
Quaternions, Interpolation and Animation

Erik B. Dam Martin Koch Martin Lillholm

erikdam@diku.dk myth@diku.dk grumse@diku.dk

Technical Report DIKU-TR-98/5
Department of Computer Science

University of Copenhagen

Universitetsparken 1
DK-2100 Kbh �

Denmark

July 17, 1998

Abstract

The main topics of this technical report are quaternions, their mathematical prop-

erties, and how they can be used to rotate objects. We introduce quaternion math-

ematics and discuss why quaternions are a better choice for implementing rotation

than the well-known matrix implementations. We then treat di�erent methods for

interpolation between series of rotations. During this treatment we give complete

proofs for the correctness of the important interpolation methods Slerp and Squad .

Inspired by our treatment of the di�erent interpolation methods we develop our own

interpolation method called Spring based on a set of objective constraints for an

optimal interpolation curve. This results in a set of di�erential equations, whose

analytical solution meets these constraints. Unfortunately, the set of di�erential

equations cannot be solved analytically. As an alternative we propose a numerical

solution for the di�erential equations. The di�erent interpolation methods are visu-

alized and commented. Finally we provide a thorough comparison of the two most

convincing methods (Spring and Squad). Thereby, this report provides a comprehen-

sive treatment of quaternions, rotation with quaternions, and interpolation curves

for series of rotations.

i

Contents

1 Introduction 1

2 Geometric transformations 3

2.1 Translation . 3

2.2 Rotation . 3

3 Two rotational modalities 5

3.1 Euler angles . 5

3.2 Rotation matrices . 6

3.3 Quaternions . 7

3.3.1 Historical background . 7

3.3.2 Basic quaternion mathematics . 8

3.3.3 The algebraic properties of quaternions. 12

3.3.4 Unit quaternions . 14

3.3.5 The exponential and logarithm functions 15

3.3.6 Rotation with quaternions . 17

3.3.7 Geometric intuition . 22

3.3.8 Quaternions and di�erential calculus . 23

3.4 An algebraic overview . 26

ii

4 A comparison of quaternions, Euler angles and matrices 27

4.1 Euler angles/matrices | Disadvantages . 27

4.2 Euler angles/matrices | Advantages . 31

4.3 Quaternions | Disadvantages . 31

4.4 Quaternions | Advantages . 31

4.5 Conclusion . 32

4.6 Other modalities . 33

5 Visualizing interpolation curves 34

5.1 Direct visualization . 34

5.2 Visualizing an approximation of angular velocity 34

5.3 Visualizing the smoothness of interpolation curves 35

5.4 Some examples of visualization . 36

6 Interpolation of rotation 38

6.1 Interpolation between two rotations . 38

6.1.1 Linear Euler interpolation: LinEuler . 38

6.1.2 Linear Matrix interpolation: LinMat . 39

6.1.3 Linear Quaternion interpolation: Lerp . 40

6.1.4 A summary of linear interpolation . 41

6.1.5 Spherical Linear Quaternion interpolation: Slerp 42

6.2 Interpolation over a series of rotations:

Heuristic approach . 49

6.2.1 Spherical Spline Quaternion interpolation: Squad 51

6.3 Interpolation between a series of rotations:

Mathematical approach . 56

6.3.1 The interpolation curve . 56

6.3.2 De�nitions of smoothness . 56

6.3.3 The optimal interpolation . 57

6.3.4 Curvature in H1 . 58

6.3.5 Minimizing curvature in H1: Continuous, analytical solution 60

6.3.6 Minimizing curvature in H1: Continuous, semi-analytical solution 63

6.3.7 Minimizing curvature in H1: Discretized, numerical solution 64

iii

7 Squad and Spring 77

7.1 Example: A semi circle . 77

7.2 Example: A nice soft curve . 78

7.3 Example: Interpolation curve with cusp . 79

7.4 Example: A pendulum . 80

7.5 Example: A perturbed pendulum . 81

7.6 Example: Global properties . 81

7.7 Conclusion . 84

8 The Big Picture 85

8.1 Comparison to previous work . 85

8.2 Future work . 87

A Conventions 89

B Conversions 90

B.1 Euler angles to matrix . 90

B.2 Matrix to Euler angles . 90

B.3 Quaternion to matrix . 91

B.4 Matrix to Quaternion . 93

B.5 Between quaternions and Euler angles . 93

C Implementation 94

C.1 The basic structure of quat . 95

iv

Chapter 1

Introduction

To animate means to \bring to life." Animation is a visual presentation of change. Traditionally

this has been used in the entertainment business, for example Donald Duck moving in a cartoon.

More serious applications have later been developed for physics (visualization of particle systems)

and chemistry (displaying molecules).

This paper treats a small part of the world of animation | animation of rotation. As a back-

ground for the following chapters, we will in this section give an overview of how animation was

done traditionally (i. e. before the computer), and how it is done now. The presentation is based

on [Foley et al., 1990] and [Lasseter, 1987].

An animation is based on a story | a manuscript. The manuscript is used to make a storyboard,

in which it is decided how to split the story into individual scenes. For each scene a sketch is

made with some text describing the scene. Based on the storyboard, a series of key frames is

produced showing the characters of the cartoon in key positions. The frames between the key

frames can then be made from these key positions. Traditionally, the most experienced artists

produced the key frames (and were therefore named key framers), leaving the frames in-between

to the less experienced artists (who became known as in-betweeners). The animators produce a

rough draft of the animation, which is presented at a pencil test. Once the draft is satisfactory,

the �nal version is produced and transferred to celluloid.

This method of animation is called key framing and has since been used in computer animation

systems. Already in 1968 animation of 3D models was known, and the idea of using computers

for key frame animation was used in 1971 [Burtnyk & Wein, 1971].

Computers are natural replacements for the in-betweeners. Given two key frames, the frames

in-between can be generated by interpolation. Admittedly there are several problems with this

approach:

1

� A translation between two key frames can easily be obtained by simple linear interpolation.

When the movement consists of more key frames it is necessary to use more advanced

curves (for example splines) to produce a smooth movement across key frames.

� Ordinary physics cannot be used to describe how the eye perceives moving objects in a

cartoon. Objects will change shape as they move: A ball will morph into an oval when

bouncing fast (see �gure 1.1). This will not happen automatically if a computer is used

to animate the motion of the ball.

� Animation of rotational movement has also been attempted using key frames and inter-

polation. Rotation is more complex than translation, however. The problems involved in

interpolating rotations will be treated in this paper.

Figure 1.1: The cartoon version of a bouncing ball.

Computer animation consists of much more than pure motion. Apart from the problems of

interpolation of the movement there are complicated issues concerning light, sound, colors,

camera angles, camera motion, shadows, physical properties of the objects being modelled etc.

We limit this paper to treat methods for representation and implementation of rotation. The

methods are mostly based on quaternions, a kind of four-dimensional complex numbers. Through

a series of attempts to de�ne \nice" rotation, we derive a mathematical description of rotation

through a series of key frames.

We will not discuss the matters mentioned in the �rst two bullets above or the other aspects

mentioned (light, sound etc.)

The main foundation for this paper is the articles [Shoemake, 1985], [Barr et al., 1992], and

[Watt & Watt, 1992]. We do not require any knowledge of these articles. It will, however, be an

advantage for the reader to be familiar with the common transformation methods using matrices

and to have basic knowledge of interpolation curves in the plane (in particular splines). Some

basic mathematics knowledge will also be advantageous (group theory, di�erentional calculus,

calculus of variations and di�erential geometry).

2

Chapter 2

Geometric transformations

In this chapter we will brie
y discuss selected transformations of objects in 3D. The key topic

will be rotation but since interpolation between positions o�ers useful parallels to interpolation

of rotation, we include translation. Note that these parallels serve only as inspiration for the

rotational case | mainly because the space of translations is Euclidean while the space of

rotations is not. This di�erence will be discussed in depth in the following chapters.

2.1 Translation

Translation is the most obvious kind of transformation: A point in space is moved from one

position to another. Let a point P 2 R3 be denoted by a 3-tuple (x; y; z); x; y; z 2 R and

the translation by a vector (�x;�y;�z). Then the new position P 0 is calculated by simple

addition: P 0 = (x+�x; y+�y; z+�z). The de�nition is non-ambiguous i. e. there exists only

one translation vector that takes P to P 0.

2.2 Rotation

Rotation in 3D is not as simple as translation and it can be de�ned in many ways. We have

chosen the following de�nition:

We will use the de�nition given by Euler's (�1707 { y 1783) theorem [Euler, 1752] | written in

modern notation (compare with �gure 2.1):

Proposition 1.

Let O, O0 2 R3 be two orientations. Then there exists an axis l 2 R3 and an angle of rotation

� 2]� �; �] such that O yields O0 when rotated � about l.

Note that the proposition states existence and does not state uniqueness.

We will distinguish between orientations and rotations. An orientation of an object in R3 is

given by a normal vector. A rotation is de�ned by an axis and an angle of rotation.

3

O0 O

�

l

Figure 2.1: Let O, O0 2 R3 be two orientations. Then there exists an axis l 2 R3 and an angle

of rotation � 2]� �; �] such that O yields O0 when rotated � about l.

4

Chapter 3

Two rotational modalities

Euler's theorem (proposition 1) gives a simple de�nition of rotations. In most of the literature,

Euler angles are used to de�ne rotation. From these two fundamental de�nitions, rotation can

be discussed mathematically in numerous ways. We will term the combination of a de�nition

and a corresponding mathematical representation a rotational modality. In this report we will

discuss the following two modalities:

� Rotation de�ned by Euler angles represented by general transformation matrices.

� Rotation de�ned by Euler's theorem represented by quaternions.

The aim is of this chapter is to reach an implementation of a general rotation with each modality.

A comparison of how the modalities implement a general rotation is given in chapter 4. Conver-

sion between representations of rotation is discussed in appendix B. Finally, general conventions

for rotation used in this report can be found in appendix A.

In sections 3.1 and 3.2, Euler angles and their matrix representation are described. The descrip-

tion is brief | the reader is assumed familiar with these topics.

Section 3.3 gives an in-depth treatment of quaternions starting of with the basics of quaternion

mathematics. After the introduction, it is established how quaternions can be used to represent

rotation as de�ned by Euler's theorem.

3.1 Euler angles

The space of orientations can be parameterized by Euler angles. When Euler angles are used,

a general orientation is written as a series of rotations about three mutually orthogonal axes in

space. Usually the x, y, and z axes in a Cartesian coordinate system are used. The rotations

are often called x-roll, y-roll and z-roll.

Euler originally developed Euler angles as a tool for solving di�erential equations. Later Euler

angles have become the most widely used method of parametererizing the space of orientations.

5

As we shall see below, this choice gives rise to a number of problems. If we choose to consider

a rotation as the action performed to obtain a given orientation, Euler angles can be used to

parameterize the space of rotations. To describe a general rotation as described in section 2.2,

three Euler angles (�1; �2; �3) are required, where �1, �2, and �3 are the rotation angles about

the x, y, and z axes, respectively.

The conversion from a general rotation to Euler angles is ambiguous since the same rotation

can be obtained with di�erent sets of Euler angles (see [Foley et al., 1990]). Furthermore, the

resulting rotation depends on the order in which the three rolls are performed. This gives rise to

further ambiguity but �ts well with the fact that rotations in space do not generally commute

(see appendix B). Some of the ambiguity in the conversion to Euler angles can be eliminated

by adopting a convention of which order the rolls should be performed. In this paper, we use

the convention described in appendix A. Introducing a convention does not, however, eliminate

the ambiguity altogether (see chapter 4).

3.2 Rotation matrices

Rotation matrices are the typical choice for implementing Euler angles. For each type of roll,

there is a corresponding rotation matrix, i. e. an x rotation matrix, a y rotation matrix, and a

z rotation matrix. The matrices rotate by multiplying them to the position vector for a point

in space, and the result is the position vector for the rotated point. A rotation matrix is a

3� 3 matrix, but usually homogeneous 4� 4 matrices are used instead (see [Foley et al., 1990]

for further detail). A general rotation is obtained by multiplying the three roll-matrices corre-

sponding to the three Euler angles. The resulting matrix embodies the general rotation and can

be applied to the points that are to be rotated.

The three standard rotation matrices are given in homogeneous coordinates in appendix B.

Matrix multiplication is not generally commutative. This �ts well with the fact that rotations

in space do not commute.

Finally it should be noted that using homogeneous transformation matrices gives the only imple-

mentation that e�ectively embodies all standard transformations: Translation, scaling, shearing,

and various projection transformations.

6

3.3 Quaternions

The second rotational modality is rotation de�ned by Euler's theorem and implemented with

quaternions. Since quaternions are not nearly as well-known as transformation matrices, and

since no good overview of the �eld exists, we will give a historical overview and then provide a

thorough treatment of quaternion mathematics.

3.3.1 Historical background

Quaternions were invented by Sir William Rowan Hamilton (�1809 { y 1865) in 1843. Hamilton's
aim was to generalize complex numbers to three dimensions, i. e. numbers of the form a+ ib+ jc,

where a; b; c 2 R and i2 = j2 = �1. Hamilton never succeeded in making this generalization,

and it has later been proven that the set of three-dimensional numbers is not closed under

multiplication. In 1966 Kenneth O. May gave the following elegant proof of this:

Proposition 2.

The set of three-dimensional complex numbers is not closed under multiplication.

Proof (freely adopted from Kenneth O. May 1966):

Assume that the usual rules of arithmetic for complex numbers hold, and that i2 = j2 = �1.

The proof is by contradiction, so we assume that a closed multiplication exists. Since multi-

plication is closed, there exist a; b; c 2 R that satisfy ij = a + ib + jc. Multiplying this with

i yields �j = �b + ia + ijc. Substituting the �rst equation in the second equation yields

�j = �b+ ia+(a+ ib+ jc)c, i. e. 0 = (ac� b)+ i(a+ bc)+ j(c2+1). Thus ac� b = 0; a+ bc = 0

and c2 + 1 = 0. The equation c2 + 1 = 0 gives the contradiction, since c is real by assumption.

2

One of Hamilton's motivations for seeking three-dimensional complex numbers was to �nd a

description of rotation in space corresponding to the complex numbers, where a multiplication

corresponds to a rotation and a scaling in the plane.

While walking by the Royal Canal in Dublin on a Monday in October 1843, Hamilton realized

that four numbers are needed to describe a rotation followed by a scaling. One number describes

the size of the scaling, one the number of degrees to be rotated, and the last two numbers

give the plane1 in which the vector should be rotated. After this insight, Hamilton found a

closed multiplication for four-dimensional complex numbers of the form ix + jy + kz, where

i2 = j2 = k2 = ijk = �1. Hamilton dubbed his four-dimensional complex numbers quaternions.

The parallel to ordinary complex numbers stems from the imaginary parts.

A quaternion is usually written [s;v]; s 2 R;v 2 R
3 . Here s is called the scalar part, and

v = (x; y; z) is the vector part.

1The xy plane can be rotated to any plane in xyz space through the origin by giving the rotation angles about

the x and y axes.

7

Historical aside

Hamilton presented quaternion mathematics at a series of lectures at the Royal Irish Academy.

The lectures gave rise to a book [Hamilton, 1853], the full title of which (with typography as in

the book) is:

Lectures on Quaternions: Containing a systematic statement of

A New Mathematical Method

of which the principles were communicated in 1843 to the royal Irish

academy; and which has since formed the subject of successive courses

of lectures, delivered in 1848 and subsequent years in the halls of

trinity college, Dublin: with numerous illustrative diagrams, and with

some geometrical and physical applications.

In the book (page 271) Hamilton writes (again imitating the book's typography):

285. We know then how to interpret in two apparently di�erent ways, which are, however,

easily perceived to have an essential connection with each other, the following symbol of

operation,

q()q�1;

where q may be called (as before) the operator quaternion while the symbol (suppose r) of

the operand quaternion is conceived to occupy the place marked by the parentheses. For

we may either consider the e�ect of the operation, thus symbolized, to be (as in 282, 283)

a conical rotation of the axis of the operand round the axis of the operator, through double

the angle thereof, in such a manner as to transport the vertex of the representative angle

of the operand to a new position on the unit sphere, without changing the magnitude of

that angle, nor the tensor2 of the quaternion thus operated on: or else, at pleasure, may

regard (by 285) the operation as causing one extremity of the representative arc of the

same operand (r) to slide along the doubled arc of the same operator (q), without any

change in the length of the arc so sliding, nor of its inclination to the great circle along

which its extremity thus slides.

The historically interested reader is referred to [Hamilton, 1899] and [Hallenberg et al., 1993]

(only available in Danish).

3.3.2 Basic quaternion mathematics

In this section we will state the notation used for quaternions and establish quaternion mathe-

matics including addition, multiplication, subtraction, and multiplication with a scalar. Finally

we de�ne the conjugate and the inverse of a quaternion.

2In modern usage = norm.

8

Notation

We use � to mean equal by de�nition. Closed intervals on the real line are denoted by [a; b] �
f x j a � x � b; a; b; x 2 Rg. A semi-open interval is, for example, denoted by]a; b] � f x j a <
x � b; a; b; x 2 Rg. The set of n times di�erentiable functions from A to B with continuous

derivatives we denote Cn(A;B).

De�nition 1.

The set of quaternions is denoted H.

Quaternions consist of a scalar part s 2 R and a vector part v = (x; y; z) 2 R3 . We will use the

following forms:

De�nition 2.

Let i2 = j2 = k2 = ijk = �1; ij = k and ji = �k. Then q 2 H can be written:

q � [s;v] ; s 2 R; v 2 R3
� [s; (x; y; z)] ; s; x; y; z 2 R
� s+ ix+ jy + kz ; s; x; y; z 2 R

We will identify the set of quaternions f[s;0] j s 2 Rg with R and the set f[0;v] j v 2 R3g with
R
3 .

De�nition 3.

Let q; q0 2 H where q = [s; (x; y; z)] and q0 = [s0; (x0; y0; z0)]. The addition operator, +, is de�ned

q+ q0 � [s;v] + [s0;v0] � [s; (x; y; z)] + [s0; (x0; y0; z0)] � (s+ ix+ jy+ kz) + (s0 + ix0 + jy0 + kz0)

Proposition 3. (Quaternion addition)

Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then q + q0 = [s+ s0;v + v0]

Proof of proposition 3

q + q0 � [s;v] + [s0;v0]

� (s+ ix+ jy + kz) + (s0 + ix0 + jy0 + kz0)

= (s+ s0) + i(x+ x0) + j(y + y0) + k(z + z0)

� [s+ s0;v + v0]

2

De�nition 4.

Let q; q0 2 H where q = s+ ix+ jy + kz and q0 = s0 + ix0 + jy0 + kz0. Multiplication is de�ned

qq0 � [s;v][s0;v0] � [s; (x; y; z)][s0; (x0; y0; z0)] � (s+ ix+ jy + kz)(s0 + ix0 + jy0 + kz0)

Proposition 4. (Multiplication of quaternions)

Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then qq0 = [ss0�v �v0;v�v0+ sv0+ s0v], where
� and � denote the scalar and vector product in R3 , respectively.

9

Proof of proposition 4

From de�nition 2 the following identities can be obtained from simple algebra: jk = i;kj =

�i; ik = �j and ki = j. These identities are used in:

qq0 � [s;v][s0;v0]

� (s+ ix+ jy + kz)(s0 + ix0 + jy0 + kz0)

= ss0 � (xx0 + yy0 + zz0) + i(sx0 + s0x+ yz0 � zy0)+

j(sy0 + s0y + zx0 � xz0) + k(sz0 + s0z + xy0 � yx0)

� [ss0 � v � v0;v � v0 + sv0 + s0v]

2

Corollary 1. (to proposition 4)

Quaternion multiplication is not generally commutative.

Proof of proposition 1

We give a counter-example: ij = k, but ji = �k.
2

Below we will give a number of propositions without proof. The proofs are all based on the

principle used above: The constituent quaternions are written s + ix + jy + kz. Then, using

simple algebra and collection of terms, the result can be written as a quaternion using de�nition

2.

We state the following properties of quaternion multiplication:

Proposition 5.

Let p; q; q0 2 H and r 2 R. Then:

(pq)q0 = p(qq0) (Quaternion multiplication is associative.)

p(q + q0) = pq + pq0 (Quaternion multiplication distributes

(q + q0)p = qp+ q0p across addition.)

Multiplying quaternions by a scalar is most easily introduced by identifying r 2 R with the

quaternion [r;0]:

De�nition 5.

Let q 2 H and r 2 R. Multiplication by a scalar is de�ned

rq � [r;0]q

Proposition 6. (Multiplication with a scalar)

Let q 2 H, where q = [s;v] and let r 2 R. Then rq = qr = [r;0][s;v] = [rs; rv].

Note that the proposition gives that multiplication with a scalar is commutative.

We will use the notation
q

r
to mean

1

r
q, where q 2 H and r 2 R.

We can now introduce subtraction in the usual manner:

10

De�nition 6.

Given q; q0 2 H, subtraction is de�ned q � q0 � q + (�1)q0

The de�nition gives the expected:

Proposition 7. (Quaternion subtraction)

Let q; q0 2 H, where q = [s;v] and q0 = [s0;v0]. Then q � q0 = q + (�1)q0 = [s� s0;v � v0].

