
RESEARCH Open Access

Common characteristics of open source software
development and applicability for drug discovery:
a systematic review
Christine Årdal1*, Annette Alstadsæter2 and John-Arne Røttingen2

Abstract

Background: Innovation through an open source model has proven to be successful for software development.
This success has led many to speculate if open source can be applied to other industries with similar success. We
attempt to provide an understanding of open source software development characteristics for researchers, business
leaders and government officials who may be interested in utilizing open source innovation in other contexts and
with an emphasis on drug discovery.

Methods: A systematic review was performed by searching relevant, multidisciplinary databases to extract
empirical research regarding the common characteristics and barriers of initiating and maintaining an open source
software development project.

Results: Common characteristics to open source software development pertinent to open source drug discovery
were extracted. The characteristics were then grouped into the areas of participant attraction, management of
volunteers, control mechanisms, legal framework and physical constraints. Lastly, their applicability to drug
discovery was examined.

Conclusions: We believe that the open source model is viable for drug discovery, although it is unlikely that it will
exactly follow the form used in software development. Hybrids will likely develop that suit the unique
characteristics of drug discovery. We suggest potential motivations for organizations to join an open source drug
discovery project. We also examine specific differences between software and medicines, specifically how the need
for laboratories and physical goods will impact the model as well as the effect of patents.

Keywords: open source, drug discovery, pharmaceutical innovation, neglected diseases

Background
Innovation through an open source model has proven to
be successful for software development. Well-known
examples such as the Linux operating system and
Apache web server have demonstrated that open source
methods can create market leaders [1,2].
This success has led many to speculate if open source

can be applied to other industries with similar success.
The ingredients of open source generally deemed attrac-
tive for transfer are the collaborative nature of develop-
ment and the open access to the intellectual property.

Pharmaceuticals are an often mentioned example for pos-
sible transfer and adaptation. The World Health Organiza-
tion’s Consultative Expert Working Group for Research
and Development Financing and Coordination has been
requested to evaluate open source drug discovery. There
are also several open source drug discovery projects
already underway. The Synaptic Leap hosts a project to
develop a new synthesis of the schistosomiasis drug, prazi-
quantel, and CSIR Team India Consortium hosts a project
identifying new targets for tuberculosis. These projects
attempt to link up like-minded scientists globally to
develop new drugs quickly without high, patent-protected
prices, making medicines more accessible.
This is a simplistic and ideal description of a potential

utilization of open source. To discuss the applicability of

* Correspondence: cha@nokc.no
1The Norwegian Knowledge Centre for the Health Services, P.O.Box 7004, St.
Olavs plass, N-0130 Oslo, Norway
Full list of author information is available at the end of the article

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

© 2011 Årdal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:cha@nokc.no
http://creativecommons.org/licenses/by/2.0

open source to other contexts seriously, we need to
understand more about the phenomenon. This paper
attempts to analyze the existing, empirical research
regarding open source software development and single
out those characteristics that are important when
designing and building new open source models. We
attempt to present the evidence in such a way that it is
useful for researchers, business leaders or government
officials who may be interested in applying the concepts
of open source to novel areas. We apply our findings
specifically to drug discovery.
We have chosen a multidisciplinary and mixed-meth-

ods systematic review to present the research. A multi-
disciplinary approach allows for the examination of a
wide range of research evaluated from multiple perspec-
tives - economic, legal, software engineering, etc. A sys-
tematic review is a method of evaluating large bodies of
evidence in a systematic, transparent and reproducible
manner [3]. The aim is to give an unbiased reproduction
of the current evidence addressing the research ques-
tion, what are the common characteristics and barriers
of open source software development.

The myriad of “open” concepts
Firstly, it is important to define what we mean by “open
source” as there is a myriad of “open” concepts with
considerable overlap. The Open Source Initiative has
removed much of the ambiguity with “open source” as
pertaining to software with their 10-point Open Source
Definition [4], a detailed definition giving ten criteria
that a license must comply with in order to be recog-
nized as open source. The major components are:

• Access to the source code: The lines of code that
comprise the source code are the instructions run-
ning the software. If an individual wants to make
changes to a software program, he/she generally
needs access to the source code.
• Free redistribution: An individual may use all or
parts of the open source software as a component in
a larger software application without the require-
ment of a royalty or a fee.
• Creation of derived works: Individuals are allowed
to change or expand the open source software and
distribute the newly created software.

The license defines the formal definition of open
source as it relates to the management of the intellectual
property (which is typically copyright). However, the
concept of open source also conveys a collaborative
approach to innovation. Programmers work together vir-
tually to develop a software program. They are not
employed by a single organization. They typically volun-
teer for tasks and come and go from a project at will.

A concept closely related to open source is “free soft-
ware”. It is fundamentally the same as open source but
with a political twist - adherents to free software believe
that all software should be made freely available and
that proprietary software should not exist. The Open
Source Community takes a more flexible approach,
allowing proprietary software to use open source com-
ponents so long as the license allows for it. Sometimes
the two terms are combined in FLOSS (free/libre/open
source software).
“Open innovation” conveys a much broader idea than

open source. University of California at Berkeley’s Henry
Chesbrough has championed open innovation, which
encourages companies to actively supplement their
internal knowledge stocks with external sources [5].
Instead of relying solely on internal research, companies
that follow open innovation business models actively
purchase or license ideas from external organizations
and/or look to the public domain for possible business
models. Unlike open source, open innovation may
involve contracting with the intellectual property rights
holder and paying a royalty.
“Open access” is a general term with varying meanings

depending upon the context. When used to discuss con-
tent, it generally means the free access to books, jour-
nals, media, etc. [6]. This allows individuals to read,
copy, print or distribute the materials free-of-charge.
Unlike open source, it does not allow individuals to
modify the materials without the author’s consent.
“Open knowledge” takes the concept of open source

and generalizes it beyond computer software. It is
intended to cover copyrighted data (such as music,
books, scientific data, etc.) but not software as this is
adequately addressed by open source. It is defined in an
11-point definition by the Open Definition [7] as knowl-
edge that anyone is “free to use, reuse, and redistribute
– subject only, at most, to the requirement to attribute
and share-alike.”
This review focuses solely on open source software

development because it is this concept that has become
the model for the other “open” concepts. Being the ori-
ginal model, it is the oldest, most established and the
most studied. Articles regarding open source drug dis-
covery are not included in the systematic review but are
included in the Discussion section.

Open source software development research themes
The existing research on open source software develop-
ment is varied and plentiful. Major themes of the
research include the analysis of developers’ and firms’
motivations, license choice, successful implementations
and the impact on innovation. Von Krogh et al. [8] have
analyzed the existing research on open source software
developers’ motivations and grouped the research

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 2 of 16

literature into two main phases. The early research
phase examined why developers contribute. The subse-
quent phase examined the relationships between develo-
pers’ motivations, contributions and institutional
arrangements.
Researchers have also analyzed the applicability of

open source in other domains such as drug discovery.
Maurer and Scotchmer reviewed the empirical research
of open source software development and “provide a
snapshot of the emerging open source phenomenon”
[9]. They examine the incentives, organization, knowl-
edge gaps and its potential as a model in drug discovery
and geographic information systems.
Several other researchers examine applicability to

other domains theoretically. Müller-Seitz (2009) exam-
ines the parallels and differences between open source
software development and open biotechnology using
Cambia’s BiOS as a case example [10].
Our paper builds on Maurer and Scotchmer’s work in

that both examine characteristics of open source soft-
ware development. Where as Maurer and Scotchmer
comprehensively detail open source software character-
istics, we have done a systematic review and only focus
on those characteristics that we believe are applicable
for drug discovery. We then take these characteristics
one step further and discuss transferability.

