benefits to the latter

approach as it will enable us to derive hedge ratios.

Verify that, for a call option on a six month zero coupon bond, strike 0.95, we get the tree of option

values
0 1 2 3 4 5 6

0.0117 0.0146 0.0175 0.0203 0.0230 0.0255 0.0279

0.0091 0.0121 0.0152 0.0183 0.0211 0.0238

0.0065 0.0094 0.0127 0.0160 0.0191

0.0039 0.0065 0.0099 0.0134

0.0016 0.0033 0.0068

0.0000 0.0000

0.0000

and so a price of 0.0117.

Put-Call parity for bond options is analogous to that of European options written on non-dividend

paying stocks. Consider European put and call options written on zero-coupon bonds with par = 1.

The option maturity is T and the bond maturity is T1, where T1 > T . Then

p[Z(t, T1), T − t;K] + Z(t, T1) = c[Z(t, T1), T − t;K] +KZ(t, T ) (2.19)
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2.7 Forwards on Zero-Coupon Bonds

The forward value of the bond is

V (0) =

6∑
i=0

piV (i, 6)

where pi is the probability of arriving at the node i. These probabilities may be found using Pascal’s

triangle, or directly via combinatorial arguments; pi = 2−6
(

6
i

)
. Hence the forward value is

V (0) = 2−6
6∑
i=0

(
6

i

)
V t(i, 6)

2.8 Hedging Options

Replicating portfolios for options can be constructed using bonds or forwards. Consider the BDT

example as previously. The hedging portfolio must contain two instruments (because of the binomial

tree structure). We can choose any two of the zero coupon bonds that can be found in the market.

Let us choose bonds maturing at time t1 and t2; we seeking hedge quanta n1 and n2.

V (0) = Z(0, t1)n1 + Z(0, t2)n2

V t(0, 1) = n1 + Zt(0, 1)n2

V t(1, 1) = n1 + Zt(1, 1)n2

in other words

0.0117 = 0.9846n1 + 0.9685n2

0.0146 = n1 + 0.9852n2

0.0091 = n1 + 0.9820n2

Although this appears to be an over-specified system, it isn’t really, as the first equation follows

from the others, so we discard it. Thus we have a 2× 2 system:[
1 0.9852

1 0.9820

][
n1

n2

]
=

[
0.0146

0.0091

]

which solves as n1 = −1.64, n2 = 1.6793 by using Cramer’s rule, say.

What can you say about the effectiveness of this hedge? How can it be modified to be more robust?

Hedging can also be done with 2-period forwards. The tree of forwards prices is:

0 1 2 3 4 5 6

0.9627 0.9658 0.9686 0.9712 0.9736 0.9758 0.9779

0.9596 0.9629 0.9660 0.9688 0.9714 0.9738

0.9562 0.9598 0.9632 0.9662 0.9691

0.9526 0.9565 0.9601 0.9634

0.9487 0.9529 0.9568

0.9444 0.9490

0.9398
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Here, the last column is just the values of (2.18). We then induct to the left: the value in cell (i, j) is

just the average of cells (i, j+ 1) and (i+ 1, j+ 1). As rates evolve, so the forward price ‘converges’

to the actual price after 18 months. Define the delta of the option with respect to the forwards

contract in the usual fashion:

Δ =
V t(0, 1)− V t(1, 1)

V tf (0, 1)− V tf (1, 1)
=

0.0146− 0.0091

0.9658− 0.9596
= 0.8763

Then replicate the option with a forward position and a cash account, with quanta m1 and m2

respectively:

V (0) = m1 0 +m2 1

V t(0, 1) = m1[V tf (0, 1)− V tf (0, 0)] +m2Z(0, 1)−1

V t(1, 1) = m1[V tf (1, 1)− V tf (0, 0)] +m2Z(0, 1)−1

in other words

0.0117 = m2

0.0146 = [0.9658− 0.9627]m1 + 1.0156m2

0.0091 = [0.9596− 0.9627]m1 + 1.0156m2

which implies that m1 = 0.8763, m2 = 0.0117. As usual, the hedge ratio is dynamic and we need

to re-balance the hedge portfolio at t = 1, depending on up/down movement from t = 0.

2.9 Exercises

1. Consider the following quarterly data, satisfying the conditions of the Black-Derman-Toy

model:

1 2 3 4 5 6 7 8

zero 6.00% 6.50% 6.30% 7.00% 7.00% 7.00% 7.00% 7.00%

vol 20.00% 18.00% 17.00% 16.00% 15.00% 15.00% 14.00%

(1) Create arrays in vba that will store these rates.

(2) Type these rates into excel, and write vba code to read them (using a loop) into the two

arrays.

(3) Create in the same way as above arrays ArrowDebreu(0 to 8,0 to 8), Bt(0 to 7,0 to 7),

and ratet(0 to 7, 0 to 7).

(4) Create the time index j and the state index i. By looping through time, populate (the

upper triangle) of all of these matrices. Here you use Newton iteration.

Remark: all your dims should be together, at the start of your code. It is bad form to

dim things only as you need them. However, the redims can be in the heart of the matter.

(A more sophisticated approach will have the number of data points as a variable and the

redims can involve this variable. So, by necessity, the redim can only occur after some

calculation work has been done.)
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(5) Use loops to again ‘print’ the output values in excel.

(6) Price the options and forwards seen in class in vba.
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Chapter 3

Black’s Model

We consider the Black Model for futures/forwards which is the market standard for quoting prices

(via implied volatilities). Black [1976] considered the problem of writing options on commodity

futures and this was the first “natural” extension of the Black-Scholes model. This model also is

used to price options on interest rates and interest rate sensitive instruments such as bonds. Since

the Black-Scholes analysis assumes constant (or deterministic) interest rates, and so forward interest

rates are realised, it is difficult initially to see how this model applies to interest rate dependent

derivatives.

However, if f is a forward interest rate, it can be shown that it is consistent to assume that

• The discounting process can be taken to be the existing yield curve.

• The forward rates are stochastic and log-normally distributed.

The forward rates will be log-normally distributed in what is called the T -forward measure, where

T is the pay date of the option. This model is consistent is within the domain of the LIBOR market

model. We can proceed to use Black’s model without knowing any of the theory of the LMM;

however, Black’s model cannot safely be used to value more complicated products where the payoff

depends on observations at multiple dates.

3.1 European Bond Options

The clean (quoted) price for a bond is related to the all-in (dirty, cash) price via:

A = ℂ + IA(t) (3.1)

where the accrued interest IA(t) is the accrued interest as of date t, and is non-zero between coupon

dates. The forward price is a carried all-in price, not a clean price. The option strike price K might

be a clean or all-in strike; usually it is clean. If so, we change it to a all-in price by replacing K with

KA = K + IA(T ).
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Applying Black’s model to the price of the bond, the value of the bond option per unit of nominal

is [Hull, 2005, §26.2]

V� = �Z(0, T )[FAN(�d1)−KAN(�d2)] (3.2)

d1,2 =
ln FA

KA
± 1

2�
2�

�
√
�

(3.3)

where � = 1 stands for a call, � = −1 for a put. Here � is the volatility measure of the fair forward

all in price, and � as usual is the term of the option in years with the relevant day-count convention

applied.

Example 3.1.1. Consider a 10m European call option on a 1, 000, 000 bond with 9.75 years to

maturity. Suppose the coupon is 10% NACS. The clean price is 935,000 and the clean strike price

is 1,000,000. We have the following yield curve information:

Term Rate

3m 9%

9m 9.5%

10m 10%

The 10 month volatility on the bond price is 9%.

Firstly, Kℂ = 1, 000, 000 so KA = Kℂ + IA(T ) = 1, 008, 333.33. (There will be one month of accrued

interest in 10 months time.)

Secondly, A = ℂ + IA(0) = 960, 000. (There is currently three months of accrued interest.)

Thirdly, FA =

[
960, 000− 50, 000

[
e−

3
12 9% + e−

9
12 9.5%

]]
e

10
12 10% = 939, 683.97.

Hence Vc = 7, 968.60 and Vp = 71, 129.06.

3.1.1 Different volatility measures

The volatility above is a price volatility measure. However, quoted volatilities are often yield volatil-

ity measures. The relationship between the various volatilities of the bond is given via Ito’s lemma

as

�A = −�yyΔ

A
(3.4)

�y = −�AA
yΔ

(3.5)

�A =
ℂ
A
�ℂ (3.6)

How do we see this? Note that

dy = �y dt+ �yy dZ

is the geometric Brownian motion for the yield y. Now A = f(y) and so

dA = ⋅ ⋅ ⋅ dt+ f ′(y)�yy dZ := ⋅ ⋅ ⋅ dt+
Δ�yy

A
A dZ

But, also,

dA = �A dt+ �AA dZ

and so the result follows - except for a missing minus sign. Why?
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3.2 Caplets and Floorlets

See [Hull, 2005, §26.3]. Suppose that a market participant loses money if the floating rate falls.

For example, they are long a FRA. The floorlet pays off if the floating rate decreases below a

predetermined minimum value, which is of course called the strike. Thus, the floorlet ‘tops-up’

the payment received in the FRA, if required, so that the net rate received is at least the strike.

The floating rate will be the prevailing 3-month LIBOR rate, which is set at the beginning of each

period, with settlement at that time by discounting, much like a FRA. Indeed, it is a FRA position

that this floorlet is hedging; the FRA date schedule is being applied.

Let the floorlet rate (strike) be rK .

Let the T0 × T1 FRA period be of length � as usual, where day count conventions are observed.

Suppose the LIBOR rate for the period, observed at the determination date is J1. Then the payoff

at the determination date is 1
1+J1�

�max(rK −J1, 0) per unit notional; a floorlet is like a put on the

interest rate. Of course the valuation is the same whether settled in advance or arrears.

In an analogous fashion to a floorlet, we have a caplet, where the payout occurs when the floating

rate rises above rK , the cap rate.

3.3 Caps and Floors

A cap is like a strip of caplets which will be used to hedge a swap. However, because swaps are

settled in arrears so too is each payment in the cap strip, unlike an individual caplet. Moreover, the

cap strip will have the swap date schedule applied and not the FRA date schedule. So, caps stand

to swaps exactly as caplets stand to FRAs.