Corresponding to the de�nition of the conjugate of a complex number, we de�ne the conjugate

of a quaternion:

De�nition 7.

Let q 2 H. Then q� is called the conjugate of q and is de�ned by q� � [s;v]� � [s;�v].

The de�nition gives rise to the following properties:

Proposition 8.

Let p; q 2 H. Then:

i) (q�)� = q ii) (pq)� = q�p� iii) (p+ q)� = p� + q� iv) qq� = q�q.

The norm of a quaternion is obtained using conjugation:

De�nition 8.

Let p 2 H and let the mapping k � k : H y R be de�ned by kqk �
p
qq�. This mapping is called

the norm and kqk is the norm of q.

That this mapping is a norm in the usual sense is shown in the corollary to proposition 9. The

norm mapping has a number of interesting properties that are summarized in:

Proposition 9.

Let q; q0 2 H and let k � k : H y R be given as is de�nition 8. The following equations hold:

kqk =
p
s2 + v � v =

p
s2 + x2 + y2 + z2 (3.1)

kq�k = kqk (3.2)

kqq0k = kqkkq0k (3.3)

Proof of proposition 9

The equations 3.1 and 3.2 can be seen directly. Equation 3.3 follows from:

kqq0k =
p
qq0(qq0)� =

p
qq0q0�q� =

p
qkq0k2q� =

p
qq�kq0k2 =

p
kqk2kq0k2 = kqkkq0k

2

We will later need the inner product of two quaternions. We also want to show that the norm

mapping is indeed a norm in the usual mathematical sense. From equation 3.1 in proposition 9

it follows that the norm of a quaternion q can be written as it is usually obtained from the inner

product (if q 2 H is identi�ed with the corresponding vector in R4). This property is formalized

by:

11

De�nition 9.

Let q; q0 2 H; q = [s;v] = [s; (x; y; z)]; q0 = [s0;v0] = [s0; (x0; y0; z0)]. The inner product is de�ned

as
�

: H �H y R where q
�

q0 = ss0 + v � v0 = ss0 + xx0 + yy0 + zz0:

Note that the de�nition yields q
�

q = s2 + x2 + y2 + z2, which gives rise to:

Corollary 2. (to proposition 9)

The norm of a quaternion q can be obtained by kqk =
p
q
�

q. Furthermore, k � k is a norm in

the usual mathematical sense.

Proof of corollary 2

That
�

computes the norm squared follows directly from proposition 9 and de�nition 9. Now

let q = [s; (x; y; z)] 2 H. If we identify q with (s; x; y; z) 2 R4 , the above method of computing

the norm is identical to the usual Euclidean norm on R4 . Thus the quaternion norm is a norm

in the usual sense.

2

We will later need the following generalization of the two- and three-dimensional cases:

Proposition 10.

Let q; q0 2 H. De�ne q; q0 as the corresponding four-dimensional vectors and let � be the angle

between them. Then q
�

q0 = kqkkq0k cos�.

3.3.3 The algebraic properties of quaternions.

In this section we prove that the set of quaternions H n f[0; (0; 0; 0)]g is a non-Abelian group

under quaternion multiplication. At the end of the section we give a summary of some other

algebraic properties of quaternions.

De�nition 10.

The set of quaternions H n f[0; (0; 0; 0)]g is written H
�

We will base the discussion on the de�nition of a group:

De�nition 11.

Let G be a set with an operator � : G�Gy G de�ned by (a; b)! a � b � ab. G is a group if

i) a(bc) = (ab)c for all a; b; c 2 G (The operator is associative)

ii) Exactly one I 2 G exists such that Ia = aI =

a for all a 2 G.
(I is the neutral element)

iii) For every a 2 G there exists an element

a�1 2 G, such that aa�1 = a�1a = I.

(a�1 is the inverse element of a)

If ab = ba for all a; b 2 G, G is called an Abelian or commutative group.

That there exists a neutral element and inverse elements in H
�

under quaternion multiplication

is shown in the following two lemmas:

12

Lemma 1.

The element I = [1;0] 2 H
�

is the unique neutral element under quaternion multiplication.

Proof of lemma 1

Let q 2 H be given. Proposition 6 gives qI = Iq = [1s; 1v] = [s;v] = q.

Thus I is a neutral element. I is also the only element that meets the requirements. To see

this, assume that J also meets the requirements. Then IJ = I, because J is a neutral element.

Furthermore, IJ = J , since I is a neutral element. This gives us that I = IJ = J , so I = J is

the only neutral element in H
�

.

2

Lemma 2.

Let q 2 H
�

. Then there exists q�1 2 H such that qq�1 = q�1q = I. Furthermore q�1 is unique

and given by:

q�1 =
q�

kqk2

Proof of lemma 2

Let q 2 H
�

be given.

Uniqueness

Let both p1; p2 2 H be inverse to q. That p1 and p2 are equal follows from

p1 = p1I = p1(qp2) = (p1q)p2 = Ip2 = p2

Existence

Let p =
q�

kqk2 . Then

qp = q
q�

kqk2 =
qq�

kqk2 =
kqk2
kqk2 = 1 � I

pq =
q�

kqk2 q =
q�q

kqk2 =
qq�

kqk2 =
kqk2
kqk2 = 1 � I

Thus every quaternion in H
�

has an inverse.

2

We will write p

q
for pq�1. Note that this is generally di�erent from q�1p since quaternion

multiplication is not commutative.

We can now state the following:

Proposition 11.

The set H
�

is a non-Abelian group under quaternion multiplication.

Proof of proposition 11

Note that the set of quaternions is closed under multiplication. This follows directly from Ham-

ilton's de�nition. The �rst requirement from the de�nition of a group follows from proposition

5. The second and third requirements follow from lemmas 1 and 2. The group is not Abelian,

since quaternion multiplication is not commutative.

2

13

Other algebraic properties

The set of quaternions satisfy some other algebraic properties that are worth mentioning. These

are given without further ado:

� The set of quaternions is an Abelian group (H;+) under quaternion addition.

� The set of quaternions is a non-Abelian ring (H;+; �), where + and � are quaternion

addition and multiplication.

3.3.4 Unit quaternions

This section discusses a subset of the quaternion group | the set of unit quaternions.

De�nition 12.

Let q 2 H. If kqk = 1, then q is called a unit quaternion. We will use H1 to denote the set of

unit quaternions.

The set of unit quaternions constitutes a unit sphere in four-dimensional space. We shall later

see that the set of unit quaternions play an important part in relation to general rotations. The

following propositions lead to the important proposition 21. the following:

Proposition 12.

Let q = [s;v] 2 H1. Then there exists v0 2 R3 and � 2]� �; �] such that q = [cos �;v0 sin �].

Proof of proposition 12

If q = [1;0] we let � = 0 and v0 can be freely chosen amongst unit vectors in R3 .

If q 6= [1;0] we let k = jvj and v0 = 1
k
v. Then v = kv0 where v0 is a unit vector in R3 . Since q

is a unit quaternion, we get

1 = kqk2 = s2 + v � v = s2 + k2v0 � v0 = s2 + k2

The equation s2 + k2 = 1 describes a circle in the plane. Since a circle is also described by

cos2 � + sin2 � = 1, there exists � 2]� �; �] such that s = cos � and k = sin �. All in all we get

the desired:

q = [s;v] = [s;v0k] = [cos �;v0 sin �]

2

Two important results for unit quaternions are given in:

Proposition 13.

Let q; q0 2 H1. The following two equations hold:

i) kqq0k = 1 ii) q�1 = q�

Proof of proposition 13

i) kqq0k = kqkkq0k = 1, since kqk = kq0k = 1. (by equation 3.3 in proposition 9)

ii) q�1 � q�=kqk2 = q�, since kqk = 1.

2

14

The set of unit quaternions H1 is obviously a subset of H
�

, but de�nition 13 and proposition 14

give that H1 constitute a subgroup of H
�

.

De�nition 13.

Let G be a group and F 6= ? be a subset of G. F is a subgroup of G if

i) For all a; b 2 F : ab 2 F (F is closed)

ii) For all a 2 F : a�1 2 F

Proposition 14.

The set H1 of unit quaternions is a subgroup of the group H
�

.

Proof of proposition 14

Let q; q0 2 H1. Proposition 13 gives that kqq0k = 1, i. e. that qq0 2 H1, and thus the �rst

subgroup requirement is satis�ed. Equation 3.2 in proposition 9 and proposition 13 give that

kq�1k = kq�k = kqk = 1

and thereby the second subgroup requirement q�1 2 H1.

2

3.3.5 The exponential and logarithm functions

We will later need quaternion versions of the real exponential and logarithm functions. The

de�nitions and a few consequences of them are given here (see [Pervin & Webb, 1992] for further

detail).

De�nition 14.

Let q 2 H1, where q = [cos �; sin �v] as in proposition 12. The logarithm function log is de�ned

log q � [0; �v]

Note that log[1; (0; 0; 0)] = [0; (0; 0; 0)] as in the real case. Note also that log q is not in general

a unit quaternion.

The exponential function is introduced by

De�nition 15.

For a quaternion of the form q = [0; �v]; � 2 R; v 2 R3 ; jvj = 1, the exponential function exp

is de�ned by

exp q � [cos �; sin �v]

Note that the exponential and logarithm functions are mutually inverse, and that exp maps into

H1.

From the above de�nitions we can de�ne exponentiation for q 2 H1; t 2 R:

15

De�nition 16.

Let q 2 H1; t 2 R. Exponentiation qt is de�ned by

qt � exp(t log q)

This gives rise to the following:

Proposition 15.

Let q 2 H1; t 2 R. Then log(qt) = t log q.

Proof of proposition 15

log(qt) = log(exp(t log q)) = t log q

2

The following rule from R also holds for unit quaternions:

Proposition 16.

Let q 2 H1; q = [cos �; sin �v] and a; b 2 R. Then

qaqb = qa+b

Proof of proposition 16

qaqb = exp(a log q) exp(b log q)

= exp(a[0; �v]) exp(b[0; �v])

= [cos a�;v sina�][cos b�;v sin b�]

= [cos a� cos b� � sina� sin b�(v � v);v cos a� sin b� + v cos b� sina� + (v � v) sin a� sin b�]

= [cos a� cos b� � sina� sin b�;v(cos a� sin b� + cos b� sina�)]

= [cos((a+ b)�); sin((a+ b)�)v]

= exp([0; (a + b)�v])

= exp((a+ b) log(q))

= qa+b

2

Another rule from the real numbers is (pa)b = pab. This rule also holds for unit quaternions:

Proposition 17.

Let p 2 H1 and a; b 2 R. Then (pa)b = pab

Proof of proposition 17

(pa)b = (exp(a log p))b = exp(b log(exp(a log p))) = exp(ba log p) = pab

2

16

One must be very careful when using exp and log as the corresponding real versions. For

example, consider the following incorrect derivation, where p and q are unit quaternions.

pq = exp(log(pq)) = exp(log(p) + log(q)) = exp(log(q) + log(p)) = exp(log(q)) exp(log(p)) = qp

This is inconsistent with the fact that quaternion multiplication is not commutative. The error

lies in the second step where the rule (log pq = log p+ log q) is used | this rule does not hold

for quaternions.

3.3.6 Rotation with quaternions

Hamilton sought to describe rotations in space, just as complex numbers describe rotations in

the plane. That quaternions do, in fact, perform rotation, is shown in the following propositions

(proposition 21 in particular).

Proposition 18.

Let p 2 H, p = [s; (x; y; z)] = [s;v] and let q 2 H
�

. If r 2 R n f0g then (rq)p(rq)�1 = qpq�1.

Proof of proposition 18

Let r 2 R n f0g. The inverse of rq is q�1r�1. Since scalar multiplication is commutative we

can write: (rq)p(rq)�1 = rqpq�1r�1 = qpq�1rr�1 = qpq�1. Thus qpq�1 is unchanged if q is

multiplied by any non-zero scalar. 2

In the propositions below, we will only consider unit quaternions, since results shown for H1

generalize to all of H
�

by proposition 18.

Proposition 19.

Let q 2 H1; p = [s;v] 2 H. Then qpq�1 = p0, where p0 = [s;v0] with jvj = jv0j.

Proof of proposition 19

Below we write S(q) for the scalar part of q.

The proof consists of three steps. We �rst show S(p0) = S(p) for p 2 f[s;0] j s 2 Rg and then

for p 2 f[0;v] j v 2 R3g. Finally these results are used to show the proposition for p 2 H.

If p is a scalar represented as a quaternion, S(p0) = S(p) follows from simple algebra. Let

p = [s;0], then:

qpq�1 = q[s;0]q�1 = [s;0]qq�1 = [s;0]

We have used that multiplication with a scalar commutes (proposition 6).

Correspondingly, we will now show that the same result holds for a vector v represented as a

quaternion [0;v].

The scalar part S(q) of a quaternion q can be computed by 2S(q) = q + q�. We show the

proposition for a quaternion with 0 in the scalar part p = [0;v]:

17

2S(qpq�1) = (qpq�1) + (qpq�1)�

= (qpq�) + (qpq�)�

= qpq� + qp�q� (Propositions 5 and 8)

= q(p+ p�)q� (Proposition 5)

= q(2S(p))q�

= 2S(p) (The above result)

= 0 (Since p = [0;v])

Now let p 2 H, p = [s;v] = [s;0] + [0;v].

qpq�1 = q([s;0] + [0;v])q�1

= q[s;0]q�1 + q[0;v]q�1 (Proposition 5)

= [s;0] + [0;v0] (The two above results)

= [s;v0]

All in all S(p0) = S(p). Since q 2 H1, proposition 9, equation 3.3 gives kp0k = kqp0q�1k =

kqkkpkkq�1k = kpk. Since s is unchanged, it must be the case that jvj = jv0j.
2

Corollary 3. (to proposition 19)

Let q 2 H1; p = [a; bv] 2 H where a; b 2 R and v 2 R3 . If q[a;v]q� = [a;v0], then q[a; bv]q� =

[a; bv0].

Proof of proposition 3

qpq� = q[a; bv]q�

= qb[a
b
;v]q�

= b[a
b
;v0] (Proposition 19)

= [a; bv0]

2

We will later need the following useful rule:

Proposition 20.

Let q; p 2 H1; p = [cos �; sin �v]; t 2 R. Then qptq� = (qpq�)t.

Proof of proposition 20

By corollary 3 there exists v0 2 R
3 such that q[cos �; sin �v]q� = [cos �; sin �v0]. We get

qptq� = q(exp(t log p))q�

= q(exp(t[0; �v]))q� (De�nition 14)

= q(exp[0; t�v])q�

= q([cos t�; sin t�v])q� (De�nition 15)

= [cos t�; sin t�v0] (Corollary 3)

= exp(t[0; �v0])

= exp(t log[cos �; sin �v0])

= exp(t log(qpq�))

= (qpq�)t

2

18

We are now ready to show the main theorem of this section (inspired by [Watt & Watt, 1992]).

Proposition 21.

Let q 2 H1; q = [cos �; sin �n]: Let r = (x; y; z) 2 R3 and p = [0; r] 2 H. Then p0 = qpq�1 is p

rotated 2� about the axis n.

Proof of proposition 21

We �rst show how a vector r is rotated � degrees about n, using sine, cosine, and the scalar

and vector products. We then show that the same result is obtained through rotation with

quaternions.

Assume therefore that r is to be rotated � to Rr about an axis given by the unit vector n (see

�gure 3.1).

rRr

�

n

Figure 3.1: The vector r is rotated � to Rr about an axis given by the unit vector n.

The vector r can be written as a sum of two components, r
k
and r?, where rk is the projection

of r on n, and r? is orthogonal to n (see �gure 3.2). We get

r
k

= (r � n)n, and

r? = r� r
k
= r� (r � n)n

To see how the rotation a�ects r, we place a two-dimensional coordinate system in the plane

that is orthogonal to n and contains the points designated by r and Rr. To do this, we need a

vector v that is orthogonal to r? and n:

v = n� r? = n� (r� (r � n)n) = n� r� n� (r � n)n = n� r� ~0 = n� r

19

r

�

n

r
k

r?

Rr

v

Figure 3.2: In the two-dimensional coordinate system orthogonal to n, (Rr)? can be written

(Rr)? = r? cos � + v sin �.

From �gure 3.2 we see that Rr's component orthogonal to n, (Rr)?, is given by

(Rr)? = r? cos � + v sin �:

We now get:

Rr = (Rr)k + (Rr)?

= r
k
+ r? cos � + v sin �

= (r � n)n+ (r� (r � n)n) cos � + v sin �

= (r � n)n� (r � n)n cos � + r cos � + v sin �

= (1� cos �)(r � n)n+ r cos � + (n� r) sin � (3.4)

We will now examine the e�ect of applying a quaternion to a vector, and see that we get the

same result as in equation 3.4.

We now look at Rq(p) = qpq�1 and remind the reader that p = [0; r] and that q is a unit

quaternion [s;v]:

20

Rq(p) = [s;v][0; r][s;v]�1

= [s;v][0; r][s;�v]
= [s;v][v � r; sr� r� v]

= [s(v � r)� v � (sr� r� v); s(sr� r� v) + (v � r)v + v � (sr� r� v)]

= [0; s2r� s(r� v) + (v � r)v + v � (sr)� v � (r� v)]

= [0; s2r+ (v � r)v � v� (r� v)� 2s(r� v)]

= [0; s2r+ (v � r)v � (v � v)r + (v � r)v + 2s(v � r)] (�)
= [0; (s2 � v � v)r + 2(v � r)v + 2s(v � r)]

(�) Here we use the identity v1 � (v2 � v3) = (v1 � v3)v2 � (v1 � v2)v3

Since q is a unit quaternion, we can write q = [cos �; (sin �)n], where jnj = 1 (by proposition 12

on page 14).

Substituting this into Rq(p), we get:

Rq(p) = [0; (cos2 � � sin2 �(n � n))r+ 2((sin �)n � r)(sin �)n
+2 cos �((sin �)n� r)]

= [0; (cos2 � � sin2 �)r+ (2n sin2 �)(n � r)
+2 cos � sin �(n� r)]

= [0; r cos 2� + (1� cos 2�)(n � r)n+ (n� r) sin 2�]

From the above derivation, we see that the result is the same vector as in equation 3.4 except

that the above equation has 2� instead of �. Thus, given a unit vector n and a rotation angle �,

the unit quaternion [cos �; sin �n] rotates r through the angle 2� about n. 2

As a consequence of this proposition, we get the following important corollary:

Corollary 4. (to proposition 21)

Any general three-dimensional rotation � about n, jnj = 1 can be obtained by a unit quaternion.

Proof of corollary 4

In the above proposition choose q such that q = [cos �

2
; sin �

2
n]. Thus the desired rotation is

obtained.

2

Composition of rotation is achieved by multiplying the corresponding quaternions. This is

formalized in:

Proposition 22.

Let q1; q2 2 H1. Rotation by q1 followed by rotation by q2 is equivalent to rotation by q2q1.

21

Proof of proposition 22

Given p 2 H, the result follows directly from

q2(q1pq
�1
1)q�12 = (q2q1)p(q

�1
1 q�12)

= (q2q1)p(q
�
1q
�
2) (proposition 13)

= (q2q1)p(q2q1)
� (proposition 8)

= (q2q1)p(q2q1)
�1 (proposition 13)

2

3.3.7 Geometric intuition

We will make some observations that can aid the intuitive understanding of rotation with quater-

nions.

The quaternions q and q�1

Let q = [s;v] 2 H1. Then

[s; v]�1 = q�1 = q� = [s;�v]

It can be useful to consider the geometric interpretation of this: The inverse of q, q�1, rotates

the same number of degrees as q, but the axis points in the opposite direction:

q q�1

By inverting the axis, the direction of rotation is reversed; a subsequent rotation by q�1 cancels

out the e�ect of the rotation q.

The quaternions q and �q

The quaternion �q represents exactly the same rotation as q (this follows from proposition

6). This may seem surprising, but should be expected: A rotation through the angle � about

the axis n can also be expressed as a rotation through the angle �� about the axis �n. It is

therefore aesthetically pleasing that we �nd both rotations on the unit quaternion sphere. The

same duality is also found in Euler's theorem.

22

�qq

Non-unit quaternions

It follows from proposition 18 that all quaternions on the line rq; r 2 R; r 6= 0 represent the

same rotation.

3.3.8 Quaternions and di�erential calculus

In this section we show a number of common results from di�erential calculus for functions

that map into H. The results will later be used to show that certain interpolation curves are

di�erentiable.

Proposition 23.

Let q = [cos �; sin �v] 2 H1; t 2 R. Then

d

dt
qt = qt log(q)

Proof of proposition 23

The equation is shown through simple calculation of the two sides of the equation.

The left-hand side:

d

dt
qt =

d

dt
exp(t log(q)) =

d

dt
exp(t[0; �v]) =

d

dt
[cos(t�); sin(t�)v] = �[� sin(t�); cos(t�)v]

The right-hand side:

qt log(q) = exp(t log(q)) log(q) = [cos(t�); sin(t�)v][0; �v]

= [�� sin(t�)(v � v); � cos(t�)v+ � sin(t�)(v � v)]

= [�� sin(t�); � cos(t�)v] = �[� sin(t�); cos(t�)v]

2

23

We also want to show the chain rule and the product rule for quaternions. We will �rst show

the product rule. The purpose of this derivation is to ensure that the order of the quaternions

in the di�erentiated expression is correct; it is important to make sure that this is the case since

quaternion multiplication is not commutative.