Brief description of open source software development
Open source has origins to the beginning of computer
software development. Although not called open source
at the time, early software was shared freely amongst
developers and not considered a commercial product
[11].
In the 1970’s to 80’s the commercial potential of com-

puter software became evident. Microsoft entered the
operating system business in 1980 [12]. AT&T began
selling a licensed version of Unix in 1982 [13]. Richard
Stallman, a programmer at MIT’s artificial intelligence
laboratory, became alarmed by the increasing commer-
cialization of computer software. In reaction he
launched the GNU Project (a recursive acronym for
GNU’s Not Unix) in 1983, creating an open source
Unix-like operating system. In 1985 he launched the
Free Software Foundation whose aim is to promote “free
software” including the political twist mentioned earlier.
All free software originally was licensed under a new
type of license called “copyleft”, named to emphasize the
difference from the copyright [14]. GNU General Public
License (GPL) was the first example of a copyleft
license, giving anyone the freedom to use, modify and
distribute software with the caveat that all modifications
must also adhere to the GPL. Hence, all future products
became “infected” by the original license and must
remain GPL-compliant (free to use, modify and

distribute). This caveat earned copyleft licenses the des-
ignation “viral licenses” [15].
The most successful and famous example of free and

open source software is Linux, a Unix-like operating sys-
tem. It was started by Linus Torvalds in 1991 and uses a
GPL license [11]. Apache web server started in 1995.
Apache does not use a GPL license; they have created a
non-viral equivalent that abides by the Open Source
Definition [11]. Individuals or firms can commercialize
Apache software or combinations of Apache and pro-
prietary software. IBM became actively involved in
Apache development in 1998, giving the open source
movement significant commercial credibility [11]. Smal-
ler, less well-known open source projects are often
hosted on SourceForge.net, the largest open source soft-
ware developer website. It hosts more than 260,000
open source software projects and has more than 2.7
million registered users as of March 2011 [16].

Methods
We have reviewed the existing empirical literature per-
taining to our research questions:

• What are the common characteristics for initiating
and maintaining an open source software develop-
ment project?
• What are the barriers for developing an open
source software development project?

We have carried out this secondary research in a trans-
parent and reproducible manner by performing a sys-
tematic review. A systematic review follows a prescribed
path summarizing large bodies of evidence in accordance
with scientific strategies [3]. Bias and error are reduced
because the researcher must follow a pre-defined search
strategy, including target databases, search words and
explicit inclusion and exclusion criteria. The researcher
should not randomly include other studies not following
these criteria because they may bias the results of the sys-
tematic review. The search is performed at one period of
time and may be updated annually or bi-annually to
incorporate any new research. Where as it may appear
unorthodox to limit the research findings in this way, the
results should be an unbiased and objective account of
the existing research as long as the researcher has appro-
priately defined the review criteria. To our knowledge no
other systematic reviews pertaining to open source soft-
ware development exist.

Search strategy and study selection
Figure 1 maps the process by which articles were
selected for the systematic review. We wanted to ensure
that the search would retrieve articles from a variety of
disciplines such as economics, law, information systems,

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 3 of 16

management and social sciences. Trial searches per-
formed in discipline-specific academic databases
returned few articles of value. Therefore, we decided to
use multidisciplinary and comprehensive databases,
eventually choosing ISI Web of Knowledge and Google
Scholar.
Since it is not possible to search Google Scholar by

topic (or abstract), the keywords were expanded to
include: innovation(s), lesson(s), developments, under-
standing and determinants. The search retrieved all arti-
cles where at least one of the keywords in addition to
the phrase “open source” was found in the title. It was
necessary to restrict the search to words found in the
title in order to constrain the search results to a man-
ageable level (less than 10,000 results). The search was
also constrained to the subject areas of:

• Biology, life sciences and environmental science
• Business, administration, finance and economics

• Engineering, computer science and mathematics
• Medicine, pharmacology and veterinary science
• Social sciences, arts and humanities

The search was performed on December 7, 2009 and
repeated on March 15, 2011 returning in total 788 articles.
An article was excluded as soon as it was clear that it did
not satisfy the inclusion criteria. Each excluded article was
tagged with an exclusion reason. The full text was read by
the first author (CÅ) for articles thought to meet the
inclusion criteria. In cases of uncertainty, she discussed
the inclusion of certain studies with the co-author, JAR.
Since we were not able to search abstracts within

Google Scholar, we were concerned that the title-based
search may have missed important articles. Two rela-
tively recent and comprehensive literature reviews [8,17]
concerning open source software development were
retrieved as a part of the Google Scholar search. The
references of these reviews were evaluated, and articles
found to meet the inclusion criteria (n = 10) that had
not previously been identified were included. (Twenty-
five literature review references were labeled as dupli-
cates since they had already been identified through the
general search.) In the end, 47 articles were included in
our systematic review (see Appendix I included as an
additional file for a list of the articles).

Inclusion and exclusion criteria
We included multidisciplinary articles that empirically eval-
uated open source software development characteristics
and barriers. We excluded articles not relevant to our
research questions. These included the exclusion of such
topics as: determining the success of an open source pro-
ject (we were most interested that the project had created a
product, not how many times the product had been down-
loaded), comparisons of efficiency between open source
and proprietary methods, open source’s impact on innova-
tion models, the adoption or use of open source products
(again we focused on creation, not use), analyses of how
firms profit from open source, among many other topics.
Articles must have been based upon empirically gener-

ated evidence, either quantitative, qualitative or mixed
methods. Theoretical articles, simulation models and
non-academic texts were excluded. Articles were mostly
retrieved from peer-reviewed journals or academic con-
ferences, however, four working papers were also
included. We decided to include these articles as long as
they met the quality criteria. Only articles written in
English were included.

Quality assessment
Each article’s quality was evaluated by answering the fol-
lowing questions:

Formulate search method

Database search
(2 databases)

Duplicate screening

Articles screened by title and abstract
(n=957)

Duplicates removed (n=270)

Articles excluded (n=862)

Full text reviewed
(n=95)

Citation review
(2 literature reviews)

Articles excluded (n=58)

Articles included (n=10)

Articles included in synthesis
(n=47)

Articles identified (n=1,227)

Figure 1 Article selection. ISI Web of Knowledge and Google
Scholar were both searched with the key phrase “open source” in
the title in addition to a number of keywords. These searches
returned 1,227 articles which were screened for relevance according
to the inclusion criteria. In the end 47 articles were included in the
synthesis.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 4 of 16

• Is the article based upon empirical evidence?
• Did the article clearly articulate its research ques-
tion or hypothesis?
• Was the study design clearly articulated indicating
how the data was gathered and analyzed?
• Are the findings justified based upon the study
design and data?

The quality assessment was kept simple because the
articles came from diverse academic disciplines in
addition to being a mixture of quantitative and qualita-
tive research. As long as the article managed to rudi-
mentarily answer the quality assessment questions, it
was included. Only three articles were excluded for
quality reasons (two for study design [18,19] and the
other for findings not justified based upon the data
[20]).

Synthesis
Synthesis (the step of compiling the findings of the
included studies) proved complicated due to the vari-
ety of research methods and academic disciplines. No
two quantitative surveys were the same. Different
groups were targeted, different questions asked and
different theories were used to evaluate the results.
Therefore, it was inappropriate to perform a meta-
analysis on the quantitative data due to the heteroge-
neity of the data. The qualitative data provided rich
descriptions and better contextual understandings of
the open source model. We determined that the most
relevant method to synthesize the studies was to focus
on the findings or conclusions of the articles, keeping
in mind the context in which the conclusions were
made.
Treating the findings in this way allowed us to use a

qualitative synthesis approach called meta-ethnography.
This approach, developed by Noblit and Hare [21],
allows researchers to synthesize findings across studies
according to the following phases:
1. Getting started: In this phase the researcher chooses

the topic for synthesis.
2. Deciding what is relevant to the initial interest: This

phase sets out the search strategy.
3. Reading the studies
4. Determining how the studies are related: In this

phase the researcher tries to find common and recurring
concepts or themes across the included articles.
5. Translating the studies into one another: Here the

researcher takes the findings from each article within
the context of the article and compares and contrasts
them to the next article’s findings.
6. Synthesizing translations: Finally the researcher

constructs a high-level interpretation from the data.

Results
Description of the studies
The forty-seven studies included in the review were
published between 2000 and 2011. Research methods
used were qualitative (n = 19), quantitative (n = 22) and
mixed methods (n = 6). In the quantitative studies sam-
ple sizes were both large (2700+ respondents [22]) and
small (13 respondents [23]). The most common qualita-
tive methodology used was case study. Academic disci-
plines represented are economics, information systems,
law, management and social sciences. Two-thirds of the
studies were focused on large, active open source soft-
ware development projects meaning that the findings
are skewed in favor of successful projects with an active
developer base (which are actually the minority of open
source software development projects) [24-27]. When
presenting the results, we tried to emphasize where this
bias is present. The principle findings for each of the
studies are summarized in a table which is available
upon request.

