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Abstract. We perform a finite sample analysis of the detection levels

for sparse principal components of a high-dimensional covariance matrix.

Our minimax optimal test is based on a sparse eigenvalue statistic. Alas,

computing this test is known to be NP-complete in general and we describe

a computationally efficient alternative test using convex relaxations. Our

relaxation is also proved to detect sparse principal components at near

optimal detection levels and performs very well on simulated datasets.
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1. INTRODUCTION

The sparsity assumption has become preponderant in modern, high-dimensional
statistics. In the high dimension, low sample size setting, where consistency seems
to be hopeless, sparstiy turns out to be the statistician’s salvation. It formal-
izes the a priori belief that only a few parameters, among a large number of
them, are significant for the statistical task at hand. This paper explores a spe-
cific high-dimensional problem, namely Principal Component Analysis (PCA).
Indeed, classical PCA is known to produce inconsistent estimators of the direc-
tions that explain the most variance (Johnstone and Lu, 2009; Nadler, 2008; Paul,
2007) without further assumption. For PCA, the spiked covariance model intro-
duced by Johnstone (2001) directly encodes the sparsity assumption. Namely, this
model relies on the assumption that there exists a few sparse directions that ex-
plain most of the variance. Formally, we assume that the observations are drawn
from a multivariate Gaussian distribution with mean zero and covariance matrix
given by I + θvv⊤, where I is the identity matrix and v is a unit norm sparse
vector. Akin to other models, the sparsity assumption drives both methods and
analysis in a wide variety of applications ranging from signal processing to biol-
ogy (see, e.g., Alon et al., 1999; Chen, 2011; Jenatton et al., 2009; Wright et al.,
2011, for a few examples). Most contributions to this problem have focused on
consistent estimation of the sparse principal component v for various performance
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2 BERTHET AND RIGOLLET

measures (see, e.g. Amini and Wainwright, 2009; Ma, 2011b; Shen et al., 2009,
and the above references).

What if there is no sparse component? In other words, what if θ = 0? From
a detection standpoint, one may ask the following question: How much variance
should a sparse principal component explain in order to be detectable by a statis-
tical procedure? Answering this question consists in (i) constructing a test that
can detect this sparse principal component when the associated variance is above
a certain level and (ii) proving that no test can detect such a principal component
below a certain level.

Optimal detection levels in a high-dimensional setup have recently received
a lot of attention. More precisely, Arias-Castro et al. (2010); Donoho and Jin
(2004); Ingster et al. (2010) have studied the detection of a sparse vector cor-
rupted by noise under various sparsity assumptions. More recently, this prob-
lem has been extended from vectors to matrices by Butucea and Ingster (2011);
Sun and Nobel (2008, 2010) who propose to detect a shifted sub-matrix hidden
in a Gaussian or binary random matrix. While the notion of sub-matrix encodes
a certain sparsity structure, these two papers focus on the elementwise proper-
ties of random matrices, unlike the blooming random matrix theory that focuses
on spectral aspects. Arias-Castro et al. (2011) studied a problem somewhere be-
tween sparse PCA detection and the shifted sub-matrix problem. Their goal is
to detect a shifted off-diagonal sub-matrix hidden in a covariance matrix. Their
methods are not spectral either.

We extend the current work on detection in two directions. First, we analyze
detection in the framework of sparse PCA, and more precisely, in the spiked
covariance model. Second, while all the literature on this topic is presented in an
asymptotic framework, we propose a finite sample analysis of our problem with
results that hold with high-probability. These results show the delicate interplay
between the important parameters of the problem: the ambient dimension, the
sample size and the sparsity.