Proposition 24. (The product rule)

Let f; g 2 C1(R;H). Then

d

dt
(f(t)g(t)) = (

d

dt
f(t))g(t) + f(t)(

d

dt
g(t))

Proof of proposition 24

d

dt
(f(t)g(t)) = lim

�!0

f(x+ �)g(x + �)� f(x)g(x)

�

= lim
�!0

f(x+ �)g(x + �)� f(x+ �)g(x) + f(x+ �)g(x) � f(x)g(x)

�

= lim
�!0

�
f(x+ �)

g(x + �) � g(x)

�
+
f(x+ �)� f(x)

�
g(x)

�
= f(x)g0(x) + f 0(x)g(x)

2

Proposition 25. (The chain rule)

Let f 2 C1(H;H); g 2 C1(R;H). Then d

dt
f(g(x)) = f 0(g(x))g0(x)

Proof of proposition 25

We compute the derivative at an arbitrary point c 2 R:

d

dt
f(g(c)) = lim

x!c

f(g(x))� f(g(c))

x� c

= lim
x!c

(f(g(x)) � f(g(c)))(g(x) � g(c))�1(g(x) � g(c))

x� c

= lim
x!c

�
f(g(x))� f(g(c))

g(x)� g(c)

g(x)� g(c)

x� c

�
= f 0(g(c))g0(c)

2

Finally we state the following result, that has no obvious counterpart in the real numbers:

Proposition 26.

Let q 2 C1(R; H1); r 2 C1(R;R). Since q maps into H1, q(t) can be written [cos �(t);v(t) sin �(t)],

and we have

d

dt
q(t)r(t) =

h
�sin

�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
;

cos
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
v(t) + sin

�
r(t)�(t)

�
v0(t)

i

24

Proof of proposition 26

d

dt
q(t)r(t) =

d

dt
exp(r(t) log(q(t)))

=
d

dt
exp(r(t)[0;v(t)�(t)])

=
d

dt
exp[0; r(t)v(t)�(t)]

=
d

dt
[cos(r(t)�(t)); sin(r(t)�(t))v(t)]

=
h

�sin
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
;

cos
�
r(t)�(t)

��
r0(t)�(t) + r(t)�0(t)

�
v(t) + sin

�
r(t)�(t)

�
v0(t)

i
2

Compare this equation to the derivative of two real-valued functions u; v 2 C1(R;R):

d

dt
uv = vuv�1

d

dt
u+ uv log(u)

d

dt
v:

This equation is di�erent from the equation in proposition 26, and it is unlikely that it holds in

general for quaternions.

25

3.4 An algebraic overview

This section contains a short resume of the algebraic properties of the rotational modalities.

The mathematical concepts are assumed to be known by the reader, and they are therefore

not described in detail. This section elaborates on the algebra previously discussed and is only

intended for the interested reader.

The space of three-dimensional rotations is not a simple vector-space but a closed three-dimensional

manifold and also a non-Abelian group (see section 3.3.3) known in the literature as SO(3)

[Shoemake, 1994b]. Here S is for \special" and the O(3) stems from the de�nition: O(n) =

fn� n matrices j OtO = Ig | the set of orthonormal n� n matrices.

The set of unit quaternions constitutes a subgroup of the quaternion group (see section 3.3.4). In

the literature, H1 is also called S3 [Shoemake, 1985]. This subgroup constitutes a hypersphere

in quaternion space. The spherical metric for S3 is equivalent to the angular metric for SO(3)

[Shoemake, 1985].

Furthermore the rotation group can be projected onto the four-dimensional unit sphere of unit

quaternions. This projection is two-to-one (see section 3.3.7): For each rotation there are

two corresponding unit quaternions | q that is obtained directly and �q, the antipodal unit
quaternion (see [Shoemake, 1994b], [Foley et al., 1990] and appendix B). This is because SO(3)

has the same topology as the three-dimensional projection space called (RP 3), while the set

of unit quaternions constitutes a hypersphere (S3) that is topologically di�erent from RP 3

[Shoemake, 1994b].

Bearing these similarities and the small discrepancy in mind, we can see that by developing a

smooth interpolation between unit quaternions, we get a smooth interpolation between general

rotations. The problem is not trivial, in particular because H1 constitutes a non-Euclidean

space, which excludes the usual interpolation methods such as splines. Our task is to �nd an

equivalent interpolation curve on the surface of the four-dimensional unit sphere.

26

Chapter 4

A comparison of quaternions, Euler

angles and matrices

In the previous chapter we introduced two rotational modalities:

� Rotation de�ned by Euler angles represented by general transformation matrices.

� Rotation de�ned by Euler's theorem represented by quaternions.

In this chapter we will describe advantages and disadvantages of the di�erent modalities.

4.1 Euler angles/matrices | Disadvantages

Traditionally homogeneous matrices have been used to represent Euler angles because the basic

rotation matrices for rotation about the x-, y-, and z-axes are simple and well-known. This

historically based choice has some disadvantages, though. We will discuss the disadvantages

below.

Lack of intuition

Describing a general rotation as rotations about the three basis axes is not natural for an

animator. If, for instance, the animator wants to rotate an object 30 degrees about a rotation

axis given by the vector (1; 1; 1), it is quite tedious to derive the corresponding Euler angles

about the three basis axes.

27

The order of rotation axes is important

The user of a graphical system must express rotations in respect to a certain convention that

de�nes in which order the three basis rotations are applied. Di�erent conventions yield di�erent

results. For example, a rotation of (�
2
; �
4
; 0) yields di�erent orientations depending on which

convention of x; y; z and y; x; z is being used.

As an example, we examine an object in a coordinate system (see �gure 4.1). By rotating the

object in �gure 4.1.i the angle �

2
about x and then �

4
about y the result is 4.1.ii. If the convention

y; x; z is used instead, the rotation is done by �

4
about y and then �

2
about x yielding 4.1.iii.

i) ii) iii)

Figure 4.1: In the coordinate system the x-axis points to the right, the y-axis points up and

the z-axis point to the left. Figures ii) and iii) show the result of applying di�erent rotation

conventions to the object in �gure i).

Gimbal lock

Getting an intuitive understanding of how rotation matrices work is quite di�cult. In partic-

ular, it is di�cult to predict how successive rotations about the basis axes a�ect each other.

Considering that the matrix representation of Euler angles has an innate singularity in the pa-

rameterization makes this even more di�cult. It is possible to create series of rotations, where

one degree of freedom in the rotation is lost. This situation is called gimbal lock.

Gimbal lock is a concept originating from the air and space industry, where gyroscopes are

used [Shoemake, 1985] [Watt & Watt, 1992] [Verplaetse, 1995]. A gyroscope basically consists

of three concentric rings. See �gure 4.2 for an illustration of this (the example is inspired by

[McCool, 1995]).

In 4.2.i the inner ring represents the x-axis, the center ring the y-axis and the outer ring

represents the z-axis. A rotation about the x-axis can for example result in 4.2.ii, where the

object is rotated approximately 45 degrees about the x-axis. If we then rotate 90 degrees about

the y-axis, we get the situation shown in �gure 4.3.

In this situation, the x and the z-rotation acts about the same axis. This is an example of

gimbal lock.

28

i) ii)

Figure 4.2: In the coordinate system the x-axis points up, the y-axis points to the left and the

z-axis points to the right. The inner ring represents the x-axis, the center ring the y-axis and the

outer ring represents the z-axis. From the starting point i) the x-axis is rotated approximately

45 degrees in ii).

Figure 4.3: In the coordinate system the x-axis points up, the y-axis points to the left and the

z-axis points to the right. In this situation the x and the z-rotation act about the same axis.

This phenomenon is called gimbal lock.

Mathematically gimbal lock corresponds to loosing a degree of freedom in the general rotation

matrix (see appendix B):

R(�; �;
) =

8>>>>>>>>>>:
cos � cos
 cos
 sin� sin� � cos� sin
 cos� cos
 sin� + sin� sin
 0

cos � sin
 cos� cos
 + sin� sin� sin
 cos� sin� sin
 � cos
 sin� 0

� sin� cos � sin� cos� cos � 0

0 0 0 1

9>>>>>>>>>>;

If we let � = �

2
, then a rotation with � will have the same e�ect as applying the same rotation

with �
. This can be seen from the following derivation (using the addition formulas for cos

and sin):

29

R(�; �
2
;
) =

8>>>>>>>>>>:
0 cos
 sin�� cos� sin
 cos� cos
 + sin� sin
 0

0 cos� cos
 + sin� sin
 cos� sin
 � cos
 sin� 0

�1 0 0 0

0 0 0 1

9>>>>>>>>>>;
=

8>>>>>>>>>>:
0 sin(��
) cos(��
) 0

0 cos(��
) sin(��
) 0

�1 0 0 0

0 0 0 1

9>>>>>>>>>>;
This expression shows that the rotation only depends on the di�erence � �
 and therefore it

has only one degree of freedom instead of two. For � = �

2
changes of � and
 result in rotations

about the same axis.

Implementing interpolation is di�cult

Normally the coordinates of each basis axis are interpolated independently. Thereby the inter-

dependencies between the axes are ignored. As an example, this results in unexpected e�ects

when applying simple linear interpolation. See section 6.1.1 for a treatment of this.

Ambiguous correspondence to rotations

Given a rotation matrix it is di�cult to solve the inverse problem: What are the original

rotations about the basis axes? In general, there is no unambiguous solution to this problem.

See appendix A or [Shoemake & Du�, 1994] for more detail.

In addition to this, a rotation can be represented by many di�erent rotation matrices. All in all

the mapping between rotations and rotation matrices is neither injective nor surjective.

The result of composition is not apparent

According to Euler's theorem two successive rotations can be expressed as one. The two rotation

matrices must be composed and multiplied followed by extraction of the resulting rotation. To

determine this rotation is tedious and in general not possible as mentioned above (see page 90

or [Shoemake & Du�, 1994] for further detail).

The representation is redundant

Homogeneous matrices contain expendable information. If the matrices are to be used exclusively

for rotation, the matrices will have zeroes for indices (4; i) and (i; 4); i 2 f1; 2; 3g. In addition

to this, the matrix uses 9 places for the 4 degrees of freedom that are necessary to describe a

rotation according to Euler's theorem.

On top of this numerical inaccuracies will be problematic. Since rotation matrices must be

orthonormal there are 6 constraints (each row must be a unit vector and the columns must be

mutually orthogonal) that must be maintained during the computations.

30

4.2 Euler angles/matrices | Advantages

An advantage of matrix implementations is that the mathematics is well-known and that matrix

applications are relatively easy to implement using standard packages. These advantages are

more historically than rationally determined though.

The main advantage of the matrix representation is the ability of the homogeneous matrix to

represent all the other basic transformations, for example translation, scaling, projection, and

shearing.

4.3 Quaternions | Disadvantages

Quaternions only represent rotation

It is possible to implement translation using quaternions (quaternion addition can be used as

a translation transformation interpreting the vector part of the quaternion as the translation

vector). In [Maillot, 1990] a kind of homogeneous quaternions are de�ned with a multiplication

making both translation and rotation multiplicative.

Even though it is possible to de�ne a homogeneous quaternion and thereby including the trans-

lation composition, this extension is not as elegant as the homogeneous matrices. The homo-

geneous extension appears to be ignored in the literature. Quaternions are used for rotation

exclusively, matrices are used for all other transformations.

Quaternion mathematics appears complicated

Quaternions are not included in standard curriculum of modern mathematics. Some might study

the quaternion group in algebra, but knowledge of quaternions is, in general, not widespread.

Therefore quaternions require a bit of work in the beginning. However, quaternions should pose

no problem for someone able to understand matrix algebra.

4.4 Quaternions | Advantages

Obvious geometrical interpretation

Quaternions express rotation as a rotation angle about a rotation axis. This is a more natural

way to perceive rotation than Euler angles.

The obvious correspondence between Euler's theorem and rotations represented by quaternions

gives a nice intuitive understanding of quaternions. The mapping between rotations and quater-

nions is therefore unambiguous with the exception that every rotation can be represented by two

quaternions. This appears to be a weakness in the quaternion representation. That q and �q
correspond to the same rotation is on the other hand mathematically pleasing. This is because

rotations themselves come in pairs. Given a rotation, the same rotation is obtained by rotating

in the opposite direction about the opposite axis. (see 3.3.7 on page 22).

31

Coordinate system independency

Quaternion rotation in not in
uenced by the choice of coordinate system. The user of an

animation system does not need to worry about a certain convention of the order of rotation

about explicit axes.

Simple interpolation methods

Quaternions allow elegant formulations of a range of interpolation methods. Achieving a smooth

interpolation is therefore simpler using quaternions than Euler angles. We will give a compre-

hensive treatment of this in chapter 6.

Compact representation

The representation of rotation using quaternions is compact in the sense that it is four di-

mensional and thereby only contains the four degrees of freedom required according to Euler's

theorem.

In theory all non-zero quaternions can be used for rotation (by proposition 18). In practical

applications only unit quaternions will be used. Thus, only one constraint on the representation

must be upheld during computation compared to the six constraints on rotation matrices.

No gimbal lock

Since gimbal lock is innate to the matrix representation of Euler angles, this problem does not

appear in the quaternion representation.

Simple composition

Rotations are easily composed when using quaternions. The composition corresponds to multi-

plication of the involved quaternions. Rotation with q1 followed by rotation with q2 is achieved

by rotating with the quaternion q2q1.

4.5 Conclusion

We have stated a series of advantages and disadvantages for the two rotation modalities. Using

Euler angles represented by matrices leads to several problems. Rotation must be expressed

as the angles about three explicit axes, with the order being important. It is possible to en-

counter gimbal lock and �nally it is troublesome to uphold the mathematical constraints on the

representation during calculations.

32

The quaternion representation is compact with a more natural geometrical interpretation and a

parameterization of rotation that is not dependent on the coordinate system.

The only real advantage of matrices is the possibility of representing all the other transforma-

tions.

All in all, quaternions o�er the best choice for representation of rotations.

4.6 Other modalities

In the previous sections we have argued that rotations should be represented by quaternions

based on Euler's theorem. However, we have only compared to one other modality | rotation

matrices based on Euler angles.

Obviously, other modalities are possible. For example the two modalities can be combined. It

is possible to de�ne rotation matrices based on Euler's theorem (an example can be found in

[Foley et al., 1990] exercise 5.15). Thereby the problems connected to Euler angles are avoided

yielding a better correspondence between rotation matrices and the set of rotations. There

are still problems with this modality though. For instance, the inverse mapping from rotation

matrices to rotations is still ambiguous. Further, the matrix representation is not well-suited for

interpolation algorithms. For example the matrices still need to ful�ll the constraints imposed

by being orthonormal matrices.

We will limit ourselves from discussing other modalities. This is simply because the two we

have mentioned are by far the most important. Euler angles and matrices are the most com-

mon modality in both the literature and in applications. We claim that quaternions are more

appropriate.

33

Chapter 5

Visualizing interpolation curves

In chapter 6 we discuss a series of interpolation methods that can interpolate between two or

more quaternions. We would like to compare these methods from a theoretical perspective. At

the same time it is natural to compare the results of the methods in practice, to see if practice

re
ects our theoretical considerations.

This section contains a short description of the visualization methods used and the motivation

for each type of visualization.

5.1 Direct visualization

The most obvious visualization method is to apply the interpolated rotations to the object. This

is most easily achieved by de�ning an object using a three-dimensional visualization tool, and

then rotating it with the interpolated rotations. We let this visualization method produce an

animated sequence that shows how the object is rotated. The method gives an intuitive feel

for how the interpolation curve behaves, but it is di�cult to say anything concrete about the

smoothness of the interpolation curves or the variation in angular velocity. We therefore need

other methods of visualization that can provide us with this information.

5.2 Visualizing an approximation of angular velocity

We want to visualize the angular velocity of the interpolation curve. For example it will be

interesting to see if some of the interpolation curves have constant angular velocity.

In the following, qi denotes the i'th frame, i. e. the i'th quaternion in a discrete quaternion

interpolation curve.

To produce a graph of the angular velocity, we must de�ne a function that gives an approximation

of the angular velocity. Then all that remains is to plot this function against the interpolation

parameter. A number of di�erent approximations to the angular velocity can be de�ned based

34

in either physics or mathematics. We will base our de�nition in mathematics, and use that

we have de�ned a norm on quaternions. We can de�ne the distance between two quaternions

q1; q2 to be d(q1; q2) = kq1 � q2k. Then the angular velocity V in the i0th quaternion qi can be

approximated by the centered average:

V (qi) =
d(qi; qi�1) + d(qi; qi+1)

2
=
kqi � qi�1k+ kqi � qi+1k

2
(5.1)

Plotting V as a function of the interpolation parameter yields a graph of an approximation to

the angular velocity.

We will omit the �rst and last key frames from the angular velocity graph, since no obvious

angular velocity can be assigned to them. Thereby the leftmost point on the angular velocity

graph is the angular velocity in the �rst interpolated frame. The remaining key frames we will

mark with an asterisk in the velocity graph.

5.3 Visualizing the smoothness of interpolation curves

We would also like to visualize the interpolation curves to see, for example, how smooth they

appear.

Since quaternion space is four-dimensional, we cannot visualise the interpolated curves directly.

We will always interpolate between unit quaternions, and the interpolated quaternions will

always (with a few exceptions in chapter 6 on page 38 and 69) be unit quaternions. This

means that we only need three dimensions to visualize the interpolation curves, because they

lie on the surface of the unit sphere. In practice it can be di�cult to visualise this space

e�ectively since it must be presented via a two-dimensional media (paper or monitor). We can

remove another dimension by interpolating between quaternions in the same three-dimensional

hyperplane. This can be achieved by �xing one of the quaternion coordinates in all key frames.

Thus the interpolated curves should stay inside a two-dimensional space that can be shown in

the plane. To keep the association to the four-dimensional unit sphere, we elect to show the

curves on the surface of the three-dimensional unit sphere (a two-dimensional sub manifold of

R
3). In chapter 6 we will argue that the ideal interpolation curve will lie on the surface of the

quaternion unit sphere. Our choice of visualization ensures that we can visually determine if

the visualization curve stays on the surface of the unit sphere. See �gure 5.3 for an example of

this.

The actual visualizations are produced using a ray tracer [POV, 1997]. Here we generate a large

sphere that represents the three-dimensional unit sphere. The �rst key frame is shown as a

medium-sized sphere, other key frames are shown using a bit smaller spheres, and interpolated

points are shown using small spheres. See �gures 5.1 through 5.3 below.

35

5.4 Some examples of visualization

In this section we show some examples of the visualization of the angular velocity graphs and

the interpolation curves. The interpolation methods are described in section 6; we only describe

properties of the resulting visualizations here.

The interpolation is performed on the frames given in table 5.1. The key frames are given by

a general rotation. As noted above, we choose the rotation angle and axis such that all the

rotations lie in the same three-dimensional hyperplane.

In �gures 5.1 through 5.3 we discuss di�erent properties of the visualizations. Note that there

is no obvious connection between the rotations in �gure 5.1 and the points on the surface of the

sphere. This is because the table contains general rotations, while the visualizations show the

corresponding quaternions. Since we are only interested in the geometric shape of the curves,

the absolute positioning of the key frames on the sphere is irrelevant.

Rotation angle � 2]� �; �] Rotation axis v 2 R3

1 (1,3,0)

1.9 (-1,0,0)

0 (-2,1,0)

-2 (3,4,0)

-1 (-1,4,0)

1 (1,3,0)

Table 5.1: Key frames

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.1: The interpolation curve stays on the surface of the sphere, but it is not di�erentiable

in any key frames; the curve \breaks" when it passes through the key frames. The angular velocity

graph is piecewise continuous and shows that the angular velocity is constant between keys. This

method of interpolation is called Slerp and is described in section 6.1.5.

36

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.2: The interpolation curve is now di�erentiable through all key frames. Compare, for

example, the key frame in the middle of the �gure with the corresponding key frame in �gure

5.1. The angular velocity graph is continuous and assumes local minima at the key frames. This

interpolation curve is called Squad, and it is described in section 6.2.1.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

’Angular Velocity.’
’Key Frames.’

Figure 5.3: This interpolation curve dips below the surface of the three-dimensional unit sphere.

This means that the interpolated points are not unit quaternions, and thus the points do not lie

on the surface of the sphere. The angular velocity graph is piecewise linear. This interpolation

curve is called LinEuler, and is described in section 6.1.1

In general we will illustrate the interpolation methods with the last two visualization methods:

Sphere and graph. We have included the animated sequences for the sake of completeness, since

it is in this context that the interpolation serves its practical purpose.

A few examples of these animated sequences can be seen at http://kantine.diku.dk/~myth/gif/

37

Chapter 6

Interpolation of rotation

In the previous chapters we presented and discussed two rotational modalities. In this chapter

we will investigate how well-suited the modalities are for interpolation methods.

Gradually we will move from simple, intuitive methods to more advanced, theoretically well-

founded interpolation methods. Parallel to the derivation of methods we will discuss what we

perceive as criteria de�ning the optimal interpolation method. Our modest aim is to de�ne and

implement this optimal method.