Synthesis results
Table 1 summarizes our synthesis results. These are
characteristics repeatedly occurring in the research that
we interpret as pertinent for applying open source con-
cepts to drug discovery. The categories emerged from
the articles and give a good representation of major
findings. Each characteristic is described in greater detail
within this section.
Common misconceptions
Firstly, it is important to dispel some common miscon-
ceptions. Open source is often portrayed in the media
as a way to get an army of programmers to volunteer
their services to jointly develop bug-free software in
record time. Linux and Apache are the most commonly
mentioned, however, the most exceptional. In reality,
the vast majority of open source projects has only one
or two developers and has not yet released any opera-
tional software [17,24-27]. In most projects the project
leader is the project founder and the project maintainer
[27]. There is little collaboration, and most development
actually takes place in isolation [22,28].
Open source projects are not all community-based.

They may also be initiated and controlled by a firm.
Mozilla Corporation decides who can change the official
version of the popular, open source web browser, Fire-
fox. Anyone can download the source code and modify
it, but they cannot call the new version Firefox unless
the changes are performed through Mozilla’s official
change control process. It is the firm’s challenge to
attract external developers to a firm-led project [29].
Mozilla tries to develop a sense of ownership and exci-
tement about the software which will lead to

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 5 of 16

contributions [30]. Many firms also pay employees to
contribute to both firm-led and community-led projects,
such as IBM’s involvement in the community-driven
Apache. Firms save money not only by using open
source software but also by receiving testing and
improvement feedback gratis from volunteers [31].
Firms are an active player in the open source movement
[32]. According to one comprehensive survey in 2003
more than a quarter of open source software developers
were paid by a commercial firm to make contributions
to open source projects [27].
A final misconception is that all programmers

involved in open source are selflessly and altruistically
donating large amounts of time to code and bug-fix.
True, many programmers contribute large amounts of
time. Surveys have found that developers expend on
average 11 hours a week on open source efforts (a med-
ian of 7 hours), more than 25% of a standard work week
[27,33]. It is important to examine these figures, though,
as they lump together many different types of develo-
pers. As we will discuss later, it is common in large pro-
jects to have a small, core team of members who
dedicate significantly both in time and output. Addition-
ally those programmers employed full-time to contribute
will have above-average participation levels. Therefore,
these two groups skew the averages. The majority of
programmers participate only occasionally, and their
contributions may take little or no effort.
Lakhani and von Hippel found that participants of an

Apache help forum used on average 1-5 minutes to
answer a question [34]. They were able to provide assis-
tance so quickly because they only answered questions

where they already knew the answer and ignored those
they did not. The authors called answering questions “a
costless side-effect” to the main objective of learning
about potential problems. In another similar example,
newcomers to Freenet would often donate previously
developed code as a feature gift [35]. Since little to no
modifications were necessary, the cost of sharing the
code was near zero yet the benefit to the community
was significant.
A review of the motivations (detailed below) shows that

very few participants are actually selfless. Common moti-
vations reported are those where the programmer satisfies
a need - learning, using the code for his/her own purposes,
monetary rewards or demonstrating his/her ability to
assist in finding a job or being promoted. Research has
demonstrated that the amount of effort expended is corre-
lated to the programmer’s selfish motives [36-38]. Ghosh
found in a comprehensive survey that the majority of con-
tributors classify their relationship with the community as
“I take more than I give” [22].
Attracting participation
Attracting participation is a prerequisite for collabora-
tion and likely the most differentiating factor between
an individual’s hobby project and a successful open
source project [28,32,39]. Schweik et al. argues that
attracting contributors determines the quality, scalabil-
ity, longevity and ultimately the success of a project
[32]. Projects with higher activity levels are in more
advanced states of development and more likely to
attract developers [40,41].
Attracting participation presents the project founder

with the challenge of attracting highly skilled

Table 1 Open source software development characteristics

Category Characteristic

Attracting
participation

• Motivations are diverse; no one singular motivation dominates for individuals.
• Sustained participation of contributors is difficult to achieve but can be influenced by stressing the importance of the

individual’s contribution as well as fostering an atmosphere of learning.
• Firms are profit-seeking and, as to be expected, motivated by economics.

• Individual and corporate motives can co-exist harmoniously.

Management of
volunteers

• Contributors are not assigned to tasks; they choose the tasks that suit them.
• Contributors complete tasks at their leisure and have freedom of design.

• Decision-making is consensual in large projects.
• Successful project leadership for large projects follows a motivational style.

Control mechanisms • Large projects are controlled by small groups of core members.
• The quality of the changes is controlled through the peer-review process.

• Modular designs allow for incremental and expedient growth, as well as speedy retraction of faulty modules.
• To attempt to control the volume of information circulating in the community, rules and norms are communicated and

expected to be followed.
• Newcomers to large projects tend to enter through an informal but controlled introduction.

Legal framework • Large projects take measures similar to corporations to protect their work.
• Contributions are copyrighted with due credit given.

• Most contributors adopt a license that is known and trusted.
• The choice of license is not necessarily as important as the norms that contributors follow.

Physical constraints • The end-product is intangible, non-rival with a marginal cost near zero.
• Contributors must have access to a minimum technical infrastructure.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 6 of 16

programmers in scarce supply. A programmer needs to
understand a project’s architecture, programming lan-
guage and standards before writing a single line of code
[35,42]. Without these skills, postings will appear to be
written in a foreign language. Not only is the supply
scarce, but the demand is great with hundreds of thou-
sands of open source projects competing for program-
mers’ abilities.
Motivations for participating are diverse; no one singular

motivation dominates for individuals [22,36,43]. The most
commonly reported individual motivations are displayed
in Table 2. Benbya and Belbaly found that economic,
social and psychological motives can coincide [44].
Sustaining participation is difficult to achieve. One

study reported that large-project contributors leave a
project within one year [47]. Another study focusing on
both large and small projects found that the median
length of project participation was 1.2 years [27]. Fang
and Neufeld state that “80% of open source software
projects fade away due to insufficient long-term partici-
pation” [51]. They found in one case that motives chan-
ged over time, and those programmers that continued
to learn and develop from their role in the community
as well as those that identified highly with the commu-
nity were much more likely to continue participating
[49,51]. This finding was reinforced by other studies
that found that individuals who feel that their contribu-
tions are highly valuable for the project are likely to
become more engaged [27,30,38,45]. Those program-
mers who participate because they need the software for
their own use typically exit the community when their
needs are met [47]. Since many participants will only
participate marginally, a project needs to attract many
more participants than it actually needs [55]. Attracting
participation and then sustaining it presents one of the
biggest barriers to keeping a project moving forward.
Due to the difficulty sustaining participation from

individuals, it is often desirous to attract firms to a pro-
ject. They offer considerable and stable resources. As

mentioned earlier, being paid to contribute is evidenced
in above-average participation levels [33,46]. When
firms actively contribute to a project, they contribute
more than half of the code [29]. They also perform
necessary non-development activities such as testing and
writing documentation [29]. Firms are profit-seeking
and, as to be expected, motivated by economics [50,56].
Firms contribute either because they sell complementary
products to open source software (like hardware or con-
sulting) or they use the software and need to specialize
it for their own needs [50,56,57].
Individual and corporate motives can co-exist harmo-

niously. Approximately one-third of the projects hosted
on SourceForge (this includes both firm-led and com-
munity-led) receive contributions from both groups
[29]. In order to achieve this harmony Bonaccorsi and
Rossi assert that firms have to conform to the values of
the community [56]. If the programmers do not trust
the firm, they will not contribute.
Management of volunteers
Managing volunteers is a tricky business. As volunteers
they can easily quit volunteering if they become dis-
gruntled or disillusioned with a project. Even worse in
open source, they can take the code and create a “fork”
(splitting the project into two or more projects devel-
oped separately), dividing the original project’s valuable
resources as fellow programmers join the new fork
[30,58-60].
This loose affiliation does not suit standard project

management practices where leadership assigns tasks
and deadlines. Rather successful project leadership for
large, open source projects follows a motivational style.
The role of the leader in large projects is to motivate
the community, keep the project moving forward
towards a common vision and attract more developers
[23,38,61]. To do this, a leader needs to be a good pro-
grammer with excellent knowledge of the project, but
also be a trusted member of the team aligned with the
objectives of the community [38,61].