Note that the spiked covariance model is particularly amenable to spectral
methods due to its rotational invariance. It turns out that the so-called k-sparse
largest eignvalue can be used to construct an optimal test. However, construct-
ing this test raises some technical difficulties and can even be proved to be NP-
complete. As a result, a large body of the optimization literature on this topic con-
sists in numerical methods to overcome this issue (see, e.g., d’Aspremont et al.,
2008, 2007; Journée et al., 2010; Lu and Zhang, 2011; Ma, 2011a, and references
therein). Nevertheless, while these methods do produce a solution, their statis-
tical properties are rarely addressed for the estimation problem and never for
the detection problem. One of the approaches introduced by d’Aspremont et al.
(2007) uses a convexification technique called semidefinite programming (SDP).
A major drawback of this technique is that it may not output a vector v̂ but a
matrix and an ad hoc post-processing step is often required to turn this matrix
back into a vector. However, in the context of detection our goal is not estimate
the eigenvector v but rather its associated eigenvalue. This notable difference al-
lows us to even bypass SDP optimization, which is known to scale poorly in very
high dimension. Inspired by the SDP formulation, we propose a simple test pro-
cedure based on the minimum dual perturbation (MDP) that is easy to compute
and for which we can derive near optimal performance bounds for the detection
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problem.
Most of our analysis is performed in the spiked covariance model for Gaus-

sian random vectors. Nevertheless, our results are robust to variations around
this model and we spend Section 7 discussing various weaker assumptions under
which our results still hold. In particular, we only need that our estimated co-
variance matrix belongs to a small box around the true covariance matrix with
high probability. This setup encompasses biased estimators or adversarial noise.

The rest of the paper is organized as follows. In Section 2, we introduce the de-
tection problem for sparse principal components. In Section 3, we discuss various
links with classical and more recent results on random matrix theory and more
precisely, the asymptotic effect of low rank perturbations to Wishart matrices.
Our main results are contained in Section 4, where in particular, we introduce a
new test based on spectral methods and derive the level at which it achieves de-
tection of sparse principal components with high probability. This level is proved
to be optimal in a minimax sense in Section 5. Unfortunately, this test cannot be
computed efficiently and several relaxations are proposed in Section 6. As men-
tioned above, Section 7 discusses various weaker assumptions under which our
results hold. Finally the performance of our test is illustrated on several numerical
examples in Section 8.

Notations. The space of d× d symmetric real matrices is denoted by Sd, and
the cone of semidefinite positive matrices is denoted by S

+
d . We write equivalently

Z ∈ S
+
d and Z � 0.

For any q ≥ 1 we denote by |v|q the ℓq norm of a vector v and by extension,
we denote by |v|0 its so-called “ℓ0 norm”, that is its number of nonzero elements.
The elements of a vector v ∈ R

p are denoted by v1, . . . , vp and similarly, a matrix
Z has element Zij on its ith row and jth column. Furthermore, by extension, for
Z ∈ Sd, we denote by |Z|q the ℓq norm of the vector formed by the entries of Z.

The trace and rank functionals are denoted by Tr and rank respectively and
have their usual definition. The identity matrix in R

p is denoted by Ip. For a
finite set S, we denote by |S| its cardinality. We also write AS for the |S| × |S|
submatrix with elements (Aij)i,j∈S, and vS for the vector of R|S| with elements
vi for i ∈ S. Finally, for two real numbers a and b, we write a ∧ b = min(a, b),
a ∨ b = max(a, b), and a+ = a ∨ 0 .

2. SPHERICITY TEST WITH SPARSE ALTERNATIVE

Let X1, . . . ,Xn be n i.i.d. realizations of a random variable X in R
p. Our

objective is to test the sphericity hypothesis, i.e., that the distribution of X is
invariant by rotation in R

p. For a gaussian distribution, this is equivalent to
testing if the covariance matrix of X is of the form σ2Ip for some known σ2 > 0.

