CDS140a
Nonlinear Systems: Local Theory
01/25/2011

1 The Stable Manifold Theorem

$$
\begin{gather*}
\dot{x}=f(x) \tag{1}\\
\dot{x}=D f\left(x_{0}\right) x \tag{2}
\end{gather*}
$$

We assume that the equilibrium point x_{0} is located at the origin.

1.1 Some Examples

1.1.1 Example 1

Consider The linear system

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1} \\
\dot{x}_{2} & =2 x_{2}
\end{aligned}
$$

Clearly we have $x_{1}(t)=a_{1} e^{-t}$ and $x_{2}(t)=a_{2} e^{2 t}$, with stable subspace $E^{s}=\operatorname{span}\{(1,0)\}$ and unstable subspace $E^{u}=\operatorname{span}\{(0,1)\}$. So $\lim _{t \rightarrow \infty} \phi_{t}(\mathbf{a})=0$ only if $\mathbf{a} \in R^{s}$. Consider a small perturbation of this linear system:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1} \\
& \dot{x}_{2}=2 x_{2}-5 \epsilon x_{1}^{3}
\end{aligned}
$$

The solution is given by $x_{1}(t)=a_{1} e^{-t}$ and $x_{2}(t)=a_{2} e^{2 t}+a_{1}^{3} \epsilon\left(e^{-3 t}-e^{2 t}\right)=\left(a_{2}-\epsilon a_{1}^{3}\right) e^{2 t}+\epsilon a_{1}^{3} e^{-3 t}$. Clearly $\lim _{t \rightarrow \infty} \phi_{t}(\mathbf{a})=0$ only if $a_{2}=\epsilon a_{1}^{3}$. Indeed we can show that the set

$$
S=\left\{x \in \mathbb{R}^{2} \mid x_{2}=\epsilon x_{1}^{3}\right\}
$$

is invariant with respect to the flow. It easy to see that $a_{2}=\epsilon a_{1}^{3}$ leads to

$$
\phi_{t}(S)=\left[\begin{array}{c}
a_{1} e^{-t} \\
\left(a_{2}-\epsilon a_{1}^{3}\right) e^{2 t}+\epsilon a_{1}^{3} e^{-3 t}
\end{array}\right]=\left[\begin{array}{c}
a_{1} e^{-t} \\
\epsilon a_{1}^{3} e^{-3 t}
\end{array}\right] \in S
$$

So S is an invariant set (curve), and the flow on this curve is stable. So it seems that S is some nonlinear analog of E^{s}. Furthermore, notice that S is tangent to the stable subspace of the linear system, and as $\epsilon \rightarrow 0$, the curve S becomes E^{s}.

1.1.2 Example 2 (Perko 2.7 Example 1)

Consider

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1} \\
\dot{x}_{2} & =-x_{2}+x_{1}^{2} \\
\dot{x}_{3} & =x_{3}+x_{1}^{2}
\end{aligned}
$$

which we can rewrite as

$$
\dot{x}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] x+\left[\begin{array}{c}
0 \\
x_{1}^{2} \\
x_{1}^{2}
\end{array}\right] .
$$

The flow is given by

$$
\phi_{t}(S)=\left[\begin{array}{c}
a_{1} e^{-t} \\
a_{2} e^{-t}+a_{1}^{2}\left(e^{-t}+e^{-2 t}\right) \\
a_{3} e^{t}+\frac{a_{1}^{2}}{3}\left(e^{t}-e^{-2 t}\right)
\end{array}\right]
$$

where $a=\left(a_{1}, a_{2}, a_{3}\right)=x(0)$. Clearly $\lim _{t \rightarrow \infty} \phi_{t}(\mathbf{a})=0$ only if $a_{3}=-a_{1}^{2} / 3$. So

$$
S=\left\{a \in \mathbb{R}^{3} \mid a_{3}=-a_{1}^{2} / 3\right\}
$$

and similarly

$$
U=\left\{a \in \mathbb{R}^{3} \mid a_{1}=a_{2}=0\right\}
$$

Again it seems that S is some nonlinear analog of E^{s} and U is some nonlinear analog of E^{u}. Furthermore, notice that S is tangent to the stable subspace of the linear system. We call S the stable manifold, and U the unstable manifold.
We are going to see how we can compute S and U in general.