Table 2 Individual motivations for contributing

Motivation Description Reference

Economic The programmer earns money from his/her contributions. [22,27,31,37,38,43,45,46]

Enjoyment The programmer likes contributing. It is fun. [33,34,38,43,45-48]

Identity The programmer identifies him/herself as an open source programmer and wants to maintain that
identity.

[33,45,49]

Learning The programmer wants to learn about the software, programming language, architecture, existing
problems, new features, etc.

[22,33-36,43-45,48,50-52]

Networking The programmer wants to develop a peer network. [27,36,43]

Own use The programmer needs the code for his/her software. [27,33,35,38,43,45-48,50,51,53]

Political The programmer believes that “all software should be free”. [27,33,34,39,43-45,54]

Signaling The programmer wants to signal (or demonstrate) his/her skills to a wider audience, possibly to assist in
finding a job, being promoted or another extrinsic reason.

[34,35,38,45-48,50]

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 7 of 16

To ensure that decisions are aligned with the commu-
nity’s objectives, decision-making is a transparent, con-
sensual process. Discussions leading to decisions are
held publicly, allowing anyone to join the discussion.
The resulting decisions will be consensual with leaders
being especially attentive that any criticisms are
addressed. This is true in both community and firm-led
projects. Episodes where this model is not followed can
lead to conflict within the community [59].
Keeping the project moving forward is a challenge

when contributors choose to perform only the tasks
that suit them. Sometimes they choose from “To Do”
lists which provide rough, high-level requirements
[61,62]. More often a developer will perform a task
without initially alerting the community [24,62]. Bugs
are reported with the fix attached [62,63]. This ability
to perform work without making a public commitment
is important. Less-skilled individuals have the opportu-
nity to attempt to solve a problem or create a feature
without fear of public failure. If they fail, no one will
know because they have not publicly committed them-
selves. When they succeed, the code is made available
[61].
In addition to a lack of resource planning, there is also

no evidence of project planning (scheduling, listing deli-
verables, etc.) [17,24,63]. Deadlines are virtually unheard
of within open source projects [47]. Many projects
experience a slow pace of development with few or no
changes made during a year [26]. Programmers contri-
bute according to time and interest and have freedom of
design. Contributors determine themselves how they
want to code a solution to a task or bug [61,63].
Control mechanisms
In order to develop reputable, high quality software
through volunteers, a certain level of control is neces-
sary. Control is maintained through a variety of ways
including tight restrictions over who can change the
official source code, peer review for quality control, and
enforcement of community norms and rules.
Large projects typically have an organizational struc-

ture of three concentric circles:

• An inner core team made up of a handful of indi-
viduals who are responsible for most of the output
including the maintenance tasks [28,35,64,65]. These
individuals have “committer” status meaning that
they are the only ones that can update the official
code and release it. This allows the community to
ensure that new code is properly tested before being
released as an official version. It also ensures that
rogue elements do not release malicious code. In
firm-led cases, committer status may be restricted to
firm employees [42]. Finding individuals who will act
as a committer and perform many of the mundane

projects tasks is a barrier to maintaining project
momentum.
• A middle circle made up of (hopefully) large num-
bers of developers who generate code, perform peer
review and fix bugs [64]. It is likely that a large
number of these individuals will be inactive [51].
• The outer circle is comprised of (again hopefully)
many individuals who report bugs but do not code
[64].

Before a committer releases a new or modified piece of
code, it must have successfully met the community’s
quality control criteria. This is typically performed
through the peer-review process [62]. The new code is
made available to the community for review and test. On
many of the larger projects, code will not be included in
a release until a set number of developers have reviewed
the code [64]. Since peer-review is a public activity
(archived in the publicly available mailing lists or discus-
sion groups) it is also a useful learning tool where poten-
tial community members can become familiar with the
code and learn from the mistakes of others [64].
If it is discovered that there are problems with a ver-

sion of the software, the modular design typical of open
source projects allows for quick review, fix or retraction.
Modularity allows contributions to be made through
small, independent tasks that can be easily integrated
according to the project’s standards. Modularity has sev-
eral advantages: new modules can be quickly written, a
programmer does not need to understand the entire
application to code a module, and modules can be
quickly retracted if necessary [24,60,66].
Large projects with hundreds of members can be

rapidly swamped by postings from members and outsi-
ders, making it difficult for members to process and
react to all of the information. In an attempt to control
the volume of information, rules are communicated and
expected to be followed [45]. For example, it is often
required to consult frequently asked questions and the
list of known bugs before posting a bug report [34,61].
Unwritten norms control the behavior of the commu-

nity. Community members who defy the norms and sta-
ted rules risk being “flamed” (publicly, and often
harshly, admonished). Stewart and Gosain [54] define
the norms as:

• “Do not fork,
• Do not distribute the code changes without going
through the proper channels,
• Always give credit; never remove someone’s name
from a project without that person’s consent.”

The risk of being flamed, mocked or simply ignored
makes newcomers careful about their introduction to

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 8 of 16

the community. They tend to enter through a con-
trolled, unofficial introduction, called a joining script.
This typically starts with a period of “lurking” or obser-
ving the project unannounced. Once a comfort level is
achieved, they move to the next level reporting bugs,
possibly followed by developing code and with sufficient
commitment and demonstrated ability becoming a com-
mitter [35,42]. Becoming a committer generally entails a
demonstration of project competence, knowledge and
commitment. To become a committer is to be recog-
nized by the community as one of its best developers
[38,63,67].
Legal framework
Open source does not operate in the absence of a legal
framework. Rather it capitalizes on derivations of com-
mon legal practices. O’Mahony demonstrates that large,
open source projects take measures similar to corpora-
tions to protect the reputation of their products, often-
times creating non-profit legal entities. These legal
entities allow projects to protect volunteers from liability
and establish trademarks. Where as anyone is allowed to
extract the source code, change it and re-release it, if
the project is trademarked they are not allowed to do so
under the same brand name. Trademarks legally prevent
the release of unauthorized versions that may be of
inferior quality or divergent from the strategic aims of
the project [68].
Contributions are copyrighted with due credit given.

Observers often question why programmers are willing
to give their work away for free. O’Mahony responds
that one needs to “examine what is given away (code)
and what is retained (rights)” [68]. Contributors utilizing
one of the Open Source Initiative’s licenses maintain a
level of control regarding how their contributions may
be used and ensure that adequate attribution is given.
By choosing a viral license (a license that impacts future
versions), contributors have legally bound all future ver-
sions to the same licensing terms.
Most contributors adopt a license that is known and

trusted. The viral license, GPL, is the most popular
license amongst open source software development pro-
jects [25,26]. One theory for this is that volunteer devel-
opers shy away from unfamiliar and distrusted licenses
[39]. GPL was created by Richard Stallman and is used
by Linux, giving programmers the sense of security that
they desire. This need for familiarity may explain why
software is simply not placed in the public domain,
avoiding the entire licensing dilemma. A programmer
could do so by simply declaring that the work resides in
the public domain. As Maurer and Scotchmer state,
“this strategy would be simpler to implement than the
elaborate licenses that open source actually uses” [9].
With the involvement of more and more proprietary

software firms in open source communities, the viral

GPL licenses has become a barrier. Viral licensing poses
significant risks to these firms with the potential for
inadvertently mixing their proprietary software with the
viral GPL-software. Belenzon and Schankerman found
that programmers strongly sort by license type, meaning
that developers consistently use either viral or non-viral
licenses. Those that consistently use non-viral licenses
are more likely to contribute to projects sponsored by
corporations [25]. This may explain as of 2008 why
non-GPL projects on SourceForge receive more contri-
butions than GPL-based projects [25]. Vetter argues that
the viral terms impede deployment, slow its adoption
rate and inhibit interoperability and compatibility [69].
The choice of license is not necessarily as important

as the community’s norms. Projects licensed under non-
viral licenses (such as Apache web server) can be legally
copied and sold as a proprietary product (under a differ-
ent name). Where as this may appear superficially to be
a money-making opportunity, in reality the potential
rewards are small. Firstly, because the savvy program-
mer will know that the software is available open source
and will not pay for a similar proprietary product. Sec-
ondly, because it violates all of the norms mentioned
earlier, this new proprietary version will not benefit
from the future improvements of the open source com-
munity. Programmers will continue contributing to the
open source version [68,69].
Physical constraints
While we have addressed many structural and legal char-
acteristics, it is important to mention the actual end-pro-
duct of open source software development - the software.
It is intangible, unless burnt to a CD or placed on a
memory stick. It is what economists call non-rival. An
apple is rival. If one person eats it, no one else can. Soft-
ware is non-rival. Many people can make copies of it and
use it without impacting each other. Software also has a
marginal cost near zero - it costs almost nothing to pro-
duce one additional unit. This means that if the develop-
ment labor costs are free, it has ultra-low design and
distribution costs [24]. Other examples of non-rival
goods are knowledge and broadcasted television.
In order to contribute to an open source project, pro-

grammers must have access to a minimum technical
infrastructure. All open source projects must be hosted
on a website that is accessible to the general public.
This requires the creation and maintenance of a website
and server. Individual programmers must possess com-
mon communication tools (a computer, e-mail, file
transfer and access to discussion groups) as well as have
relatively fast and efficient access to the Internet [45].
Bonaccorsi and Rossi attribute the preponderance of
European and American programmers to the superior
Internet connectivity available in these areas [56]. These
technical requirements are a barrier to entry.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 9 of 16

Discussion
The final phase of the meta-ethnography approach is to
synthesize the results, constructing a high-level interpre-
tation from the data. We have taken the characteristics
pertaining to open source software development and
applied them to drug discovery.