6.1 Interpolation between two rotations

Initially we will limit ourselves to looking at interpolation between two rotations. We will use

the rotation representations as inspiration for treating a series of simple methods.

Each of the methods results in an interpolation curve de�ned as follows. Given an arbitrary

set M we interpolate between x0 2 M and x1 2 M parameterised by h 2 [0; 1]. The resulting

interpolation curve
 :M �M � [0; 1]yM must satisfy the constraints:

(x0; x1; 0) = x0

(x0; x1; 1) = x1

6.1.1 Linear Euler interpolation: LinEuler

The most obvious method is simply linear interpolation between two tuples of Euler angles.

Calling this interpolation curve LinEuler, interpolation between v0 = (x0; y0; z0) 2 R3 and v1 =
(x1; y1; z1) 2 R3 can be stated algorithmically using h 2 [0; 1] as the interpolation parameter:

LinEuler(v0; v1; h) = v0(1� h) + v1h (6.1)

38

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.1: Interpolation curve and velocity graph for Linear Euler interpolation | LinEuler.

Between the two key frames are 300 interpolated frames.

Figure 6.1 is not a very good illustration of the interpolation curve. The curve \lives" in the

set of Euler angles while the illustration shows the corresponding quaternions. As described in

chapter 5, the illustration is designed to show unit quaternions with the z coordinate equal to

zero. The quaternions corresponding to the key frames meet these criteria but the rest of the

interpolation curve does not. The curve consists of unit quaternions but their z coordinate is

not generally equal to zero. Therefore the curve disappears from the surface of the sphere in

the illustration.

This behaviour is neither optimal1 nor intuitively correct.

The velocity graph shows that the animation corresponding to the interpolation will gradually

slow down. Again, this behaviour is neither optimal nor intuitively correct.

6.1.2 Linear Matrix interpolation: LinMat

An alternative simple attempt is linear interpolation between rotation matrices | meaning

linear interpolation of every single matrix element independently of the others.

This can be stated simply algorithmically. With parameter h 2 [0; 1], the interpolation curve

between the rotation matrices M0 2 R4 � R4 and M1 2 R4 � R4 the curve is de�ned by

LinMat(M0;M1; h) = M0(1� h) +M1h (6.2)

As with linear Euler interpolation, the curve for linear matrix interpolation does not in general

lie on the unit sphere, since linear interpolation between orthonormal matrices will not in gen-

eral produce orthonormal matrices. Thus, the interpolated matrices are general homogeneous

1We perceive \optimal" informally so far. Later we will state a strict de�nition of the optimal interpolation

curve.

39

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.2: Interpolation curve and velocity graph for linear matrix interpolation | LinMat.

Between the two key frames are 300 interpolated frames.

transformation matrices containing translation, scaling, projection and other transformation el-

ements. Thereby the interpolation can become arbitrarily wrong. For example, it is possible to

collapse the entire object into a single point [Shoemake & Du�, 1994].

Our visualization methods cannot show other transformations than rotation. Therefore we are

not able to illustrate that the interpolated matrices are not pure rotation matrices. By converting

matrices to quaternions we preserve only the rotational part.

In �gure 6.2 we have projected the interpolation curve on to the unit quaternion sphere to show

the pure rotational part of the interpolation curve. Finally, after these detours, we arrive at a

quite nice interpolation curve.

As explained, the nice illustration does not imply that the interpolation method is usable |

only a component of the full interpolation curve is shown. The method is only discussed for

completeness.

6.1.3 Linear Quaternion interpolation: Lerp

Finally, another obvious attempt is linear interpolation between rotation quaternions (called

Lerp for linear interpolation). For q0; q1 2 H and h 2 [0; 1] this interpolation curve can be

stated:

Lerp(q0; q1; h) = q0(1� h) + q1h (6.3)

The interpolation curve for linear interpolation between quaternions gives a straight line in

quaternion space. The curve therefore dips below the surface of the unit sphere. Since all

quaternions on a line through the origin give the same rotation2, the curve can be projected on

2Except the origin itself. This follows from proposition 18.

40

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.3: Interpolation curve and velocity graph for linear quaternion interpolation | Lerp.

Between the two key frames are 300 interpolated frames.

to the unit sphere without changing the corresponding rotations. Therefore the interpolation

curve is normalized (�gure 6.3).

The illustration shows that Lerp is the �rst of the interpolation methods discussed so far to yield

a satisfying result. Even though the interpolation curve for Lerp resembles the curve for LinMat

(see �gures 6.2 and 6.3) we must emphasize that this does not mean that the interpolations are

alike. The illustration for LinMat is the result of a series of transformations and not a true

image of the interpolation curve.

Even though the interpolation curve for Lerp is nice, the velocity graph is not intuitively satis-

fying. The speedup in the middle is due to the fact that the interpolation curve takes a \short

cut" below the surface of the unit sphere. This is not a desired property. The intuitively correct

velocity graph for linear interpolation is a constant function.

6.1.4 A summary of linear interpolation

We have attempted simple linear interpolation with the purpose of revealing which rotation

representation is most suitable for de�ning interpolation curves.

The disadvantages of LinEuler and LinMat are evident. As previously described, Euler angles

are not the best de�nition for rotation and matrices are not an obvious representation. Therefore

it is not to be expected that simple linear interpolation between pairs of Euler angles or rotation

matrices will result in nice interpolation curves.

In contrast the interpolation curve for Lerp is quite nice. The only problem is the varying

velocity graph. A constant velocity is not necessarily a requirement for a curve. However, in

this case the varying velocity is a problem since it is the result of a
aw in the method. The

problem is that the interpolated quaternions are not unit quaternions in general.

41

For Euler angles and rotation matrices the linear interpolation can result in unacceptable in-

terpolation curves. It does not necessarily follow from this that it is impossible to de�ne a

satisfying interpolation curve using these representations. It does, however, imply that it is not

possible to de�ne simple algorithms yielding satisfying curves. This is a direct consequence of

the disadvantages in the Euler angle and rotation matrix representation as discussed in chapter

4.

On the other hand, the very simple Lerp is close to being optimal. At this stage we perceive

the optimal interpolation curve between two key frames to be the great arc on the quaternion

unit sphere between the two corresponding quaternions.

Due to the previous considerations we will refrain from further attempts at deriving interpolation

curves based on Euler angles and rotation matrices.

6.1.5 Spherical Linear Quaternion interpolation: Slerp

As proven in proposition 18, all quaternions on a line through the origin3 perform the same

rotation. However, we only want to use unit quaternions for rotation since they possess a range

of desirable properties4.

Simple linear quaternion interpolation yields a secant between the two quaternions. Therefore

the interpolation function has larger velocity in the middle of the curve (see �gure 6.3 and

�gure 6.4). Apart from this Lerp is optimal. An obvious idea is to de�ne an interpolation

method yielding the same interpolation curve but where the interpolated quaternions are unit

quaternions. Instead of doing simple linear interpolation the curve should follow a great arc on

the quaternion unit sphere from one key frame to the other. This is called great arc interpolation

or spherical linear interpolation - Slerp.

V

a) b) c)

Figure 6.4: An illustration in the plane of the di�erence between Lerp and Slerp. a) The

interpolation covers the angle v in three steps. b) Lerp | The secant across is split in four

equal pieces. The corresponding angles are shown. c) Slerp | The angle is split in four equal

angles.

This interpolation can be stated algorithmically as follows ([Shoemake, 1985], [Shoemake, 1987]

and [Shoemake, 1997]). Given q0; q1 2 H1 and h 2 [0; 1] the following four functions are equiva-

lent expressions for spherical linear interpolation:

3Except the origin itself.
4The unit quaternion sphere is, as mentioned in chapter 3.4, equivalent to the space of general rotations.

42

Slerp(p; q; h) = p (p� q)h (6.4)

Slerp(p; q; h) = (p q�)1�h q (6.5)

Slerp(p; q; h) = (q p�)h p (6.6)

Slerp(p; q; h) = q (q� p)1�h (6.7)

Notice the pairwise symmetry yielding the intuitively correct:

Slerp(p; q; h) = Slerp(q; p; 1� h)

The equivalence of the four expressions for Slerp is proven in the following proposition inspired by

[Shoemake, 1997]. No proof of the equivalence has previously been published (this is con�rmed

by Ken Shoemake).

Proposition 27.

For p; q 2 H1; h 2 R the following four expressions are equivalent:

(1) p (p� q)h

(2) (p q�)1�h q

(3) (q p�)h p

(4) q (q� p)1�h

Proof

First we show (1) = (3). Proposition 20 is used (page 18).

p(p�q)h = p(p�q)h(p�p)

= (p(p�q)hp�)p

= (pp�qp�)hp (Proposition 20)

= (qp�)hp

Now we show (4) = (2):

q(q�p)1�h = q(q�p)1�h(q�q)

= (q(q�p)1�hq�)q

= (q(q�p)q�)1�hq (Proposition 20)

= (pq�)1�hq

Finally we show (2) = (1) using proposition 16 from page 16 and proposition 17:

(pq�)1�hq = (pq�)(pq�)�hq (Proposition 16)

= (pq�)((pq�)�1)hq (Proposition 17)

= pq�((pq�)�)hq

= pq�(qp�)hq

= p(q�(qp�)q)h (Proposition 20)

= p(q�qp�q)h

= p(p�q)h

2

43

We have thus proved the equivalence of the four expressions for Slerp5. From now on we will

use Slerp(p; q; h) = p(p�q)h (equation 6.4).

That Slerp does, in fact, perform great arc interpolation on the four-dimensional quaternion

sphere is not obvious. Often in the literature it is stated that this follows directly from the

Lie group structure of the unit quaternions. We provide a thorough proof in proposition 28

requiring only basic di�erential geometry.

There are several di�erent ways of proving proposition 28. One approach is to look at the

curvature of Slerp. It is fairly easy to prove that the curvature equals one throughout the entire

interpolation curve. Only great arcs have curvature equal one on a unit sphere. Here we use

another approach. The key point in this proof is observing that the curve is a great arc if the

second derivative vector is parallel (and with opposite direction) to the position vector of the

curve, i. e. d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h); c � 0. This corresponds to the forces acting on

an object describing a plane circular motion with constant angular velocity.

Before the proof we need a lemma:

Lemma 3.

Let p = [s;v]; q1 = [s1; (x1; y1; z1)] = [s1;v1]; q2 = [s2; (x2; y2; z2)] = [s2;v2] 2 H:
Then (pq1)

�

(pq2) = kpk2 (q1
�

q2)

Proof of lemma 3

(pq1)
�

(pq2) = [ss1 � v � v1; sv1 + s1v+ v � v1]
�

[ss2 � v � v2; sv2 + s2v + v � v2]

= s2s1s2 � ss1v � v2 � ss2v � v1 + (v � v1)(v � v2)+
s2v1 � v2 + ss2v � v1 + sv1 � (v � v2)+

ss1v � v2 + s1s2v � v + s1v � (v � v2)+

s(v � v1) � v2 + s2(v � v1) � v+ (v � v1) � (v � v2)

= s2s1s2 + (v � v1)(v � v2)+
s2v1 � v2 + sv1 � (v � v2) + s1s2v � v+
s(v � v1) � v2 + (v � v1) � (v � v2)

We simplify using (v � v1) � (v � v2) = (v � v)(v1 � v2)� (v � v2)(v1 � v):

(pq1)
�

(pq2) = s2s1s2 + (v � v1)(v � v2)+
s2v1 � v2 + sv1 � (v � v2) + s1s2v � v+
s(v � v1) � v2 + (v � v)(v1 � v2)� (v � v2)(v1 � v)

= (s2 + v � v)s1s2 + (s2 + v � v)v1 � v2+
sv1 � (v � v2) + s(v � v1) � v2

= kpk2 (q1
�

q2) + sv1 � (v � v2) + sv2 � (v � v1)

Finally, we use the identity

v � (v1 � v2) =

������
x y z

x1 y1 z1
x2 y2 z2

������ = xy1z2 + x2yz1 + x1y2z � xy2z1 � x1yz2 � x2y1z

5Another compelling expression for Slerp is Slerp(p; q; h) = p
1�h

q
h. This is intuitively analogous to ordinary

linear interpolation p (1 � h) + q h. The equivalence with equation 6.4 can be shown as follows: p(p�q)h =

p(p�1
q)h = pp

�h
q
h = p

1�h
q
h. This is very nice | and yet another example of how easy it is to make erroneous

proofs with quaternions. For q; p 2 H and h 2 R the equation (qp)h = q
h
p
h does not hold in general. This would

require commutativity.

44

We now get:

(pq1)
�

(pq2) = kpk2 (q1
�

q2) + sv1 � (v � v2) + sv2 � (v � v1)

= kpk2 (q1
�

q2)+

s(x1yz2 + x2y1z + xy2z1 � x1y2z � xy1z2 � x2yz1)+

s(x2yz1 + x1y2z + xy1z2 � x2y1z � xy2z1 � x1yz2)

= kpk2 (q1
�

q2)

2

Proposition 28.

The curve Slerp(p; q; h) : H1 � H1 � [0; 1] y H1 is a great arc on the unit quaternion sphere

between p and q. The position vector function of Slerp has constant angular velocity.

Proof of proposition 28

To show proposition 28 we must prove that the following four conditions are met:

Slerp(p; q; 0) = p (6.8)

Slerp(p; q; 1) = q (6.9)

kSlerp(p; q; h)k = 1; h 2 [0::1] (6.10)

d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h); c � 0 2 R (6.11)

Conditions 6.8 and 6.9 are shown directly using the de�nitions for exp and log.

Slerp(p; q; 0) = p (p� q)0 = p exp([0; 0]) = p[1; 0] = p

Slerp(p; q; 1) = p (p� q)1 = p exp(log(p� q))

= p p� q = p p�1 q = q

Condition 6.10 is met since exp maps into H1 (de�nition 15) and since the norm of a product is

the product of the norms (proposition 9, equation 3.3):

kSlerp(p; q; h)k = kpk k(p� q)hk = 1 k exp(h log(p� q))k = 1

To show condition 6.11, we need the second derivative of Slerp. Using proposition 23 we �nd:

d

dt
Slerp(p; q; h) =

d

dt
p(p�q)h

= p(p�q)h log(p�q)

= Slerp(p; q; h) log(p�q) (6.12)

d2

dh2
Slerp(p; q; h) = p (p� q)h log(p� q)2

= Slerp(p; q; h) log(p� q)2

Condition 6.11 holds if log(p� q)2 is a non-positive real number. Since p�; q 2 H1, then p
� q 2 H1.

By proposition 12 there exists � 2 R and v 2 R3 ; jvj = 1 such that p� q = [cos �; sin �v]. Then:

45

log(p� q)2 = [0; �v]2

= [��2 v � v; �2 v � v]

= [��2;0]

Thus d2

dh2
Slerp(p; q; h) = c Slerp(p; q; h) where c = ��2 � 0.

2

Having shown that Slerp(p; q; h); h 2 [0; 1] spans a great arc between p and q, there are still two

possible curves depending on which direction around the unit sphere Slerp takes. The following

proposition states that Slerp behaves as desired.

Proposition 29.

Let p; q 2 H1. Then Slerp(p; q; h); h 2 [0; 1], spans the shortest great arc between p and q on

the unit quaternion sphere.

Proof of proposition 29

Let q 1
2

= Slerp(p; q; 1
2
) and let � denote the angle between p and q 1

2

. Slerp yields the shortest

arc if and only if � 2]� �

2
; �
2
]. This is equivalent to cos(�) 2 [0; 1]. We therefore examine the

sign of cos(�).

Let p; q 2 H1, where p = [s; v].

cos(�) = p
�

q 1
2

(Proposition 10)

= p
�

Slerp (p; q; 1=2)

= p
�

(p (p�q)
1

2)

Since p�; q 2 H1 it follows that p
�q 2 H1. By proposition 12 there exists w 2 R3 , jwj = 1 and

 2]� �; �] such that p�q = [cos(); sin()w]. Using lemma 3 we get:

cos� = p
�

�
p [cos(); sin()w]1=2

�
= p

�

(p exp((1=2) log[cos(); sin()w]))

= p
�

(p exp([0; (=2)w]))

= p
�

(p [cos (=2) ; sin (=2)w])

= (p [1;0])
�

(p [cos (=2) ; sin (=2)w])

= kpk2([1;0]
�

[cos (=2) ; sin (=2)w]) (Lemma 3)

= kpk2 cos (=2)
= cos (=2)

Now 2]� �; �] yields cos(=2) � 0 and therefore cos(�) � 0. Thus Slerp spans the shortest

great arc between p and q.

2

46

We have now proven the equivalence of the four expressions for Slerp from proposition 27

and then proven that Slerp actually produces the desired great arc. This could conclude our

treatment of Slerp. However, the literature has traditionally avoided the use of exponentiation

in the expression for Slerp6. We have encountered no problems using the expressions from

proposition 27. However, for the sake of completeness, we will include the following expression

for Slerp without exponentiation:

cos(
) = q0
�

q1

Slerp(q0; q1; h) =
q0 sin((1� h)
) + q1 sin(h
)

sin(
)
(6.13)

Notice that this expression is not de�ned for q0 = �q1. The obvious patch is Slerp(q; q; h) � q.

The correctness of the expression above (equation 6.13) can be shown in the plane. The inter-

polation between p0 and p1 (as illustrated in �gure 6.5) can be written:

q(h) =

�
cos(v + ht)

sin(v + ht)

�

The expression from equation 6.13 can | through applying the addition formulas for sin and

cos successively | be written as:

Slerp(p0; p1; h) =
p0 sin((1 � h)t) + p1 sin(ht)

sin(t)

=

cos(v) sin((1�h)t)+cos(v+t) sin(ht)

sin(t)
sin(v) sin((1�h)t)+sin(v+t) sin(ht)

sin(t)

!

=

cos(v)(sin(t) cos(ht)�cos(t) sin(ht))+(cos(v) cos(t)�sin(v) sin(t)) sin(ht)

sin(t)
sin(v)(sin(t) cos(ht)�cos(t) sin(ht))+(sin(v) cos(t)+cos(v) sin(t)) sin(ht)

sin(t)

!

=

�
cos(v) cos(ht)� sin(v) sin(ht)

sin(v) cos(ht) + cos(v) sin(ht)

�

=

�
cos(v + ht)

sin(v + ht)

�
= q(h)

Thus, the correctness of the expression has been proven in the plane. This result can be gener-

alized directly to four dimensions thereby proving equation 6.13.

Slerp summarized

The interpolation curve for Slerp (�gure 6.6) forms a great arc on the quaternion unit sphere

(as proven in proposition 28). In di�erential geometry terms, the great arc is a geodesic |

corresponding to a straight line. Not only does Slerp follow a great arc (as proven in proposition

29) it follows the shortest great arc. Thus Slerp yields the shortest possible interpolation path

between the two quaternions on the unit sphere7. Furthermore Slerp has constant angular

velocity. All in all Slerp is the optimal interpolation curve between two rotations.

6Since q
h = exp(h log q) exponentiation automatically implies the use of the logarithm and exponential func-

tions. These functions are only de�ned on a limited set of quaternions and they can therefore cause problems in

conjunction with numerical inaccuracies.
7It should be noted that even though Slerp performs the shortest possible arc between p and q this is not nec-

47

v

p’

t p ht

p’

q

p

a) b)

Figure 6.5: Slerp in the plane. a) The interpolation goes from p to p0 across the angle t. b) A

step in the interpolation, where h 2 [0; 1], q moves from p to p0.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300
Frame nr.

Angular Velocity
Key Frames

Figure 6.6: Interpolation curve and velocity graph for spherical linear quaternion interpolation

{ Slerp. Between the two key frames there are 300 interpolated frames.

essarily optimal. Since p and �p perform the same rotation (according to equation 18 page 17), the interpolation

between �p and q could possibly yield a shorter interpolation path. This can be established simply by comparing

the distance between p and q, kp� qk, with the distance between �p and q, kp+ qk.

48

6.2 Interpolation over a series of rotations:

Heuristic approach

When interpolating between two rotations Slerp is optimal. In the set of unit quaternions the

interpolation curve of Slerp is equivalent to a straight line (the great arc). When interpolating

between a series of rotations problems emerge: a) The curve is not smooth at the control points,

b) The angular velocity is not constant and c) The angular velocity is not continuous at the

controls points.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800
Frame nr.

Angular Velocity
Key Frames

Figure 6.7: Interpolation curve and angular velocity graph for Slerp. Between the six key frames,

750 interpolated frames have been generated.

A reparameterization can easily ensure continuity across the entire interpolation. Actually the

interpolation parameter is transformed into a number of discrete frames between each pair of key

frames. Thus a reparameterization corresponds to assigning each interval a number of frames

relative to the size of the interval. The size of an interval can be measured as the angle � between

a pair of key frames qi and qi+1, given by cos � = qi
�

qi+1.

Since the number of frames in each subinterval necessarily has to be an integer the angular

velocity is, due to rounding, only approximately constant. Compare �gure 6.7 and �gure 6.8.

It is not equally simple to �x the lack of smoothness. Analogously it is simple to interpolate

between two points in the plane with a straight line, but even in the simple Euclidean space it

is relatively complicated to create a smooth interpolation between a series of points (see �gure

6.9).

When interpolating between a series of control points in the plane di�erent kinds of cubic curves

are typically used. For example this can be done with B�ezier curves, which can be constructed

quite simply.