1.2 Manifolds and stable manifold theorem

But first here is a "working" definition of a k-dimentional differential manifold. For more precise definition, there is a small section in the book, and CDS202 deals with differentiable manifolds in great details.

In this class, by k-dimentional differential manifold (or manifold of class C^{m}) we mean any "smooth" (of order C^{m}) k-dimensional surface in an n-dimensional space.

For example $S=\left\{a \in \mathbb{R}^{3} \mid a_{3}=-a_{1}^{2} / 3\right\}$ is 2-dimensional differentiable manifold.
Theorem (The Stable Manifold Theorem): Let E be an open subset of \mathbb{R}^{n} containing the origin, let $\mathbf{f} \in C^{1}(E)$, and let ϕ_{t} be the flow of the non-linear system (1). Suppose that $f(0)=0$ and that $D f(0)$ has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part. Then there exists a k-dimensional manifold S tangent to the stable subspace E^{s} of the linear system (2)at 0 such that for all $t \geq 0, \phi_{t}(S) \subset S$ and for all $x_{0} \in S$,

$$
\lim _{t \rightarrow \infty} \phi_{t}\left(x_{0}\right)=0
$$

and there exists an $n-k$ differentiable manifold U tanget to the unstable subspace E^{u} of (2) at 0 such that for all $t \leq 0, \phi_{t}(U) \subset U$ and for all $x_{0} \in U$,

$$
\lim _{t \rightarrow-\infty} \phi_{t}\left(x_{0}\right)=0
$$

Note: As in the examples, since $f \in C^{1}(E)$ and $f(0)=0$, then system (1) can be writen as

$$
\dot{x}=A x+F(x)
$$

where $A=D f(0), F(x)=f(x)-A x, F \in C^{1}(E), F(0)=0$ and $D F(0)=0$.
Furthermore, we want to separate the stable and unstable parts of the matrix, i.e., choose a matrix C such that

$$
B=C^{-1} A C=\left[\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right]
$$

where the eigenvalues of the $k \times k$ matrix P have negative real part, and the eigenvalues of the $(n-k) \times(n-k)$ matrix Q have positive real part. The transformed system $\left(y=C^{-1} x\right)$ has the form

$$
\begin{align*}
\dot{y} & =B y+C^{-1} F(C y) \\
\dot{y} & =B y+G(y) \tag{3}
\end{align*}
$$

1.2.1 Calculating the stable manifold (Perko Method):

Perko shows that the solutions of the integral equation

$$
u(t, a)=U(t) a+\int_{0}^{t} U(t-s) G(u(s, a)) d s-\int_{t}^{\infty} V(t-s) G(u(s, a)) d s
$$

satisfy (3) and $\lim _{t \rightarrow \infty} u(t, a)=0$. Furthermore it gives an iterative scheme for computing the solution:

$$
\begin{aligned}
u(t, a) & =0 \\
u^{(k+1)}(t, a) & =U(t) a+\int_{0}^{t} U(t-s) G\left(u^{(k)}(s, a)\right) d s-\int_{t}^{\infty} V(t-s) G\left(u^{(k)}(s, a)\right) d s
\end{aligned}
$$

- Remark Here is some intuition on why the particular integral equation is chosen. We basically want to remove the parts that blow up as $t \rightarrow \infty$. In general, the solution of this system satisfies

$$
u(t, a)=\left[\begin{array}{cc}
e^{P t} & 0 \\
0 & e^{Q t}
\end{array}\right] a+\int_{0}^{t}\left[\begin{array}{cc}
e^{P(t-s)} & 0 \\
0 & e^{Q(t-s)}
\end{array}\right] G(u(s, a)) d s
$$

