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1. SOME PROBLEMS OF SIERPINSKI . Sierpinski [6], [7, pp. 9-11] proved that
the continuum hypothesis is equivalent with the existence of a decomposition of the
plane into two sets S1 and S2 such that S1 is intersected by every horizontal line
(and S2 by every vertical line) in at most a denumerable set . We begin with a
generalization of this result .

THEOREM 1 . Assume that 2 "° _ N1 . Decompose the set of all lines in the
plane into two arbitrary disjoint sets L 1 and L 2 . Then there exists a decomposi-
tion of the plane into two sets S1 and S2 such that each line of Li intersects
Si (i = 1, 2) in at most a denumerable set .

This theorem clearly strengthens one part of Sierpinski's result . To prove the
theorem, let {la } (a < S2 1 ) be a well-ordering of the lines in the plane, and let 1 1
belong to Li . We begin the construction of the sets S1 and S 2 by assigning all
points of 11 to S3-i . Suppose that for (3 < a the points of the lines 1,6 have been
divided between S 1 and S 2f and that la belongs to Li . Then we assign to S 3 _i all
points of la which lie on none of the lines 10 (/3 < a). The sets S l and S 2, thus
defined by transfinite induction, possess the required properties, since each ordinal
less than S2 1 is denumerable .

If we do not appeal to the continuum hypothesis, our proof gives a decomposition
of the plane into two sets Si (i = 1, 2) such that each line of Li intersects Si in a
set of power less than 2 "0 . (Compare Sierpinski's remark immediately after Theo-
rem 4 on page 6 of [8] .)

The other half of Sierpinski's theorem can also be strengthened . To this end, we
want to find necessary and sufficient conditions on two disjoint sets of lines L 1 and
L2 such that the existence of a decomposition of the plane into two sets S l and S21
with every line of Li intersecting Si (i = 1, 2) in at most a denumerable set, implies
the continuum hypothesis . Such conditions may be stated as follows : Both L1 and
L2 must contain nondenumerably many lines, and one of them, say L 1 , must contain
2 "O lines ; moreover, there must not exist a point p such that all but K 1 lines of L 1
and all but No lines of L 2 pass through p .

We suppress the proof, since it is somewhat lengthy and contains no ideas which
are not involved in Sierpinski's method [6, p . 2], [7, pp . 10, 11] . Just to give a hint
to the reader, we remark that in the proof we distinguish two cases : in Case I, if T
is any set of power N1, some line of L 1 does not meet T ; in Case II, this condition
is not satisfied .

Various problems arise in connection with Theorem 1 . Sierpinski [9] proved
that the continuum hypothesis is equivalent with the following statement : Three-
dimensional space E3 can be decomposed into three sets S i (i = 1, 2, 3) such that
each line parallel to one of the axes OXi (i = 1, 2, 3) intersects Si in a finite set .
This suggests several questions :

a) Distribute the lines in E3 into three arbitrary sets Li (i = 1, 2, 3) . Does
there exist a decomposition of E 3 into three sets Si such that the intersection of
each line of Li with the corresponding set S i is finite?
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b) Does there exist a decomposition of the plane into three sets Si (i = 1, 2, 3)
such that each horizontal (vertical, oblique) line intersects S 1 (S 2 , S 3 ) in a finite
set?

c) Does there exist a set of three directions di (i = 1, 2, 3) in the plane, to-
gether with a decomposition of the plane into three corresponding sets Si, such that
every line with the direction di intersects Si in a finite set?

The three questions deal with progressively weaker conjectures ; the last is due
to Sierpinski. I do not know the answer to any of them .

Sierpinski's theorem at the beginning of this section can clearly be formulated in
the following more general form . Let T be a set of power m . By T 2 we denote the
set of all pairs (a, b) with a e T and b E T . A horizontal line 1( a ) is defined as a
set {(a, x)}, where a e T and x runs through all elements of T ; and a vertical line
1(b) is defined as a set {(x, b)}, where b e T and x runs through all elements of T .
Then T2 can be decomposed into two sets S 1 and S 2 such that S 1 is intersected by
every horizontal line (and S2 by every vertical line) in a set of power less than m .
Now we prove the following result .

THEOREM 2 . Let n be a cardinal number less than m, and let T2 = S 1 U S2f
where S1 is intersected by every horizontal line in a set of power less than n . Then
there exists a vertical line which intersects S 2 in a set of power m.