Limitations
Before discussing the identified characteristics’ applic-
ability to other settings, we must be clear about the lim-
itations of our systematic review. We have attempted to
be transparent and unbiased about each step performed
to come to our summary of findings. Unfortunately
though, it is impossible to reduce all phases into
mechanistic, reproducible procedures. Our subjectivity
has influenced our assessment.
The relatively large number (n = 10) of additional

papers identified through the literature reviews demon-
strates the difficulty of performing a multi-disciplinary
review. Few databases support this breadth with Google
Scholar being the most comprehensive. However, with
its limited search capabilities, important papers may
have been missed.
The full text articles were read by only one of the

authors. Articles uncertain to have met the inclusion
criteria were discussed. Therefore, theoretically more or
fewer studies may have been included if the full text
articles had been read by multiple individuals. We
attempted to eliminate this bias by defining stringent
inclusion and exclusion criteria, and when in doubt we
included the article.
Choosing which characteristics to portray was also

subjective. We consciously attempted to choose those
characteristics that reappeared in multiple studies as
well as those originating from high-quality articles while
being wary to the bias that the bulk of the research
focused on large, successful projects.
When translating relevant characteristics from soft-

ware to drug discovery, we present our views of the pos-
sible applicability. This is not based on a given
methodology but is our interpretation.
Despite these methodological weaknesses, we believe

that we have offered a useful starting point for taking
the lessons learned from open source software develop-
ment research beyond computer software.

Open source drug discovery
Open source offers exciting prospects for innovation,
but can methods used to create intangible software be
extrapolated to produce tangible medicines? Firstly, for
clarity, it is important to define open source drug dis-
covery. There are many articles [70-72] and books
[73,74] proposing and discussing the topic, and thereby

several interpretations. We will use the definition that
we believe is the most exact from a recent summary
report by Results for Development Institute (R4D) [75].
R4D defines three types of “open” when examining open
source in the context of drug discovery:

• Open access: Free and open access to research
data
• Open collaboration: A collaborative workflow
across organizational boundaries
• Open rules: The rules that mandate the openness
(for example, contracts, intellectual property and
licenses)

To be unequivocally “open” projects must adhere to
all three requirements.
Notice that R4D’s definition does not state where

within the phases of drug discovery and development
these three “open” types are applied. This is an area of
debate and uncertainty. There seems to be a general
agreement that open source is a viable model for pre-
competitive activities [75]. Precompetitive within drug
discovery is generally considered to be all stages prior
to patenting a promising, optimized lead compound
[76]. Applying open source beyond this point may only
make sense for drugs targeted at “neglected” diseases,
those diseases largely ignored by industry since the
market is considered unprofitable. Medicines devel-
oped for these diseases are primarily done so through
product development partnerships, organizations that
focus on developing new medicines and diagnostics for
diseases inherent to low and middle income countries.
These medicines may or may not be patented. Since it
can be argued that the drug development phases (not
only the discovery phases) for neglected diseases are
non-competitive due to the absence of a profitable
market, open source may be relevant for preclinical
testing and process development. The applicability of
open source to clinical trials is questionable since open
collaboration is not appropriate for rigidly designed
and tightly controlled trials and open access not
applicable for confidential patient data. However, one
may argue for a hybrid approach to clinical trials
where all involved use a semi-open solution with infor-
mation shared through a closed extranet.
For the purposes of our examination we will confine

our analysis to drug discovery (all phases prior to precli-
nical testing), although we believe that it would be use-
ful in another study with a broader analysis to examine
the applicability within drug development for neglected
diseases. Below we contrast the open source software
characteristics identified through this review to drug
discovery.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 10 of 16

Attracting participation to drug discovery projects
The research for open source software development has
demonstrated that attracting participation is critical in
order to move the project from an individual’s hobby
project to a successful open source project. Numerous
motivations must be present to attract sufficient partici-
pation. Are there diverse motivations within drug dis-
covery both for individuals and firms?
We hypothesize that personal motivations for scientists to

contribute will not largely differ from those of software pro-
grammers. Motivations such as enjoyment, identity, learn-
ing, monetary rewards, networking, political and signaling
are just as viable for scientists as they are for programmers
[71]. The problem is that drug discovery often also requires
a laboratory and physical resources, and these motivations
are not sufficient if a monetary outlay is required. Munos
divides pharmaceutical research and development into
those activities that require “intelligence and intuition, but
little infrastructure” against those that require physical
assets [72]. These motivations fit well with the former
knowledge-based activities (he gives examples of identifying
targets, understanding metabolic networks, and designing
computerized disease models). However, if open source
drug discovery was limited to the knowledge-based tasks,
no new drugs would be discovered. Therefore, either firms
must also be motivated to participate, providing access to
laboratories and physical supplies, or projects must receive
funding through research grants (or both).
This latter option is not unlike firm-led open source

software development projects where a single funder
employs programmers to work on a project and maintains
control over the source code. Single payer open source
drug discovery projects can also abide by the definitions of
open access, collaboration and rules. We offer in Table 3
potential motivations for both private and public organiza-
tions to participate in and/or fund open source drug dis-
covery tasks. These are not motivations for an
organization to sponsor the entire drug discovery process,
but only to participate in or fund discrete, time-limited
tasks such as the curation of genetic disease data, valida-
tion of the feasibility of assays and models on established
targets, or sharing of data related to the identified com-
pound. In line with the finding that firms are motivated by
economic returns, many of these motivations are based
upon the assumption that they will lead to financial
rewards. For example, one potential motivation for an
emerging country pharmaceutical manufacturer is to posi-
tion itself for the role of manufacturer.

Management of volunteers in drug discovery projects
Drug discovery, unlike computer programming, follows
a more rigid project management process. Tasks must
follow a scientifically-prescribed process. It is helpful to

duplicate certain tasks (e.g., laboratory experiments) to
confirm results but not all as this adds unnecessary
expense. Therefore, much of the flexibility allowed pro-
grammers is not relevant for drug discovery. As volun-
teers, scientists will certainly pick the tasks that match
their motivations. This means that open source drug
discovery projects must have a strong project manage-
ment approach, continually articulating the discrete
tasks required at the time as well as finding the support-
ing funds. This is an ideal role [72,75] for a Product
Development Partnership (PDP), organizations that
focus on both drug discovery and development for
neglected diseases. Not only are PDPs familiar with the
science behind the diseases, they are also experts in
developing new medicines relevant for their target mar-
kets (inexpensive, durable and straightforward). They
may also play a role in launching the product locally
[77].
Munos states that PDPs have already “adapted the

open-source concept and combined it with outsourcing
to create a new, low-cost business model...in which a
part of R&D is open-sourced while the rest is out-
sourced. To function, however, it needs strong project
leadership and expertise in the minutia of drug R&D...”
[72]. He sites the Medicines for Malaria Venture which
gathers its projects through open calls, uses a Scientific
Advisory Committee to tightly manage its projects and
outsources tasks to collaborative research teams.
Other candidates to fulfill the project management

role may be disease-specific charities and governmental
research organizations. Regardless of who performs the
role of project manager, a significant challenge, similar
to software development, will be to keep the project
moving forward when contributors choose to perform
only the tasks that suit them. We have already estab-
lished the need for external funding in open source
drug discovery. This funding will undoubtedly be linked
to project milestones with associated delivery dates. We
argue that some funding will likely need to be used to
pay employees (or others involved) to work on the pro-
ject. This will give the project necessary momentum,
without which volunteers may become disgruntled and
disinterested. Again this does not deviate from many
firm-led open source software projects that pay employ-
ees to code the software.