$u(t, a)=\left[\begin{array}{cc}e^{P t} & 0 \\ 0 & e^{Q t}\end{array}\right] a+\int_{0}^{t}\left[\begin{array}{cc}e^{P(t-s)} & 0 \\ 0 & e^{Q(t-s)}\end{array}\right] G(u(s, a)) d s$
Separate the convergent and non-convergent parts

$$
\begin{aligned}
= & {\left[\begin{array}{cc}
e^{P t} & 0 \\
0 & 0
\end{array}\right] a+\left[\begin{array}{cc}
0 & 0 \\
0 & e^{Q t}
\end{array}\right] a+\int_{0}^{t}\left[\begin{array}{cc}
e^{P(t-s)} & 0 \\
0 & 0
\end{array}\right] G(u(s, a)) d s+\int_{0}^{t}\left[\begin{array}{ll}
0 & 0 \\
0 & e^{Q(t-s)}
\end{array}\right] G(u(s, a)) d s } \\
= & {\left[\begin{array}{cc}
e^{P t} & 0 \\
0 & 0
\end{array}\right] a+\left[\begin{array}{cc}
0 & 0 \\
0 & e^{Q t}
\end{array}\right] a+\int_{0}^{t}\left[\begin{array}{cc}
e^{P(t-s)} & 0 \\
0 & 0
\end{array}\right] G(u(s, a)) d s } \\
& +\int_{0}^{\infty}\left[\begin{array}{lc}
0 & 0 \\
0 & e^{Q(t-s)}
\end{array}\right] G(u(s, a)) d s-\int_{t}^{\infty}\left[\begin{array}{cc}
0 & 0 \\
0 & e^{Q(t-s)}
\end{array}\right] G(u(s, a)) d s
\end{aligned}
$$

Remove contributions that will cause it to not converge to the origin

$$
\begin{aligned}
u(t, a) & =\left[\begin{array}{cc}
e^{P t} & 0 \\
0 & 0
\end{array}\right] a+\int_{0}^{t}\left[\begin{array}{cc}
e^{P(t-s)} & 0 \\
0 & 0
\end{array}\right] G(u(s, a)) d s-\int_{t}^{\infty}\left[\begin{array}{ll}
0 & 0 \\
0 & e^{Q(t-s)}
\end{array}\right] G(u(s, a)) d s \\
& =U(t) a+\int_{0}^{t} U(t-s) G(u(s, a)) d s-\int_{t}^{\infty} V(t-s) G(u(s, a)) d s
\end{aligned}
$$

Notice that last $n-k$ components of a do not enter the computation, we can take them to be zero. Next we take the specific solution $u(t, a)$

$$
u(t, a)=U(t) a+\int_{0}^{t} U(t-s) G(u(s, a)) d s-\int_{t}^{\infty} V(t-s) G(u(s, a)) d s
$$

and see what it implies for the intial conditions $u(0, a)$. Notice that

$$
\begin{aligned}
& u_{j}(0, a)=a_{j}, \quad j=1, \ldots, k \\
& u_{j}(0, a)=-\left(\int_{0}^{\infty} V(-s) G(u(s, a)) d s\right)_{j}, \quad j=k+1, \ldots, n
\end{aligned}
$$

So the last $n-k$ components of the initial conditionssatisfy

$$
a_{j}=\psi_{j}\left(a_{1}, \ldots, a_{k}\right):=u_{j}\left(0, a_{1}, \ldots, a_{k}, 0, \ldots, 0\right), \quad j=k+1, \ldots, n
$$

Therefore the stable manifold is defined by

$$
S=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid y_{j}=\psi_{j}\left(y_{1}, \ldots, y_{k}\right), \quad j=k+1, \ldots, n\right\} .
$$

- The iterative scheme for calculating an approximation to S :
- Calculate the approximate solution $u^{(m)}(t, a)$
- For each $j=k+1, \ldots, n, \psi_{j}\left(a_{1}, \ldots, a_{k}\right)$ is given by the j-th component of $u^{(m)}(0, a)$.

Note: Similarly can calculate U by taking $t=-t$.