A cap might be forward starting or spot starting (that is, starting immediately). However, in the

latter case, there is no payment in 3 months time - it is excluded from the computations and from any

payments because there is no optionality. Thus, for example, a 2y cap actually has seven payments,

not eight. Alternatively, one might consider that a spot starting cap is actually a forward starting

cap starting in 3m time.

Let the cap rate (strike) be rK . Let the itℎ reset period from ti−1 to ti be of length �i as usual,

where day count conventions are observed. Suppose the LIBOR rate for the period, observed at

time ti−1, is Ji. Then the payoff at time ti is �i max(Ji − rK , 0) per unit notional.

In an analogous fashion to writing a cap, we can write a floor, where the payout occurs when the

floating rate drops below rK , the floor rate.
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3.3.1 Valuation

We value each caplet or floorlet separately off the yield curve using the implied forward rates at

t = 0, for each time period ti. Then,

V =

n∑
i=1

Vi (3.7)

Vi = Z(0, ti)�i�
[
f(0; ti−1, ti)N

(
�di1
)
− rKN

(
�di2
)]

(3.8)

di1,2 =
ln f(0;ti−1,ti)

rK
± 1

2�
2
i ti−1

�i
√
ti−1

(3.9)

where � = 1 stands for a cap(let), � = −1 for a floor(let), and where the floating rate (swap) curve

is being used. f(0; ti−1, ti) is the simple forward rate for the period from ti−1 to ti. So we apply

(1.11). Cap prices are quoted with �i = � for i = 1, 2, . . . , n. On the other hand, if we are

assembling a set of caplets into a cap, then the �i will be different.

Note that the itℎ caplet is being valued in the ti forward measure.

3.3.2 A call/put on rates is a put/call on a bond

A caplet (a call on an interest rate) is actually a put on a floating-rate bond whose yield is the LIBOR

floating rate (a put option because of the inverse relationship between yield and bond price).

To see this, each caplet has a payoff in arrears of �i max(ri− rK , 0). The value of this in advance is

V (ti−1) = (1 + �iri)
−1�i max(ri − rK , 0)

= max

(
�iri − �irK

1 + �iri
, 0

)
= max

(
1− 1 + �irK

1 + �iri
, 0

)
= (1 + �irK) max

(
1

1 + �irK
− 1

1 + �iri
, 0

)
which at time t = t0 is 1 + �irK many puts on a zero coupon bond maturing at time ti with the

option exercise at ti−1, strike 1
1+�irK

.

Likewise, floors - which are European put options on rates - are actually European call options on

the (underlying) floating-rate bond.

Example 3.3.1. Suppose we have a given term structure

Term Rate Z

0.75 11.00% 0.92081

1 11.30% 0.89315

and consider a 9 × 12 caplet with strike rK = 12.1818% and yield volatility �y = 10%. Then

the forward period is � = 0.25 and the forward NACQ rate is given by rF =
(

0.92081
0.89315 − 1

)
0.25 =

12.3880%. We find d1 = 0.23708 and d2 = 0.15048 using (3.9), and calculate N(d1) = 0.59370 and

N(d2) = 0.55981. Thus, using (3.8), we obtain the value of the caplet as Vc = 0.0011953.

Now we consider the put on a bond. We find the strike K = 1
1+�rK

= 0.97045, price volatility

� = �yrF� = 0.3097% (using (3.4) - � is the duration of the forward bond). From (3.3), calculate
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d1 = −0.18509 and d2 = −0.18778, and hence find N(d1) = 0.57342 and N(d2) = 0.57447. Then

the value of the bond option from (3.2) is Vb = 0.00116. However, we still need to take into account

the size which is given by 1 + �rK = 1.03045. Multiplying the size with Vb yields 0.0011952.

Differences between these two values typically occur at the 5tℎ decimal place. It is impossible,

mathematically, to have these two values equal; in the caplet model, rates are lognormal and in the

bond option model, bond prices are lognormal. These two models cannot be made compatible.

3.3.3 Greeks

Let r denote the entire yield curve.

We need the following preliminary calculations:

∂

∂r
f(0; ti−1, ti) = 1 (3.10)

∂

∂r
Z(0, ti) = −tiZ(0, ti) (3.11)

∂

∂�
Z(0, ti) = −riZ(0, ti) (3.12)

∂

∂r
di1 =

∂

∂r
di2 =

1

f(0; ti−1, ti)�i
√
ti−1

(3.13)

∂

∂�
di1 =

∂

∂�
di2 +

√
ti−1 (3.14)

∂

∂ti−1
di1 =

∂

∂ti−1
di2 +

�

2
√
ti−1

(3.15)

pv01

∂Vi
∂r

= −tiVi + Z(0, ti)�i�

[
∂

∂r
f(0; ti−1, ti)N(�di1)

+f(0; ti−1, ti)N
′(�di1)

∂

∂r
di1 − rXN ′(�di2)

∂

∂r
di2

]
= −tiVi + Z(0, ti)�i�N(�di1) [1 + �if(0; ti−1, ti)] (3.16)

∂V

∂r
=

n∑
i=1

∂Vi
∂r

(3.17)

Then pv01 = 1
10000

∂V
∂r .

Vega

Vega is ∂V
∂� . It is the Greek w.r.t. the cap volatility; it is not a Greek with respect to the caplet

volatilities, so �i = � for i = 1, 2, . . . , n.
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∂Vi
∂�

= Z(0, ti)�i

[
f(0; ti−1, ti)N

′(di1)
∂

∂�
di1 − rXN ′(di2)

∂

∂�
di2

]
= Z(0, ti)�if(0; ti−1, ti)N

′(di1)
√
ti−1 (3.18)

∂V

∂�
=

n∑
i=1

∂Vi
∂�

(3.19)

Bucket (Caplet/Floorlet) Vega

For sensitivities to caplet volatilities, we would be looking at a bucket risk type of scenario. This

would be ∂V
∂�i

, and this only makes sense of course in the case where we have individual forward-

forward volatilities rather than just a flat cap volatility.

∂Vi
∂�i

= Z(0, ti)�if(0; ti−1, ti)N
′(di1)

√
ti−1

where now it is the caplet volatility �i being used, not the cap volatility �.

Theta

Theta can only be calculated w.r.t. some explicit assumptions about yield curve evolution. The

assumption can be that when time moves forward, the bootstrapped continuous curve will remain

constant. By full revaluation we can then calculate the theta of the position with one day of time

decay.

Delta hedging caps/floors with swaps

We require the ‘with delta’ value of a cap or floor. Often the client wants to do the deal ‘with

delta’, which means that the ‘linear’ hedge comes with the option trade. Thus we quote delta based

on hedging the cap/floor with a (forward starting) swap with the same dates, basis and frequency.

Then

Δ =

∂V (cap)
∂r

∂V (swap)
∂r

=
pv01(cap)

pv01(swap)
(3.20)

The numerator is found in (3.17). For the denominator: the value of the swap fixed receiver, fixed

rate R having been set, is

V (swap) = R

n∑
i=1

�iZ(0, ti)− Z(0, t0) + Z(0, tn) (3.21)

as seen in (3.30), (3.31). So the derivative is

∂V (swap)

∂r
= −R

n∑
i=1

�itiZ(0, ti) + t0Z(0, t0)− tnZ(0, tn) (3.22)
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Figure 3.1: A cap with its forward swap hedge

3.4 Stripping Black caps into caplets

Since each caplet is valued separately we expect a different volatility measure for each. Cap volatil-

ities are always quoted as flat volatilities where the same volatility is used for each caplet, which

in some sense will be a weighted average of the individual caplet volatilities. Thus, we use � = �i

for i = 1, 2, . . . , n. Most traders work with independent volatilities for each caplet, though, and

these are called forward-forward vols. There exists a hump at about 1 year for the forward-forward

vols (and, consequently, also for the flat vol, which can be seen as a cumulative average of the

forward-forward vols). This can be observed or backed out of cap prices: see Figure 3.2.

Figure 3.2: Caplet (fwd-fwd) and cap (flat fwd-fwd) volatility term structure

Thus, from a set of caplet volatilities �1, �2, . . . , �n we may need to determine the corresponding

cap volatility �. This of course is a uniquely determined implied volatility problem. It only makes

sense if the strikes of all the caplets are equal to the strike of the cap; this won’t be the case in
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general (typically quoted volatilities will be at the money).

A far more difficult problem is the specification of the term structure of caplet volatilities given an

incomplete term structure of cap volatilities. This is a type of bootstrap problem: there is insufficient

information to determine a unique solution. For example, only 3x6, 6x9 and 9x12 caplets and 1y,

2y, 3y , 4y caps might be available. This critical point is generally not really well dealt with in the

textbooks.

Instantaneous forward rate volatilities will be specified. Suppose the instantaneous volatility of

Fk(t) is modelled as �k(t). Having done so, one now has the implied volatility of the Tk−1 × Tk
caplet given by

�k,imp =

√
1

Tk−1

∫ Tk−1

0

�k(t)2 dt (3.23)

Some forms will allow us to calibrate to given cap or caplet term structures exactly. Clearly,

and as emphasised in [Brigo and Mercurio, 2006, §6.2], the pricing of caps is independent of the

joint dynamics of forward rates. However, that does not mean that calibration should also be an

independent process. There are such straightforward formulations of the calibration of caps, so

then the only parameters left to tackle swaptions calibration are the instantaneous correlations of

forward rates, and this will typically be inadequate for use in the LMM.

[Brigo and Mercurio, 2006, §6.3.1] discuss seven different formulations for calibrating cap term

structures which allow for more or less flexibility later in the swaption calibration.