49

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.8: Interpolation curve and angular velocity graph for Slerp. Between the six key frames,

550 interpolated frames have been generated. The frames in the subintervals are distributed

according to length of the interval.

a) b) c)

Figure 6.9: a) In the plane simple interpolation between two points is obtained by a straight

line. b) Linear interpolation between a series of points is not di�erentiable in the control points.

c) To ensure di�erentiability one can use cubic curves, for example splines.

P1 P2

B2P0
P3

B1

A1

A2

B2

P1 P2

P0
P3

B1

A1

A2

Figure 6.10: Interpolation between the points P1 and P2 with a B�ezier curve. The curve is

de�ned as a third-order curve, where the tangent in the control points is de�ned by auxiliary

points. For example the tangent in P1 is de�ned by the auxiliary points A1 and B1 (the tangent

is B1-P1 or P1-A1). The di�erentiability is automatically assured since the curve is a third

order curve.

50

The B�ezier curve from �gure 6.10 (with auxiliary points B1 and A2) that interpolates between

the control points P1 and P2 can be expressed algorithmically (based on [Watt & Watt, 1992])

as three steps of linear interpolation:

lin(x0; x1; h) = x0(1� h) + x1h

Bezier(P1; P2; B1; A2; h) = lin(lin(P1; P2; h); lin(B1; A2; h); 2h(1 � h))

The auxiliary points can be moved arbitrarily, which yields a change in the shape of the curve.

The interpolation curve between P1 and P2 is solely determined from the positions of auxiliary

points B1, A2 relative to control points P1 and P2. The tangent at P1 is de�ned by the vector

B1-P1 and the tangent at P2 is de�ned by the vector A2-P2.

When interpolating between a series of control points, it is often desirable to ensure di�erentia-

bility in the control points. This constraint can be met by making the tangents coincide in the

control points, i.e. ensuring that B1-P1 = P1-A1.

6.2.1 Spherical Spline Quaternion interpolation: Squad

The above construction can serve as an inspiration for formulating the spherical cubic equivalent

of a B�ezier curve. This interpolation curve is called Squad (spherical and quadrangle) and was

presented by Shoemake in [Shoemake, 1987].

Shoemake de�nes Squad as (with h 2 [0; 1]):

De�nition 17.

Squad(qi; qi+1; si; si+1; h) = Slerp(Slerp(qi; qi+1; h);Slerp(si; si+1; h); 2h(1 � h)) (6.14)

si = qi exp

�
� log(q�1

i
qi+1) + log(q�1

i
qi�1)

4

�
(6.15)

The resulting expression for Squad is analogous to the B�ezier curve, but involves spherical linear

interpolation instead of simple linear interpolation. B1 and A2 are written si and si+1. The

expression for si (equation 6.15) will be derived below.

Correctness of Squad

The de�nition of Squad is complex and therefore neither the continuity nor the di�erentiability

of the resulting interpolation curve is obvious.

Squad was originally presented in [Shoemake, 1987] which has served as general reference for a

proof of the di�erentiability of Squad . [Shoemake, 1987] is no longer available8, and furthermore

8[Shoemake, 1987] is a set of course notes from SIGGRAPH 1987, and these notes are no longer available from

University libraries or ACM.

51

the original proof of di�erentiability was
awed9. In [Kim et al., 1996] a new proof was presented.

However, the di�erentiability of Squad is a consequence of a more general result in this paper

and therefore the proof is not very thorough. In addition, the constants si from proposition 17

were not derived. After corresponding with Ken Shoemake [Shoemake, 1997] we have therefore

derived a complete proof of the di�erentiability of Squad .

Proposition 30.

Squad 2 C1

Proof

That Squad is continuously di�erentiable is obvious except at the control points, since all the

subexpressions are continuously di�erentiable in a given sub-interval and therefore Squad is

continuously di�erentiable inside each interval.

We must now show continuous di�erentiability for Squad at a given control point qi. First

we must show that the neighboring segments have the control points as their value at the end

points, i. e. that Squad(qi�1; qi; si�1; si; 1) = Squad(qi; qi+1; si; si+1; 0):

Squad(qi�1; qi; si�1; si; 1) = Slerp(Slerp(qi�1; qi; 1);Slerp(si�1; si; 1); 0)

= Slerp(qi; si; 0)

= qi

Squad(qi; qi+1; si; si+1; 0) = Slerp(Slerp(qi; qi+1; 0);Slerp(si; si+1; 0); 0)

= Slerp(qi; si; 0)

= qi

Thus Squad is continuous and has the correct value at the control points.

We now show that Squad is continuously di�erentiable at a given control point. We do this by

deriving the derivative of Squad in a given interval. Like above, we must then show that

d

dt
Squad(qi�1; qi; si�1; si; 1) =

d

dt
Squad(qi; qi+1; si; si+1; 0)

To �nd the derivative of Squad , we need the derivative of Slerp, which we get from equation

6.12.

We introduce the abbreviation

gi(h) = Slerp(qi; qi+1; h)
�Slerp(si; si+1; h)

Now we will �nd the derivative of Squad(qi; qi+1; si; si+1; h) and decide how si and si+1 must be

de�ned to ensure di�erentiability at the control points.

d

dt
Squad(qi; qi+1; si; si+1; h) =

d

dt
Slerp(Slerp(qi; qi+1; h);Slerp(si; si+1; h); 2h(1 � h))

=
d

dt

�
Slerp(qi; qi+1; h) gi(h)

2h(1�h)
�

9According to Ken Shoemake.

52

The product rule for di�erentiation (proposition 24) yields:

d

dt
Squad(qi; qi+1; si; si+1; h) =

d

dt

�
Slerp(qi; qi+1; h)gi(h)

2h(1�h)
�

=

�
d

dt
(Slerp(qi; qi+1; h))

�
gi(h)

2h(1�h) +

Slerp(qi; qi+1; h)

�
d

dt
(gi(h)

2h(1�h))

�
= Slerp(qi; qi+1; h) log(q

�
i qi+1)gi(h)

2h(1�h) +

Slerp(qi; qi+1; h)

�
d

dt
gi(h)

2h(1�h)

�

Since gi(h) is a product of unit quaternions, the function values are on the unit sphere. Therefore,

gi(h) may be written:

gi(h) = [cos(�gi(h)); sin(�gi(h))vgi(h)]

Here vgi(h) is a unit vector. We can now use proposition 26 to �nd the derivative of gi(h)
2h(1�h):

d

dt
gi(h)

2h(1�h) =

�
� sin

�
2h(1 � h)�gi(h)

�� d

dt
(2h(1 � h))�gi(h)+ 2h(1 � h)

d

dt
(�gi(h))

�
;

cos
�
2h(1 � h)�gi(h)

�� d

dt
(2h(1 � h))�gi(h) + 2h(1 � h)

d

dt
(�gi(h))

�
vgi(h) +

sin
�
2h(1 � h)�gi(h)

� d

dt
(vgi(h))

�

=
h
� sin

�
2h(1 � h)�gi(h)

� �
(2� 4h)�gi(h)+ 2h(1 � h)�g0i(h)

�
;

cos
�
2h(1 � h)�gi(h)

��
(2� 4h)�gi(h) + 2h(1 � h)�g0i(h)

�
vgi(h) +

sin
�
2h(1 � h)�gi(h)

�
vg0i(h)

i
Having expanded all the subexpressions of the derivative of Squad , we will now determine si so

that the derivative of Squad is continuous across each control point, i. e.

d

dt
Squad(qi�1; qi; si�1; si; 1) =

d

dt
Squad(qi; qi+1; si; si+1; 0)

Below we write d

dt

�
gi�1(h)

2h(1�h)
�
(1) for the derivative of the expression gi�1(h)

2h(1�h) applied

to the value 1. Using algebra and rearranging, we get:

d

dt
Squad(qi�1; qi; si�1; si; 1) = Slerp(qi�1; qi; 1) log(q

�
i�1qi) +

Slerp(qi�1; qi; 1)
d

dt

�
gi�1(h)

2h(1�h)
�
(1)

= qi log(q
�
i�1qi) + qi[0;�2 �gi�1

(1)vgi�1
(1)]

= qi
�
log
�
q�i�1qi)� 2 log([cos(�gi�1

(1)); sin(�gi�1
(1))vgi�1

(1)]
��

= qi(log(q
�
i�1qi)� 2 log(gi�1(1)))

= qi(log(q
�
i�1qi)� 2 log(q�i si))

53

d

dt
Squad(qi; qi+1; si; si+1; 0) = Slerp(qi; qi+1; 0) log(q

�
i qi+1) +

Slerp(qi; qi+1; 0)
d

dt

�
gi(h)

2h(1�h)
�
(0)

= qi log(q
�
i qi+1) + qi[0; 2 �gi(0)vgi(0)]

= qi (log (q
�
i qi+1) + 2 log([cos(�gi(0)); sin(�gi(0))vgi(0)]))

= qi(log(q
�
i qi+1) + 2 log(gi(0)))

= qi(log(q
�
i qi+1) + 2 log(q�i si))

Thus, si must satisfy

qi(log(q
�
i qi+1) + 2 log(q�i si)) = qi(log(q

�
i�1qi)� 2 log(q�i si)):

Using q�
i
= q�1

i
since qi 2 H1 we get:

4 log(q�i si) = log(q�i�1qi)� log(q�i qi+1)

q�i si = exp

�
log(q�

i�1qi)� log(q�
i
qi+1)

4

�

si = qi exp

�
log(q�

i�1qi)� log(q�
i
qi+1)

4

�

To rewrite the expression for si, we use the identity (q1q2)
� = q�2q

�
1. Since the constituent

quaternions are unit quaternions, the identities q� = q�1, and log(q�) = � log(q) also hold.

Finally we have:

si = qi exp

�
� log(q�

i
qi�1) + log(q�

i
qi+1)

4

�

= qi exp

�
� log(q�1

i
qi�1) + log(q�1

i
qi+1)

4

�
(6.16)

Thus Squad is continuously di�erentiable at the control points with si de�ned as above. All in

all we have shown that Squad is continuous and continuouly di�erentiable across all segments.

Further observe that the derived equation 6.16 for si is the same as equation 6.15.

2

The interpolation curve generated by Squad

The algorithmic expression for Squad yields an interpolation curve for a series of quaternions

q0; : : : ; qN . The expression is not de�ned in the �rst and last interval since q�1 appears in

the expression for s0 and qn+1 appears in the expression for sn. Therefore it is necessary to

de�ne sound values for s0 and sn. The simplest solution is to de�ne s0 � q0 and sN � qN |

alternatively q�1 and qn+1 can be de�ned. The choice of s0 and q0 have little impact on the

resulting interpolation curve and we will consider the choice an implementation detail.

As for the interpolation curve of Slerp (�gure 6.8) it is, for implementation purposes, necessary

to produce a discrete version of the interpolation parameter and thereby selecting the number

of interpolated frames between each key frame. For Slerp this process was simple since the arc

length of the interpolation curve corresponds to the angle between the two involved quaternions.

54

Since the interpolation curve for Squad is rounded, it is not simple to calculate the arc length

between each pair of key frames and thus it is not trivial to determine the number of frames

between each pair of key frames. We choose to determine the number of frames between each

pair of key frames relative to the distance between the the two key frames. This is not the

optimal choice, but a simple and e�ective heuristic.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.11: Interpolation curve and angular velocity graph for Squad. Between the six key

frames we have interpolated 550 frames. The frames have been distributed according to interval

length.

From �gure 6.11 it is clear that Squad gives a \nice" interpolation curve. The term \nice" can

be read as continuous and di�erentiable | but even this clari�cation is qualitatively vague: A

continuous and di�erentiable curve can have any number of more or less wild twists and turns.

From the formulation of Squad it is far from trivial to determine qualitative properties of the

curve. Therefore we want a more objective measure from which we can de�ne an interpolation

curve. In this context it is no longer adequate to use quali�ed guesses to derive new methods

of interpolation. However, the previously stated methods provide a good foundation for the

development of a more general method.

In the next sections we will seek the formulation of a more general method from a more mathe-

matical and physical point of view.

55

6.3 Interpolation between a series of rotations:

Mathematical approach

So far the interpolation methods have been fairly simple and based on the rotation represen-

tations. In principle, the interpolation is independent of which rotational modality is used to

implement the method. Instead, the optimal interpolation curve should be de�ned from the

desired properties in the space of rotations. This optimal curve can, of course, be written

algorithmically for any sensible representation of rotation.

The above point can be exempli�ed for interpolation between two rotations. The optimal inter-

polation curve is the equivalent of a straight line in the space of rotations. This curve can be

written algorithmically using Euler angles, but the advantage of using quaternions is that the

curve can be stated simply | using Slerp. This is due to the previously described equivalence

between the space of rotations and the unit quaternion sphere.

Therefore, we will base our discussion below on the space of rotations. We will give mathemat-

ically based demands for the optimal interpolation curve. The goal is to give an algorithmic

description of the optimal interpolation curve.

6.3.1 The interpolation curve

Interpolation between rotations is de�ned in the space of rotations SO(3). As mentioned earlier,

however, SO(3) and the set, H1, of unit quaternions are topologically equivalent. We therefore

choose to de�ne the general interpolation in the space of unit quaternions.

De�nition 18.

Given k control points qi 2 H1 and I = [t1; tk], the interpolation curve
(t) : I y H1, is

constrained by
(ti) � qi for ti 2 I. We require that t1 � t2; : : : ; tk�1 � tk.

6.3.2 De�nitions of smoothness

A natural requirement is that the interpolation curve is \nice." This vague term usually means

smooth in di�erential geometry. However, several di�erent de�nitions of smooth exist. We

mention the following:

De�nition 19.

Let
(t) be the parameterization of a curve in Cn(I;Rn). Smooth can then be de�ned in the

following ways:

[Madsen, 1991]: The curve
(t) is smooth if:
(t) 2 C1 and 8t 2 I :
0(t) 6= 0.

[Schwarz, 1989]: The curve
(t) is smooth if:
(t) 2 C2.

[Jakobsen, 1993]: The curve
(t) is smooth if:
(t) 2 C1.

The di�erent de�nitions express that it is not immediately obvious what \nice" is. We must

therefore examine more closely which properties we want the interpolation curve to have.

56

d)a) b) c)

Figure 6.12: Interpolation between three control points in the plane. a) Discontinuous interpo-

lation curve. b) Continuous curve. c) C1-curve. d) C2-curve.

The curve must obviously be continuous. The curve must also be di�erentiable. We do not want

either \holes" or \breaks" in an animation. Thus we demand that the interpolation curve must

be C1. However, it is not as obvious whether the curve should be C2 or, for that matter, C1.

Figure 6.12 illustrates the di�erent classes of curves in the plane.

Since the control points are symmetric, it is natural to expect that the interpolation curve

is symmetric. The illustrations in the plane clearly show that we must demand C2 over C1.

However, illustrations in the plane are not adequate ground to base this choice on, and we

therefore postpone this decision (see section 6.3.7).

In the �rst de�nition we �nd the requirement
0(t) 6= 0. Thus, the interpolation function is not

allowed to contain singularities, i. e. the interpolation must not \stop." O�hand, this seems

to be a sensible demand. However, it is possible to make sensible but contradictory demands

to the speed of the interpolation curve. Consider, for example, animating a pendulum. The

control points (that de�ne the angle that the pendulum oscillates through) will lie on a straight

line in the space of rotations. At the outer positions, it is to be expected that the pendulum

has no velocity, corresponding to a singularity in the interpolation function. We therefore also

postpone this decision until section 6.3.7.

This discussion of smoothness does not bring us much further. The de�nitions above will not

even allow us to di�erentiate between LinEuler, Lerp and Slerp. These curves are all C2 except

at the control points, where they are C0. Thus, it is not su�cient just to describe which class

of functions the interpolation curve should belong to.

6.3.3 The optimal interpolation

Smoothness considerations do not give adequate requirements to the de�nition of the interpola-

tion curve. We need an objective measure of how \nice" our curve is in rotation space.

We will again seek inspiration in the plane (see �gure 6.13). As mentioned earlier, cubic curves

are usually used to interpolate between a series of points. There are many kinds of cubic curves;

the B�ezier curve described in section 6.2 is an example. The most common class of curves is

splines.

57

a) b)

Figure 6.13: Interpolating with a spline in the plane. a) Simple linear interpolation. b) Inter-

polation with a spline.

Discussing splines we must, as any serious project dealing with splines, write a bit about ship

builders. Traditionally, when ship builders wanted to decide how to shape the curved parts of a

ship, a
exible piece of metal was used. The piece of metal was �xed between a series of rivets.

The metal piece then adapted itself to the rivets, making a nice soft curve. The ship builders

called this tool a spline10.

Viewed physically, the above description of a spline corresponds to the piece of metal achieving

a minimum of inner tension forces subject to the constraints (the rivets). Mathematically, the

metal piece minimizes curvature.

In the plane, the curve can be described as follows. Given the control points (xi; yi) 2 R2 , de�ne

(t) 2 C2(I;R2), where t is the natural parameter11, such that
(t) passes through the control

points and at the same time minimizes the expression
R
I
k
00(t)k2dt. Thus the square of the

curvature is minimized.

This simple formulation gives a non-ambiguous de�nition of the interpolation curve from a

general concept in di�erential geometry. We therefore choose to view the curve that minimizes

(the square of the) curvature as the optimal interpolation curve. As we shall see below, it is not

as simple to compute this curve in H1 as it is in the plane.

6.3.4 Curvature in H1

The interpolation curve lies on H1, which is a hypersphere in quaternion space. Normally the

curvature for a curve
(t) is de�ned as k
00(t)k, assuming that t is the natural parameter.

The interpolation curve Slerp yields a great arc on the quaternion unit sphere. A great arc in

H1 is equivalent to a straight line in the plane. Thus it is to expected be that a great arc does

not have any curvature. If the curvature is computed by k
00(t)k, the curvature will not be zero,
but one: The curvature of the unit sphere. We therefore want to compute the curvature relative

to the quaternion unit sphere, and not relative to quaternion space. We will call this curvature

the local curvature.

The de�nition of local curvature for a curve that lies on a surface is based in di�erential geometry.

The local curvature in a point is de�ned as follows. Given the point on the surface, a coordinate

system (a map) is placed in the tangent plane. The local curvature of the curve is now the

curvature of the curve projected onto the tangent plane. This is also called tangential curvature.

10The ambitious project will obviously also note that modern-day architects use a re�ned version of the ships-

builder's spline to draw curves. According to an architect, however, this is a myth.
11i. e. the parameter de�ned from the curve length.

58

In di�erential geometry a great arc (the \straight line") is called a geodesic. Projected onto the

tangent plane, the geodesic becomes a straight line. Thus we see, as expected, that a great arc

does not have any local curvature.

0(t)
(t)
00t (t)

00o (t)

a) b)

Figure 6.14: The division of
00(t) | an analogy in the plane. a) The position vector for the

curve
(t) lies on the surface of the quaternion unit sphere. The tangential plane is orthogonal

to the position vector. b)
00(t) can be split in a component
00t (t) (in the tangential plane) and

a component
00o (t) (parallel with the position vector).

If a curve
(t) lies on the surface of H1, we can split
00(t) into two parts (see �gure 6.14): a

component,
00t (t), in the tangential plane , and a component,

00
o (t), orthogonal to the tangential

plane. The desired part of the curvature is
00t (t). Thus, the local curvature � of the curve
 can

be obtained:

�(
; t) = k
00t (t)k = k
00(t)�
00o (t)k

Since
(t) lies on the surface of the unit sphere,
00o (t) will be parallel to
(t). Thus we can �nd

00o (t) by projecting
00(t) onto
(t). Thus:

00t (t) =
00(t)�
00o (t)

=
00(t)�
�

00(t)

�

(t)

k
(t)k

�

(t)

k
(t)k
=
00(t)� (
00(t)

�

(t))
(t)

De�nition 20.

Given
(t) 2 C2(I;H1), the local curvature �(
; t) is de�ned:

�(
; t) = k
00(t)� (
00(t)
�

(t))
(t)k

Note that t is not necessarily the natural parameter. Thus the above de�nition is not correct

in a strict di�erential geometric sense12. However, we are not only interested in the shape

(curvature) of the interpolation curve. We also want a \nice" angular velocity function, i. e. one

that minimizes angular acceleration (corresponding, from a physical viewpoint, to minimizing

the energy). In the above expression the angular acceleration is automatically included, exactly

because we do not reparameterize to the natural parameter.

12The curvature for a curve parameterised on the natural parameter can be written �(
; t) = k

00(t)k. In general

for a smooth curve, the correct expression from di�erential geometry is:

�(
; t) =

00(t)

k
0(t)k2
�

0(t)(
00(t)

�

0(t))

k
0(t)k4

59

6.3.5 Minimizing curvature in H1: Continuous, analytical solution

We de�ned the optimal interpolation curve in H1 as the curve that minimizes the square of

the curvature, but with the restriction that it must pass through the control points. We then

de�ned the relevant expression for curvature in H1. We thus get the following formulation of

the problem:

Given the control points q1; : : : ; qN 2 H1 we seek
(t) 2 Ck(I;H1) such that there exist

t1; : : : ; tN 2 (I) that satisfy
(ti) = qi, and such that this expression is minimized:

K(
) =

Z
tN

t1

k�(
; h)k2dh (6.17)

The problem of minimizing an integral of a function is called a calculus of variations problem.

