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1 The Stable Manifold Theorem

ẋ = f(x) (1)

ẋ = Df(x0)x (2)

We assume that the equilibrium point x0 is located at the origin.

1.1 Some Examples

1.1.1 Example 1

Consider The linear system

ẋ1 = −x1
ẋ2 = 2x2

Clearly we have x1(t) = a1e
−t and x2(t) = a2e

2t, with stable subspace Es = span{(1, 0)} and unstable
subspace Eu = span{(0, 1)}. So limt→∞ φt(a) = 0 only if a ∈ Rs. Consider a small perturbation of this
linear system:

ẋ1 = −x1
ẋ2 = 2x2 − 5εx31

The solution is given by x1(t) = a1e
−t and x2(t) = a2e

2t + a31ε
(
e−3t − e2t

)
=
(
a2 − εa31

)
e2t + εa31e

−3t.
Clearly limt→∞ φt(a) = 0 only if a2 = εa31. Indeed we can show that the set

S = {x ∈ R2|x2 = εx31}

is invariant with respect to the �ow. It easy to see that a2 = εa31 leads to

φt(S) =

[
a1e
−t(

a2 − εa31
)
e2t + εa31e

−3t

]
=

[
a1e
−t

εa31e
−3t

]
∈ S

So S is an invariant set (curve), and the �ow on this curve is stable. So it seems that S is some nonlinear
analog of Es. Furthermore, notice that S is tangent to the stable subspace of the linear system, and as
ε→ 0, the curve S becomes Es.

1.1.2 Example 2 (Perko 2.7 Example 1)

Consider

ẋ1 = −x1
ẋ2 = −x2 + x21

ẋ3 = x3 + x21

which we can rewrite as

ẋ =

 −1 0 0
0 −1 0
0 0 1

x+

 0
x21
x21

 .
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The �ow is given by

φt(S) =

 a1e
−t

a2e
−t + a21

(
e−t + e−2t

)
a3e

t +
a21
3

(
et − e−2t

)


where a = (a1, a2, a3) = x(0). Clearly limt→∞ φt(a) = 0 only if a3 = −a21/3. So

S = {a ∈ R3|a3 = −a21/3}

and similarly
U = {a ∈ R3|a1 = a2 = 0}.

Again it seems that S is some nonlinear analog of Esand U is some nonlinear analog of Eu . Furthermore,
notice that S is tangent to the stable subspace of the linear system. We call S the stable manifold, and U
the unstable manifold.
We are going to see how we can compute S and U in general.

1.2 Manifolds and stable manifold theorem

But �rst here is a �working� de�nition of a k-dimentional di�erential manifold. For more precise de�nition,
there is a small section in the book, and CDS202 deals with di�erentiable manifolds in great details.

In this class, by k-dimentional di�erential manifold (or manifold of class Cm) we mean any �smooth�
(of order Cm) k-dimensional surface in an n-dimensional space.

For example S = {a ∈ R3|a3 = −a21/3} is 2-dimensional di�erentiable manifold.
Theorem (The Stable Manifold Theorem): Let E be an open subset of Rn containing the origin,

let f ∈ C1(E), and let φt be the �ow of the non-linear system (1). Suppose that f(0) = 0 and that Df(0)
has k eigenvalues with negative real part and n− k eigenvalues with positive real part. Then there exists a
k−dimensional manifold S tangent to the stable subspace Esof the linear system (2)at 0 such that for all
t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S,

lim
t→∞

φt(x0) = 0;

and there exists an n− k di�erentiable manifold U tanget to the unstable subspace Eu of (2) at 0 such that
for all t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U ,

lim
t→−∞

φt(x0) = 0.

Note: As in the examples, since f ∈ C1(E) and f(0) = 0, then system (1) can be writen as

ẋ = Ax+ F (x)

where A = Df(0), F (x) = f(x)−Ax, F ∈ C1(E), F (0) = 0 and DF (0) = 0.
Furthermore, we want to separate the stable and unstable parts of the matrix , i.e., choose a matrix C

such that

B = C−1AC =

[
P 0
0 Q

]
where the eigenvalues of the k×k matrix P have negative real part, and the eigenvalues of the (n−k)×(n−k)
matrix Q have positive real part. The transformed system (y = C−1x) has the form

ẏ = By + C−1F (Cy)

ẏ = By +G(y) (3)
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1.2.1 Calculating the stable manifold (Perko Method):