- Example:

$$
\begin{gathered}
\begin{array}{c}
\dot{x}_{1} \\
=
\end{array}--x_{1}-x_{2}^{2} \\
\dot{x}_{2}= \\
x_{2}+x_{1}^{2} \\
A=B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad F(x)=G(x)=\left[\begin{array}{c}
-x_{2}^{2} \\
x_{1}^{2}
\end{array}\right] \\
U=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & 0
\end{array}\right], V=\left[\begin{array}{cc}
0 & 0 \\
0 & e^{t}
\end{array}\right], a=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
\end{gathered}
$$

Then

$$
\begin{aligned}
u^{(0)}(t, a) & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
u^{(1)}(t, a) & =\left[\begin{array}{c}
e^{-t} a_{1} \\
0
\end{array}\right] \\
u^{(2)}(t, a) & =\left[\begin{array}{c}
e^{-t} a_{1} \\
0
\end{array}\right]+\int_{0}^{t}\left[\begin{array}{cc}
e^{-(t-s)} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
e^{-2 s} a_{1}^{2}
\end{array}\right] d s-\int_{t}^{\infty}\left[\begin{array}{cc}
0 & 0 \\
0 & e^{(t-s)}
\end{array}\right]\left[\begin{array}{c}
0 \\
e^{-2 s} a_{1}^{2}
\end{array}\right] d s=\left[\begin{array}{c}
e^{-t} a_{1} \\
-\frac{e^{-2 t}}{3} a_{1}^{2}
\end{array}\right] \\
u^{(3)}(t, a) & =\left[\begin{array}{c}
e^{-t} a_{1}+\frac{1}{27}\left(e^{-4 t}-e^{-t}\right) a_{1}^{4} \\
-\frac{e^{-2 t}}{3} a_{1}^{2}
\end{array}\right]
\end{aligned}
$$

Next can show that $u^{(4)}(t, a)-u^{(3)}(t, a)=O\left(a_{1}^{5}\right)$ and therefore we can approximate by $\psi_{2}\left(a_{1}\right)=$ $-\frac{1}{3} a_{1}^{2}+O\left(a_{1}^{5}\right)$ and the stable manifold can be approximated by

$$
S: x_{2}=-\frac{1}{3} x_{1}^{2}+O\left(x_{1}^{5}\right)
$$

as $x_{1} \rightarrow 0$. Similarly get

$$
U: x_{1}=-\frac{1}{3} x_{2}^{2}+O\left(x_{2}^{5}\right)
$$

1.2.2 Note on invariant manifolds:

Notice that if a manifold is specified by a constraint equation

$$
y=h(x), \quad x \in \mathbb{R}^{k}, y \in \mathbb{R}^{n-k}
$$

and the dynamics given by

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
\dot{y} & =g(x, y)
\end{aligned}
$$

then condition

$$
\begin{aligned}
\operatorname{Dh}(x) \dot{x} & =\dot{y} \\
& \Downarrow \\
\operatorname{Dh}(x) f(x, h(x)) & =g(x, h(x))
\end{aligned}
$$

suffices to show invariance. We'll call this tangency condition. Exercise: Show that this is the case. If you're going to use this in the homework this week, you should prove it_first.

- Example:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1} \\
& \dot{x}_{2}=2 x_{2}-5 \epsilon x_{1}^{3}
\end{aligned}
$$

Show that the set

$$
S=\left\{x \in \mathbb{R}^{2} \mid x_{2}=\epsilon x_{1}^{3}\right\}
$$

is invariant. We have

$$
3 \epsilon x_{1}^{2}\left(-x_{1}\right)=2 \epsilon x_{1}^{3}-5 \epsilon x_{1}^{3} .
$$

1.2.3 Calculating the stable manifold (Alternative Method - Taylor expansion):

Let

$$
y=h(x)=a x^{2}+b x^{3}+c x^{4}+\ldots
$$

Since invariant manifold we have:

$$
D h(x) \dot{x}-\dot{y}=0
$$

we can match coefficients. For example

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1} \\
& \dot{x}_{2}=2 x_{2}-5 \epsilon x_{1}^{3} \\
& x_{2}=h\left(x_{1}\right)=a x_{1}^{2}+b x_{1}^{3}+O\left(x_{1}^{4}\right) \\
& \text { we get } f\left(x_{1}, h\left(x_{1}\right)\right)=-x_{1}, g\left(x_{1}, h\left(x_{1}\right) \approx 2\left(a x_{1}^{2}+b x_{1}^{3}\right)-5 \epsilon x_{1}^{3}\right. \\
& D h(x) f(x, h(x))=g(x, h(x)) \\
& \Downarrow \\
& \Downarrow \\
&\left(2 a x_{1}+3 b x_{1}^{2}+\cdots\right)\left(-x_{1}\right)=2 a x_{1}^{2}+2 b x_{1}^{3}-5 \epsilon x_{1}^{3}+
\end{aligned}
$$

Matching terms we get $-2 a=2 a \Rightarrow a=0,-3 b=2 b-5 \epsilon \Rightarrow b=\epsilon$.

