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Abstract

In this paper we discuss the knight’s tour, a chess puzzle related to graph
theory. We explore the history of the problem, the connection to Hamiltonian
paths and circuits, and some techniques for finding the tours and proving
their existence. We also delve into magic knight’s tours, applications to
cryptography, and symmetry in knight’s tours.
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The Knight’s Tour Problem

The knight is the only chess piece that does not move in a straight line. In-
stead, the legal move for a knight is two spaces in one direction, then one in
a perpendicular direction (Figure 1). A knight’s tour is a journey around the
chessboard in such a way that the knight lands on each square exactly once.

Figure 1: Legal moves for a knight

If you represent a knight’s tour as a graph, the vertices would represent
the squares of the board and the edges would represent a knight’s legal moves
between squares (Figure 2). Therefore, a knight’s tour (a path that traverses
all of the squares of the chessboard) is simply a Hamiltonian path. A closed
(or reentrant) knight’s tour is one where the final move is one legal move
away from the starting square; this is represented by a Hamiltonian circuit.

History of Knight’s Tours

The earliest surviving knight’s tour is shown in Figure 3. It is attributed
to al-Adli ar-Rumi who lived in Baghdad in 840 AD and is known to have
written a book on an early form of chess played in the Middle East.

A number of other knight’s tours appeared in medieval chess manuscripts.
Most of these tours covered only half the board (4x8) or join two such half-
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Figure 2: Graph representation of an 8x8 chessboard and knight’s moves

boards together. The subject then seems to have been forgotten until around
1722. The first thorough scientific study of knight’s tours was conducted by
Leonhard Euler in 1759. Euler also investigated symmetries possible within
tours [1].

Methods for Finding Knight’s Tours

Just as Euler was among the first to study knight’s tours systematically,
he also created one of the first methods for finding them. Euler’s tech-
nique (suggested by fellow mathematician L. Bertrand) combines smaller
and incomplete tours to form a new tour[1]. The best-known and historically
most important procedure for finding knight’s tours was invented by Ger-
man mathematician H.C. Warnsdorff in 1823, and is known as Warnsdorff’s
rule[2]. The rule is simple: starting at any square, make a legal move to the
square having the fewest successors. A successor is any square one legal move
away. In using this method the squares with the fewest successors are visited
first, which prevents them from becoming dead-ends later on. It is important
to note that Warnsdorff’s rule is heuristic, meaning it is not guaranteed to
find a solution. Although Warnsdorff though his rule would find a tour on
any size rectangular board, exhaustive computer searches have shown that it
can fail for boards larger than 76x76. A modern day improvement by Arnd
Roth breaks ties in choosing successors by selecting the square furthest from
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Figure 3: Oldest surviving knight’s tour (note it is a closed tour)

the center of the board; this method first fails on a 428x428 board. The rea-
son for using these heuristics instead of an algorithm guaranteed to work is
speed. It is possible to create such an algorithm using backtracking, but for
larger boards it quickly becomes too slow to be effective (while the heuristics’
solution time increases approximately linearly with board size)[3]. Interest-
ingly enough, the most recent methods for finding large knight’s tours are
somewhat similar to Euler’s approach. These techniques decompose a large
board into smaller rectangles for which solutions are already known. These
smaller solutions are then joined to form a knight’s tour[4] (Figure 4).

Figure 4: Example of a 60x60 knight’s tour generated by decomposition
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Existence of Knight’s Tours

One interesting knight’s tour problem is discovering which boards support a
closed tour. Allen Schwenk proposes the following theorem [5], which we will
explore in some detail:

Theorem

An m x n chessboard with m ≤ n has a knight’s tour unless one or more of
these three conditions holds:

(i) m and n are both odd;

(ii) m = 1, 2, or 4; or

(iii) m = 3 and n = 4, 6, or 8.

Proof of (i): Looking at the knight’s moves, we can see that every legal
move is from a black square to a white square, or vice-versa. Thus, any closed
tour must visit an equal number of white and black squares. But if both m
and n are odd, there are an odd number of squares and the knight cannot
an equal number of white and black. Consequently, we cannot construct a
closed tour on a board of odd size.