Theorem 2 is essentially due to Sierpinski [8, p . 6], though I am not sure that he
ever stated it explicitly ; for the sake of completeness I give a proof . Denote by Sa
the set of those x for which the point (a, x) lies in 1 a(1 S 1 . By assumption,
Sa < n < m. Thus by the lemma on page 55 of [2] there exists a subset T 1 of T,
of power m, such that the union of all sets S a (a c T 1 ) is a proper subset of T ; in
other words, such that there exists an element b of T not contained in this union .
But then clearly all the points (x, b) with x in T 1 are in S2 ; that is, the vertical
line 1(b) meets S 2 in a set of power m, as stated .

If we use the generalized continuum hypothesis, we can prove the following
stronger result .

THEOREM 3 . Let n be any cardinal number less than m. Let T 2 = S 1 U S2 ,
where S1 is intersected by every horizontal line in a set of power less than n . Then
there exist two subsets T 1 and T2 of T, each of power m, such that all points
(a, b) with a in T1 and b in T2 belong to S2 .

By the lemmas on page 56 of [2], there exist two sets T 1 c T and T2 c T, of
power m, such that the set

T 2 f1 (U Sa )
ae T1

is empty. Thus all points (a, b) with a in T 1 and b in T 2 are in S2 , as stated .

Sierpinski [8] proved that if 2 "0 = „1, the plane is the union of countably many
curves (here the word `curve' is used to denote a point set C for which there exists
a direction such that every line in this direction intersects the set C in at most one
point). Earlier, Mazurkiewicz [5] had proved that the plane is not the union of

1 . G. Fodor has recently proved this lemma without using the continuum hypoth-
sis ; the proof will appear in Acta Litt . Sci. Szeged .
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finitely many curves, and Sierpinski [8, p . 8] raised the question whether the continu-
um hypothesis is equivalent with the statement that the plane is the union of countably
many curves .

The following theorem proves a conjecture of L . Patai, regarding the decomposi-
tion of the plane into countably many curves; I read the conjecture in a note book of
Patai, after his death .

THEOREM 4 . Assume that 2 " 0 = N l . Let there be given a set of directions
do (n = 1, 2, . . .) in the plane such that, for every direction d in the plane, infinitely
many of the d n are different from d. Then the plane is the union of countably many
curves C n with the property that, for each n, C„ intersects every line parallel to
do in at most one point .

By hypothesis the set {d n} can be split into two infinite sets {di} and {d11}
(i, j = 1, 2, . . •) such that no di is parallel to any d~ . By Theorem 1 the plane can
be split into two sets S 1 and S 2 such that each line parallel to one of the di
(i = 1, 2,

	

intersects S 1 in at most a countable set, and each line parallel to
one of the d' (j = 1, 2, . . .) intersects S2 in at most a countable set .

We will say that two points u and v of S 1 belong to the same class provided
there exists a finite set of points {t1 , t2 • • • , t1c}, with t 1 = u and tk = v, such that
each line (t,, t , + I) (r = 1, 2, ..•, k - 1) is parallel to one of the directions d'. The
set S1 is thus partitioned into disjoint classes Ba (1 < a < Q 1 ) ; and since each line
parallel to one of the d; intersects S 1 in at most a denumerable set, each class Ba
is at most denumerable . We denote its points by tan (n = 1, 2, . . .) .

For n=1,2,---, let Cn denote the set {tan} (1 < a < 52 1 ) . Any two distinct
points taln and t

	

in Cn belong to two different classes ; therefore the line joining
them is not parallel to any of the di (i = 1, 2, • • • ) . It follows that C ;, is a curve
which meets each line parallel to one of the di in at most one point .

Similarly, the set S 2 can be decomposed into countably many curves Cri, each of
which meets each line parallel to one of the d! I in at most one point . This completes
the proof of Theorem 4 .

The condition that for every direction d there exist infinitely many do not paral-
lel to d can not be omitted from the hypothesis of Theorem 4 . In fact, a simple
modification of the proof of Mazurkiewicz [5] yields the following result : The plane
is not the union of a finite number of curves C 1 , C 2f • • • , C n and a set S such that
every line parallel to a certain direction d intersects S in fewer than 2 "0 points .
We do not give the proof, since it is very similar to that of Mazurkiewicz .

The following question is now appropriate . Let the lines in the plane be divided
into countably many disjoint classes L n (n = 1, 2, • • • ). Can one then split the plane
into countably many sets S n (n = 1, 2, • • • ) such that each line of L n intersects S n
in at most one point ? I do not know the answer to this question . If it is in the af-
firmative, it clearly sharpens Theorem 4 .