The approach suggested in [Rebonato, 2002, Chapter 6], [Rebonato, 2004, Chapter 21] is to specify

a parametric form for the instantaneous volatility such as

�k(t) = (a+ b(Tk−1 − t))e−c(Tk−1−t) + d (3.24)

This form is flexible enough to reproduce the typical shapes that occur in the market. It can

accommodate either a humped form or a monotonically decreasing volatility. The model is time

homogeneous, and the parameters have some economic interpretation, as described in Rebonato

[2002]. For example, the time-0 volatility is a+ d and the long run limit is d. Furthermore, within

the context of models such as LMM, calculus is easy enough: for example∫ (
(a+ b(Ti − t))e−c(Ti−t) + d

)(
(a+ b(Tj − t))e−c(Tj−t) + d

)
dt

=
ad

c

(
ec(t−Ti) + ec(t−Tj)

)
+ d2t− bd

c2

(
ec(t−Ti) [c(t− Ti)− 1] + ec(t−Tj) [c(t− Tj)− 1]

)
+
ec(2t−Ti−Tj)

4c3
[
2a2c2 + 2abc(1 + c(Ti + Tj − 2t)) + b2(1 + 2c2(t− Ti)(t− Tj) + c(Ti + Tj − 2t))

]
=: I(t, Ti, Tj) (3.25)

as in [Rebonato, 2002, §6.6 - correcting for the typo], [Jäckel, 2002, (12.13)]. Then as in (3.23)

�k,imp =

√
1

Tk−1
(I(Tk−1, Tk−1, Tk−1)− I(0, Tk−1, Tk−1)) (3.26)

Now the problem has gone from being under-specified to over-specified; an error minimisation

algorithm will be used. Financial constraints are that a+ d > 0, c > 0, d > 0. What we do here is,

for any choices of a, b, c and d,
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• determine the caplet volatilities for every caplet using (3.26).

• find the model price of all the caplets using the caplet pricing formula.

• find the model price of the caps that are trading in the market (for example, the 1y, 2y, ...

caps).

• We can then formulate an error function which measures the difference between model and

market prices. This function will be something like

erra,b,c,d =
∑
i

∣Vi(a, b, c, d)− Pi∣ (3.27)

The i varies only over those caps that actually trade (are quoted) in the market.

• Minimise the error. Solver might be used, but it might need to be trained to find a reasonable

solution. Use of Nelder-Mead is suggested.

Some care needs to be taken here. The inputs will be at the money cap volatilities. For each cap,

the at the money level (the forward swap rate) will probably be different. These are the forwards

that need to be used in the cap pricing formula. The output is a parametric form for at the money

caplet volatilities, and for each of these the at the money level will be different. This difference is

usually ignored, as we are pricing without any skew anyway.

Having found the parameters, one still wants to price instruments that trade in the market exactly.

Thus, after the parameters a, b, c, d have been found, the model is re-specified as

�k(t) = Kk

[
(a+ b(Tk−1 − t))e−c(Tk−1−t) + d

]
(3.28)

Equivalently,

�k,imp = Kk

√
1

Tk−1
(I(Tk−1, Tk−1, Tk−1)− I(0, Tk−1, Tk−1)) (3.29)

We assume that Kk is a piecewise constant function, changing only at the end of each cap i.e. as

a cap terminates and a new calibrating cap is applied. For example, if we have a 1y and a 2y cap

(and others of later tenor) then K2 = K3 = K4, and K5 = K6 = K7 = K8.

With these assumptions, Kk is found uniquely. For caplets, the value of Kk is found directly. For

caps, we note that there is one root find for each set of equal Kk’s; we proceed from smallest to

largest k. Thus

• For any given Kk, calculate the volatility using (3.29).

• price all the caplets using the caplet pricing formula.

• find the model price of the cap.

• vary Kk to match this model price with the market price. As the model price is an increasing

function of Kk, the root is unique. We use a root finder such as Brent’s method.

The model is no longer time homogeneous, and the deviation from being so is in some sense measured

by how far the Kk deviate from 1. The better the fit of the model, the closer these values are to 1,

one would hope to always have values of Kk between 0.9 and 1.1 say. This correction is discussed

in [Rebonato, 2004, §21.4].
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3.5 Swaptions

A swaption is an option to enter into a swap. We consider European swaptions. (Bermudan

swaptions also exist.) Thus, at a specified time t0, the holder of the option has the option to enter

a swap which commences then (the first payment being one time period later, at t1, and lasts until

time tn).

Of course, we have two possibilities

(a) a payer swaption, which gives the holder the right but not the obligation to receive floating,

and pay a fixed rate rK (a call on the floating rate).

(b) a receiver swaption, which gives the holder the right but not the obligation to receive a fixed

rate rK , and pay floating (a put on the floating rate).

Let f be the fair (par) forward swap rate for the period from t0 to tn. The date schedule for swaptions

is the swap schedule. The time of payments of the forward starting swap are t1, t2, . . . , tn, where

t0, t1, . . . , tn are successive observation days, for example, quarterly, calculated according to the

relevant day count convention and modified following rules. As usual, let ti − ti−1 = �i, measured

in years, for i = 1, 2, . . . , n.

Note that if n = 1 then we have a one period cap (a payer swaption) or a one period floor (a receiver

swaption). Thus, modulo the date schedule and the advanced/arrears issue, a caplet or floorlet.

Note that in general a swap (forward starting or starting immediately; in the later case t0 = 0) with

a fixed rate of R has the fixed leg payments worth

Vfix = R

n∑
i=1

�iZ(0, ti) (3.30)

while the floating payments are worth

Vfloat = Z(0, t0)− Z(0, tn) (3.31)

Hence the fair forward swap rate, which equates the fixed and floating leg values, is given by

f =
Z(0, t0)− Z(0, tn)∑n

i=1 �iZ(0, ti)
(3.32)

Of course, these values are derived from the existing swap curve. Thus, the fair forward swap rate

is dependent upon the bootstrap and interpolation method associated with the construction of the

yield curve. Nevertheless, empirically it is found that the choice of interpolation method will only

affect the result to less than a basis point, and typically a lot less. Also, let

L =

n∑
i=1

�iZ(0, ti) (3.33)

L is called the level, or the annuity.

37



Figure 3.3: A Reuter’s page for at the money volatility quotes for caps/floors, caplet/floorlets, and

swaptions. In the swaption table 3mnth, 6mnth, 1year, 2year refers to the expiry date of the option;

1yr, 2yr, 3yr, 5yr refers to the tenor of the swap.

3.5.1 Valuation

The value of the swaption per unit of nominal is [Hull, 2005, §26.4]

V� = L�[fN(�d1)− rKN(�d2)] (3.34)

d1,2 =
ln f

rK
± 1

2�
2t0

�
√
t0

(3.35)

where � = 1 stands for a payer swaption, � = −1 for a receiver swaption. Here � is the volatility of

the fair forward swap rate, and is an implied variable quoted in the market.

3.5.2 Greeks

Delta

Δ = �N(�d1) (3.36)

pv01

This is given by

∂V

∂r
= �

∂L

∂r
[fN(�d1)− rKN(�d2)] + �L

[
∂f

∂r
N(�d1) + fN ′(�d1)�

∂d1

∂r
− rKN ′(�d2)�

∂d2

∂r

]
= �

∂L

∂r
[fN(�d1)− rKN(�d2)] + �L

∂f

∂r
N(�d1) (3.37)
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We now apply several times the fact that

∂

∂r
Z(0, t) = −tZ(0, t) (3.38)

Firstly

∂L

∂r
=

n∑
i=1

−ti�iZ(0, ti) (3.39)

(3.40)

Also, if we have a function g(r,�)
ℎ(r,�) , then( g

ℎ

)′
= g′ℎ−1 − gℎ−2ℎ′ (3.41)

(3.42)

where the differentiation is with respect to r. We apply (3.38) and this to (3.32).

Then pv01 = 1
10000

∂V
∂r .

Vega

∂V

∂�
= L�

[
fN ′(�d1)�

∂d1

∂�
− rKN ′(�d2)�

∂d2

∂�

]
= LfN ′(d1)

√
� (3.43)

Theta

As before.

3.5.3 Why Black is useless for exotics

In each Black model for maturity date T , the forward rates will be log-normally distributed in what

is called the T -forward measure, where T is the pay date of the option. The fact that we can ‘legally’

discount the expected payoff under this measure using today’s yield curve is a consequence of some

profound academic work of Geman et al. [1995], which establishes the existence of alternative pricing

measures, and the ways that they are related to each other. This paper is very significant in the

development of the Libor Market Model.

We can use Black’s model without knowing any of the theory of Geman et al. [1995]; however, the

Black model cannot safely be used to value more complicated products where the payoff depends

on observations at multiple dates. For this an alternative model which links the behaviour of the

rates at multiple dates will need to be used.

For this, the most extensive approach is the Libor Market Model. Here inputs are all the Black

models as well as a correlation structure between all the forward rates. From a properly calibrated

LMM, one recaptures (up to the calibration error) the prices of traded caplets, caps, and swaptions.

However, this calibration can be difficult. It then requires Monte Carlo techniques to value other

derivatives.

An intermediate approach is the use of a more parsimonious model with just a few driving factors

- the so-called single-factor models.
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3.6 Exercises

1. A company caps three-month JIBAR at 9% per annum. The principal amount is R10 million.

On a reset date, namely 20 September 2004, three-month JIBAR is 10% per annum.

(a) What payment would this lead to under the cap?

(b) When would the payment be made?

(c) What is the value of the payment on the reset date?

2. Use Black’s model to value a one-year European put option on a bond with 9 years and 11

months to expiry. Assume that the current cash price of the bond is R105, the strike price

(clean) is R110, the one-year interest rate is 10%, the bond’s price volatility measure is 8%

per annum, and the coupon rate is 8% NACS.

3. Consider an eight-month European put option on a Treasury bond that currently has 14.25

years to maturity. The current cash bond price is $910, the exercise price is $900, and the

volatility measure for the bond price is 10% per annum. A semi-annual coupon of $35 will be

paid by the bond in three months. The risk-free interest rate is 8% for all maturities up to

one year.

(a) Use Black’s model to determine the price of the option. Consider both the case where the

strike price corresponds to the cash price of the bond and the case where it corresponds

to the clean price.

(b) Calculate delta, gamma (both with respect to the bond price B) and vega in the above

problem when the strike price corresponds to the quoted price. Explain how they can be

interpreted.

4. Using Black’s model calculate the price of a caplet on the JIBAR rate. Today is 20 September

2004 and the caplet is the one that corresponds to the 9x12 period.

The caplet is struck at 9.4%. The current JIBAR rate is 9.3%, the 3x6 FRA is 9.4% and the

6x9 FRA is 9.34%, and the 9x12 FRA is 9.20%.

Interest-rate volatility is 15%.

Also calculate delta, gamma (both with respect to the 9x12 forward rate) and vega in the

above problem.

5. Suppose that the yield, R, on a discount bond follows the process

dR = �(R, t)dt+ �(R, t)dz

where dz is a standard Wiener process under some measure. Use Ito’s Lemma to show that

the volatility of the discount bond price declines to zero as it approaches maturity, irrespective

of the level of interest rates.