Without loss of generality we may assume σ2 = 1 so that the covariance matrix
is the identity in R

p under the null hypothesis. Possible alternative hypotheses
should encompass the idea that there exists a privileged direction, along which X
has more variance. Of course, there are many possible characterizations for this
alternative and, in the spirit of sparse PCA, we focus on the case where there the
privileged direction is sparse. Therefore, we consider the alternative hypothesis
where the covariance matrix is a sparse rank one perturbation of the identity Ip.
Formally, let v ∈ R

p be such that |v|2 = 1, |v|0 ≤ k, and θ > 0. The hypothesis
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testing problem studied throughout this paper is:

H0 : X ∼ N (0, Ip)

H1 : X ∼ N (0, Ip + θ vv⊤) .

Note that the model under H1 is a generalization of the spiked covariance model
since it allows v to be k-sparse on the unit Euclidean sphere. In particular, the
statement of H1 is invariant under rotation on the k relevant variables.

Denote Σ the covariance matrix of X. A useful statistic in these settings is the
empirical covariance matrix Σ̂ defined by

Σ̂ =
1

n

n
∑

i=1

XiX
⊤
i .

It is an unbiased estimator for the covariance matrix of X, the maximum likeli-
hood estimator in the gaussian case, when the mean is known to be 0. Further-
more, it is oftentimes the only data provided to the statistician.

We say that a test discriminates between H0 and H1 with probability 1− δ if
the type I and type II errors both have a probability smaller than δ. Our goal is
therefore to find a statistic ϕ(Σ̂) and levels τ0 < τ1 ,depending on (p, n, k, δ) such
that

PH0(ϕ(Σ̂) > τ0) ≤ δ

PH1(ϕ(Σ̂) < τ1) ≤ δ .

Taking τ ∈ [τ0, τ1] gives us control over the type I and type II errors of the test

ψ(Σ̂) = 1{ϕ(Σ̂) > τ} ,

where 1{·} denotes the indicator function. As desired, this test has the property
to discriminate between the hypotheses with probability 1− δ.

3. LINK WITH RANDOM MATRIX THEORY

Note that under the null hypothesis, the sample covariance matrix Σ̂ follows a
rescaled Wishart distribution. The spectrum of such matrices has been extensively
studied and is fairly well understood.We give below a quick overview of the results
that are relevant to our problem.

3.1 Spectral methods

It is not hard to see that, under H1, for any θ > 0, v is an eigenvector asso-
ciated to the largest eigenvalue of the population covariance matrix Σ, without
further assumption. Moreover, if Σ̂ is close to Σ in spectral norm, then its largest
eigenvector should be a good candidate to approximate v. It is therefore natural
to consider spectral methods for the spiked covariance model. Understanding the
behavior of our test statistic under both the null and the alternative is key in
proving that it discriminates between the hypotheses.

Convergence of the empirical covariance matrix to the true covariance matrix in
spectral norm has received some attention recently (see, e.g., Bickel and Levina,
2008; Cai et al., 2010; El-Karoui, 2008) under various elementwise sparsity as-
sumption and using thresholding methods. However, since our assumption allows
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for relevant variables to produce arbitrary small entries under the alternative hy-
pothesis, we cannot use such results. A natural statistic to discriminate between
null and alternative would be, for example, using the largest eigenvalue of the
covariance matrix.

Spectral properties of random matrices have received a lot of attention from
both a statistical and probabilistic angle. We devote the rest of this section to
review some of the classical results from random matrix theory to argue that even
in moderate dimensions, the largest eigenvalue cannot discriminate between the
null and alternative hypotheses.

It is easy to notice that for any unit vector v

λmax(Ip) = 1 and λmax(Ip + θvv⊤) = 1 + θ .

If we could allow, for a fixed p, to let n go to infinity, the consistency of
the estimator Σ̂ (for fixed p, entry by entry) and the continuity of the largest
eigenvalue as a function of its entries would prove that we have an efficient method
to discriminate between the two alternatives, at least asymptotically.