Below, we will outline the basic method used for solving problems in the calculus of variations.

A necessary condition for K(
) to attain a minimum is that K 0(
) = 0. For � 2 R and

 2 Ck(I;H1) we look at the \derivative":

lim
�!0

K(
 + �) �K(
)

�
= 0 (6.18)

In the above expression, � is called the variation of
, and the function
 + � is called the

comparison function. A function
(h) 2 Ck(I;H1) that satis�es the boundary conditions (i. e.

(ti) = qi for i = 1; : : : ; N) is called an admissible function.

We will now derive the requirements a solution to the variation problem must meet. We therefore

assume that both the solution
 and the comparison function
 + � are admissible, and that

K(
) is minimal.

For the comparison function
 + � to be admissible, it must be the case that

 (t1) = (t2) = ::: = (tN) = 0 (6.19)

Furthermore, since
 and
 + � lie on the surface of the unit sphere, we have that k
k2 = 1

and k
 + � k2 = 1. Thus we have13:

1 = k
 + � k2

= k
k2 + �2k k2 + 2�(

�

)

= 1 + �(�k k2 + 2

�

)

m

�

 = ��
2
k k2 (6.20)

13In the derivations below, it is possible to ignore the fact that the constituent expressions contain quaternion

functions. This is due to the fact that quaternion multiplication is not used (only the scalar product,
�

, is used).

Therefore, there are no problems with commutativity.

60

We want to use our knowledge of the \derivative" and examine K(
 + �) �K(
):

K(
 + �) �K(
)

=

Z
tN

t1

k�(
 + � ; h)k2 � k�(
; h)k2 dh

=

Z
tN

t1

k(
 + �)00 � ((
 + �)00
�

(
 + �))(
 + �)k2 � k
00 � (
00
�

)
k2 dh

=

Z
tN

t1

k
00 + � 00 � (
00
�

 + �
00
�

 + �

�

 00 + �2 00
�

)(
 + �)k2

� k
00 � (
00
�

)
k2 dh

=

Z
tN

t1

k[
00 � (
00
�

)
] + �[00 � (
00
�

) � (
00
�

)
 � (00
�

)
] + �2[: : :] + �3[: : :]k2

� k
00 � (
00
�

)
k2 dh

In the above expression, we have collected terms according to the exponent of �. The goal of

the above derivations is to �nd the \derivative." In the expression for K(
 + �)�K(
) terms

multiplied by �2 and �3 can be removed because they disappear when examining the limit, after

being divided by �. Thus the expression can be written:

K(
 + �)�K(
) =

Z
tN

t1

kA+ �Bk2 � kAk2 dh

=

Z
tN

t1

�2kBk2 + 2�A
�

B dh

Here A =
00 � (
00
�

)
 and B = 00 � (
00
�

) � (
00
�

)
 � (00
�

)
. Again we may omit

terms multiplied by �2, and we can rewrite the expression:

K(
 + �) �K(
) =

Z
tN

t1

2�[
00 � (
00
�

)
]
�

[00 � (
00
�

) � (
00
�

)
 � (

�

 00)
] dh

= 2�

Z
tN

t1

00
�

 00 � (
00
�

)(
00
�

)� (
00
�

)(
00
�

)� (

�

 00)(
00
�

)

� (
00
�

)(

�

 00) + (
00
�

)(
00
�

)(

�

) + (
00
�

)(
00
�

)(

�

)

+ (
00
�

)(

�

 00)(

�

) dh

We can now use the fact that

�

 = k
k2 = 1, since
 lies on the surface of the unit sphere.

Furthermore, equation 6.20 is used to rewrite

�

 = � �

2
k k2. We then get:

K(
 + �)�K(
) = 2�

Z
tN

t1

00
�

 00 � (
00
�

)(
00
�

 +

�

 00) + (
00
�

)2(��
2
k k2) dh

= 2�

Z
tN

t1

00
�

 00 � (
00
�

)(
00
�

 +

�

 00) dh

61

We have yet again ignored terms multiplied by �2.

After numerous rewritings, we have isolated � as a single factor. This factor will disappear in

the expression for the derivative when divided by �. We therefore now want to isolate terms

containing . This is attempted using partial integration. The expression is rewritten as follows:

K(
 + �) �K(
) = 2�

N�1X
i=1

Li

Li =

Z
ti+1

ti

00
�

 00 � (
00
�

)(
00
�

 +

�

 00) dh

=

Z
ti+1

ti

(
00 � (
00
�

)
)
�

 00 � (
00
�

)(
00
�

) dh

= [(
00 � (
00
�

)
)
�

 0]
ti+1

ti

�
Z

ti+1

ti

(
d

dh
f
00 � (
00

�

)
g)
�

 0 � (
00
�

)(
00
�

) dh

= [(
00 � (
00
�

)
)
�

 0]
ti+1

ti
� [(

d

dh
f
00 � (
00

�

)
g)
�

]
ti+1

ti

+

Z
ti+1

ti

(
d2

dh2
f
00 � (
00

�

)
g)
�

 � (
00
�

)(
00
�

) dh

Note that the above expression requires that
 is four time s di�erentiable. Now we can use that

 is zero in all the control points (equation 6.19) to see that the second term is zero:

Li = [(
00 � (
00
�

)
)
�

 0]
ti+1

ti
+

Z
ti+1

ti

(
d2

dh2
f
00 � (
00

�

)
g)
�

 � (
00
�

)(
00
�

) dh

We again consider the whole expression:

K(
 + �) �K(
) = 2�

N�1X
i=1

Li

= 2�

N�1X
i=1

[(
00 � (
00
�

)
)
�

 0]
ti+1

ti

+2�

N�1X
i=1

Z
ti+1

ti

(
d2

dh2
f
00 � (
00

�

)
g)
�

 � (
00
�

)(
00
�

) dh

= 2�[(
00 � (
00
�

)
)
�

 0]tn
t1

+2�

N�1X
i=1

Z
ti+1

ti

(
d2

dh2
f
00 � (
00

�

)
g � (
00
�

)
00)
�

 dh

The last rewriting uses continuity in the control points. We can �nd the \derivative"

lim
�!0

K(
 + �) �K(
)

�
= 2[(
00 � (
00

�

)
)
�

 0]tN
t1

+2

N�1X
i=1

Z
ti+1

ti

(
d2

dh2
f
00 � (
00

�

)
g � (
00
�

)
00)
�

 dh

62

Since the derivative must be zero (equation 6.18) for any , we get the following requirements

to the solution:

 2 C4((I);H1)

0 =
00(t1)� (
00(t1)
�

(t1))
(t1)

0 =
00(tN)� (
00(tN)
�

(tN))
(tN)

(
00
�

)
00 =
d2

dh2
f
00 � (
00

�

)
g

=
0000 � (
00
�

)00
 � 2(
00
�

)0
0 � (
00
�

)
00

The second and third requirements are equivalent with the local curvature being zero at the

end-points. The last requirement can be rewritten using

�

 = k
k = 1:

0 = (1)00 = (

�

)00 = 2
00
�

 + 2
0
�

0 (6.21)

Now we can state the set of di�erential equations, that must be solved to �nd an analytical

solution to the desired optimal interpolation curve:

Proposition 31.

Given the control points q1; : : : ; qN 2 H1 the interpolation curve
 2 C4(I;H1), where
(ti) = qi
for ti 2 I, will minimize

R
tN

t1
k�(h)k2dh if the following requirements are met:

1. �(t1) = 0

2. �(tN) = 0

3. For each interval ti < h < ti+1:

0000 + (
0
�

0)00
 + 2(
0
�

0)0
0 + 2(
0
�

0)
00 = 0

Now \all" that remains is to solve the above fourth-order di�erential equation with the given

boundary values. This, unfortunately, is not possible with the existing mathematical knowledge.

This is con�rmed by J�rgen Sand14 and Gerd Grubb15.

6.3.6 Minimizing curvature in H1: Continuous, semi-analytical solution

The strict mathematical derivation of the desired optimal interpolation curve stranded on an

unsolvable di�erential equation.

We can, however, again seek inspiration in the plane. The corresponding di�erential equation

is here
0000 = 0, i. e. that the fourth derivative of the curve must be zero between the control

points. This corresponds to a third-order curve (a spline). If the solution is constrained to be a

third-order curve, the equations can be solved more easily.

14Associate Professor at the Institute of Computer Science, University of Copenhagen, specializing in the

solution of systems of equations.
15Professor at the Institute of Mathematics, University of Copenhagen, specializing in di�erential equations.

63

We could therefore restrict which family of functions we would like the interpolation curve to

belong to. This could, for example, be a kind of cubic splines. With this restriction on the set

of possible solutions, the optimization problem could be solved.

Depending on the choice of de�nition of the family of curves, this strategy for �nding a solution

will give a result corresponding to the basis for the construction of Squad .

To keep this report at a manageable size, we will not pursue this line of thought any further.

6.3.7 Minimizing curvature in H1: Discretized, numerical solution

Unfortunately, we cannot give an analytical expression for the optimal interpolation curve.

Therefore we will try to solve a discrete version of the problem using a numerical method.

We rewrite the problem in an equivalent discrete version. We then solve the new version of the

problem.

Discretization

Given the control points Q1; : : : ; Qk 2 H1 we sought an analytical solution
(t) 2 Ck(I;H1)

such that there existed t1; : : : ; tk 2 (I), that
(ti) = Qi, and such that the following expression

was minimized:

K(
) =

Z
tk

t1

k�(
; t)k2dt (6.22)

In the discrete version we will therefore attempt to solve the following problem. Given control

points Q1; : : : ; Qk 2 H1 we seek q1; : : : ; qN 2 H1 such that qit = Qt for t = 1; : : : ; k and such

that the following expression is minimized:

E =

NX
i=1

l(qi) k~�(qi)k2 (6.23)

The integral has been replaced by a sum. The \parameter width" of the interval we integrate

over is termed l(qi). It can be expressed as a centered average of the parameter width in the

intervals immediately before and after the i'th quaternion:

l(qi) =
kqi � qi�1k+ kqi � qi+1k

2
(6.24)

Another measure of the parameter distance between qi and qi�1 in the approximation for l(qi)

could be �i, where cos �i = qi
�

qi+1, instead of kqi � qi�1k.

In equation 6.23 ~� is the discrete version of the local curvature:

~�(qi) = q00i �
q00
i �

qi

qi
�

qi
qi (6.25)

64

Note that the denominator qi
�

qi is not omitted as in the de�nition of local curvature (page 59).

This is because the interpolated quaternions cannot be expected to be unit quaternions (this is

explained below). Therefore, the denominator is not in general equal to 1; thus it cannot be

omitted.

In equation 6.25 the second derivative of the discrete approximation of the interpolation curve

is used. A good centered approximation of the second derivative is ([Kincaid & Cheney, 1991],

[Barr et al., 1992]):

q00i =
qi�1 � 2qi + qi+1

l(qi)2
(6.26)

Gradient descent

The above equation (equation 6.23) can be minimized using gradient descent. In general terms,

gradient descent can be described as follows. Consider the function that is to be minimized

(commonly termed the energy function) as a hilly landscape, where the function value is the

height of a hill at each set of coordinates. The gradient of the function in that point points

in the steepest possible up-hill direction. Gradient descent is based on an initial guess at the

solution. From the initial guess the gradient is computed, and a small step is taken in the

opposite direction of the gradient (i. e. down-hill), resulting in a new point. This process is

repeated with the new point until the function value does not become smaller by taking a step.

In this fashion, the gradient descent method yields an approximate local minimum. It is outside

the scope of this report to describe the theory of gradient descent any further, but we will

describe the method in enough detail so that readers without prerequisites in the �eld will still

be able to follow the derivations.

When using numerical approximation methods such as gradient descent, it is often di�cult to

maintain restrictions on the solution space. Instead a term is added that makes the solution

more \expensive"16 if the solution lies outside the desired solution space. Thus, we seek a

function that can determine if the discrete version of the interpolation curve lives in H1, and

thus consists of unit quaternions. This can be done by:

g(q) = q
�

q � 1 (6.27)

Note that H1 = fq 2 H j g(q) = 0g. This measure for determining if the quaternions are unit
quaternions can be combined with the energy function E as follows:

F =

NX
i=1

l(qi) k~�(qi)k2 + c g(qi)
2 (6.28)

Assuming c 2 R suitably large, the energy function F will have a minimum approximately where

E has a minimum, and where all qi are approximately unit quaternions.

16We here assume \the cheaper, the better", which is not always the case in real life. Sometimes you have to

pay extra for quality. Red wine is a good example of this, although there are, of course, exceptions in this case,

too.

65

We want to �nd a minimum for F in equation 6.28 using gradient descent. We therefore have to

�nd the gradient. Below, we will write qi;x for the x'th coordinate (regarding a quaternion as a

four-dimensional vector) in the i'th quaternion in the discrete interpolation curve. The gradient

is 4n-dimensional. Each coordinate can be written:

@F

@qi;x
=

@

@qi;x

0
@ NX

j=1

l(qj) k~�(qj)k2 + c g(qj)
2

1
A

In equations 6.24, 6.25, and 6.26, qi is a term in the discrete versions of l(qi�1), l(qi), l(qi+1),

~�(qi�1), ~�(qi) and ~�(qi+1). The corresponding terms must appear in the partial derivative:

@F

@qi;x
=

@

@qi;x

�
l(qi�1) k~�(qi�1)k2 + l(qi) k~�(qi)k2 + l(qi+1) k~�(qi+1)k2 + c g(qi)

2
�

=
@

@qi;x

�
l(qi�1) ~�(qi�1)

�

~�(qi�1) + l(qi) ~�(qi)
�

~�(qi) + l(qi+1) ~�(qi+1)
�

~�(qi+1) + c g(qi)
2
�

=
@l(qi�1)

@qi;x
~�(qi�1)

�

~�(qi�1) +
@l(qi)

@qi;x
~�(qi)

�

~�(qi) +
@l(qi+1)

@qi;x
~�(qi+1)

�

~�(qi+1) +

2l(qi�1)~�(qi�1)
�

@ ~�(qi�1)

@qi;x
+ 2l(qi)~�(qi)

�

@ ~�(qi)

@qi;x
+ 2l(qi+1)~�(qi+1)

�

@ ~�(qi+1)

@qi;x
+

2c g(qi)
@ g(qi)

@qi;x
(6.29)

Below we will derive the partial derivatives for the sub-expressions of the above expression.

We introduce the notation 1x to be the vector with 1 in the x'th coordinate, and 0 in the other

coordinates. We can now look forward to deriving the partial derivatives of g(qi), l(qi�1), l(qi),

l(qi+1), q
00
i�1, q

00
i
, q00

i+1, ~�(qi), ~�(qi�1) and ~�(qi+1):

@ g(qi)

@qi;x
=

@

@qi;x
(qi

�

qi � 1)

= 2 qi
�

@ qi

@qi;x

= 2 qi;x (6.30)

@ l(qi�1)

@qi;x
=

@

@qi;x

kqi�1 � qi�2k+ kqi�1 � qik
2

=
1

2

@

@qi;x

�q
(qi�1 � qi�2)

�

(qi�1 � qi�2) +
q
(qi�1 � qi)

�

(qi�1 � qi)
�

=
1

2

0
@� 1x

�

(qi�1 � qi)q
(qi�1 � qi)

�

(qi�1 � qi)

1
A

=
1x
�

(qi � qi�1)

2 kqi�1 � qik
(6.31)

66

@ l(qi)

@qi;x
=

@

@qi;x

kqi � qi�1k+ kqi � qi+1k
2

=
1

2

@

@qi;x

�q
(qi � qi�1)

�

(qi � qi�1) +
q
(qi � qi+1)

�

(qi � qi+1)
�

=
1

2

0
@ 1x

�

(qi � qi�1)q
(qi � qi�1)

�

(qi � qi�1)
+

1x
�

(qi � qi+1)q
(qi � qi+1)

�

(qi � qi+1)

1
A

=
1x
�

(qi � qi�1)

2 kqi � qi�1k
+
1x
�

(qi � qi+1)

2 kqi+1 � qik
(6.32)

@ l(qi+1)

@qi;x
=

@

@qi;x

kqi+1 � qik+ kqi+1 � qi+2k
2

=
1

2

@

@qi;x

�q
(qi+1 � qi)

�

(qi+1 � qi) +
q
(qi+1 � qi+2)

�

(qi+1 � qi+2)
�

=
1

2

0
@� 1x

�

(qi+1 � qi)q
(qi+1 � qi)

�

(qi+1 � qi)

1
A

=
1x
�

(qi � qi+1)

2 kqi+1 � qik
(6.33)

@ q00
i�1

@qi;x
=

@

@qi;x

qi�2 � 2qi�1 + qi

l2(qi�1)

=
l(qi�1)

2 @

@qi;x
(qi�2 � 2qi�1 + qi)� (qi�2 � 2qi�1 + qi)

@

@qi;x
l(qi�1)

2

l(qi�1)4

=
l(qi�1)

2 @

@qi;x
qi � (qi�2 � 2qi�1 + qi)2l(qi�1)

@

@qi;x
l(qi�1)

l(qi�1)4

=
l(qi�1)

2 1x � 2(qi�2 � 2qi�1 + qi)l(qi�1)
@

@qi;x
l(qi�1)

l(qi�1)4
(6.34)

@ q00
i

@qi;x
=

@

@qi;x

qi�1 � 2qi + qi+1

l(qi)2

=
l(qi)

2 @

@qi;x
(qi�1 � 2qi + qi+1)� (qi�1 � 2qi + qi+1)

@

@qi;x
l(qi)

2

l(qi)4

=
l(qi)

2 @

@qi;x
(�2qi)� (qi�1 � 2qi + qi+1)2l(qi)

@

@qi;x
l(qi)

l(qi)4

= �
2l(qi)

2 1x + 2(qi�1 � 2qi + qi+1)l(qi)
@

@qi;x
l(qi)

l(qi)4
(6.35)

67

@ q00
i+1

@qi;x
=

@

@qi;x

qi � 2qi+1 + qi+2

l(qi+1)2

=
l(qi+1)

2 @

@qi;x
(qi � 2qi+1 + qi+2)� (qi � 2qi+1 + qi+2)

@

@qi;x
l(qi+1)

2

l(qi+1)4

=
l(qi+1)

2 @

@qi;x
qi � (qi � 2qi+1 + qi+2)2l(qi+1)

@

@qi;x
l(qi+1)

l(qi+1)4

=
l(qi+1)

2 1x � 2(qi � 2qi+1 + qi+2)l(qi+1)
@

@qi;x
l(qi+1)

l(qi+1)4
(6.36)

@ ~�(qi�1)

@qi;x
=

@

@qi;x

�
q00i�1 �

q00
i�1 �

qi�1

qi�1
�

qi�1
qi�1

�

=
@ q00

i�1

@qi;x
�

@q00i�1

@qi;x �

qi�1

qi�1
�

qi�1
qi�1 (6.37)

@ ~�(qi)

@qi;x
=

@

@qi;x

�
q00i �

q00
i �

qi

qi
�

qi
qi

�

=
@ q00

i

@qi;x
�
q00
i �

qi

qi
�

qi

@ qi

@qi;x
� @

@qi;x

�
q00
i �

qi

qi
�

qi

�
qi

=
@ q00

i

@qi;x
�
q00
i �

qi

qi
�

qi
1x �

@

@qi;x

�
q00
i �

qi

qi
�

qi

�
qi

=
@ q00

i

@qi;x
�
q00
i �

qi

qi
�

qi
1x �

0
B@

@q
00

i
�

qi

@qi;x
qi
�

qi �
@qi
�

qi

@qi;x
q00
i �

qi

(qi
�

qi)2

1
CA qi

=
@ q00

i

@qi;x
�
q00
i �

qi

qi
�

qi
1x �

0
@
�

@q
00
i

@qi;x �
qi + q00

i �

@qi

@qi;x

�
qi
�

qi � 2
�
qi
�

@qi

@qi;x

�
q00
i �

qi

(qi
�

qi)2

1
A qi

=
@ q00

i

@qi;x
�
q00
i �

qi

qi
�

qi
1x �

0
@
�
@ q00i

@qi;x �
qi + q00

i �
1x

�
qi
�

qi � 2
�
qi
�

1x
�
q00
i �

qi

(qi
�

qi)2

1
A qi(6.38)

@ ~�(qi+1)

@qi;x
=

@

@qi;x

�
q00i+1 �

q00
i+1 �

qi+1

qi+1
�

qi+1
qi+1

�

=
@ q00

i+1

@qi;x
�

@q
00
i+1

@qi;x �

qi+1

qi+1
�

qi+1
qi+1 (6.39)

We now have simple (but long) expressions for all the terms in the gradient. We return to

the gradient equation (equation 6.29). All the constituent terms have been derived, and the

gradient can be explicitly computed by substituting the derived terms for ~�(qi�1), ~�(qi), and

~�(qi+1) (equation 6.25) and the partial derivatives
@~�(qi�1)

@qi;x
,
@~�(qi)
@qi;x

and
@~�(qi+1)

@qi;x
(equations 6.37,

6.38, and 6.39) into the equation of the gradient (equation 6.29).