6. The price of a bond at time T, measured in terms of its yield, is G (yT ) . Assume geometric

Brownian motion for the forward bond yield, y, in a world that is forward risk-neutral with

respect to a bond maturing at time T. Suppose that the growth rate of the forward bond yield

is � and its volatility is �y.
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(a) Use Ito’s Lemma to calculate the process for the forward bond price, in terms of �, �y,

y and G (y) .

(b) The forward bond price should follow a martingale in the world we are considering. Use

this fact to calculate an expression for �.

(c) Assume an initial value of y = y0. Now show that the expected value of y at time T can

be directly calculated from the above expression.

7. Consider the following quarterly data:

1 2 3 4 5 6 7 8

zero 8.00% 8.50% 8.30% 8.00% 8.00% 8.20% 8.25% 8.40%

vol 17.00% 16.00% 17.00% 16.00% 15.00% 15.00% 14.00%

Time here is modified following quarterly.

The volatility data represents the volatility of the all in price for a bond option on the r153

that expires at that time.

The details of the r153 are as follows:

Bond Name Maturity Coupon BCD1 BCD2 CD1 CD2

R153 2010/08/31 13.00% 821 218 831 228

(The BCD details of all r bonds have changed.)

Today is 29 August 2004 and the all in price is 1.1010101.

Price a vanilla European bond option, with a clean price strike, with expiry 30 May 2005,

according to Black’s model.

Construct your yield curve using raw interpolation.
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Chapter 4

One and two factor

continuous-time interest rate

models

This chapter is derived from components of [Wilmott, 2000, Chapters 40, 41], Svoboda [2002],

Svoboda [2003]; amongst others.

The fundamental complicating factor in interest rate models is the non-traded nature of rates.

Coupled to this is the non-linear, inverse relationship between bond prices and yields. If a derivative

is dependent on one or more interest rates, the rather neat consequences of the Black-Scholes model

for equity derivatives, where the expected rate of return � drops out of the pricing formula and is

‘replaced’ by risk-neutral valuation and a return of r, will almost certainly not be valid. What is

more, in that Black-Scholes differential equation it was exactly that r which was a constant, it is

now a variable.

We develop models of the short rate. The short rate will be denoted r. The short rate itself is

quite a theoretical concept: at time t, r(t) is the yield on a bond which matures at time t+ dt. In

practice, a rate that truly exists, such as the overnight, one month or even three month rate, will

be used as a surrogate for this rate.

We will now have a new variable, known as the market price of risk; knowing the market price of

risk is equivalent to knowing the expected rate of return.

4.1 Derivatives Modelled on a Single Stochastic Variable

Assume that the short rate can be modelled as an Itô process of the following kind:

dr = �(r, t)dt+ �(r, t)dz (4.1)

where dz has the usual properties. (4.1) is sufficiently general for a broad spectrum of possible

models.
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Recall that if V = V (r, t) is a sufficiently well behaved function then Itô’s lemma tells us

dV =
∂V

∂r
dr +

(
∂V

∂t
+ 1

2�
2 ∂

2V

∂r2

)
dt

=

(
∂V

∂t
+
∂V

∂r
�+ 1

2�
2 ∂

2V

∂r2

)
dt+

∂V

∂r
� dz

:= �V V dt+ �V V dz

Assume that V1 and V2 are sufficiently well behaved. The underlying stochastic process r is non-

traded, so the only possible way of creating a riskless portfolio is by using both V1 and V2. Let Π

be the portfolio which is long 1 of instrument 1 and is short �1V1

�2V2
of instrument 2. Then, the risky

component (the part with dz) has been eliminated, so as usual

�1V1 − �2
�1V1

�2V2
V2 = r

(
V1 −

�1V1

�2V2
V2

)
�1 − �2

�1

�2
= r

(
1− �1

�2

)
�1 − r
�1

=
�2 − r
�2

(4.2)

and so the quantity

� :=
�V − r
�V

(4.3)

is independent of the choice of bond, and called the market price of risk. Now

�V V − ��V V = rV

and so

∂V

∂t
+
∂V

∂r
�+ 1

2�
2 ∂

2V

∂r2
− �∂V

∂r
� = rV

∂V

∂t
+
∂V

∂r
(�− ��) + 1

2�
2 ∂

2V

∂r2
− rV = 0 (4.4)

Note well - the drift, volatility here are those of (4.1), and not of (4.2).

This is the Black-Scholes type equation for interest rate derivatives when the yield curve is modelled

by a one-factor process of the type (4.1). Note that a vanilla bond is a derivative; options on bonds

are derivatives of derivatives. The underlying here is the short rate.

It is possible to apply (4.4) to bonds that have coupons by adding K(r, t) to the left-hand side, where

K(r, t) dt represents the amount of coupon received in the period dt. (This may be continuous or

discrete; in the latter case we will be using a finite difference scheme with specified jumps in value

to the bond as it goes ex coupon.)

We require two “spatial” boundary conditions and one final boundary condition to fully specify the

model. For example, we know that if V (r, t, T ) is the price of a bond with par value 1, V (r, T, T ) = 1.

Other examples would be the terminal intrinsic value of a vanilla option, etc.

Using the Feynman-Kac theorem (4.4) is the solution to the expectation of the r-discounted value

of V (T ) where r is subject to the Itô process

dr = (�− ��)dt+ �dz (4.5)
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The Brownian motion here is not the same as the original one: dz = �dt + dz. The drift here is

�− ��; the original (real world) drift was of course �.

4.2 What is the market price of risk?

The market price of risk is the return in excess of the risk-free rate that the market wants as

compensation for taking risk.

In classical economic theory no rational person would invest in a risky asset unless they expect to

beat the return from holding a risk-free asset. Classically risk is measured by volatility. The market

price of risk thus has the form of (4.3). This quantity is not affected by leverage.

If the modelled quantity is directly traded, then one can continuously and perfectly hedge a position,

and in so doing eliminate risk totally. Thus the market price of risk is a quantity that does not need

to appear in the model (or the differential equation that describes it).

If the modelled quantity is not directly traded, then there will be an explicit reference in the option-

pricing model to the market price of risk. This is because associated risk cannot be hedged, and so

how much extra return is needed to compensate for taking this unhedgeable risk must be modelled.

When a quantity that is not traded is modelled stochastically then the equation governing the

pricing of derivatives is usually of diffusion form, with the market price of risk appearing in the drift

term with respect to the non-traded quantity.

An example is the interest rate market. Since interest rates are not tradable, you will not be able to

create a risk-free portfolio. In fact you will trade one or more assets that depends on that quantity,

rather than the quantity itself (e.g. you want to take a position on an interest rate, you might want

to trade bonds since their value depends on interest rates). The same happens for hedging, since

you will need again to use another instrument similar to the original one to cover your position, but

is not the underlying quantity.

The result is that there is never have a portfolio that completely eliminates risk, and so an agent

will require a premium to balance his diminished utility function resulting from taking risk.

Another example is a stochastic volatility model in the equity market, such as Heston. Here the

volatility is a risk that is not a traded asset. However, the market can be completed by trading in

any vanilla option. This was observed in Hagan et al. [2002], and formalised in Davis and Obl̷ój

[2007]. It can also be completed by trading in a variance swap.

4.3 Exogenous (equilibrium) short rate models

These early equilibrium models are based on a mathematical model of the economy. They focus on

describing and explaining the interest rate term structure. However, a fundamental problem with

the equilibrium approach is that the models may not be arbitrage free, in other words, they fail to

price even the vanilla inputs trading in the market. This is to be expected: these instruments are

not inputs to the models, they are outputs. As a consequence it is unlikely that these models will

be used nowadays.
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4.3.1 GBM model

Dothan [1978], Rendelman and Bartter [1980]

This is simply

dr = �rdt+ �rdz (4.6)

which is the same as the usual log-normal stock price model. However, an obvious problem that

arises is that of mean-reversion: interest rates appear to be pulled back to some long-run average

level over time.

4.4 A particular class of models

(4.4) is the bond pricing equation for an arbitrary model. In addition there will be the boundary

conditions as already mentioned. In order to progress, we want to specify the risk neutral drift

� − �� and the volatility � to arrive at tractable models i.e. models where (at the very least) the

price of zero coupon bonds can be found analytically.1 In other words, we will attempt to solve

prices under the process (4.5).

Time will be denoted by the variable t; it starts at time 0 and runs to terminal time T . Calibration

takes place at time 0; T is the maturity of the longest dated bond under consideration (or even

further, for that matter). Z(r, t, T ) is the value at time t of a zero coupon bond maturing at time

T . The only stochastic variable is r = r(t) i.e. the yield curve at time t is determined entirely by

the value of the short rate r(t).

The class of models we consider is as follows: the zero-coupon bond value has dependency on the

one-factor short rate via:

Z(r, t, T ) = exp(A(t, T )− rB(t, T )) (4.7)

The A and B functions are functions of t; they are determined at time 0. The class of models that

result from this assumption are referred to as affine. The different affine models will have different

formulae for A(t, T ) and B(t, T ). The continuous yield curve at time t is determined as follows:

r(r, t, T ) = −A(t, T )− rB(t, T )

T − t
(4.8)

So, if the short rate r varies instantaneously, the entire yield curve r(r, t, T ) varies.

Note that

∂Z

∂t
= Z

(
∂A

∂t
− r ∂B

∂t

)
∂Z

∂r
= −B(t, T )Z

∂2Z

∂r2
= B(t, T )2Z

The bond described in (4.7) is a derivative of the short rate, so it satisfies (4.4). Dividing by Z we

get
∂A

∂t
− r ∂B

∂t
+ 1

2�
2B2 − (�− ��)B − r = 0. (4.9)

1This will give us a check on the model, by comparing these results to our bootstrap, and in fact, might turn the

whole problem inside-out, and become the calibration procedure.
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If we differentiate this equation twice with respect to r, and divide through by B, we arrive at

1
2B

∂2

∂r2
�2 − ∂2

∂r2
(�− ��) = 0.