Perko shows that the solutions of the integral equation

u(t, a) = U(t)a+

ˆ t

0

U(t− s)G(u(s, a))ds−
ˆ ∞
t

V (t− s)G(u(s, a))ds

satisfy (3) and limt→∞ u(t, a) = 0. Furthermore it gives an iterative scheme for computing the solution:

u(t, a) = 0

u(k+1)(t, a) = U(t)a+

ˆ t

0

U(t− s)G(u(k)(s, a))ds−
ˆ ∞
t

V (t− s)G(u(k)(s, a))ds

• Remark Here is some intuition on why the particular integral equation is chosen. We basically want
to remove the parts that blow up as t→∞. In general, the solution of this system satis�es

u(t, a) =

[
ePt 0
0 eQt

]
a+

ˆ t

0

[
eP (t−s) 0

0 eQ(t−s)

]
G(u(s, a))ds.

u(t, a) =

[
ePt 0
0 eQt

]
a+

ˆ t

0

[
eP (t−s) 0

0 eQ(t−s)

]
G(u(s, a))ds

Separate the convergent and non-convergent parts

=

[
ePt 0
0 0

]
a+

[
0 0
0 eQt

]
a+

ˆ t

0

[
eP (t−s) 0

0 0

]
G(u(s, a))ds+

ˆ t

0

[
0 0
0 eQ(t−s)

]
G(u(s, a))ds

=

[
ePt 0
0 0

]
a+

[
0 0
0 eQt

]
a+

ˆ t

0

[
eP (t−s) 0

0 0

]
G(u(s, a))ds

+

ˆ ∞
0

[
0 0
0 eQ(t−s)

]
G(u(s, a))ds−

ˆ ∞
t

[
0 0
0 eQ(t−s)

]
G(u(s, a))ds

Remove contributions that will cause it to not converge to the origin

u(t, a) =

[
ePt 0
0 0

]
a+

ˆ t

0

[
eP (t−s) 0

0 0

]
G(u(s, a))ds−

ˆ ∞
t

[
0 0
0 eQ(t−s)

]
G(u(s, a))ds

= U(t)a+

ˆ t

0

U(t− s)G(u(s, a))ds−
ˆ ∞
t

V (t− s)G(u(s, a))ds

Notice that last n− k components of a do not enter the computation, we can take them to be zero. Next
we take the speci�c solution u(t, a)

u(t, a) = U(t)a+

ˆ t

0

U(t− s)G(u(s, a))ds−
ˆ ∞
t

V (t− s)G(u(s, a))ds

and see what it implies for the intial conditions u(0, a). Notice that

uj(0, a) = aj , j = 1, . . . , k

uj(0, a) = −
(ˆ ∞

0

V (−s)G(u(s, a))ds
)
j

, j = k + 1, . . . , n

So the last n− k components of the initial conditionssatisfy

aj = ψj(a1, . . . , ak) := uj(0, a1, . . . , ak, 0, . . . , 0), j = k + 1, . . . , n.

Therefore the stable manifold is de�ned by

S = {(y1, . . . , yn)|yj = ψj(y1, . . . , yk), j = k + 1, . . . , n}.
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• The iterative scheme for calculating an approximation to S:

� Calculate the approximate solution u(m)(t, a)

� For each j = k + 1, . . . , n, ψj(a1, . . . , ak) is given by the j-th component of u(m)(0, a).

Note: Similarly can calculate U by taking t = −t.

• Example:

ẋ1 = −x1 − x22
ẋ2 = x2 + x21

A = B =

[
−1 0
0 1

]
, F (x) = G(x) =

[
−x22
x21

]
U =

[
e−t 0
0 0

]
, V =

[
0 0
0 et

]
, a =

[
a1
0

]
Then

u(0)(t, a) =

[
0
0

]
u(1)(t, a) =

[
e−ta1
0

]
u(2)(t, a) =

[
e−ta1
0

]
+

ˆ t

0

[
e−(t−s) 0

0 0

] [
0

e−2sa21

]
ds−

ˆ ∞
t

[
0 0
0 e(t−s)

] [
0

e−2sa21

]
ds =

[
e−ta1
− e

−2t

3 a21

]
u(3)(t, a) =

[
e−ta1 +

1
27 (e

−4t − e−t)a41
− e

−2t

3 a21

]
Next can show that u(4)(t, a) − u(3)(t, a) = O(a51) and therefore we can approximate by ψ2(a1) =
− 1

3a
2
1 +O(a51) and the stable manifold can be approximated by

S : x2 = −1

3
x21 +O(x51)

as x1 → 0. Similarly get

U : x1 = −1

3
x22 +O(x52)

1.2.2 Note on invariant manifolds:

Notice that if a manifold is speci�ed by a constraint equation

y = h(x), x ∈ Rk, y ∈ Rn−k

and the dynamics given by

ẋ = f(x, y)

ẏ = g(x, y)

then condition

Dh(x)ẋ = ẏ

⇓
Dh(x)f(x, h(x)) = g(x, h(x))

su�ces to show invariance. We'll call this tangency condition. Exercise: Show that this is the case. If you're
going to use this in the homework this week, you should prove it �rst.
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• Example:

ẋ1 = −x1
ẋ2 = 2x2 − 5εx31

Show that the set
S = {x ∈ R2|x2 = εx31}

is invariant. We have
3εx21(−x1) = 2εx31 − 5εx31.