Control mechanisms of drug discovery projects
There are two central questions regarding control
mechanisms that will determine the applicability of
open source to drug discovery. Is drug discovery modu-
lar, and how will the quality be managed?
Drug discovery for novel products may be broken

down into four phases, each taking years to complete:

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 11 of 16

1) Basic Research focuses on gathering detailed
knowledge of the disease organism and how it inter-
acts with the human body [78]. This phase is per-
formed mainly by academics and public-sector
researchers through grant funding.
2) Target Identification and Validation is the pro-
cess of determining biological or chemical targets
which may interfere with the disease organism [78].
This phase may be further broken down into target
screening, validation and early assay development
[79]. It is performed by biologists, biochemists,
geneticists and bioinformaticians employed princi-
pally by governments or universities [78].
3) Lead Identification is the process of identifying
compounds that have desirable effects on the

validated targets [78]. Tools used to identify leads
are high throughput chemistry, combinatorial chem-
istry, computational biology as well as literature
searches of known compounds. Industry is typically
best at high throughput chemistry as they own the
proprietary chemical libraries necessary. The other
tools may be performed either in universities, gov-
ernment research facilities or industry. However,
industry medicinal chemists, due to their optimiza-
tion and development experience, are more apt to
identify lead compounds that will succeed in optimi-
zation (meeting, for example, safety and absorption
requirements).
4) Lead Optimization focuses on modifying a hand-
ful of compounds for in vivo results such as

Table 3 Potential motivations for organizations to participate in an open source drug discovery project

Innovator Funder or
Performer?

Motivation

Emerging country biotechnology,
pharmaceutical or vaccine manufacturers

Both • Employee retention - allowing employees to participate in external projects as a
percent of their work week to increase work satisfaction

• Employee training - new employees can receive on-the-job training by contributing
to open source projects and receive performance appraisal by the community

• Monetary - projects with external funds may hire industry to perform specific tasks
• Monetary - payment for the drugs manufactured

• Open innovation - receive ideas and feedback from external sources in exchange for
assurances that the end result will be made available affordably to developing nations
• Simplify regulatory process - making the research data publicly-available and open to

scrutiny may engender more trust on behalf of the regulatory body

Large, multi-national biotechnology,
pharmaceutical or vaccine manufacturers

Both All from above plus:
• Reputation - corporate social responsibility

• Priority regulatory review - if they champion a project for a neglected disease, they
may receive a priority review voucher (open source may speed up the process to the

voucher)

Small, niche biotechnology or pharmaceutical
manufacturers

Both • Monetary - may open external funding opportunities that were otherwise closed
• Monetary - payment for the drugs manufactured

• Open innovation - receive ideas and feedback from external sources in exchange for
assurances that the end result will be made available affordably to developing nations

Charities Funder • Aid - Developing country scientists and innovators gain free access to utilize the
research or further develop it

• Efficiency - tasks should be delivered faster and cheaper
• Transparency - donors can readily see how their money is being used, rather than

relying solely on reporting mechanisms

Governments Funder • Aid - Developing country scientists and innovators gain free access to utilize the
research or further develop it

• Efficiency - tasks should be delivered faster and cheaper
• Innovation and subsequent tax revenues - anyone can take the publicly-funded
research and further develop it for other aims with potentially profitable outcomes

• Transparency - citizens can readily see how their money is being used

Product development partnerships Funder • Competition - may create a competitive landscape between individuals and/or
organizations attempting to complete the task first

• Efficiency - tasks should be delivered faster and cheaper
• Transparency - donors can readily see how their money is being used, rather than

relying solely on reporting mechanisms

Academic institutions, government research
organizations and research hospitals

Performer • Efficiency - feedback on research can be received long before publishing
• Fair play - anyone can take the publicly-funded research and further develop it for

other aims
• Transparency - citizens can readily see how their money is being used

Contract research organizations Performer • Monetary - projects with external funds may hire CROs to perform specific tasks
• Signaling - demonstration of abilities for potential employers

Generics manufacturers Performer • Monetary - payment for the drugs manufactured

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 12 of 16

bioavailability and the avoidance of toxicity [79]. The
compound that is successfully optimized will start
the development phase including scaling up produc-
tion quantities as well as animal safety studies.

Each of these phases can be further broken down into
many discrete tasks demonstrating that drug discovery
is modular. With project management constantly identi-
fying the tasks currently needed, scientists should be
able to find small, discrete tasks that motivate them to
contribute. Yet there is no clear formula how to subdi-
vide these processes into concrete tasks. Maurer pro-
vides example tasks for Lead Identification [71];
volunteers contribute by searching online databases for
known leads against a specified target, running compu-
tational chemistry simulations, and performing physical
chemistry experiments to verify the simulation results.
Those lead compounds predicted to be promising by
multiple volunteers would move onto optimization.
The project manager also needs to ensure that multi-

ple external contributors are generating output of a con-
sistent quality. Many questions regarding the quality of
external contributors can arise such as the quality of the
compounds used for screening, inter-lab equipment dif-
ferences, accuracy of data extraction, etc. [80]. This
incremental quality is monitored through publishing in
peer-reviewed journals and as well as by the use of
Scientific Advisory Committees. A recent experience of
an open source drug discovery project demonstrates
that perceptions of what constitutes peer review within
open source can differ [81]. Some believe that publish-
ing results for all to see on a publicly accessible website
is sufficient (similar to open source software develop-
ment), while others insist that results must be published
in a peer-reviewed journal both to secure quality control
and wider circulation of the results. With a dearth of
ongoing open source projects, quality control will likely
need to remain in the traditional realm of peer-reviewed
journals until vastly more scientists begin to participate
in open source projects.

Legal framework of drug discovery projects
As with software, legalities need to be simple, under-
standable and trusted. They become more complicated,
however, because the principal legal protection used for
drug discovery is patents, not copyright. Where as copy-
right protects an original work (such as a document,
song or painting), patents protect ideas. Software code is
considered an original work and, therefore, automati-
cally covered by copyright. Patents are not automatic
and must be sought. Applying open source models to
patent-heavy industries presents many challenges.
Designating a product as free to use, modify and dis-

tribute is more complicated with patents. The equivalent

of an open source (copyright) license for patentable ideas
is the use of the public domain. Ideas residing in the pub-
lic domain are not owned by an individual or corpora-
tion–they are the property of the public and, therefore,
may be used, augmented and manufactured by anyone
without crediting or notifying the innovator. This may be
cause for concern for innovators who are interested in
maintaining some level of recognition and control over
their inventions. In these instances, an alternative exists–
the invention may be patented and made available to the
public by a license similar to those used by open source
software, for example a royalty-free license to a patented
technology. This, however, may be impractical as patent-
ing is expensive and, therefore, there is little incentive to
do so when the ultimate product (or at least the design)
is intended to be free-of-charge.
If licenses are to be used rather than the public domain,

one should be critical to the use of viral licenses (those
that infect future versions). Firstly, this may be illegal for
licenses of patented products. Patents have a much
shorter lifespan (typically 20 years) than copyrights (life-
time of the author plus 50-70 years depending upon the
country). Once the patent expires, it automatically
becomes a part of the public domain where licenses are
no longer relevant. Future uses of the patented technol-
ogy cannot be bound to a viral license after the patent
has expired as it resides in the public domain. For pro-
ducts typically protected by copyright, viral licenses can
be highly contentious, especially for firms. When choos-
ing a type of license, it is important to carefully weigh the
advantages and disadvantages of each license.