In this the expiry date T is arbitrary, so the coefficients must be separately zero:

∂2

∂r2
�2 = 0

∂2

∂r2
(�− ��) = 0

and so we can find functions �(t), �(t), �(t) and 
(t) which are function of t alone (and not of r)

such that

�2(r, t) = �(t)r + �(t) (4.10)

�(r, t)− �(r, t)�(r, t) = �(t)− 
(t)r (4.11)

Substituting (4.10) and (4.11) into (4.9) we have

∂A

∂t
− r ∂B

∂t
+ 1

2 (�(t)r + �(t))B2 − (�(t)− 
(t)r)B − r = 0

and so

∂A

∂t
= �(t)B − 1

2�(t)B2 (4.12)

∂B

∂t
= −1 + 
(t)B + 1

2�(t)B2 (4.13)

(4.13) is what is known as a Ricatti equation, it is an equation in B which does not involve A.

Having solved (4.13) we then insert this solution into (4.12) and do straightforward integration to

obtain A. In general the system will be solved numerically; however, sometimes it is possible to find

closed form solutions, and we will focus on these cases.

The boundary conditions must be:

A(T, T ) = 0

B(T, T ) = 0

The process in (4.5) has become

dr = (�(t)− 
(t)r)dt+
√
�(t)r + �(t)dz (4.14)

4.4.1 Constant parameter model

Let us start with the simplest case: all of �, �, �, 
 are constants. Then

dB

dt
= −1 + 
B + 1

2�B
2

and so (after some unpleasant calculus)

B(t, T ) =
2(exp( 1(T − t))− 1)

(
 +  1)(exp( 1(T − t))− 1) + 2 1

 1 =
√

2 + 2�
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Now, we can write
dA

dB
=

�B − 1
2�B

2

1
2�B

2 + 
B − 1

and so

1
2�A = a 2 ln(a−B) + ( 2 + 1

2�)b ln
B + b

b
− 1

2�B − a 2 ln a

 2 =
� − 1

2a�

a+ b

b, a =
±
 +

√

2 + 2�

�

Note that here we have incorporated the final conditions.

Obviously A and B are functions of � = T − t, and not functions of t and T separately.

4.4.2 Vasicek model

Vasicek [1977] models the short rate as an Ornstein-Uhlenbeck process; the mean-reversion property

is modelled. All four parameters are constant, with � = 0, and (of necessity) � > 0. Thus the

volatility is time and state independent and equal to
√
�. So

dr = (� − 
r)dt+
√
�dz

= 


(
�



− r
)
dt+

√
�dz

:= 
 (�− r) dt+ �dz (4.15)

The short rate mean reverts to � at a ‘speed’ of 
. This model is very tractable, and there are

explicit solutions for a number of derivatives based on it. Unfortunately, the Vasicek model permits

negative interest rates.

Now (4.12) and (4.13) become

dA

dt
= �B − 1

2�B
2

dB

dt
= −1 + 
B

(there is no dependency on r in the parameters - t is the only variable in play, and partial differen-

tiation is the same as total differentiation) and so (again, after some work)

B(t, T ) =
1



(1− exp(−
(T − t)))

A(t, T ) =
( 1

2� − �
)((T − t)−B)


2
− �B2

4


It is possible to generate increasing, decreasing or humped curves under this model. See Figure 4.1.

We can solve for the distribution of the short rate. First, put f(r, t) = re
t - here we are using an
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Figure 4.1: Possible yield curves under the Vasicek model, varying only �.

integrating factor. Using Itô’s lemma, we have

df = e
t dr + 
e
tr dt

= e
t [
 (�− r) dt+ �dz] + 
e
tr dt

= e
t
�dt+ �e
t dt

f(t)− f(0) = 
�

∫ t

0

e
s ds+ �

∫ t

0

e
sdz(s)

rte

t − r0 = �

[
e
t − 1

]
+ �

∫ t

0

e
sdz(s)

rt = r0e
−
t + �

[
1− e
t

]
+ �

∫ t

0

e
(s−t)dz(s)

and so

rt ∼ �
(
�+ e−
t(r0 − �),

�2

2


(
1− e−2
t

))
(4.16)

In particular, it is possible to obtain negative rates under this model.

Under the Vasicek model we can value European options on default-free bonds exactly Jamshidian

[1989]. Consider a call option on an T2−maturity discount bond with exercise price K and expiration

T1 < T2. Using risk-neutral valuation, the vanilla option price is:

V±[r, t, T1, T2;K] = Z(r, t, T1)Eℚ
t [max(0,±(Z −K))]

where Z is the zero coupon price for expiry T2 as observed at time T1. It has current forward value

f(Z) =
Z(r, t, T2)

Z(r, t, T1)
.
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It turns out that we obtain a ‘Black-like’ option pricing formula:

c[r, t, T1, T2;K] = Z(r, t, T2)N(d+)−KZ(r, t, T1)N(d−) (4.17)

p[r, t, T1, T2;K] = KZ(r, t, T1)N(−d−)− Z(r, t, T2)N(−d+) (4.18)

�p =
√
�

√
1− exp(−2
(T1 − t))

2

B(T1, T2) (4.19)

d± =
ln f(Z)

K ± 1
2�

2
p

�p
(4.20)

Remarkably, the valuation of options on coupon-bearing bonds is also possible. Although the model

was originally posited with the underlying stochastic process being Vasicek’s model, it can be applied

to any derivative where the value of zero-coupon bonds is dependent on the short rate only. The

intuition is that a set of mini-options on each of the coupons and the bond can be constructed which

will have the same value as the total option. Because the movements of the entire yield curve are

perfectly correlated there is currently no additional value to having this decomposition. Thus, the

value of the option on the coupon bearing bond can be decomposed into a portfolio of options on

zero coupon bonds.

This procedure only works if the option is European.

Consider a European call with exercise price K and maturity T , on a coupon-bearing bond. Suppose

that the bond provides cashflows c1, c2, . . . , cn at times t1, t2, . . . , tn after the maturity T of the

option. The payoff of the option at time T is

max

[
0,

n∑
i=1

ciZ(r, T, ti)−K

]
(4.21)

where r is the short rate as observed at time T ; of course unknown at time t. Let r∗ be the value of

the short rate at time T which causes the coupon-bearing bond price to equal the strike price. r∗

is the solution of

K =

n∑
i=1

ciZ(r∗, T, ti) (4.22)

We calculate r∗ now using Newton’s method. (Just using goalseek in excel will suffice for simple

problems.) Since zero prices are decreasing functions of r, it follows that the option expires in the

money for all r < r∗, and out of the money for all r > r∗. Then

payoff = max

[
0,

n∑
i=1

ciZ(r, T, ti)−K

]

= max

[
0,

n∑
i=1

ciZ(r, T, ti)−
n∑
i=1

ciZ(r∗, T, ti)

]

=

n∑
i=1

ci max[0, Z(r, T, ti)− Z(r∗, T, ti)]

Thus the call on the coupon-bearing bond is reduced to the sum of separate calls on the underlying

zeros. This technique is called the ‘Jamshidian trick’.
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Example 4.4.1. Suppose that � =
√
� = 0.02, 
 = 0.1, � = 0.01 and the short rate be 10%.

Consider a 3-year European put option on a 5-year bond with a coupon of 10% NACS, strike price

K = 98, par 100.

At the end of 3 years there will be four cashflows remaining, namely

time amount discount factor

3.5 5 exp(A(3; 3.50)− r(3)B(3; 3.5))

4 5 exp(A(3; 4)− r(3)B(3; 4))

4.6 5 exp(A(3; 4.5)− r(3)B(3; 4.5))

5 105 exp(A(3; 5)− r(3)B(3; 5))

where the functional form of A(t, T ) and B(t, T ) are known - the only unknown here is r(3), the

value of the short rate that will actually be observed at time 3.

Solving (4.22) for r∗ = r(3), where K = 98 gives r∗ = 0.1095222.

time A B Z Cash Value

0 0 0 1.000000

0.5 -0.001 0.4877 0.946830 5 4.734149

1 -0.005 0.9516 0.896731 5 4.483653

1.5 -0.011 1.3929 0.849538 5 4.247691

2 -0.018 1.8127 0.805091 105 84.534506

98

The option is the sum of four options:

time Cash Strike

3.5 5 4.734149

4 5 4.483653

4.5 5 4.247691

5 105 84.53451

We value each as follows:

time A B Z Cash Strike �p d1 d2 V

3.5 -0.052 2.9531 0.706252 5 4.734149 1.465% 0.376364 0.361713 0.012449

4 -0.067 3.2968 0.672465 5 4.483653 2.859% 0.3903 0.361713 0.022830

4.5 -0.083 3.6237 0.640436 5 4.247691 4.184% 0.403556 0.361713 0.031429

5 -0.101 3.9347 0.610074 105 84.53451 5.445% 0.416166 0.361713 0.808417

0.875125

4.4.3 Cox-Ingersoll-Ross model

The Cox et al. [1985] model has all four parameters constant, but this time � = 0 and � > 0. In

this case (4.4) becomes:

dr = (� − 
r)dt+
√
�rdz (4.23)
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The spot rate again has a mean reversion level of �

 , with reversion occurring at a rate of 
 but,

unlike the Vasicek model, the steady-state distribution is not a special case of the normal distribution

(since the volatility is now rate dependent). The CIR model does not permit negative interest rates,

provided the technical condition � > 1
2� holds. CIR give explicit solutions for some interest rate

derivatives but the solutions are complicated and sometimes involve integrals that do not have exact

solutions (and have to be estimated numerically).

For the pricing of discount bonds under the affine model (4.7) the bond pricing equations (4.13)

and (4.12) reduce to:

dB

dt
= 1

2�B
2 + 
B − 1

dA

dt
= �B

which has the solution:

Z(t, T ) =
2(exp( 1(T − t))− 1)

(
 +  1)(exp( 1(T − t))− 1) + 2 1

 1 =
√

2 + 2�

A(t, T ) =
2�

�
ln

2 1 exp((
 +  1)(T − t)/2)

( 1 + 
)(exp( 1(T − t))− 1) + 2 1

For specific values of �, 
 and � we can generate yield curves of various shapes. Again, A and B

are functions only of T − t. We can use a similar approach to Jamshidian’s to value European style

options on coupon-bearing bonds.