However, in a high dimension setting, where p may grow with n, the behavior
of λmax(Σ̂) under the null hypothesis is different. If p/n→ α > 0, Geman (1980)
showed that, in accordance with the Marcenko-Pastur distribution, we have

λmax(Σ̂) → (1 +
√
α)2 > 1 ,

were the convergence holds almost surely (see also Bai, 1999; Johnstone, 2001,
and references therein). Moreover, Yin et al. (1988) established that IE(X) = 0
and IE(X4) < ∞ is a necessary and sufficient condition for this almost sure
convergence to hold. Furthermore, as Σ̂ ∈ S

+
d , its number of positive eigenvalues

is equal to its rank (which is smaller than n), and we have

λmax(Σ̂) ≥
1

rank(Σ̂)

p
∑

i=1

λi(Σ̂) ≥
1

n
Tr(Σ̂) ≥ p

n

TrΣ̂

np
.

As the sum of np squared norms of independent standard gaussian vectors,
Tr(Σ̂) ∼ χ2

np, hence almost surely, for p/n → ∞, we have λmax(Σ̂) → ∞ un-
der the null hypothesis.

These two results, indicate that the largest eigenvalue will not be able to dis-
criminate between the two hypotheses unless θ > Cp/n for some positive con-
stant. In a “large p/small n” scenario, this corresponds to a very strong signal
indeed. In the next subsection, we show that such results can be made more
formal using perturbation theory.

3.2 Low rank perturbations of Wishart matrices

In a slightly different setting, Baik et al. (2005) established that when adding
a finite rank perturbation to a Wishart matrix, a phase transition arises already
in the moderate dimensional regime where p/n → α ∈ (0, 1). This phenomenon
is known as the BBP transition for the name of the authors. A very general class
of random matrices exhibits similar behavior, under finite rank perturbations, as
shown by Tao (2011). These results are extended to more general distributions
in Benaych-Georges et al. (2011).

Assume that
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Wn =
1

n

n
∑

i=1

XiX
⊤
i and W̃n = θvv⊤ +Wn .

Qualitatively, the BPP phase transition predicates that there exists a critical
value θ∗ such that if θ > θ∗, the spectrum of W̃n exhibits an isolated eigenvalue
significantly larger than the others, and that if θ < θ∗, the spectrum has a very
similar behavior under the two hypotheses.

Even when p/n → α ∈ (0, 1), Benaych-Georges et al. (2011) show that if θ ≤
α+

√
α, the leading eigenvalue will have limit (1+

√
α)2, i.e., the same as under the

null hypothesis. Similarly, the random fluctuations around this limit will follow
the the Tracy-Widom distribution, for both hypotheses.

The above analysis indicates that detection using the largest eigenvalue is
impossible already for moderate dimension, without further assumptions. Nev-
ertheless, resorting to the sparsity assumption allows us to bypass this intrinsic
limitation of the largest eigenvalue as a test statistic.

3.3 Sparse eigenvalues

To exploit the sparsity assumption, we use the fact that only a small submatrix
of the empirical covariance will be affected by the perturbation. Let A be a p× p
matrix and fix k < p. We define the k-sparse largest1 eigenvalue by

(3.1) λkmax(A) = max
|S|=k

λmax(AS) .

We have the same equalities as for regular eigenvalues.

λkmax(Ip) = 1 and λkmax(Ip + θvv⊤) = 1 + θ .

However, the k-sparse eigenvalue behaves differently under the two hypotheses
as soon as there exists a k×k matrix with a significantly higher largest eigenvalue.
The BBP transition, in a similar setting, indicates that this is true as soon as θ >
γ +

√
γ, when k/n → γ > 0. Therefore, it appears that the sparsity assumption

can be exploited us to significantly reduce the dimensionality of the problem.

4. SPARSE PRINCIPAL COMPONENT DETECTION

In sparse principal component detection, we are testing the existence of a
sparse direction v with a significantly higher explained variance v⊤Σv than any
other direction. Following the motivation of the previous section, we study the
properties of the test statistic ϕ(Σ̂) = λkmax(Σ̂), where we recall that λkmax(Σ̂)
is the k-sparse eigenvalue of Σ̂ and can be defined equivalently to (3.1), for any
A ∈ S

+
d , by

(4.1) λkmax(A) = max
|x|2=1
|x|0≤k

x⊤Ax .