CDS140a

Nonlinear Systems: Local Theory 01/27/2011

1.2.4 Example

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1} \\
\dot{x}_{2} & =2 x_{2}+x_{1}^{2}
\end{aligned}
$$

Perko method:

$$
\begin{gathered}
A=B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right], \quad F(x)=G(x)=\left[\begin{array}{c}
0 \\
x_{1}^{2}
\end{array}\right] \\
U=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & 0
\end{array}\right], V=\left[\begin{array}{cc}
0 & 0 \\
0 & e^{2 t}
\end{array}\right], a=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
\end{gathered}
$$

Then
$u^{(0)}(t, a)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$u^{(1)}(t, a)=\left[\begin{array}{c}e^{-t} a_{1} \\ 0\end{array}\right]$
$u^{(2)}(t, a)=\left[\begin{array}{c}e^{-t} a_{1} \\ 0\end{array}\right]+\int_{0}^{t}\left[\begin{array}{cc}e^{-(t-s)} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}0 \\ e^{-2 s} a_{1}^{2}\end{array}\right] d s-\int_{t}^{\infty}\left[\begin{array}{cc}0 & 0 \\ 0 & e^{2(t-s)}\end{array}\right]\left[\begin{array}{c}0 \\ e^{-2 s} a_{1}^{2}\end{array}\right] d s=\left[\begin{array}{c}e^{-t} a_{1} \\ -\frac{1}{4} e^{-2 t} a_{1}^{2}\end{array}\right]$
$u^{(3)}(t, a)=\left[\begin{array}{c}e^{-t} a_{1} \\ -\frac{1}{4} e^{-2 t} a_{1}^{2}\end{array}\right]$
So $u^{(m)}(t, a)=\left[\begin{array}{c}e^{-t} a_{1} \\ -\frac{1}{4} e^{-2 t} a_{1}^{2}\end{array}\right], m \geq 2 \Rightarrow u(t, a)=\left[\begin{array}{c}e^{-t} a_{1} \\ -\frac{1}{4} e^{-2 t} a_{1}^{2}\end{array}\right]$ and therefore we get $\psi_{2}\left(a_{1}\right)=(u(0, a))_{2}=$ $-\frac{1}{4} a_{1}^{2}$ and the stable manifold is given by

$$
S: x_{2}=-\frac{1}{4} x_{1}^{2}
$$

as $x_{1} \rightarrow 0$. What is the unstable manifold?

Taylor expansion:

$$
\begin{aligned}
x_{2} & =h\left(x_{1}\right)=a x_{1}^{2}+b x_{1}^{3}+\cdots \\
D h\left(x_{1}\right) & =2 a x_{1}+3 b x_{1}^{2}+\cdots \\
f\left(x_{1}, h\left(x_{1}\right)\right) & =-x_{1} \\
g\left(x_{1}, h\left(x_{1}\right)\right. & =2\left(a x_{1}^{2}+b x_{1}^{3}+\cdots\right)+x_{1}^{2}
\end{aligned}
$$

then

$$
\begin{aligned}
D h(x) f(x, h(x)) & =g(x, h(x)) \\
& \Downarrow \\
\left(2 a x_{1}+3 b x_{1}^{2}+\cdots\right)\left(-x_{1}\right) & =2 a x_{1}^{2}+x_{1}^{2}+2 b x_{1}^{3}+\cdots \\
& \Downarrow \\
-2 a=2 a+1 & \Rightarrow a=-\frac{1}{4} \\
-3 b=2 b & \Rightarrow b=0 \\
& \vdots
\end{aligned}
$$

and so

$$
S: x_{2}=-\frac{1}{4} x_{1}^{2}
$$

Direct Solution:

$$
\phi_{t}=\left[\begin{array}{c}
e^{-t} a_{1} \\
-\frac{1}{4} a_{1}^{2}\left(e^{-2 t}-e^{2 t}\right)+a_{2} e^{2 t}
\end{array}\right]
$$

1.2.5 Global Manifolds

- In the proof S and U are defined in a small neighborhood of the origin, and are refered to as the local stable and unstable manifolds of the origin.