Consider a call option on an T2−maturity discount bond with exercise price K and expiration

T1 < T2. Using risk-neutral valuation, the vanilla option price is:

V±[r, t, T1, T2;K] = Z(r, t;T1)Eℚ
t [max(0,±(Z −K))]

where

f(Z) =
Z(r, t, T2)

Z(r, t, T1)

Then,

Vc[r, t, T1, T2;K] = Z(r, t, T1)
[
f(Z)�2(ℎ1)−K�2(ℎ2)

]
where �2 is the non-central chi-squared distribution. The parameters ℎ1 and ℎ2 have a complicated

dependence on �, 
 and �.

4.5 Two factor equilibrium models

In Brennan and Schwartz [1979], Brennan and Schwartz [1982] the process for the short rate reverts

to a long rate, which is turn follows a stochastic process. The long rate is chosen as the yield on a

perpetual bond.

Longstaff and Schwartz [1992a], Longstaff and Schwartz [1992b] starts with a general equilibrium

model of the economy and derives a term structure model where is there is stochastic volatility.

This model is analytically quite tractable.
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4.6 Equilibrium models of the logarithm of the short rate

4.6.1 The Continuous time version of the Black-Derman-Toy model

Again, we can use Rebonato [1998] for the derivation of the continuous equivalent of the Black et al.

[1990] model.

In the Black et al. [1990] model, a lognormal distribution of the short term interest rate is assumed

i.e. ln r(t) is normally distributed. At each node (i, j−1) we have 2 possible states of the world and

interest rates denoted r(i, j) and r(i + 1, j) that we can evolve to. The mean short term interest

rate at this time may then be calculated as:

ln rm(i, j) = 1
2 [ln r(i, j) + ln r(i+ 1, j)]

Also

r(i+ 1, j) = r(i, j) exp
[
2�(j)

√
Δt
]

and hence, we find each of the two possible rates as an offset from the median rate of interest,

rm(i, j)

r(i+ 1, j) = rm(i, j) exp
[
�(j)
√

Δt
]

r(i, j) = rm(i, j) exp
[
−�(j)

√
Δt
]

So, the correct continuous analogue of this is as follows

r(t) = u(t) exp (�(t)z(t)) (4.24)

where

u(t) ∼ time t median of the short term interest rate distribution,

�(t) ∼ short term interest rate volatility at time t,

z(t) ∼ standard Brownian motion.

To examine the nature of the stochastic process driving the short term interest rate we must examine

the evolution of f(z, t) = ln r(t) = ln(u(t)) + �(t)z(t). So

df = d lnu(t) + d(�(t)z(t))

=
∂ lnu(t)

∂t
dt+ �′(t)z(t) dt+ �(t) dz(t)

=
u′(t)

u(t)
dt+ �′(t)

ln r(t)− lnu(t)

�(t)
dt+ �(t) dz(t)

=

[
u′(t)

u(t)
+
�′(t)

�(t)
(ln r(t)− lnu(t))

]
dt+ �(t) dz(t)

=
�′(t)

�(t)
[ln r(t)− �(t)] dt+ �(t) dz(t)

�(t) := −u
′(t)

u(t)

�(t)

�′(t)
+ lnu(t)
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See [Cairns, 2004, §5.2.3].

It is tempting to work one-factor models in order to match not only the term structure but also

to match the price of caps (liquid instruments) and swaptions. However, this amounts to over-

parameterisation and leads to a non-stationary volatility structure. The corresponding volatility

term structure implied by the model is unlikely to be anything like the existing volatility structure

and can create derivative mispricing.

4.6.2 The Black-Karasinski Model

Black and Karasinski [1991] is the general version of the above:

d ln r(t) = �(t)(ln�(t)− ln r(t))dt+ �(t)dz(t) (4.25)

See [Cairns, 2004, §5.2.3]. Now let Y (t) = ln r(t) in the equation above so that

dY (t) = �(t)(ln�(t)− Y (t))dt+ �(t)dz(t).

Then r = eY so

dr = eY dY + 1
2e
Y ⟨dY, dY ⟩

= r(t) [�(t)(ln�(t)− Y (t))dt+ �(t)dz(t)] + 1
2r(t)�

2(t) dt

= r(t)
[
�(t)(ln�(t)− ln r(t)) + 1

2�
2(t)

]
dt+ r(t)�(t)dz(t)

Alternatively, we can solve for the dynamics of Y . This time the integrating factor is eA(t) where

A(t) =
∫ t

0
�(s) ds. So let f(y, t) = yeA(t).

df(t) = Y (t)eA(t)�(t) dt+ eA(t) dY

= Y (t)eA(t)�(t)dt+ eA(t) [�(t)(ln�(t)− Y (t))dt+ �(t)dz(t)]

= eA(t) [�(t) ln�(t)dt+ �(t)dz(t)]

Y (t) = e−A(t)

[
Y (0) +

∫ t

0

eA(s)�(s) ln�(s)ds+

∫ t

0

eA(s)�(s)dz(s)

]
Y (t) = e−A(t)Y (0) +

∫ t

0

eA(s)−A(t)�(s) ln�(s)ds+

∫ t

0

eA(s)−A(t)�(s)dz(s)

which shows that

Y (t) ∼ �
(
e−A(t)Y (0) +

∫ t

0

eA(s)−A(t)�(s) ln�(s)ds,

∫ t

0

e2(A(s)−A(t))�2(s) ds

)
This allows for a fairly rich calibration mechanism, using inter alia the caplet volatilities.

4.7 No-arbitrage models

We now consider no-arbitrage models. These will be generalisations of equilibrium models where

the existing term structures are taken as input to the model and parameters are chosen so that

those same term structures are outputs of the model.
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4.7.1 The Continuous time version of the Ho-Lee model

Rebonato [1998] presents a simple analysis by which the continuous time equivalent of any discrete

time model, modelled within a binomial lattice, may be found. See also [Svoboda, 2003, §10.4.1].

Given that we are in state (i, j − 1), we can only move in the next time step to state (i, j) or state

(i + 1, j). Given the assumption that the short term interest rate follows a Gaussian process we

have

r(i+ 1, j) = r(i, j) + 2�(j)
√

Δt (4.26)

where �(j) is the volatility of the one period rate that is earned in the period [j Δt, (j + 1) Δt].

Let rm(i, j) be the expected interest rate at time j given where we are at time j − 1, hence:

rm(i, j) = 1
2 [r(i+ 1, j) + r(i, j)]

⇒ r(i+ 1, j) = rm(i, j) + �(j)
√

Δt

r(i, j) = rm(i, j)− �(j)
√

Δt

and so, in continuous time, we may write:

r(t) = �(t) + �(t)z(t)

We may apply Itô’s Lemma to determine the stochastic process for the short term interest rate, and

if we assume that the volatility is also not time dependent then

dr =
∂r

∂t
dt+

∂r

∂z
dz + 1

2

∂2r

∂z2
(dz)2

=
∂r

∂t
dt+ �dz

and so have our favoured affine form: we have � > 0 constant, � = 0 = 
, but � a function of time:

dr = �(t)dt+
√
�dz (4.27)

There is no mean reversion in the model which means that the process for r has unbounded variance.

The function �(t) can be determined analytically and calibrated from the initial term structure of

interest rates. (4.12) and (4.13) have become

∂A

∂t
= �(t)B − 1

2�B
2 (4.28)

∂B

∂t
= −1 (4.29)

and so

B(t, T ) = T − t (4.30)

A(t, T ) = −
∫ T

t

�(s)(T − s) ds+ 1
6�(T − t)3 (4.31)

We can calibrate �(⋅) so that the observed yield curve (found from our yield curve bootstrap) fits

exactly. The best way to work with this is to think of t as today, so t = 0 and that the variable in

play is T . Thus

−Tr(r, 0, T ) = A(0, T )− rB(0, T )
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We use (4.30) and (4.31) in this, and then differentiate twice w.r.t. T .2 The result is

�(T ) = f ′(0, T ) + �T (4.32)

where f(0, T ) refers to the continuous forward rate for time T , as seen at time 0 (with the world in

state r = r(0)). Of course, here the interpolated curve needs to be twice differentiable. Most cubic

spline interpolation schemes satisfy this property, but of course there are plenty of problems with

such interpolation schemes. The best approach might be to use the method of Svensson [1994].

Under the Ho-Lee model we can value European options on default-free bonds in exactly the same

way as before. Consider a call option on an T2−maturity discount bond with exercise price K and

expiration T1 < T2. Using risk-neutral valuation, the vanilla option price is:

V±[r, t, T1, T2;K] = Z(r, t, T1)Eℚ
t [max(0,±(Z −K))]

where Z is the zero coupon price for expiry T2 as observed at time T1. It has current forward value

f(Z) =
Z(r, t, T2)

Z(r, t, T1)
.

It turns out that we obtain a ‘Black-like’ option pricing formula:

c[r, t, T1, T2;K] = Z(r, t, T2)N(d+)−KZ(r, t, T1)N(d−) (4.33)

p[r, t, T1, T2;K] = KZ(r, t, T1)N(−d−)− Z(r, t, T2)N(−d+) (4.34)

�2
p = �(T2 − T1)2T1 (4.35)

d± =
ln f(Z)

K ± 1
2�

2
p

�p
(4.36)

4.7.2 The Extensions of Hull & White

Hull and White [1990], Hull and White [1994] extended the Vasicek and CIR models to include

time-dependency in the drift and volatility parameters. The extended Vasicek model is

dr = (�(t)− 
r(t))dt+
√
�dz (4.37)

and the extended CIR model is

dr = (�(t)− 
r(t))dt+
√
�r(t)dz (4.38)

The extended Vasicek model with constant volatility is analytically tractable and results in a richer

volatility structure for forward rates, spot rates and discount bonds.

(4.12) and (4.13) have become

∂A

∂t
= �(t)B − 1

2�B
2

∂B

∂t
= −1 + 
B

2 Here we are using the Leibnitz rule, for differentiation of a definite integral with respect to a parameter [National

Institute of Standards and Technology, 2010, §1.5(iv)]:

d

d�

∫ �(�)

 (�)
f ( , �) d = f (� (�) , �)

d� (�)

d�
− f ( (�) , �)

d (�)

d�
+

∫ �(�)

 (�)

d

d�
f ( , �) d 
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and so

B(t, T ) = 1

 (1− e−
(T−t)) 3

A(t, T ) = −
∫ T

t

�(s)B(s, T ) ds+ 1
2�

∫ T

t

B(s, T )2 ds

In other words, ∫ T

0

�(s)B(s, T ) ds = 1
2�

∫ T

0

B(s, T )2 ds− rB(0, T ) + r(r, 0, T )T

We need to derive the function �(T ) at time t = 0, today.