1In the rest of the paper, we drop the qualification “largest” since we only refer to this one.
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4.1 Deviation bounds for the k-sparse eigenvalue

Finding optimal detection levels amounts to finding the right order of magni-
tude of the deviations of the test statistic λkmax(Σ̂) both under the null and the
alternative hypotheses. We begin by the following proposition, which guarantees
that our test statistic remains large enough under the alternative hypothesis.

Proposition 4.1. Under H1, we have with probability 1− δ,

λkmax(Σ̂) ≥ 1 + θ − 2(1 + θ)

√

log(1/δ)

n
.

Proof. Under H1, there exists a unit vector v with sparsity k, such that
X ∼ N (0, Ip + θ vv⊤). Therefore, we have

λkmax(Σ̂) ≥ v⊤Σ̂v =
1

n

n
∑

i=1

(X⊤
i v)

2 ,

by definition of Σ̂. Since X ∼ N (0, Ip + θ vv⊤), we have X⊤v ∼ N (0, 1 + θ).
Define the random variable

Y =
1

n

n
∑

i=1

(

(X⊤
i v)

2

1 + θ
− 1

)

.

Using Laurent and Massart (2000, Lemma 1) on concentration of the χ2 distri-
bution, we get for any t > 0, that

P

(

Y ≤ −2
√

t/n
)

≤ e−t .

Hence, taking t = log(1/δ), we have Y ≥ −2
√

log(1/δ)/n with probability 1− δ.
This yields the desired inequality.

Note that our proof relies only on the existence of a sparse vector v associated
to the eigenvalue (1 + θ) of the population covariance matrix Σ. In particu-
lar, the result of Proposition 4.1 extends to more general alternative hypotheses
as long as they satisfy this condition. Moreover, observe that the above lower
bound is independent of p and k. Proposition 4.1 suggests that the spiked co-
variance model is well separated from the spherical model where θ = 0. Note
that much more than detection can actually be achieved under this model. In-
deed, Amini and Wainwright (2009) prove optimal rates of support recovery for
v in the case where θ is known and v takes only values in {0,±1/

√
k}.

We now study the behavior of the k-sparse eigenvalue under the null hypothe-
sis, i.e., for a Wishart matrix with mean Ip. We adapt a technique from Vershynin
(2010) to obtain the desired deviation bounds.

Proposition 4.2. Under H0, with probability 1− δ

λkmax(Σ̂) ≤ 1 + 4

√

k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n
.
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Proof. Using a 1/4-net over the unit sphere of Rk, it can be easily shown (see,
e.g., Vershynin, 2010) that there exists a subset Nk of the unit sphere of Rk, with
cardinality smaller than 9k, such that for any A ∈ S

+
k

(4.2) λmax(A) ≤ 2 max
x∈Nk

x⊤Ax .

Under H1, we have

λkmax(Σ̂) ≤ 1 + max
|S|=k

{

λmax(Σ̂S)− 1
}

,

where the maximum in the right-hand side is taken over all subsets of {1, . . . , p}
that have cardinality k.

Moreover, for all u ∈ R
k, |u|2 = 1 and S ⊂ {1, . . . , p} such that |S| = k, let

ũ ∈ R
p be the vector with support S such that ũS = u. We have

u⊤Σ̂Su− 1 = ũ⊤Σ̂ũ− 1 =
1

n

n
∑

i=1

[

(ũ⊤Xi)
2 − 1

]

.

Since |ũ|2 = |u|2 = 1, Laurent and Massart (2000, Lemma 1) yields for any t > 0,

(4.3) P

(

1

n

n
∑

i=1

[

(ũ⊤Xi)
2 − 1

]

≥ 2

√

t

n
+ 2

t

n

)

≤ e−t .