68

The algorithm

We have now derived an explicit discrete expression for the gradient, and we can perform gradient

descent according to the following algorithm:

Initialization

Give a good initial guess q0 = (q1; : : : ; qN). An obvious way of doing this is by using one

of the methods described earlier (Slerp or Squad). The better the initial guess, the faster

the method converges.

Iteration

Write out the gradient using equation 6.29:

rF = ((
@F

@q1;1
;
@F

@q1;2
;
@F

@q1;3
;
@F

@q1;4
); :::; (

@F

@qN;1
;
@F

@qN;2
;
@F

@qN;3
;
@F

@qN;4
))

(We set the gradient to zero in all key frames.)

Perform the iteration on the solution guess: qi+1 = qi � erF , where e de�nes the step

length

Alternatively: Perform the iteration on the solution guess: qi+1 = qi � e rF

krFk
. This

method can provide greater numerical stability.

Termination condition

Repeat the second step until a suitable termination condition has been reached. The

termination condition can be dependent on the number of iterations, the total energy, F ,

the energy F in relation to the number of control points, the size of the gradient, or more

advanced strategies.

Alternative methods for computing the norm of the interpolation curve

As noted above, we want the interpolation curve to lie in the space, H1, of unit quaternions. This

is ensured by using the penalty function g from equation 6.28. It can be di�cult to determine

when the weighting factor, c 2 R, of the penalty function (equation 6.28) is \suitably large." In

theory, c must be in�nite to ensure that qi 2 H1. Several methods exist to handle this problem:

Projection

There is a simple and well-de�ned connection between points inside and outside the solu-

tion space. As described previously, all quaternions on a line through the origin perform

the same rotation. Thus the solution guess can simply be projected into the solution

space by normalizing the generated quaternions. This can be done in each iteration or,

alternatively, after the last iteration.

Lagrange Multipliers

The penalty function g(qi) can also be introduced with a Lagrange Multiplier �i in the

following manner:

F = E +

NX
i=1

�ig(qi)

69

A solution to equation 6.22 is a singularity for F . However, the singularity will not be a

minimum, but instead a saddle point. Thus gradient descent is still an applicable method

for the constituent quaternions, but gradient ascent must be performed on the auxiliary

variables �i.

By including the penalty function both in equation 6.28 and a Lagrange Multiplier, the

method become more numerically robust and converges faster. The details of this method

can be found in [Platt & Barr, 1988] and in [Barr et al., 1992].

Polar coordinates

In the above method of solving the problem, we have reformulated the problem such that

the restrictions on the solution space are integrated into the energy function that is to

be minimized. However, we can restate the restriction on the solution space such that

the complexity of the expression to be minimized does not increase. This can be done

be representing the quaternions using polar coordinates. Thus a quaternion is written

q = [r; (�; �; �)], where r is the radius and �, �, and � are the three necessary rotation

angles.

Using this representation, it is very easy to maintain the restriction on the solution space.

This can be done by not performing gradient descent on the radius coordinate, that is kept

at a constant value of 1. Thus the restriction on the solution space is maintained.

Amongst the above representations, polar coordinates will ensure that the interpolation curve

stays in the space, H1, of unit quaternions. The use of Lagrange Multipliers would ensure a

more robust and faster converging algorithm. We will not pursue either possibility, since we want

the algorithm to be as simple as possible. We regard normalizing the generated quaternions as

\cheating" seen from a theoretical viewpoint. We will therefore not discuss any of the three

alternative methods any further.

Extensions to the algorithm

Generally, gradient descent is a method that is fairly easily expanded. The desired property

of the interpolation curve must simply be described as a zero-crossing for some function. For

example we might want to ensure constant angular velocity across the entire interpolation curve.

This can be obtained using yet another penalty function:

w(qi) = kqi�1 � qik � kqi � qi+1k (6.40)

Thus the penalty function increases with the di�erence between the previous and the following

step length. This penalty can simply be introduced into the algorithm by introducing it in the

original energy function (equation 6.28):

F =

NX
i=1

l(qi) k~�(qi)k2 + cg g(qi)
2 + cw w(qi)

2 (6.41)

An extra term must be added to the gradient. This is easily derived since w(qi) = 2l(qi) and

the derivative can thus be obtained using equation 6.32:

@ w(qi)

@qi;x
=

1x
�

(qi � qi�1)

kqi � qi�1k
+
1x
�

(qi � qi+1)

kqi+1 � qik
(6.42)

70

Adding the above penalty does not ensure constant speed in the interpolation curve. This is due

to the fact that the gradient contains other terms that a�ect the distance between the individual

key frames. As stated earlier, local curvature is de�ned such that both the geometric curvature

and the size of the angular acceleration of the interpolation curve are included. In practice, this

means that the angular velocity of the interpolation curve will be smaller around the key frames,

where the curvature of the interpolation curve is maximal17.

When the gradient contains terms that act in opposite directions, the algorithm becomes less

robust. Thus setting cw \suitably large" will not necessarily ensure approximately the same

distance between the interpolated frames. Instead this could lead to the method becoming

numerically unstable, producing unwanted results.

The implementation

The above description of the algorithm is purely theoretical. Since we did not want to analyze

the convergence and stability properties of the algorithm theoretically, there is no guarantee

that the method works in practice. We will therefore present a number of considerations to take

into account when implementing the algorithm.

Multi-step minimization

In practice, the algorithm behaves badly when given many frames. Each frame is only a�ected

by its neighbors, and only key frames are positioned correctly initially. Thus the adaption to

the key frames must propagate through all the frames between the keys and a given frame.

The more frames that lie in-between, the more iterations are necessary for the system to attain

an energy minimum. This give a practical upper bound on the acceptable number of frames

between each key frame.

An e�cient way of solving this problem is by minimizing in several steps. In the �rst step

relatively few frames are used, and the system attains an energy minimum after few steps. The

frames computed in the �rst step are used as key frames in the second step. In the second step

more in-between frames are added, and an energy minimum is again attained after a few steps.

This process may be repeated an arbitrary number of times, until the desired number of frames

has been reached.

In �gure 6.15 the result of the algorithm is seen with all frames placed during the �rst step. This

gives a bad approximation curve even after many iterations. The result bears great resemblance

to Slerp, which was used to generate the initial guess passed to the optimization algorithm.

If the multi-step algorithm is used, a much nicer interpolation curve is produced after fewer

iterations. In �gure 6.16 the intermediate result with few frames can be seen. This is used as

the initial con�guration for the second step, and the �nal interpolation curve can be seen in

�gure 6.17. The angular velocity graph is also nicer when the multi-step algorithm is used. If

the one-step method is used (see �gure 6.15), the velocity curve resembles an electrocardiogram,

while the velocity curve for the multi-step algorithm (6.17) is somewhat nicer, but still somewhat

17This is natural seen from a physical perspective. It is also necessary to drive slower through a sharp bend in

the road than it is on a straight section.

71

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350
Frame nr.

Angular Velocity
Key Frames

Figure 6.15: One-step iteration. The interpolation curve contains 350 frames, and is shown

after 500 iterations.

uneven. This is a weakness in our implementation, but we expect that a more robust algorithm

with better convergence properties will yield nicer velocity graphs.

All in all, 450 iterations are used for the multi-step method versus 500 in the original version.

The result is obviously nicer when the multi-step method is used.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25
Frame nr.

Angular Velocity
Key Frames

Figure 6.16: The multi-step algorithm, �rst step. In the �rst step only 22 frames and 200

iterations are used.

Simplifying the parameter width { l(qi)

In equation 6.24 a numerical approximation to the \parameter width" for the parameter of the

interpolation curve is given. In practice it turns out that this expression has no in
uence on

the shape of the interpolation curve. The algorithm becomes less numerically stable with the

expression, however. We therefore use the simpler expression:

l(qi) = 1 (6.43)

72

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.17: The multi-step algorithm, �nal result. In the second step, 110 frames are in-

terpolated using 150 iterations. In the third and �nal step, 550 frames and 100 iterations are

used.

@ l(qi)

@qi;x
=

@ l(qi�1)

@qi;x

=
@ l(qi+1)

@qi;x

= 0 (6.44)

The expression for the gradient (equation 6.29) is simpli�ed correspondingly:

@F

@qi;x
= 2~�(qi�1)

�

@ ~�(qi�1)

@qi;x
+ 2~�(qi)

�

@ ~�(qi)

@qi;x
+ 2~�(qi+1)

�

@ ~�(qi+1)

@qi;x

+2c g(qi)
@ g(qi)

@qi;x
(6.45)

Weighting the curvature at the key frames

The analytical version of the minimization of curvature ensures that the curvature is minimized

by de�nition. The discrete numerical approach only gives an approximation of the solution

with minimized curvature. The validity of the approximation to the solution depends on the

approximations to the constituent mathematical expressions. For example the second derivative

of the interpolation curve is approximated with:

q00i =
qi�1 � 2qi + qi+1

l(qi)2

It is this approximation that is at the core of the approximation of the local curvature of

the interpolation curve. O�hand, it is di�cult to predict if this approximation introduces

\weaknesses" to the numerical solution when interpolating between key frames with certain

properties.

73

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 6.18: The multi-step algorithm used on a set of key frames with a sharp curve. 200

frames are interpolated.

In practice the numerical method is somewhat sensitive to sharp curves. For example the curve

in �gure 6.18 is too \sharp" in the middle key frame.

The approximation to the curvature does not adequately propagate across key frames. Let us

reexamine the gradient (the simpli�ed version, equation 6.45):

@F

@qi;x
= 2~�(qi�1)

�

@ ~�(qi�1)

@qi;x
+ 2~�(qi)

�

@ ~�(qi)

@qi;x
+ 2~�(qi+1)

�

@ ~�(qi+1)

@qi;x
+ 2c g(qi)

@ g(qi)

@qi;x

The last term makes sure that the quaternions remain unit quaternions. This can be ignored.

This leaves three considerations when determining the gradient, and thus the movement of the

individual frame during the iteration. These are the changes in curvature in the quaternion

itself, and in both its neighbors.

It is tempting to think that it is enough to consider curvature in the quaternion itself. However,

if the neighbors are not taken into consideration, the result will be trivial, namely Slerp. Here

every frame except the key frames has zero curvature. Therefore no compensation will be made

for the large curvature in the key frames.

Thus minimizing curvature at the key frames depends only on that the immediate neighbors of

each key frame must \take note of" the curvature of their neighbors. This is ensured by the

terms 2~�(qi�1)
�

@ ~�(qi�1)
@qi;x

and 2~�(qi+1)
�

@ ~�(qi+1)
@qi;x

. As shown by the example in �gure 6.18, this

is not quite su�cient.

The approximation of the second derivative of the interpolation curve is therefore not a good

approximation in this particular case. The approximation is too local, and should have a wider

domain. Since this is not a report on numerical calculation methods, we have not attempted to

�nd an optimal approximation expression.

The problem we have described can be eliminated simply, though. Each key frame can simply

\ask" its neighbors to be more \considerate." This means that we add a weighting function to

74

each expression in the gradient. The weight is dependent on whether or not a given frame is a

neighbor of a key frame. For example, 2~�(qi�1)
�

@ ~�(qi�1)

@qi;x
will be replaced by ck2~�(qi�1)

�

@ ~�(qi�1)

@qi;x
,

if qi�1 is a key frame. In practice, a good value for ck is about 1.2. The e�ect of the weighting

function can be seen in �gure 6.19.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 6.19: The multi-step algorithm with a set of key frames with a sharp curve. 200 frames

are interpolated, and the curvature around the key frames are weighted with a factor 1.2

Adding a constant to the algorithm \by eye" is at odds with our stated purpose of deriving

an interpolation curve from objective criteria. The alternative is to analyze the properties of

di�erent numerical approximations. This, like the properties of convergence and stability, is

outside the scope of this project.

Remaining details

We have not described the termination requirements for the algorithm described above. In the

implementation we have chosen the simplest possible: The number of iterations.

Correspondingly, we have not de�ned the initial guess that the algorithm uses. We have elected

to use Slerp between each pair of key frames. This starting point is clearly not optimal. Quicker

convergence might be achieved using Squad . Since the purpose was to derive a interpolation

curve that is superior to Squad , it seemed to be more fair to use Slerp as the basis for the

iteration.

The remaining constants in the algorithm (the step size, e, in the iteration, and the penalty fac-

tor, c) can all be calculated from robustness and convergence criteria. As previously mentioned,

we will not describe these properties any further, and regard the constants as implementation

details (see the introduction to the program in appendix C).

The interpolation curve summarized

The modest purpose of this chapter was to develop the optimal interpolation from objective,

general criteria to the interpolation curve.

75

We �rst studied the more or less heuristic interpolation curves that are to be found in the

literature. These included the naive LinMat, LinEuler, Lerp, the simple Slerp, and �nally the

convincing Squad .

Using these simple interpolation curves as a basis we tried to de�ne which class of functions the

interpolation curve should belong to (page 56). We were not able to determine which de�nition

of smoothness was suitable to de�ne the class of desired functions.

We then attempted to de�ne an interpolation curve that minimized the integral of the local

curvature (de�ned in equation 6.17) of the interpolation curve. These derivations required

that the interpolation curve is four times di�erentiable with continuous derivatives (i. e.
(t) 2
C4(I;H1)). This is noted on page 62 in section 6.3.5. Unfortunately, this derivation gave rise

to a fourth-order di�erential equation that we were unable to solve. Thus it is irrelevant to

consider the open questions from section 6.3.2: How many times di�erentiable should the curve

be and are singularities allowed?

Thus we settled for a discrete, numerical solution. We have presented a method based on

gradient descent. We examined and re�ned the method. The �nal result were some very pleasing

interpolation curves.

As our �nal interpolation algorithm we will choose the basic algorithm from section 6.3.7 with

the relative distribution of frames in the sub-intervals (see section 6.2.1 on page 55) and with

the weighting of the curvature around the key frames. This interpolation curve we will name

Spring (for Spherical Interpolation using Numerical Gradient descent). In �gure 6.20, the

e�ect of using Spring can be seen. The result is only marginally better than the version that

does not include special treatment of curvature at the key frames. In the next chapter we will

see examples where Spring much more clearly demonstrates its value.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 6.20: The e�ect of Spring. 550 frames have been interpolated and curvature is weighted

with a factor 1.3

76

Chapter 7

Squad and Spring

In chapter 6 we treated a series of interpolation algorithms. The most convincing among the

known algorithms was Squad . In this chapter we will compare Squad with our own algorithm

Spring .

The comparison will be based on a number of illustrative examples.

7.1 Example: A semi circle

First we check if Squad and Spring can produce nice rounded curves. We have placed the key

frames as corners in a spherical square. Around the center key frames the interpolation curve

should approximately be a semi circle. Figure 7.1 and 7.2 show that both curves meet this

requirement nicely.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.1: A simple curve with soft rounded corners interpolated with Squad. A total of 550

frames have been used in the interpolation.

77

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450
Frame nr.

Angular Velocity
Key Frames

Figure 7.2: A simple curve with soft rounded corners interpolated with Spring. A total of 430

frames and 700 iterations in the steps have been used. No extra weight on the curvature at the

key frames has been added (see section 6.3.7 page 73).

7.2 Example: A nice soft curve

This next example should be no real challenge for either of the algorithms. The expected

interpolation curve is simply a nice rounded curve with no sharp corners. The intersection in

the curve should pose no problem.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.3: Interpolation with Squad of a soft curve with an intersection. A total of 550 frames

have been used in the interpolation.

Both interpolation curves on �gure 7.3 and �gure 7.4 are nice. However, the curve has more

rounded corners for Spring than for Squad (even though no extra weight has been added to the

curvature at the key frames { see section 6.3.7 page 73). This means that the curve for Spring

has smaller curvature. Furthermore the velocity graph for Spring is more constant than for

Squad . This implies that Spring behaves as desired.

78

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.4: Interpolation with Spring of a soft curve with an intersection. A total of 550

frames and 700 iterations distributed over the interpolation steps. No extra weight is added to

the curvature around the key frames (see section 6.3.7 page 73)

7.3 Example: Interpolation curve with cusp

Squad can produce interpolation curves with quite pointy corners at the key frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.5: A curve with a cusp interpolated with Squad. 200 frames have been used.

The interpolation curve for Squad (�gure 7.5) reveals a nasty pointy curve. However, Spring is

able to produce a nice smooth rounded interpolation curve (�gure 7.6).

That the interpolation curve for Squad has a sharp corner does not contradict the proven fact

that Squad is di�erentiable (section 6.2.1 page 51). At the key frame with the sharp corner the

velocity of the curve is zero. Thereby the function Squad remains di�erentiable although the

geometric appearance of the curve is not intuitively di�erentiable.

79

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.6: A curve with a cusp interpolated with Spring. A total of 200 frames and 700

iterations distributed over three steps. The relative weight of the curvature around the key frames

is 1.3 (see section 6.3.7 page 73).

7.4 Example: A pendulum

We continue to investigate curves with large curvature. In this example we use a curve with

in�nite curvature - a pendulum motion. This is achieved with three key frames where the �rst

and last are equal.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250
Frame nr.

Angular Velocity
Key Frames

Figure 7.7: Squad displaying pendulum motion over 250 frames.

The desired behaviour of the interpolation curve is not intuitively obvious. Since all key frames

are on a arc one would expect the curve to remain on this arc.

The �gures (7.7 and 7.8) shows the same behaviour for both curves - the pendulum motion.

Note that Lerp and Slerp would produce the same curve.

80

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200 220
Frame nr.

Angular Velocity
Key Frames

Figure 7.8: Spring displaying pendulum motion over 200 frames and 700 iterations in three

steps. The relative weight of the curvature around the key frames is 1.5 (see section 6.3.7 page

73).

7.5 Example: A perturbed pendulum

Even though it is very reasonable that the interpolation curve remains on the same arc when

the key frames are all on an arc, this is not necessarily correct. In principle the curve has

in�nite curvature at the center key frame. Since Spring is supposed to minimize curvature this

is somewhat disappointing.

To understand this, it is necessary to bear the algorithm in mind. Using gradient descent, each

frame will move slightly in each step to decrease the curvature. But in which direction should

the frames close to the center key frame move? Since the curve is symmetric, the gradient at

each frame will be zero. The problem is that this does not imply a local minimum but a local

maximum instead.

Thus, the pendulum is an example of how it is possible to confuse Spring . We investigate this

further by perturbing the �rst and last key frames slightly so the curve is no longer a pure

pendulum. It is only just possible to see in the curve for Squad (�gure 7.9).

Figure 7.10 shows how the pure arc is no longer a (repelling) �x point for the gradient descent

algorithm Spring . The minimal perturbation allows the interpolation curve to be nice and

rounded at the center key frame.

7.6 Example: Global properties

The �nal example demonstrates a fundamental di�erence between Squad and Spring . In each

interval the interpolation curve for Squad is de�ned exclusively from the two previous and the

two following key frames | i. e. a local de�nition. In contrast, the interpolation curve for Spring

is globally de�ned.

81

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250
Frame nr.

Angular Velocity
Key Frames

Figure 7.9: The perturbed pendulum interpolated by Squad using 250 frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200
Frame nr.

Angular Velocity
Key Frames

Figure 7.10: The perturbed pendulum interpolated by Spring using 200 frames and 700 iterations

in three steps. The relative weight of the curvature around the key frames is 1.5 (see section

6.3.7 page 73)

Figure 7.11 shows the interpolation curve for Squad on a set of �ve key frames. The �rst three

key frames lie approximately on an arc and therefore the interpolation curve is an arc in the

�rst interval. Likewise the interpolation curve form an arc in the last interval.

In contrast the interpolation curve for Spring (�gure 7.12) is nice and smooth. The global

structure of the algorithm allows the curve to distribute the curvature evenly across all the

intervals. Instead of having excessive curvature at the center key frame, a part of the curvature

is propagated to the outer intervals.

It should be noted that it is necessary to add a relatively large weight to the curvature around

the key frames in this example. However, we have no doubt that an algorithm with a better

numerical approximation for the constituent expressions (in particular q00
i
in equation 6.26) would

produce the same result | without having to �t the parameters of the program to the example.

82

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Frame nr.

Angular Velocity
Key Frames

Figure 7.11: Squad producing pointy curve using 550 frames.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450
Frame nr.

Angular Velocity
Key Frames

Figure 7.12: Spring avoiding the pointy curve using 430 frames and 900 iterations. The relative

weight of the curvature around the key frames is 4 (see section 6.3.7 page 73).

83

7.7 Conclusion

The fundamental di�erences between the to methods are displayed below.

Property for the Characteristics for Squad Characteristics for Spring

Algorithm Simple Complex

Analytical Numerical

Continuous Discrete

Local Global

Interpolation curve Nice at simple curves.

Sharp corners at key frames with

large curvature

Nice at all examples.

The parameters of the program

must be �tted to some examples.

The choice between Squad and Spring is not obvious. If a simple algorithm yielding nice results in

most cases is needed, then the simple Squad will su�ce. If really nice interpolation is mandatory

in all cases the more complex Spring will be more appropriate.

84

Chapter 8

The Big Picture

In this �nal chapter we will �rst attempt to discuss our work in relation to the available literature

on quaternions and interpolation of rotations. Using this as a starting point we will point out

relevant topics for future work.

8.1 Comparison to previous work

This paper has covered �ve main topics:

� Rotation modalities (Section 3).

� Quaternion mathematics (Section 3.3).

� Curves for interpolation of rotations | Heuristic approach (Section 6.2).