Physical constraints to drug discovery projects
Now back to our original question, can methods used to
create intangible software be extrapolated to produce tan-
gible medicines? We have demonstrated that drug discov-
ery may be broken down into both tangible and intangible
tasks, with the tangible ones requiring access to expensive
facilities and physical goods. The intangible tasks of
knowledge creation are similar to software development in
that they may be performed and communicated virtually.
This knowledge, however, may be either rival or non-rival
depending upon the drug discovery phase. Precompetitive
data may be used by all with the impact of improving the
pace and quality of multiple drug discovery projects [76].
However, competitive (i.e., patented) knowledge is rival,
only available to the innovator or licensee.
The marginal cost of a new drug does not come close

to zero until the medicine is being manufactured. The
cost to manufacture the first pill (including all research
and development costs) is exceedingly high. It is the sec-
ond and subsequent pills that cost little to produce.
These characteristics are contrary to the physical char-

acteristics of software. The question is whether these

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 13 of 16

physical constraints can be overcome by modifying the
model to include funding and paid project leadership to
guide volunteers (as well as paid employees) through the
drug discovery phases.

Conclusions
We have attempted to provide an understanding of open
source software development characteristics for research-
ers, business leaders and government officials who may
be interested in utilizing open source in other contexts,
specifically within drug discovery. We have done so by
examining the existing research through a systematic
review and extracting characteristics common to open
source software development that we believe are relevant
when building an open source drug discovery initiative.
Open source is a desirable model for drug discovery

because it offers the potential benefits of research being
performed quicker with reduced labor costs while avoid-
ing duplication of efforts. It is particularly relevant for
neglected diseases where insufficient incentives exist to
promote private investment. New drugs for these dis-
eases are discovered and developed primarily with the
use of public or philanthropic funds. From a funder’s
perspective, there are few downsides in grantees adopt-
ing an open source approach, ensuring transparency in
the use of funds and potentially speeding up the project
through supplementary free labor.
Can a new pharmaceutical be developed entirely through

an open source model? Likely not. However, a new drug
for a neglected disease may be shepherded up to clinical
trials utilizing a hybrid open source model combining open
source with other development models such as fee-for-ser-
vice outsourcing. To assist with this development, we
believe that further research is needed on business model-
ing, incentive development and the impact of the use of the
public domain. It is important that this research includes
expert input from researchers, the pharmaceutical industry
and PDPs to assess the practicality and relevance of open
source drug discovery at a task level.

Funding
This review was funded by the Norwegian Research
Council. They did not play any role in the production of
this review or in the decision to submit the manuscript
for publication.

Additional material

Additional file 1: Appendix I: Articles included in the synthesis. This
additional table references all articles included in the synthesis of the
systematic review.

List of abbreviations
GPL: General Public License; a copyleft license, giving anyone the freedom
to use, modify and distribute software with the caveat that all modifications
must also adhere to the GPL; PDP: Product Development Partnership;
organizations that focus on developing new medicines and diagnostics for
diseases inherent to low and middle income countries; R4D: Results for
Development Institute (see reference 75).

Author details
1The Norwegian Knowledge Centre for the Health Services, P.O.Box 7004, St.
Olavs plass, N-0130 Oslo, Norway. 2University of Oslo, Department of Health
Management and Health Economics, P.B. 1089 Blindern, N-0317 Oslo,
Norway.

Authors’ contributions
The review was designed by CÅ and JAR. CÅ performed the review and
wrote the first draft. Subsequent drafts were revised by all authors.

Competing interests
The authors declare that they have no competing interests.

Received: 16 April 2011 Accepted: 28 September 2011
Published: 28 September 2011

References
1. King B: Apache enjoys dominance on the Internet. Financial Times 2005.
2. Twentyman J: Linux tries not to be victim of its own success. Financial

Times 2008.
3. Cook DJ, Mulrow CD, Haynes RB: Systematic reviews: Synthesis of best

evidence for clinical decisions. Annals of Internal Medicine 1997,
126:376-380.

4. The Open Source Definition. [http://www.opensource.org/docs/osd].
5. Chesbrough H: Open innovation - The new imperative for creating and

profiting from technology Harvard Business School Publishing Corporation;
2006.

6. Open Access. [http://en.wikipedia.org/wiki/Open_access].
7. Open Definition. [http://www.opendefinition.org/].
8. Von Krogh G, Haefliger S, Spaeth S, Wallin M: Open source software: What

we know (and do not know) about motivations to contribute. The DRUID
Conference: 17 June 2008; Copenhagen, Denmark .

9. Maurer S, Scotchmer S: Open source software: The new intellectual
property paradigm. In Economics and Information Systems. Volume 1.. 1
edition. Edited by: Whinston A. Amsterdam: Elsevier; 2006:285-322.

10. Muller-Seitz G: The open source software phenomenon as a role model
for networked innovations in biotechnology: An exploratory study.
International Journal of Web Based Communities 2009, 5:212-237.

11. Feller J, Fitzgerald B: Understanding open source software development
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA; 2002.

12. Microsoft. [http://en.wikipedia.org/wiki/Microsoft].
13. Unix. [http://en.wikipedia.org/wiki/Unix].
14. Richard Stallman. [http://en.wikipedia.org/wiki/Richard_Stallman].
15. A Quick Guide to GPLv3. [http://www.gnu.org/licenses/quick-guide-gplv3.

html].
16. About SourceForge. [http://sourceforge.net/about].
17. Scacchi W, Feller J, Fitzgerald B, Hissam S, Lakhani K: Guest editorial:

Understanding free/open source software development processes.
Software Process: Improvement and Practice 2006, 11:95-105.

18. Baytiyeh H, Pfaffman J: Open source software: A community of altruists.
Computers in Human Behavior 2010, 26:1345-1354.

19. Hauge Ø, Sørensen CF, Røsdal A: Surveying industrial roles in open
source software development. Open Source Development, Adoption and
Innovation 2007, 259-264.

20. Fershtman C, Gandal N: Open source software: Motivation and restrictive
licensing. International Economics and Economic Policy 2007, 4:209-225.

21. Noblit GW, Hare RD: Meta-Ethnography: Synthesizing qualitative studies Sage
Publications, Inc; 1988.

22. Ghosh RA: Understanding free software developers: Findings from the
FLOSS study.Edited by: Feller J, et al.. Cambridge: MIT Press; 2005:23-45.

23. Giuri P, Rullani F, Torrisi S: Explaining leadership in virtual teams: The case
of open source software. Information Economics and Policy 2008,
20:305-315.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 14 of 16

http://www.biomedcentral.com/content/supplementary/1478-4505-9-36-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/9054282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9054282?dopt=Abstract
http://www.opensource.org/docs/osd
http://en.wikipedia.org/wiki/Open_access
http://www.opendefinition.org/
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Richard_Stallman
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://sourceforge.net/about

24. Howison J: Alone together: A socio-technical theory of motivation,
coordination and collaboration technologies in organizing for free and
open source software development. Submitted to ICIS 2009 Dissertation
Competition .

25. Belenzon S, Schankerman MA, Street H: Motivation and sorting in open
source software innovation. EDS Innovation Research Programme Discussion
Paper Series 2008.

26. Capiluppi A, Lago P, Morisio M: Characteristics of open source projects.
The Seventh European Conference on Software Maintenance and
Reengineering 2003, 317-327.

27. David PA, Waterman A, Arora S: FLOSS-US: The free/libre/open source
software survey for 2003. Stanford Institute for Economic Policy Research
2004, 20.

28. Koch S, Schneider G: Effort, co-operation and co-ordination in an open
source software project: GNOME. Information Systems Journal 2002,
12:27-42.

29. Capra E, Francalanci C, Merlo F, Lamastra CR: A survey on firms’
participation in open source community projects. IFIP International
Federation for Information Processing 2009, 225-236.

30. Mendonca LT, Sutton R: Succeeding at open-source innovation: An
interview with Mozilla’s Mitchell Baker. The McKinsey Quarterly 2008, 1-7.

31. Hagen S: A comparison of motivation and openness in hybrid open
source and open source software projects. Master Thesis Norwegian
University of Science and Technology, Department of Computer and
Information Science; 2011.

32. Schweik CM, English R, Haire S: Factors leading to success or
abandonment of open source commons: An empirical analysis of
Sourceforge. net projects. The Free and Open Source Software for Geospatial
Conference 2008.

33. Lakhani K, Wolf RG: Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. In
Perspectives on free and open source software. Edited by: Feller J, et al..
Cambridge: MIT Press; 2005:3-22.

34. Lakhani KR, Von Hippel E: How open source software works: “Free” user-
to-user assistance. Research Policy 2003, 32:923-943.

35. Von Krogh G, Spaeth S, Lakhani KR: Community, joining, and
specialization in open source software innovation: A case study. Research
Policy 2003, 32:1217-1241.