Definition: Let ϕ_{t} be the flow of (1). The global stable and unstable manifolds of (1) at 0 are defined by

$$
W^{s}(0)=\cup_{t \leq 0} \phi_{t}(S)
$$

and

$$
W^{u}(0)=\cup_{t \geq 0} \phi_{t}(S)
$$

respectively.
The global stable and unstable manifold $W^{s}(0)$ and $W^{u}(0)$ are unique and invariant with respect to the flow. Furthermore, for all $x \in W^{s}(0), \lim _{t \rightarrow \infty} \phi_{t}(x)=0$ and for all $x \in W^{u}(0), \lim _{t \rightarrow-\infty} \phi_{t}(x)=0$.

Corollary: Under the hypothesis of the Stable Manifold theorem, if $\operatorname{Re}\left(\lambda_{j}\right)<-\alpha<0<\beta<\operatorname{Re}\left(\lambda_{m}\right)$ for $j=1, \ldots, k$ and $m=k+1, \ldots, n$ then given $\epsilon>0$,there exists a $\delta>0$ such that if $x_{0} \in N_{\delta}(0) \cap S$ then

$$
\left|\phi_{t}\left(x_{0}\right)\right| \leq \epsilon e^{-\alpha t}
$$

for all $t \geq 0$ and if $x_{0} \in N_{\delta}(0) \cap U$ then

$$
\left|\phi_{t}\left(x_{0}\right)\right| \leq \epsilon e^{\beta t}
$$

for all $t \leq 0$.
This shows thatsolutions starting in S sufficiently near the origin, approach the origin exponentially fast as $t \rightarrow \infty$.

1.3 Center Manifold Theorem

Theorem (The Center Manifold Theorem) Let $f \in C^{r}(E)$ where E is an open subset of \mathbb{R}^{n} containing the origin and $r \geq 1$. Suppose that $f(0)=0$ and that $D f(0)$ has k eigenvalues with negative real part, j eigenvalues with positive real part, and $m=n-k-j$ eigenvalues with zero real part. Then there exists an m-dimensional center manifold $W^{c}(0)$ of class C^{r} tangent to the center subspace E^{c} of (2)at $\mathbf{0}$, there exists an k-dimensional center manifold $W^{s}(0)$ of class C^{r} tangent to the stable subspace E^{s} of (2)at $\mathbf{0}$, and there exists an j-dimensional center manifold $W^{u}(0)$ of class C^{r} tangent to the unstable subspace E^{u} of (2)at $\mathbf{0}$; furthermore, $W^{c}(0), W^{s}(0)$ and $W^{u}(0)$ are invariant uder the flow ϕ_{t} of (1).

2 The Hartman-Grobman Theorem

Definition:

- Let X be a metric space (such as \mathbb{R}^{n}) and let A and B be subsets of X. A homeomorphism of A onto B is a continuous one-to-one map of A onto $B, h: A \rightarrow B$, such that $h^{-1}: B \rightarrow A$ is continuous.
- The sets A and B are called homeomorphic or topologically equivalent if there is a homeomorphism of A onto B.
- Two autonomous systems of differential equations such as (1)and (2) are said to be topologically equivalent in a neighborhood of the origin, or to have the same qualitative structure near the origin if there is a homeomorphism H mapping an open set U containing the origin onto a set V containing the origin, which maps trajectories of (1) in U onto trajectories of (2) in V and preserves their orientation by time.

Theorem (The Hartman-Grobman Theorem) Let Let $f \in C^{1}(E)$ where E is an open subset of \mathbb{R}^{n} containing the origin, and ϕ_{t} the flow of (1). Suppose that $f(0)=0$ and that $D f(0)$ has no eigenvalues with zero real part. Then there is a homeomorphism H of an open set U containing the origin onto a set V containing the origin such that for each $x_{0} \in U$, there is an open interval $I_{0} \subset \mathbb{R}$ containing zero such that for all $x_{0} \in U$ and $t \in I_{0}$

$$
H \circ \phi_{t}\left(x_{0}\right)=e^{A t} H\left(x_{0}\right) ;
$$

i.e., (1)and (2)are topologically equivalent in a neighborhood of the origin.