Proof of (ii): If m = 1 or 2, it is clear by inspection that the board is not
wide enough to construct a tour. When m = 4, we prove there cannot be a
knight’s tour using graph coloring[6]. Two different colorings of a 4x6 board
are shown in Figure 5. The important thing to notice about the second board
is that there are an equal number of red and blue squares, and from a red
square you can only get to a blue square. Putting these facts together means
that you can only construct a closed tour if the squares in the sequence of
moves alternate between red and blue. From the way the knight moves, we
also know that in the first board the knight always alternates between white
and black. Since there is no one-to-one correspondence between white/black
and red/blue squares, this is a contradiction and there is no possible closed
tour.

Proof of (iii): The proof of part (iii) involves removing vertices from the
Hamiltonian cycle that represents the knight’s moves. When k vertices are
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Figure 5: The 4xn board does not support a closed knight’s tour

removed from the cycle, there can be at most k connected components of the
graph. If there are more than k connected components left after removing
k vertices, then the original graph did not contain a Hamiltonian cycle. By
proceeding in this manner, it is possible to eliminate the 3x6 and 3x8 boards
(the 3x4 board was eliminated in part (ii)). In the remainder of the proof,
Schwenk goes on to show that it is possible to construct a knight’s tour on
all other rectangular boards. The proof is too long to include here, but it is a
proof by induction with nine base cases (shown in Figure 6). This is similar
to the method of constructing knight’s tours by decomposing the board into
smaller, known tours.

In a similar problem, Watkins and Hoenigman studied closed tours that
exist on the surface of a torus, basically a rectangular board in which the
knight is allowed to ’wrap around’ the board. They found that under this
modification, every rectangular board has a tour[7].

Magic Knight’s Tours

In a magic knight’s tour, the squares of the chess board are numbered in
the order of the knight’s moves. Each column, row, and diagonal must sum
to the same number. The first magic knight’s tour (with sum 260) was not
found until 1848 by William Beverley. Beverley’s tour, however, was actually
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Figure 6: Constituent knight’s tours for closed tours on an m x n board

only what is now called semi-magic, because the diagonals did not also add
to 260. The tour also exhibits some interesting properties [8](Figure 7).

Figure 7: (a) First semi-magic knight’s tour
(b) In each quadrant, the sum of the numbers equals 520 and each of the
rows and columns adds to 130
(c) The sum of the numbers in each 2x2 section is 130

Until very recently, the existence of a fully magic knight’s tour had
yet to be determined. This longstanding open problem has now been set-
tled through the use of exhaustive computer search[9]. After nearly 62
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computation-days, the project was completed on August 5, 2003. Although
it found a total of 140 semimagic knight’s tours, the search showed that no
8x8 fully magic knight’s tour is possible[10].

Knight’s Tours and Cryptography

A cryptotour is a puzzle in which the 64 words or syllables of a verse are
printed on the squares of a chessboard and are to be read in the sequence of
a knight’s tour. The earliest known examples of a cryptotour were printed
in the mid 1800s in a French magazine. In the last few years (1870-1874) of
Howard Stanton’s chess column in Illustrated London News, he featured 16
cryptotours. Published before the invention of crossword puzzles, these were
very popular. Most of the cryptotours featured well known verse from such
writers as Dante, Shakespeare, and Walter Scott. Figure 8 gives an example
of one of those cryptotours[1].

Figure 8: Example of a cryptotour from 1870

Knight’s Tours and Symmetry

Using his method for constructing knight’s tours, Euler studied some special
types of tours. He constructed symmetric tours, having the property that the
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numbers in diametrically opposite squares have a constant difference of 32.
This symmetry was visible geometrically in the Hamiltonian graphs of the
knight’s moves with the last connected to the first, resulting in a geometrical
closed tour[1].

Euler also gave the first ever examples of tours exhibiting quaternary
symmetry. These consist of two tours of cross-shaped boards symmetric by
reflection about the two diagonals, and a 10 x 10 tour formed by repeating
the same 5x5 tour in each quarter, rotated 90[1].

Knight’s tours can also be used to construct tessellations. Using the four
sets of 16 moves shown in Figure 9, it is possible to construct four polygons
that together can form a tessellation. Knight’s tour tessellations can even be
used to create beautiful 3-D patterns such as astersphaira (star spheres) and
hexastersphaira (Figure 10)[11].

Figure 9: Four polygons formed by knight moves and their tessellation of the
plane

9



Figure 10: Astersphaira (left) and hexastersphaira(right)
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