36. Hars A, Ou S: Working for free? Motivations for participating in open-
source projects. International Journal of Electronic Commerce 2002, 6:25-39.

37. Haruvy E, Wu F, Chakravarty S: Incentives for developers’ contributions
and product performance metrics in open source development: An
empirical exploration. IIMA Working Papers 2005.

38. Lerner J, Tirole J: Some simple economics of open source. The Journal of
Industrial Economics 2002, 50:197-234.

39. Colazo J, Fang Y: Impact of license choice on open source software
development activity. Journal of the American Society for Information
Science and Technology 2009, 60:997-1011.

40. Chengalur-Smith I, Sidorova A, Daniel S: Sustainability of free/libre open
source projects: A longitudinal study. Journal of the Association for
Information Systems 2010, 11:5.

41. Crowston K, Scozzi B: Open source software projects as virtual
organizations: Competency rallying for software development. IEE Proc.-
Softw 2002, 149(1):3-17.

42. Shibuya B, Tamai T: Understanding the process of participating in open
source communities. FLOSS’09: 18 May 2009; Vancouver, Canada .

43. David PA, Shapiro JS: Community-based production of open-source
software: What do we know about the developers who participate?
Information Economics and Policy 2008, 20:364-398.

44. Benbya H, Belbaly N: A multi-theoretical framework of motivation in
open source software. MCIS 2010 Proceedings [http://aisel.aisnet.org/
mcis2010/13], Paper 13.

45. Hertel G, Niedner S, Herrmann S: Motivation of software developers in
open source projects: An Internet-based survey of contributors to the
Linux kernel. Research Policy 2003, 32:1159-1177.

46. Roberts JA, Hann IH, Slaughter SA: Understanding the motivations,
participation, and performance of open source software developers: A
longitudinal study of the Apache projects. Management Science 2006,
52:984.

47. Shah SK: Motivation, governance, and the viability of hybrid forms in
open source software development. Management Science 2006, 52:1000.

48. Wu CG, Gerlach JH, Young CE: An empirical analysis of open source
software developers’ motivations and continuance intentions.
Information & Management 2007, 44:253-262.

49. Xu B, Jones DR: Volunteers’ participation in open source software
development: A study from the social-relational perspective. ACM SIGMIS
Database 2010, 41:69-84.

50. West J, Gallagher S: Challenges of open innovation: The paradox of firm
investment in open-source software. R&D Management 2006, 36:319-331.

51. Fang Y, Neufeld D: Understanding sustained participation in open source
software projects. Journal of Management Information Systems 2009,
25:9-50.

52. Spaeth S, Haefliger S, Von Krogh G, Renzl B: Communal resources in open
source software development. Information Research 2008, 13:2.

53. Von Hippel E: Innovation by user communities: Learning from open-
source software. MIT Sloan Management Review 2001, 42:82.

54. Stewart K, Gosain S: Impact of ideology in OSS development teams. MIS
Quarterly 2006, 30:291-314.

55. Rullani F: Dragging developers towards the core. Working Paper, Università
Commerciale “Luigi Bocconi”, Milano, Italy 2007.

56. Bonaccorsi A, Rossi C: Comparing motivations of individual programmers
and firms to take part in the open source movement: From community
to business. Knowledge, Technology & Policy 2006, 18:40-64.

57. Iansiti M, Richards G: The business of free software: Enterprise incentives,
investment, and motivation in the open source community. Harvard
Business School Working Paper Series 2006, 07-028.

58. Heckman R, Crowston K, Eseryel UY, Howison J, Allen E, Li Q: Emergent
decision-making practices in free/libre open source software (FLOSS)
development teams. IFIP International Federation for Information Processing
2007, 234:71-84.

59. Jensen C, Scacchi W: Collaboration, leadership, control, and conflict
negotiation in the Netbeans. org community. Software Process -
Improvement and Practice 2005, 10:255-272.

60. Sarma M, Clark E: Virtual innovation within a hacker community an
empirical study of open source software development. Copenhagen
Business School Summer Conference 2009.

61. Yamauchi Y, Yokozawa M, Shinohara T, Ishida T: Collaboration with lean
media: How open-source software succeeds. CSCW’00: 2-6 December 2000;
Philadelphia, Pennsylvania .

62. Crowston K, Li Q, Wei KN, Eseryel UY, Howison J: Self-organization of
teams for free/libre open source software development. Information and
Software Technology 2007, 49:564-575.

63. Mockus A, Fielding RT, Herbsleb JD: Two case studies of open source
software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM) 2002, 11:309-346.

64. Lee GK, Cole RE: From a firm-based to a community-based model of
knowledge creation: The case of the Linux kernel development.
Organization Science 2003, 633-649.

65. Spaeth S, Haefliger S, Von Krogh G, Renzl B: Communal resources in open
source software development. Information Research 2008, 13:2.

66. Tuomi I: Internet, innovation, and open source: Actors in the network.
First Monday 2001, 6:34.

67. Monteiro E, Østerlie T, Rolland KH, Røyrvik E: Keeping it going: The
everyday practices of open source software. Working paper, Department
of Computer and Information Science, Norwegian University of Science and
Technology, Trondheim, Norway 2004.

68. O’Mahony S: Guarding the commons: How community managed
software projects protect their work. Research Policy 2003.

69. Vetter GR: “Infectious” open source software: Spreading incentives or
promoting resistance? Rutgers Law Journal 2004, 36:53-1609.

70. Maurer SM, Rai A, Sali A: Finding cures for tropical diseases: Is open
source an answer? PLoS Medicine 2004, 1:56.

71. Maurer SM: Open source drug discovery: Finding a niche (or maybe
several). University of Missouri at Kansas City Law Review 2007, 76:405-435.

72. Munos B: Can open-source R&D reinvigorate drug research? Nature
Reviews Drug Discovery 2006, 5:723-729.

73. Hope J: Biobazaar: The open source revolution and biotechnology Harvard
University Press; 2008.

74. Ekins S, Hupcey MAZ, Williams AJ: Collaborative computational technologies
for biomedical research Wiley-Blackwell; 2011.

75. Masum H, Harris R: Open source for neglected diseases: Magic bullet or
mirage? Results for Development Institute 2011.

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/21950529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21950529?dopt=Abstract
http://aisel.aisnet.org/mcis2010/13
http://aisel.aisnet.org/mcis2010/13
http://www.ncbi.nlm.nih.gov/pubmed/21961160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21961160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21961180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21961180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21280399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21960402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21960402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21960402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19499787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19499787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16915233?dopt=Abstract

76. Barnes MR, et al: Lowering industry firewalls: Pre-competitive informatics
initiatives in drug discovery. Nature Reviews Drug Discovery 2009,
8:701-708.

77. Wells WA, Brooks A: Adoption of new health products in low and middle
income settings: How product development partnerships can support
country decision making. Health Research Policy and Systems 2011, 9:15.

78. Maurer SM: The right tool(s): Designing cost-effective strategies for
neglected disease research. Commissioned by World Health Organization;
2005.

79. Rydzewski RM: Real world drug discovery: A chemist’s guide to biotech and
pharmaceutical research Elsevier Science; 2008.

80. Ekins S, Williams AJ: Reaching out to collaborators: Crowdsourcing for
pharmaceutical research. Pharmaceutical Research 2010, 27:393-395.

81. Jayaraman KS: India’s tuberculosis genome project under fire. Nature
News 2010.

doi:10.1186/1478-4505-9-36
Cite this article as: Årdal et al.: Common characteristics of open source
software development and applicability for drug discovery: a systematic
review. Health Research Policy and Systems 2011 9:36.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Årdal et al. Health Research Policy and Systems 2011, 9:36
http://www.health-policy-systems.com/content/9/1/36

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/19609266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19609266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20107873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20107873?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	The myriad of “open” concepts
	Open source software development research themes
	Brief description of open source software development

	Methods
	Search strategy and study selection
	Inclusion and exclusion criteria
	Quality assessment
	Synthesis

	Results
	Description of the studies
	Synthesis results
	Common misconceptions
	Attracting participation
	Management of volunteers
	Control mechanisms
	Legal framework
	Physical constraints

	Discussion
	Limitations
	Open source drug discovery
	Attracting participation to drug discovery projects
	Management of volunteers in drug discovery projects
	Control mechanisms of drug discovery projects
	Legal framework of drug discovery projects
	Physical constraints to drug discovery projects

	Conclusions
	Funding
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