Example: The systems

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \\
x_{2}+x_{1}^{2}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

are topologically equivalent. Let $x_{0}=(a 1, a 2)$

$$
H(x)=\left[\begin{array}{c}
-x_{1} \\
x_{2}+\frac{1}{3} x_{1}^{2}
\end{array}\right]
$$

Then

$$
\begin{aligned}
e^{A t} H\left(x_{0}\right) & =\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{c}
-a_{1} \\
a_{2}+\frac{1}{3} a_{1}^{2}
\end{array}\right]=\left[\begin{array}{c}
-a_{1} e^{-t} \\
\left(a_{2}+\frac{1}{3} a_{1}^{2}\right) e^{t}
\end{array}\right] \\
H \circ \phi_{t}\left(x_{0}\right) & =H\left(\left[\begin{array}{c}
-a_{1} e^{-t} \\
\left(a_{2}+\frac{1}{3} a_{1}^{2}\right) e^{t}-\frac{1}{3} a_{1}^{2} e^{-2 t}
\end{array}\right]\right)=\left[\begin{array}{c}
-a_{1} e^{-t} \\
\left(a_{2}+\frac{1}{3} a_{1}^{2}\right) e^{t}-\frac{1}{3} a_{1}^{2} e^{-2 t}+\frac{1}{3} a_{1}^{2} e^{-2 t}
\end{array}\right]=\left[\begin{array}{c}
-a_{1} e^{-t} \\
\left(a_{2}+\frac{1}{3} a_{1}^{2}\right) e^{t}
\end{array}\right]
\end{aligned}
$$

Remarks:

- Perko gives an outline of the proof and gives a method using successive approximations for calculating H.
- However, computationally not very useful since to compute H by this method requires solving for the flow φ_{t} first.
- Conceptually, it is extremely useful since knowing that such H exists (without needing to compute it), allows us to determine the qualitative behavior of nonlinear systems near a hyperbolic equilibrium point by simply looking at the linearization (without solving it).

3 Stability and Lyapunov Functions

Definition:

- An equilibrium point x_{0} of (1) is stable if for all $\epsilon>0$, there exists a $\delta>0$ such that for all $x \in N_{\delta}\left(x_{0}\right)$ and $t \geq 0$, we have $\phi_{t}(x) \in N_{\epsilon}\left(x_{0}\right)$.
- An equilibrium point x_{0} of (1) is unstable if it is not stable.
- An equilibrium point x_{0} of (1) is asymptotically stable if it is stable and if there exists a $\delta>0$ such that for all $x \in N_{\delta}\left(x_{0}\right)$ we have $\lim _{t \rightarrow \infty} \phi_{t}(x)=x_{0}$.

Remarks:

- The about limit being satisfied does not imply that x_{0} is stable (why?).
- From H-G theorem and Stable manifold theorem, it follows that hyperbolic equilibrium points are either asymptotically stable (sinks) or unstable (sources or saddles).
- If x_{0} is stable then no eigenvalue of $D f\left(x_{0}\right)$ has positive real part (why?)
- x_{0} is stable but not asymptotically stable, then x_{0} is a non-hyperbolic equilibrium point

Example: Perko 2.9.2 (c) Determine stability of the fequilibrium points of :

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 x_{1}-2 x_{2}+4 \\
x_{1} x_{2}
\end{array}\right]
$$

Equilibrium points are (0,2), (1,0).

$$
\begin{aligned}
D f(x) & =\left[\begin{array}{cc}
-4 & -2 \\
x_{2} & x_{1}
\end{array}\right] \\
D f(0,2) & =\left[\begin{array}{cc}
-4 & -2 \\
2 & 0
\end{array}\right] \\
D f(1,0) & =\left[\begin{array}{cc}
-4 & -2 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

What can we say in general about the stability of non-hyperbolic equilibrium points?

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{2}-x_{1} x_{2} \\
x_{1}+x_{1}^{2}
\end{array}\right]
$$