We now differentiate twice w.r.t. T . Of course, we are able the plug in the known values of B(s, T ),
∂
∂T B(s, T ) and ∂2

∂T 2B(s, T ). After some work, the result is

�(T ) = f ′(0, T ) + 
f(0, T ) +
�

2

(1− e−2
T ) (4.39)

Option pricing formulae are the same as in §4.4.2. Note that � was not a parameter in the option

price there and �(t) is not here - this information is reflected in the formulae through the zero

coupon bond prices.

Calibrating the Hull-White (Vasicek) model

In order to calibrate this model, we still need to find the short rate volatility �, and the mean

reversion speed 
.

• Strip caps into caplets as in §3.4.

• As in §3.3.2, a caplet is actually a put on a bond.

• For any given value of � and 
, the puts on bonds have prices as functions of � and 
 and the

current yield curve, which is given and fixed. These formulae appear earlier in this section,

and refer back to the formulae of §4.4.2.

• We can then formulate a function an error function which measures the difference between

model and market (as stripped) prices. This function will be something like

err�,
 =
∑
i

∣Vi(�, 
)− Pi∣ (4.40)

• We minimise this function using the Nelder-Mead algorithm.

One will often find that a stable minimum is not easily found, and so one can fix one of the

parameters (such as putting 
 = 0.03; apparently the Bloomberg solution) and then solve for just

the one free parameter �.

These are also the parameters one will need to use in the market standard convexity adjustment

that makes futures prices like forward prices.

3In showing this, one must be careful to distinguish the cases 
B − 1 <> 0.
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4.7.3 The need for the convexity adjustment

The forward price of a contract is not the same as the futures price. As the underlying rate is

positively correlated with spot interest rates, futures prices are higher than forward prices. To

understand the nature of the bias between forward and futures contracts when the underlying is an

interest rate, consider a money market futures contract and a forward rate agreement (FRA) on a

certain forward rate.

An investor holding futures contracts realises the gains/losses resulting from a change in the po-

sition’s value daily. On the other hand, an investor holding forward rate agreements realises the

gains/losses only at the maturity of the underlying interest rate; the value of these gains/losses is

the present value thereof. The gains realised on a long FRA position when the forward rate increases

will be discounted at a higher interest rate. The losses realised on a long FRA position when the

forward rate decreases will be discounted at a lower interest rate. This has the effect of decreasing

the gains and increasing the losses for a long FRA position compared to the long futures position.

If the discount rate was unaffected by the change in the FRA rate, then a long position in a

future could be perfectly hedged by a short position in C(0, t) many positions in a FRA, where t

is the commencement date of the FRA. However, as the spot rate (and hence the factor C(0, t)) is

positively correlated with the FRA rate, the actual p&l of this position should be positive (in the

simplest case of perfect correlation, the p&l is positive for all moves in the rate. See Figure 4.2.)

Figure 4.2: The p&l of a futures position hedged with short forwards, assuming the rates are equal

and correlation between rates is perfect.

An alternative intuitive explanation for this phenomenon is as follows: the long party to the futures

contract will tend to receive margin payments on days when interest rates rise, and make margin

payments on days when interest rates decline. That investor will then invest profits they receive at

higher interest rates, and fund losses they make at lower interest rates.

In either case we see that if futures and FRAs had the same rate, the future is far more attractive.

Thus the fixed rate in the FRA should be lower in order to restore the attractiveness of the FRA.

However, recent research shows that this factor might not be taken into account in general i.e. that
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futures and forwards do not trade relative to each other in this way - see Poskitt [2008].

4.7.4 Derivation of the convexity adjustment

To bootstrap the current yield curve, forward rates are required. Typically, a futures rate will be

input, an adjustment to make the rate ‘forward like’ will be made, and that rate will be used. This

adjustment is model dependent. The models is use are the Ho-Lee model (perhaps the market

standard) and the Hull-White model (the only one offered by Bloomberg, so will be the market

standard soon enough). The difference between the futures rate and the forward rate is termed the

convexity adjustment.

The theoretical futures rate F (T1, T2), is calculated using the following equation

F (t;T1, T2) = Eℚ
t [f(T1;T1, T2)] (4.41)

where Eℚ
t [⋅] is the expectation under the risk-neutral measure and f(t;T1, T2) is the forward rate

at time t, for the time interval [T1, T2]. We can only solve this equation by introducing an interest

rate model. These models will require some differentiability of the curve.

Ho-Lee Model

The derivation here is based on Hull.

The dynamics of the short rate under the Ho-Lee model are

dr(t) = �(t)dt+ �dW (t) (4.42)

where � is the volatility of the short rate, and W (t) is standard Brownian motion under the risk-

neutral measure. The �(t) function is determined from the initial term structure as

�(t) = f ′(0, t) + �2t (4.43)

where f ′(0, t) is the derivative with respect to t of the instantaneous forward rate for maturity t, as

seen today. Under the Ho-Lee model, the price of a zero-coupon bond, Z(t, T ) is given by

Z(t, T ) = eA(t,T )−r(t)(T−t)

where

A(t, T ) = ln
Z(0, T )

Z(0, t)
− (T − t)∂ lnZ(0, t)

∂t
− 1

2
�2t(T − t)2

Using Itô’s lemma one shows that

dZ(t, T )

= Zt(t, T )dt+ Zr(t, T )dr(t) + 1
2Zrr(t, T ) (dr(t))

2

=
[
eA(t,T )e−r(t)(T−t)At(t, T ) + eA(t,T )e−r(t)(T−t)r(t)

]
dt− eA(t,T )e−r(t)(T−t)(T − t)dr(t)

+ 1
2e
A(t,T )e−r(t)(T−t)(T − t)2�2dt

= Z(t, T ) [At(t, T ) + r(t)] dt− Z(t, T )(T − t) [�(t)dt+ �dW (t)] + 1
2Z(t, T )(T − t)2�2dt

= Z(t, T )
[
At(t, T ) + r(t) + 1

2 (T − t)2�2 − (T − t)�(t)
]
dt− Z(t, T )(T − t)�dW (t)
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and since

At(t, T ) = (T − t)�(t)− 1
2 (T − t)2�2 (4.44)

it follows that

dZ(t, T ) = r(t)Z(t, T ) dt− �Z(t, T ) dW (t)

Now using (1.12) we can again use Itô’s lemma to find

df(t;T1, T2)

= ft(t;T1, T2)dt+ fr(t;T1, T2)dr(t) + 1
2frr(t;T1, T2)(dr(t))2

=
1

T2 − T1

[
At(t, T1)Z(t, T1) + r(t)Z(t, T1)

Z(t, T1)
− At(t, T2)Z(t, T2) + r(t)Z(t, T2)

Z(t, T2)

]
dt

+
1

T2 − T1

[
− (T1 − t)Z(t, T1)

Z(t, T1)
+

(T2 − t)Z(t, T2)

Z(t, T2)

]
(�(t)dt+ �dW (t)) + 0dt

=
1

T2 − T1
[At(t, T1)−At(t, T2)] dt+ �(t)dt+ �dW (t)

and again using (4.44) we have that

df(t;T1, T2) =

[
At(t, T1)−At(t, T2)

T2 − T1
+ �(t)

]
dt+ � dW (t)

=
�2

2
(T2 + T1 − 2t) dt+ � dW (t)

Thus

F (0;T1, T2) = Eℚ
t [f(T1;T1, T2)]

= f(0;T1, T2) +

∫ T1

0

�2

2
(T2 + T1 − 2s) ds

= f(0;T1, T2) +
1

2
�2T1T2

Hull-White Model

In the Hull-White model

dZ(t, T ) = r(t)Z(t, T ) dt−B(t, T )�Z(t, T ) dW (t)

and after some work we get

F (0;T1, T2) = f(0;T1, T2) +
B(T2 − T1)

T2 − T1

�2

4

[
B(T2 − T1)B(2T1) + 2B(T1)2

]
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4.8 Exercises

1. In the course of deriving the solution to the bond equation we arrive at two ordinary differential

equations for the functions A(t, T ) and B(t, T ): equations (4.19) and (4,20). Assume �(t) and


(t) are constants. Integrate the equation (4.20) with boundary condition B(T, T ) = 0 to

obtain a closed form solution for B(t, T ).

2. Write down the form of the Bond-pricing equation when the short rate satisfies the following

Vasicek model

dr = (� − 
r) dt+
√
�dz.

Solve the resulting ordinary differential equations for A(t, T ) and B(t, T ). Express the solution

for A(t, T ) in terms of B(t, T ).

3. (a) What is the difference between an equilibrium short-term interest rate model and a no-

arbitrage model?

(b) If a stock price followed a mean-reverting or path-dependent process, there would be

market inefficiency. Why is this NOT the case when short-term interest rate models are

mean-reverting or path-dependent?

(c) Suppose that the short rate is currently 3.5% and its volatility measure is 0.95% per

annum. What happens to the volatility measure when the short rate increases to 10.5%

in (i) Vasicek’s model; (ii) Rendleman and Bartter’s model; and (iii) the Cox, Ingersoll,

Ross model?

4. (a) Given the following parametrisations of the Vasicek and CIR models:

dr = (� − 
r)dt+
√
�dz

dr = (� − 
r)dt+
√
�r dz,

respectively. Suppose that 
 = 0.15 and � = 0.015, and that the initial short rate is

r = 10%. Let the initial volatility measure for the short rate be 2%. Compare the two

different values given by the models for the 8-year discount factor. What is the associated

8-year, continuously-compounded interest rate in each instance?

(b) What happens to the values above when r = 9.99%? Calculate the present value of a one

basis point shift (PV 01) of a par 100 zero-coupon bond in each instance.

5. Perform the derivation of the �(T ) function in the Ho-Lee model.

6. (a) Suppose that a = 0.25, b = 0.06, and � = 0.022 in Vasicek’s model with the initial

short-term interest rate being r(0) = 5.8%. Calculate the price of a 2.20 year European

call option on a coupon-bearing bond that will mature in three years’ time. Suppose that

the bond pays a coupon of 6% semi-annually. The par value of the bond is 100 and the

strike price of the option is 99. The strike price is the cash price (not the quoted price)

that will be paid for the bond.