2 . ON ADDITIVE NUMBER THEORY . Lorentz [3] recently proved the following
conjecture of E . G . Straus and myself : Let {ai}, be any increasing sequence of inte-
gers . Then there exists an increasing sequence {b j }, of density 0, such that every
sufficiently large integer is of the form ai + bj. The following theorem shows that
no analogous result holds for real numbers . In the statement of the theorem, the
sum A + B of two sets of numbers denotes the set of all numbers a + b with a in A
and b in B .
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THEOREM 5 . Assume the continuum hypothesis, and suppose that {S a }
(1 < a < Q 1) is a family of H 1 sets of real numbers, with the property that the set
of all real numbers is not the union of countably many sets of the form ak + Sak
(k = 1, 2, • • • ) . Then there exists a set A of power N1 such that none of the sets
A + Sa (1 < a < S2 1 ) is the set of all real numbers .

Before proving Theorem 5, we note that every family of N1 sets of measure
zero (in particular, the family of sets of measure zero and type G b ) satisfies the
hypothesis of the theorem ; the same is true of every family of N1 sets of first
category . I do not know whether the conclusion of the theorem holds whenever {S a }
consists of N1 sets of measure zero and N1 sets of first category (since the union
of two such sets can be the set of all real numbers, the hypothesis of Theorem 5 is
here not satisfied) .

We will now prove our theorem by constructing, by transfinite induction, two
sequences of real numbers ya and za (1 < a < S2 1 ) ; the union of the elements of
{ ya} will serve as the set A; and each set A + Sa will fail to contain the number
z a .

Suppose that, for y < (3, the numbers y y and zy have been chosen in such a way
that, for every a < /3, each of the sets {yy} + Set (y < (3) fails to contain za. By the
hypothesis concerning the family {S a}, the union U(SR + yy) (y < /3) is not the set of
real numbers ; therefore we can choose a number zo in the complement of this union .
Also, the union U[Sa + (- z a)] (a < R) is not the set of real numbers (again, by the
hypothesis in the theorem), and therefore we can chose -yp in the complement of
this union .

Thus the set A = {ya} (1 < a < S2 1 ) is defined by transfinite induction . Each za
is a member of none of the sets Sa + {yy} (y < a), and of none of the sets S e, + {yo}
(/3 > a), and therefore the proof is complete .

3 . ON A PROBLEM OF MARCZEWSKI . A countably additive measure µ de-
fined in a space M is said to be separable if there exists in M a sequence of meas-
urable sets Vn with the property that, for each measurable set E in M and every
71 > 0, there exists an index n such that

µ(Vn-E)+µ(E-Vn)<77 .

A family F of sets is said to have the property (k) if each nondenumerable collec-
tion {Sa} of sets in F contains a nondenumerable subcollection such that each pair
of sets in this subcollection has a nonempty intersection .

Marczewski [4, pp . 129, 130] proved that if µ is a separable measure, then the
family of sets of positive measure has the property (k), and he asked whether the
theorem remains true when the condition of separability of p. is dropped . I will now
show that, under a certain condition on M and µ, the answer is in the affirmative .

THEOREM 6. Let M be a set, and µ a measure defined on some subsets of M ;
and let M be the union of countably many sets offinite measure. Then the family of
sets of positive measure has the property (k) .

It will clearly be sufficient to prove that if {Sa} (1 < a < S2 1 ) is any family of
distinct sets of positive measure, there exists a subfamily {S ak} (1 < k < S2 1 ) such
that µ(S a k' - Sak„) > 0 for each pair of ordinals k' and k" less than 52 1 .



SOME REMARKS ON SET THEORY IV

	

173

Let M =u I Tn, where each Tn is a set of finite positive measure, with T n # Tm
for n * m. For at least one n there exist tZ 1 sets Sa whose intersections with T n
have positive measure ; in fact, there exists a collection of N, distinct sets S a for
which µ(T nfl Sa) > £ , where £ is some positive constant . We denote these sets by
Sa*, and with the collection {Sa*} we associate an abstract graph G as follows :
with each Sa* we associate an (abstract) vertex p a ; two vertices pa ' and pa y, are
connected by an edge if and only if µ(S a* fl Sc,,*) > 0 . A simple argument shows that
among any r vertices p ai (i = 1, 2, . . ., r) with

r > µ(Tn)/£ `µ(T n flSa *) > £ 1 ,

at least two are connected by an edge .
\
By a result of Dushnik and Miller [ 1, Theorem

5 .22], there exists a set of X 1 vertices pak (1 < k < SZ 1 ) any two of which are con-

nected by an edge ; in other words, for any pair k' and k" of ordinals less than S2 1i
µ(Sak,nSak„) > 0 . This proves the theorem .

One final problem : Does there exist a family of 2 " 0 sets of seal numbers, each
of positive measure, such that the intersection of any :Z 1 of them is empty? If
2 " 0 = rt l , it is quite easy to show this .
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