1.2.3 Calculating the stable manifold (Alternative Method - Taylor expansion):

Let
y = h(x) = ax2 + bx3 + cx4 + . . .

Since invariant manifold we have:
Dh(x)ẋ− ẏ = 0

we can match coe�cients. For example

ẋ1 = −x1
ẋ2 = 2x2 − 5εx31

x2 = h(x1) = ax21 + bx31 +O(x41)

we get f(x1, h(x1)) = −x1, g(x1, h(x1) ≈ 2(ax21 + bx31)− 5εx31

Dh(x)f(x, h(x)) = g(x, h(x))

⇓
(2ax1 + 3bx21 + · · · )(−x1) = 2ax21 + 2bx31 − 5εx31+

Matching terms we get −2a = 2a⇒ a = 0, −3b = 2b− 5ε⇒ b = ε.
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1.2.4 Example

ẋ1 = −x1
ẋ2 = 2x2 + x21

Perko method:

A = B =

[
−1 0
0 2

]
, F (x) = G(x) =

[
0
x21

]
U =

[
e−t 0
0 0

]
, V =

[
0 0
0 e2t

]
, a =

[
a1
0

]
Then

u(0)(t, a) =

[
0
0

]
u(1)(t, a) =

[
e−ta1
0

]
u(2)(t, a) =

[
e−ta1
0

]
+

ˆ t

0

[
e−(t−s) 0

0 0

] [
0

e−2sa21

]
ds−

ˆ ∞
t

[
0 0
0 e2(t−s)

] [
0

e−2sa21

]
ds =

[
e−ta1
− 1

4e
−2ta21

]
u(3)(t, a) =

[
e−ta1
− 1

4e
−2ta21

]

So u(m)(t, a) =

[
e−ta1
− 1

4e
−2ta21

]
,m ≥ 2⇒ u(t, a) =

[
e−ta1
− 1

4e
−2ta21

]
and therefore we get ψ2(a1) = (u(0, a))2 =

− 1
4a

2
1 and the stable manifold is given by

S : x2 = −1

4
x21

as x1 → 0. What is the unstable manifold?
Taylor expansion:

x2 = h(x1) = ax21 + bx31 + · · ·
Dh(x1) = 2ax1 + 3bx21 + · · ·

f(x1, h(x1)) = −x1
g(x1, h(x1) = 2(ax21 + bx31 + · · · ) + x21

then

Dh(x)f(x, h(x)) = g(x, h(x))

⇓
(2ax1 + 3bx21 + · · · )(−x1) = 2ax21 + x21 + 2bx31 + · · ·

⇓

−2a = 2a+ 1 ⇒ a = −1

4
−3b = 2b ⇒ b = 0

...
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and so

S : x2 = −1

4
x21.

Direct Solution:

φt =

[
e−ta1

− 1
4a

2
1

(
e−2t − e2t

)
+ a2e

2t

]
1.2.5 Global Manifolds

• In the proof S and U are de�ned in a small neighborhood of the origin, and are refered to as the local
stable and unstable manifolds of the origin.

De�nition: Let φt be the �ow of (1). The global stable and unstable manifolds of (1) at 0 are de�ned by

W s(0) = ∪t≤0φt(S)

and
Wu(0) = ∪t≥0φt(S)

respectively.

The global stable and unstable manifold W s(0) and Wu(0) are unique and invariant with respect to the
�ow. Furthermore, for all x ∈W s(0), limt→∞ φt(x) = 0 and for all x ∈Wu(0), limt→−∞ φt(x) = 0.

Corollary: Under the hypothesis of the Stable Manifold theorem, if Re(λj) < −α < 0 < β < Re(λm)
for j = 1, . . . , k and m = k + 1, . . . , n then given ε > 0,there exists a δ > 0such that if x0 ∈ Nδ(0) ∩ S then

|φt(x0)| ≤ εe−αt

for all t ≥ 0and if x0 ∈ Nδ(0) ∩ U then
|φt(x0)| ≤ εeβt

for all t ≤ 0.
This shows thatsolutions starting in S su�ciently near the origin, approach the origin exponentially fast

as t→∞.