(b) Use the answer to (a) and put-call parity arguments to calculate the price of a put option

that has the same terms as the call option.
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(c) Plot the yield curve for these values of 
, b, � and r out to 5 years.

7. Perform the derivation of the �(T ) function in the Hull-White-Vasicek model.

8. Suppose we are using Vasicek’s model with a volatility of 4%, 
 = 15%, � = 2% and short

rate r = 10%.

(a) Graph the yield curve.

(b) Find the price of a one year call option on a three year zero coupon bond par 1, struck

at 97c.
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Chapter 5

The LIBOR market model

The input is a model for the LIBOR forward rates. These forward rates are of course extracted

from the bootstrapped yield curve, while the volatilities are found from the cap/caplet Black model

Black [1976] inputs.

In each Black model for maturity date T , the forward rates will be log-normally distributed in what

is called the T -forward measure, where T is the pay date of the option. The fact that we can ‘legally’

discount the expected payoff under this measure using today’s yield curve is a consequence of some

profound academic work of Geman et al. [1995]. We can proceed to use Black’s model without

knowing any of the theory of the LMM (or of Geman et al. [1995]); however, the Black model

cannot safely be used to value more complicated products where the payoff depends on observations

at multiple dates.

The LIBOR market model is then a collection of Black models. Each of these models will have its

own pricing measure. However, one can move from any one of these measures to any other by using

a Radon-Nikodym change of measure. By changing all of the measures to a single measure (the one

of furthest tenor) enables us to consider a single pricing measure.

In addition to the volatility inputs, the matrix of correlations between each of these forward rates

is required - the correlations are the linkers between the forward rates. These correlations are not

observable in the market. They either need to be determined from market data in the calibration

step, or are given by exogenous considerations and then are inputs to further calibration routines.

In the latter case, the fit to the market will be less satisfactory than in the former, but these models

may subsequently perform in a more realistic fashion than methods where the fit is tighter.

The LIBOR market model is also commonly known as the BGM model after Brace et al. [1997].

The model was also initially developed by Miltersen et al. [1997] and Jamshidian [1997].

The LMM has become a standard in the banking industry, and is commonly used for pricing most

exotic interest rate derivatives. Even in the case where other models would clearly be easier to

use, the industry prefers to extend this model: possibly because it is a natural extension of the

Black-Scholes world, and the amenability of Monte Carlo pricing for almost any product variation.

Nevertheless, the ability of these models to capture rate curve dynamics is more than questionable

Manuel Huyet [2007]: in reality there is clear evidence of jumps, regimes, and skew. The normali-
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ty/lognormality assumption is of course quite questionable. The LMM is only now being extended

to a regime which is skew aware e.g. Svoboda-Greenwood [2007], Rebonato [2007].

5.1 The model for a single forward rate

Let Li(t) := L(t; ti−1, ti) be the FRA-rate for the period from ti−1 to ti. Clearly

C(t, ti) = C(0, ti−1) [1 + Li(t)�i] (5.1)

where t is today, C(t, ⋅) are the capitalisation factors extracted from the yield curve, �i is the time

from ti−1 to ti in years, observing the relevant day count convention. It follows that

Li(t) =
1

�i

[
Z(t, ti−1)

Z(t, ti)
− 1

]
(5.2)

Z(t, ti)Li(t) =
1

�i
[Z(t, ti−1)− Z(t, ti)] (5.3)

Of course this is just §1.7 again. In particular, Z(t, ti)Li(t) is a tradeable asset. If we consider the

measure for which Z(t, ti) is the numeraire - this is known as the ti-forward measure - then Li(t) is

a martingale under this measure. It now follows from the Martingale Representation Theorem1

dLi(t) = Li(t)vi(t)
′dW i(t) (5.4)

Here W i(t) =

⎡⎢⎢⎢⎢⎣
W i

1(t)

W i
2(t)
...

W i
n(t)

⎤⎥⎥⎥⎥⎦ are correlated Brownian motions under the ti-forward measure, and

vi(t) =

⎡⎢⎢⎢⎢⎣
v1i(t)

v2i(t)
...

vni(t)

⎤⎥⎥⎥⎥⎦ are deterministic functions, and they are each 0 as soon as we reach ti−1. In fact

we can (and do) assume that all except the itℎ entry of vi(t) are 0.

5.2 The pricing of caplets and caps

Since vi(t) is deterministic, we have

Σti [lnL(ti−1)∣ℱt] =

∫ ti−1

t

∥vi(s)∥2 ds

Eti [lnL(ti−1)∣ℱt] = lnL(t)− 1
2

∫ ti−1

t

∥vi(s)∥2 ds

1This theorem tells you that that dLi(t) = vi(t)
′dW i(t). Since Li(t) is never 0 this can be rewritten in the given

form.
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Thus the value of a caplet with strike K is given by

V (t) = Z(t, ti)�iEti
[
(L(ti−1)−K)+∣ℱt

]
= Z(t, ti)�i[L(t)N(d1)−KN(d2)]

d± =
ln L(t)

K ± 1
2Σ

√
Σ

Σ =

∫ ti−1

t

∥vi(s)∥2 ds

A cap is a collection of caplets. Thus the cap has value

V (t) =
M∑
i=1

Z(t, ti)�i[L(t; ti−1, ti)N(di1)−KN(di2)]

di± =
ln L(t;ti−1,ti)

K ± 1
2Σi√

Σi

Σi =

∫ ti−1

t

∥vi(s)∥2 ds

This shows that the LMM is in every way consistent with the Black model, and this model can

recover all of the Black model inputs that are used for calibration.

5.3 A common measure

In §5.2 we could have used a single Brownian motion and a one dimensional v(t). However, we want

to price more complex derivatives based on many forward rates, possibly with many payoff times.

So, we use a vector of Brownian motions.

We know numeraires for the measure tj−1 and for the ‘next’ measure tj , so we can explicitly calculate

the likelihood process:

�(t) :=
dℙj−1

dℙj
(t) =

Z(t, tj−1)

Z(0, tj−1)
/
Z(t, tj)

Z(0, tj)

=
Z(0, tj)

Z(0, tj−1)

Z(t, tj−1)

Z(t, tj)

=
Z(0, tj)

Z(0, tj−1)
(1 + �jLj(t))

Now

d�(t) =
Z(0, tj)

Z(0, tj−1)
�jdLj(t)

=
Z(0, tj)

Z(0, tj−1)
�jLj(t)vj(t)

′dW j(t)

= �(t)
�jLj(t)

1 + �jLj(t)
vj(t)

′dW j(t)
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and so by Girsanov’s theorem

dW j−1(t) = dW j(t)− �jLj(t)

1 + �jLj(t)
vj(t) dt

By induction,

dW i(t) = dWn(t)−
n∑

j=i+1

�jLj(t)

1 + �jLj(t)
vj(t) dt

Note that the last equation is one of n× 1 column vectors. It follows that

dLi(t) = Li(t)vi(t)
′

⎡⎣dWn(t)−
n∑

j=i+1

�jLj(t)

1 + �jLj(t)
vj(t) dt

⎤⎦ (5.5)

5.4 Pricing exotic instruments under LMM

In order to price derivatives, we now do the following

• Use Monte Carlo to evolve the forward rates to the first cash flow at ti in the derivative.

• Calculate the cash flows in that experiment.

• Future value these cash flows forward to time tn by using the capitalisation factors that have

arisen from the experiment, NOT using today’s forward capitalisation factor C(t; ti, tn).

• Present value back to today by using today’s discount factor Z(t, tn).

• Continue the Monte Carlo evolution to ti+1 and repeat.

5.4.1 A simple example

Suppose now is time t0. In three months time (time t1) we observe the LIBOR rate. If it is greater

than 10.5%, a caplet on the then three month rate (to be observed at time t2) is knocked in with a

strike of 10%. The payoff occurs in advance, 6 months from now. 9 months from now is time t3.

Let L0 be the current LIBOR rate, L1 be the rate for the 3x6 period, and L2 the rate for the 6x9

period. Let v1 and v2 be the volatilities and � the correlation.

dL1(t) = L1(t)v1(t)′dW 1(t)

dL2(t) = L2(t)v2(t)′dW 2(t)

Also

dW 1(t) = dW 2(t)− �2L2(t)

1 + �2L2(t)
v2(t) dt

⇒ dL1(t) = L1(t)v1(t)′
[
dW 2(t)− �2L2(t)

1 + �2L2(t)
v2(t) dt

]
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Thus

dL1(t) = L1(t)v11(t)dW 2
1 (t)− L1(t)

�2L2(t)

1 + �2L2(t)
�v11(t)v22(t) dt

dL2(t) = L2(t)v22(t)dW 2
2 (t)

� dt = dW 2
1 (t)dW 2

2 (t)

To find a solution of this scheme, we can proceed as follows: we find dW 2
1 and dW 2

2 using the

Cholesky decomposition.2 We then calculate dL1 and dL2 and the new values of L1 and L2 (we

are now at time t1). If L1 < 10.5% we can exit - the option expires worthless. If not, we generate

another dW 2
2 and another dL2 and the new value of L2 (we are now at time t2). We then determine

the payoff of the caplet with the strike of 10%. The payoff is in advance, so we capitalise the payoff

with the observed value of L2 to time t3.

We take averages in our Monte Carlo experiment, and discount to today using the current 9m

discount factor.

We have used the most näıve discretisation of the scheme. In reality, smaller time steps need to be

taken. For details see [Brigo and Mercurio, 2006, §6.10].

5.4.2 Calibration of the parameters

• A decent yield curve bootstrap algorithm needs to be used. Such issues have already been

discussed.

• Volatilities need to be determined from information in the market. This is the same cap to

caplet problem seen in §3.4.

• Correlations need to be modelled.

• For the Monte Carlo we need low discrepancy sequences in high dimensions. Sobol’ sequences

are most suitable here, see [Jäckel, 2002, Chapter 8].

2Suppose there are two underlyings. Using excel/vba, we first extract pairs of uniformly distributed random

numbers U1, U2, then transform them into pairs of independent normally distributed random numbers Z1, Z2 by

using the inverse of the cumulative normal distribution. We then apply the Cholesky decomposition:

W1 = Z1,W2 = �Z1 +
√

1 − �2Z2 (5.6)

Now W1 and W2 are normally distributed random numbers with correlation �.
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