� Curves for interpolation of rotations | Analytic minimization of the local curvature (Sec-

tion 6.3.5).

� Curves for interpolation of rotations { Numerical minimization of the tangential curvature

(Section 6.3.7).

For each of the main topics we will summarize our contributions compared to the previous work.

Quaternion mathematics

Quaternion mathematics has been treated several times in the literature ([Hamilton, 1853],

[Hamilton, 1899], [Pervin & Webb, 1992], [Shoemake, 1994b], [Maillot, 1990], and [Kim et al., 1996]).

[Pervin & Webb, 1992] should be noted for a treatment of the basic mathematical properties |

including the logarithm and exponential functions. In [Kim et al., 1996], a general framework

for di�erentiation is given (though the reader is referred to a di�erential geometry text for the

proof), and the derivative of exp is derived based on this framework. None of the articles have

85

given a complete treatment of the necessary mathematics. Di�erentiation of the quaternion

functions is very central in the study of the smoothness of the interpolation curves.

This report includes a comprehensive treatment of quaternion math. In particular, we have

derived all the di�erentiation equations necessary for proving the desired properties of the in-

terpolation curves (in section 3.3.8).

Curves for interpolation of rotations | Heuristic approach

Interpolation curves in the plane have inspired several interpolation curves for rotations. The two

most important are Slerp [Shoemake, 1985] and Squad [Shoemake, 1987]. Shoemake attempts

to prove the di�erentiability of Squad but the proof is
awed1. In [Kim et al., 1996], a more

general result is given that entails the di�erentiability of Squad . Our result is derived using less

advanced mathematics, and may be more easily accessible.

This is the �rst report which contains a comprehensive treatment of the two most important

heuristic quaternion curves (section 6.2). All the known expressions for Slerp are stated and

the correctness of their properties is proven. For Squad we apply the derived di�erentiation

equations to prove the di�erentiability of the function.

Other heuristic approaches

Like Squad , a number of quaternion interpolation curves have been made from general spher-

ical cubic curves. These curves are �tted to the control points, thus yielding relatively nice

interpolation curves. Most often these curves are inspired by cubic curves in the plane.

Examples of this are the fairly simple spherical Catmull-Rom B-spline in [Schlag, 1994] and a

spherical B�ezier curve in [Shoemake, 1985].

In this report, we have not investigated this approach.

Curves for interpolation of rotations | Analytic approach

The �rst attempt to derive an optimal interpolation curve from a set of objective criteria can be

seen in [Barr et al., 1992]. The paper states an expression minimizing the tangential curvature

(in this paper also called the local curvature). However, the paper makes no attempt to state or

solve the di�erential equation, that corresponds to the optimal curve.

In this paper we state a set of objective criteria for the optimal interpolation curve (section

6.3.5) | inspired by [Barr et al., 1992]. We then derive the fourth order di�erential equation

whose solution will minimize the local curvature. Unfortunately, we are not able to solve the

di�erential equation analytically.

1As mentioned earlier [Shoemake, 1987] is unavailable but Shoemake himself has stated [Shoemake, 1997] that

the proof was
awed.

86

Minimization of the local curvature | Numerical approach

A brief description of a numerical solution to the problem of minimizing the tangential curvature

is sketched in [Barr et al., 1992]. [Platt & Barr, 1988] contains a more sophisticated method

(using Augmented Lagrangian constraints in a Finite elements method). A method yeilding

faster convergence is presented in [Ramamoorthi & Barr, 1997].

We give a complete algorithm for �nding a discrete solution to the numerical version of the

minimization problem (section 6.3.7).

Complete treatment

To our knowledge, there exists no other complete treatment of quaternion mathematics and the

applications in interpolation of rotations.

This report combines a comprehensive overview including both a thorough treatment of the basic

quaternion mathematics and as well, the most important methods for interpolating orientations

is space. This is where quaternions really show their strength (see sections 3.3.6, 3.4, and chapter

6).

8.2 Future work

Obviously, it would be very nice to derive an analytic solution of the di�erential equation that

minimizes the local curvature of the interpolation curve. Since di�erential equations are centuries

old this is not very likely to happen in the immediate future. Therefore it would be more realistic

to establish a more robust numerical solution with a faster convergence. This is beyond the scope

of this report. An excellent starting point for this approach would be [Platt & Barr, 1988] and

[Ramamoorthi & Barr, 1997].

Another direction could be the development of more specialized applications. As an example,

the movements of a camera should not necessarily be interpolated in the same manner as the

moving object during animation. A stable horizon is possibly a desired feature for the camera

(i. e. the camera must not tilt upside down). Relevant introductions to this line of work are

[Shoemake, 1994b] and [Shoemake, 1994a].

Another example of specialization is applications where the interpolation need not be smooth.

For instance, in the plane the interpolation of a
y or a UFO need not be smooth either. An

example of extraction of certain properties of interpolation curves in 3D (tension, continuity

and bias control) can be found in [Kochanek & Bartels, 1984].

Finally, yet another example of specialization of the interpolation curve can be studied in

[Barr et al., 1992]. In this method, the angular velocity can be given explicitly at the �rst and

last key frame (the authors call this Angular Velocity Constraints). An obvious generalization

of this would be the ability to supply the angular velocity at an arbitrary key frame.

87

Acknowledgements

We would like to thank Ken Shoemake, who patiently and enthusiastically helped with answers

to questions posed via e-mail. We also owe thanks to J�rgen Sand2, who o�ered comprehensive

suggestions concerning di�erential equations and the calculus of variations, and Gerd Grubb3,

who helped with di�erential equations.

For thorough proof reading of the Danish version we would like to thank Tommy H�jfeld Olesen.

We would like to thank Theo Engell for the illustration in the introduction. Finally we would

like to thank our advisor Knud Henriksen.

2Associate Professor at the Institute of Computer Science, the University of Copenhagen, specializing in the

solution of systems of equations.
3Professor at the Institute of Mathematics, the University of Copenhagen, specializing in di�erential equations.

88

Appendix A

Conventions

In this report we have used following conventions:

Coordinate system

We use a right-handed coordinate system. In computer graphics it is common to use

a left-handed coordinate system. This allows the z-axis to point \into" the screen which

seems natural. Since we primarily use coordinates for mathematical derivations we have

chosen to use the mathematical standard | the right-handed coordinate system.

Rotation

Still using the mathematical standard we rotate counter-clockwise. The direction of ro-

tation about an axis is obtained by the right-hand rule: Hold the axis with right hand

and the thumb pointing in the positive direction of the axis. A positive rotation will now

rotate in the direction of the �ngers (apart from the thumb).

This is illustrated below:

z

y

x

Rotation about z brings x into y

Rotation about y brings z into x

Rotation about x brings y into z

Euler angles

Rotation by Euler angles is de�ned by a rotation about each of the three coordinate axes.

To make this unambiguous it is necessary to de�ne the order of rotation.

The speci�c order of rotation is of no importance in this paper and we arbitrarily choose

x, y, z. Other conventions are described in [Craig, 1986].

89

Appendix B

Conversions

In this appendix we show the conversions between di�erent representations for rotation: Euler

angles, matrices, and quaternions.

B.1 Euler angles to matrix

Rotation about the x-axis by the angle � followed by rotation about the y-axis by the angle �
concluded by rotation about the z-axis by the angle
 is written in matrix1 notation:

R(�; �;
) = Rz(
)Ry(�)Rx(�)

=

2
664

cos
 � sin
 0 0
sin
 cos
 0 0
0 0 1 0
0 0 0 1

3
775

2
664

cos� 0 sin� 0
0 1 0 0

� sin� 0 cos� 0
0 0 0 1

3
775

2
664

1 0 0 0
0 cos� � sin� 0
0 sin� cos� 0
0 0 0 1

3
775

=

2
664

cos� cos
 cos
 sin� sin� � cos� sin
 cos� cos
 sin� + sin� sin
 0
cos� sin
 cos� cos
 + sin� sin� sin
 �(cos
 sin�) + cos� sin� sin
 0
� sin� cos� sin� cos� cos� 0

0 0 0 1

3
775

B.2 Matrix to Euler angles

The rotation matrix derived above is the starting point for the conversion from matrix to Euler

angles. The conversion to Euler angles requires the inverse trigonometric functions. Neither

arcsin nor arccos will, by itself, yield values on the entire interval from �� to �. We therefore

want to establish both the sin and cos values for all the angles. Using both the sin and cos

values the original angles can be determined in the interval]� �; �] as v = sgn(sin v) arccos(v),

where sgn is de�ned: sgn(0) = 0 and sgn(x) = x

jxj
.

1Using homogeneous matrices the rotation matrices are 4� 4.

90

We can directly determine sin� as �R31. Isolating cos � yields the following equations:

cos2 � = (�R11R32R31 �R33R21)=R12

cos2 � = (�R11R33R31 +R32R21)=R13

cos2 � = (�R32R31R21 +R11R33)=R22

cos2 � = (�R31R33R21 �R11R32)=R23

From this it is not possible to determine the sign of cos �. This means that we might as well

determine � directly from sin�. Either way it is only possible to determine � in the interval

[��

2
; �
2
] corresponding to the assumption that cos � is positive.

Determining cos and sin for � and
 requires cos �. If the assumption that cos � is positive does

not hold, then also � and
 are determined incorrectly. Unfortunately this is the best that can

be done.

The equations for cos and sin for each of the constituent angles are shown below. From this the

angles can be determined as stated above.

� = arcsin(�R31) (Assuming � 2
h
��
2
;
�

2

i
)

cos� =
R33

cos�

sin� =
R32

cos�

cos
 =
R11

cos�

sin
 =
R21

cos�

Obviously this requires that cos � 6= 0. If cos � = 0 then � = ��

2
. This corresponds to gimbal

lock (see section 4.1) and therefore it is impossible to distinguish � from
. Thus we arbitrarily

de�ne
 � 0. In this situation the angles can be determined:

� = arcsin(�R31) (assuming� 2
h
��
2
;
�

2

i
)

cos� = R22

sin� = �R23

 = 0

B.3 Quaternion to matrix

Rotation of the vector p = (x; y; z) with the quaternion q is done by the operation q [0; p] q�1.

We want to determine the corresponding matrix which multiplied on [x y z 1]T from the left

will yield the same result.

91

The product of two quaternions qv = [w; (a; b; c)] and qh = [s; (x; y; z)] (written in i; j;k-notation)
is:

qvqh = (w + ia+ jb+ kc)(s+ ix+ jy + kz)

= (ws� ax� by � cz) + i(as+ wx � cy + bz) +

j(bs+ wy + cx� az) + k(cs+ wz � bx+ ay)

Written as columns using sloppy notation2 this equals:

qvqh =

2
664
a

b

c

w

3
775�q

2
664
x

y

z

s

3
775 =

2
664

wx� cy + bz + as

cx+ wy � az + bs

�bx+ ay + wz + cs

�ax� by � cz + ws

3
775

From this we can write the matrices corresponding to multiplying from the left and from the

right with a quaternion. First we determine Vqv such that Vqvqh = qvqh, where qv and qvqh are

written as columns:

Vqv =

2
664

w �c b a

c w �a b

�b a w c

�a �b �c w

3
775

Then we write Hqh
, such that Hqh

qv = qvqh:

Hqh
=

2
664

s z �y x

�z s x y

y �x s z

�x �y �z s

3
775

We are now ready to write the matrix M , such that Mp = q [0; p] q�1. Using q = [s; (x; y; z)]

and q�1 = [s; (�x;�y;�z)] we get:

M = VqHq�1

=

2
664

s �z y x

z s �x y

�y x s z

�x �y �z s

3
775
2
664

s �z y �x
z s �x �y

�y x s �z
x y z s

3
775

=

2
664

1� 2(y2 + z2) 2xy � 2sz 2sy + 2xz 0

2xy + 2sz 1� 2(x2 + z2) �2sx+ 2yz 0

�2sy + 2xz 2sx+ 2yz 1� 2(x2 + y2) 0

0 0 0 1

3
775

2The quaternion [s; (x; y; z)] is written as the column [x; y; z; s]T , and �q denotes quaternion multiplication

92

B.4 Matrix to Quaternion

Conversion from a rotation matrix to the corresponding unit quaternion uses the matrix M

derived above. First we �nd s:

M11 +M22 +M33 +M44 = 4� 4(x2 + y2 + z2)

= 4� 4(1� s2) Da s2 + x2 + y2 + z2 = 1

= 4s2

This yields s2. Now the other values follow:

s = � 1

2

p
M11 +M22 +M33 +M44

x =
M32 �M23

4s

y =
M13 �M31

4s

z =
M21 �M12

4s

The sign of s cannot be determined. Depending on the choice of sign for s the signs for x,

y and z change as well. This means choosing between a quaternion and the corresponding

negative quaternion. These quaternions yield the same rotation but the interpolation curve can

be in
uenced by this choice.

Since the entire interpolation is calculated on quaternions this will pose no practical problem.

Therefore we simply choose the positive square root.

B.5 Between quaternions and Euler angles

These conversions can simply be achieved by going via matrices using the conversions stated

above.

Therefore the limitation on the � angle from the conversion between matrix and Euler angles

will hold for the conversion from quaternions to Euler angles as well. It is not possible to avoid

this limitation (or a similar one) using a direct conversion between quaternions and Euler angles.

93

Appendix C

Implementation

This chapter contains a brief description of the program we have developed for visualization

including the standard packages we have used.

quat displays in a window on the screen how an object (the letter \R") looks when it is rotated

in space. The desired key orientations are supplied through a resource �le together with various

parameters. The interpolation method is supplied as a command line parameter. The available

methods are:

lineuler Linear interpolation between Euler angles (section 6.1.1).

linmat Linear interpolation between rotation matrices (section 6.1.2).

lerp Linear interpolation between quaternions (section 6.1.3)

slerp Spherical linear interpolation between quaternions (section 6.1.5).

squad Spherical spline interpolation between quaternions (section 6.2.1)

slerpsvupti Minimization of the tangential curvature using a gradient descent

method with Slerp as initial solution (section 6.3.7).

squadsvupti Minimization of the tangential curvature using a gradient descent

method with Squad as initial solution (section 6.3.7).

justdoit Minimization of the tangential curvature using a gradient descent

method applied three times with Slerp as initial solution (section 6.3.7).

The curious names slerpsvupti, squadsvupti and justdoit are used for historical reasons.

We use the graphics library SPHIGS [Sklar & Brown, 1993] for displaying the animation on the

screen. However, we have added the ability to export the animation as a series of PPM �les. The

PPM �les are converted to an animated GIF using the program convert [ImageMagic, 1997].

A few examples of this can be seen at http://kantine.diku.dk/~myth/gif

The program quat produces a visualization of the interpolated quaternions and an approxi-

mation of the velocity (see chapter 5). The velocity is displayed as a two dimensional graph

generated by the program gnuplot [Williams & Kelley, 1993]. The visualization of the interpo-

lation curve is made using the ray tracer POV-ray [POV, 1997].

94

C.1 The basic structure of quat

We have used C++ for writing quat. The object oriented language allows us to implement

classes for each mathematical concept: matrix, vector, quaternion and so on. Apart from this

separate objects handle interpolation and visualization.

The source code can be obtained from the authors.

95

Bibliography

[Barr et al., 1992] Alan H. Barr, Bena Currin, Steven Gabriel, & John F. Hughes. Smooth inter-

polation of orientations with angular velocity constraints using quaternions. Computer

Graphics, 26(2):313{320, July 1992.

[Burtnyk & Wein, 1971] Nester Burtnyk & Marceli Wein. Computer generated keyframe ani-

mation. SMPTE, (80):149{153, March 1971.

[Craig, 1986] John J. Craig. Introduction to Robotics. Mechanics and Control, chapter 2.

Addison-Wesley, 1986.

[Euler, 1752] Leonhard Euler. Decouverte d'un nouveau principe de m�echanique. Opera omnia

(1957), Ser. secunda(Vol. 5):81{108, 1752. Orell F�usli Turici.

[Foley et al., 1990] James D. Foley, Andries van Dam, Steven K. Feiner, & John F. Hughes.

Computer Graphics Principles and Practice. Addison-Wesley, Reading, Massachusetts,

2nd. edition, 1990.

[Hallenberg et al., 1993] Niels Hallenberg, Martin Koch, & Ole Fogh Olsen. Vektorernes opst�aen

og udvikling (The construction and development of vector calculus). 1993.

[Hamilton, 1853] Sir W. R. Hamilton. Lectures on Quaternions. Hodges Smith & Co., Dublin,

1853.

[Hamilton, 1899] Sir W. R. Hamilton. Elements of Quaternions, volume 1-2. Longmans, Green

and Co., 1899.

[ImageMagic, 1997] ImageMagic. Convert. E. I. du Pont de Nemours and Company, 1997. Part

of the ImageMagic version 3.9.0 library. http://www.wizards.dupont.com/cristy-

/ImageMagick.html.

[Jakobsen, 1993] Hans Plesner Jakobsen. Course notes for Mathematics 3GE (di�erential ge-

ometry). Matematisk Notetryk, Institute of Mathematics, University of Copenhagen,

Denmark, Copenhagen, 1993.

[Kim et al., 1996] Myoung-Jun Kim, Myung-Soo Kim, & Sung Yong Shin. A compact dif-

ferential formula for the �rst derivative of a unit quaternion curve. The Journal of

Visualization and Computer Animation, 7:43{57, 1996.

[Kincaid & Cheney, 1991] David Kincaid & Ward Cheney. Numerical Analysis. Brooks/Cole

Publishing Company, Paci�c Grove, California, 1991.

96

[Kochanek & Bartels, 1984] Doris H. U. Kochanek & Richard H. Bartels. Interpolating splines

with local tension, continuity, and bias control. Computer Graphics, 18:33{41, July 1984.

[Lasseter, 1987] John Lasseter. Principles of traditional animation applied to 3D computer

animation. Computer Graphics, 21(4):35{44, July 1987.

[Madsen, 1991] Tage Gutmann Madsen. Course notes for Mathematics 1MA (calculus). Matem-

atisk Notetryk, Institute of Mathematics, University of Copenhagen, Denmark, Copen-

hagen, 1991.

[Maillot, 1990] Patrick-Gilles Maillot. Using quaternions for coding 3d transformations. In

Andrew Glassner, editor, Graphics Gems 1, chapter 10, pages 498{515. Academic Press,

Inc., 1990.

[McCool, 1995] Michael McCool. Orientation interaction tester.

http://www.cgl.uwaterloo.ca/Gallery/image html/gimbal.jpg.html, June 1995.

[Pervin & Webb, 1992] Edward Pervin & Jon A. Webb. Quaternions in Computer Vision and

Robotics. Carnegie-Mellon University, 1992.

[Platt & Barr, 1988] John C. Platt & Alan H. Barr. Constraint methods for
exible models.

Computer Graphics, 22(4):279{288, August 1988.

[POV, 1997] POV-team. Persistence of Vision Ray Tracer, Febuary 1997.

http://www.povray.org.

[Ramamoorthi & Barr, 1997] Ravi Ramamoorthi & Alan H. Barr. Fast construction of accurate

quaternion splines. Computer Graphics, pages 287{292, 1997.

[Schlag, 1994] John Schlag. Using geometric constructions to interpolate orientation with

quaternions. Graphics Gems IV, pages 230{236, 1994.

[Schwarz, 1989] H. R. Schwarz. Numerical Analysis, A Comprehensive Introduction. John Wiley

& Sons, Chicester, 1989.

[Shoemake & Du�, 1994] Ken Shoemake & Tom Du�. Matrix animation and polar decomposi-

tion. ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/polar-decomp.ps.Z, 1994.

[Shoemake, 1985] Ken Shoemake. Animating rotation with quaternion curves. Computer Graph-

ics, 19(3):245{254, 1985.

[Shoemake, 1987] Ken Shoemake. Quaternion calculus and fast animation. SIGGRAPH Course

Notes, 10:101{121, 1987. Not available.

[Shoemake, 1994a] Ken Shoemake. Fiber bundle twist reduction. Graphics Gems IV, pages

230{236, 1994.

[Shoemake, 1994b] Ken Shoemake. Quaternions. ftp://ftp.cis.upenn.edu/pub/graphics/-

shoemake/quatut.ps.Z, 1994.

[Shoemake, 1997] Ken Shoemake. Re: Siggraph 1987 tutorial, June 1997. E-mail corre-

spondence June/July 1997.

97

[Sklar & Brown, 1993] David Frederick Sklar & Christopher R. Brown. Simple Programmer's

Hierarchical Graphics Standard (SPHIGS) for ANSI-C Version 1.0, March 1993. A

detailed description can be found in [Foley et al., 1990].

[Verplaetse, 1995] Christopher Verplaetse. Can a pen remember what it has written

using inertial navigation?: An evaluation of current accelerometer technology.

http://verp.www.media.mit.edu/projects/SmartPen/smartpen.html, May 1995.

[Watt & Watt, 1992] Alan Watt & Mark Watt. Advanced Animation and Rendering Techniques

Theory and Practice, chapter 15. Addsion-Wesley, Wokingham, England, 1992.

[Williams & Kelley, 1993] Thomas Williams & Colin Kelley. GNUPLOT

| An Interactive Plotting Program Version 3.4, June 1993.

http://science.nas.nasa.gov/~woo/gnuplot/gnuplot.html.

98