1.3 Center Manifold Theorem

Theorem (The Center Manifold Theorem) Let f ∈ Cr(E) where E is an open subset of Rn containing
the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part, j
eigenvalues with positive real part, and m = n− k − j eigenvalues with zero real part. Then there exists an
m−dimensional center manifold W c(0) of class Crtangent to the center subspace Ec of (2)at 0, there exists
an k−dimensional center manifold W s(0) of class Crtangent to the stable subspace Es of (2)at 0, and there
exists an j−dimensional center manifold Wu(0) of class Crtangent to the unstable subspace Eu of (2)at 0;
furthermore, W c(0), W s(0) and Wu(0) are invariant uder the �ow φt of (1).

2 The Hartman-Grobman Theorem

De�nition:

• Let X be a metric space (such as Rn) and let A and B be subsets of X. A homeomorphism of A onto
B is a continuous one-to-one map of A onto B, h : A→ B, such that h−1 : B → A is continuous.

• The sets A and B are called homeomorphic or topologically equivalent if there is a homeomorphism of
A onto B.
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• Two autonomous systems of di�erential equations such as (1)and (2)are said to be topologically equiva-
lent in a neighborhood of the origin, or to have the same qualitative structure near the origin if there is
a homeomorphism H mapping an open set U containing the origin onto a set V containing the origin,
which maps trajectories of (1) in U onto trajectories of (2) in V and preserves their orientation by
time.

Theorem (The Hartman-Grobman Theorem) Let Let f ∈ C1(E) where E is an open subset of Rn
containing the origin, and φtthe �ow of (1). Suppose that f(0) = 0 and that Df(0) has no eigenvalues
with zero real part. Then there is a homeomorphism H of an open set U containing the origin onto a set V
containing the origin such that for each x0 ∈ U , there is an open interval I0 ⊂ R containing zero such that
for all x0 ∈ U and t ∈ I0

H ◦ φt(x0) = eAtH(x0);

i.e., (1)and (2)are topologically equivalent in a neighborhood of the origin.

Example: The systems[
ẋ1
ẋ2

]
=

[
−x1

x2 + x21

]
and

[
ẋ1
ẋ2

]
=

[
−1 0
0 1

] [
x1
x2

]
are topologically equivalent. Let x0 = (a1, a2)

H(x) =

[
−x1

x2 +
1
3x

2
1

]
Then

eAtH(x0) =

[
e−t 0
0 et

] [
−a1

a2 +
1
3a

2
1

]
=

[
−a1e−t(

a2 +
1
3a

2
1

)
et

]
H ◦ φt(x0) = H

([
−a1e−t(

a2 +
1
3a

2
1

)
et − 1

3a
2
1e
−2t

])
=

[
−a1e−t(

a2 +
1
3a

2
1

)
et − 1

3a
2
1e
−2t + 1

3a
2
1e
−2t

]
=

[
−a1e−t(

a2 +
1
3a

2
1

)
et

]
Remarks:

• Perko gives an outline of the proof and gives a method using successive approximations for calculating
H.

• However, computationally not very useful since to compute H by this method requires solving for the
�ow ϕt �rst.

• Conceptually, it is extremely useful since knowing that such H exists (without needing to compute
it), allows us to determine the qualitative behavior of nonlinear systems near a hyperbolic equilibrium
point by simply looking at the linearization (without solving it).

3 Stability and Lyapunov Functions

De�nition:

• An equilibrium point x0of (1) is stable if for all ε > 0, there exists a δ > 0 such that for all x ∈ Nδ(x0)
and t ≥ 0, we have φt(x) ∈ Nε(x0).

• An equilibrium point x0of (1) is unstable if it is not stable.

• An equilibrium point x0of (1) is asymptotically stable if it is stable and if there exists a δ > 0 such
that for all x ∈ Nδ(x0) we have limt→∞ φt(x) = x0.

Remarks:

• The about limit being satis�ed does not imply that x0is stable (why?).
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• From H-G theorem and Stable manifold theorem, it follows that hyperbolic equilibrium points are
either asymptotically stable (sinks) or unstable (sources or saddles).

• If x0 is stable then no eigenvalue of Df(x0) has positive real part (why?)

• x0is stable but not asymptotically stable, then x0is a non-hyperbolic equilibrium point

Example: Perko 2.9.2 (c) Determine stability of the fequilibrium points of :[
ẋ1
ẋ2

]
=

[
−4x1 − 2x2 + 4

x1x2

]
Equilibrium points are (0, 2), (1, 0).

Df(x) =

[
−4 −2
x2 x1

]
Df(0, 2) =

[
−4 −2
2 0

]
Df(1, 0) =

[
−4 −2
0 1

]
What can we say in general about the stability of non-hyperbolic equilibrium points?[

ẋ1
ẋ2

]
=

[
−x2 − x1x2
x1 + x21

]
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