For any S ⊂ {1, . . . , p}, define R
S to be the subset of Rp defined such that

x ∈ R
S iff xj = 0 ,∀ j /∈ S. Let Nk(S) be a subset of the unit sphere of RS , with

cardinality smaller than 9k such that for any A ∈ S
+
k , inequality (4.2) holds with

Nk = Nk(S). Fix t > 0 and define the event AS by

AS =

{

λmax(Σ̂S)− 1 ≥ 4

√

t

n
+ 4

t

n

}

.

Observe that a union bound over the elements of Nk(S) together with (4.3) yields
that for any t > 0,

P(AS) ≤ P
(

max
v∈Nk(S)

1

n

n
∑

i=1

(v⊤Xi)
2 − 1 ≥ 2

√

t

n
+ 2

t

n

)

≤ 9ke−t .

Let now A be the event defined by

A =
⋃

|S|=k

AS =

{

max
|S|=k

{

λmax(Σ̂S)− 1
}

≥ 4

√

t

n
+ 4

t

n

}

.

Therefore, by a union bound on the
(p
k

)

subsets S of {1, . . . , p} that have cardi-
nality k, we get

P

(

λkmax(Σ̂) ≥ 1 + 4

√

t

n
+ 4

t

n

)

≤ P(A) ≤
(

p

k

)

9ke−t .

To conclude our proof, it is sufficient to use the standard inequality
(p
k

)

≤
(ep
k

)k

and to take t = k log(9ep/k) + log(1/δ).
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4.2 Hypothesis testing with λ
k

max

Using these results, we have, with the notations from Section 2,

PH0(λ
k
max(Σ̂) > τ0) ≤ δ

PH1(λ
k
max(Σ̂) < τ1) ≤ δ ,

where τ0 and τ1 are given by

τ0 = 1 + 4

√

k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n

τ1 = 1 + θ − 2(1 + θ)

√

log(1δ )

n
.

Whenever τ1 > τ0, we take τ ∈ [τ0, τ1] and define the following test

ψ(Σ̂) = 1{λkmax(Σ̂) > τ} .

It follows from the previous subsection that it discriminates between H1 and H0

with probability 1− δ.

It remains to find for which values of θ the condition τ1 > τ0. It corresponds
to our minimum detection level.

Theorem 4.1. Assume that k, p, n and δ are such that θ̄ ≤ 1, where

(4.4) θ̄ := 4

√

k log(9epk ) + log(1δ )

n
+ 4

k log(9epk ) + log(1δ )

n
+ 4

√

log(1δ )

n
.

Then, for any θ > θ̄ and for any τ ∈ [τ0, τ1], the test ψ(Σ̂) = 1{λkmax(Σ̂) > τ}
discriminates between H0 and H1 with probability 1− δ.

If we consider asymptotic regimes, for large p, n, k, taking δ = p−β with β >
0, provides a sequence of tests ψn that discriminate between H0 and H1 with
probability converging to 1, for any fixed θ > 0, as soon as

k log (p)

n
→ 0 .

5. MINIMAX LOWER BOUNDS FOR DETECTION

The goal of this section is to prove that if θ > Cθ̄ for some C > 0, where θ̄ is
defined in (4.4), then no test can discriminate between H0 andH1 with arbitrarily
small probability. We will see that this result can be achieved up to logarithmic
terms that vanish for interesting regimes of p, n and k. Throughout this section,
assume that θ < 1/

√
2.

In order to find lower bounds for the probability of error, we study the χ2

distance between probability measures (see, e.g., Tsybakov, 2009, chapter 2). For
any v ∈ R

p such that |v|2 = 1, define the matrix Σv = Ip + θvv⊤ and let Pv

denote the distribution of a Gaussian random variable X ∼ N (0,Σv). Moreover,
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let S = {S ⊂ {1, . . . , p} : |S| = k} and for any S ∈ S, define u(S) ∈ R
p to be the

unit vector with jth coordinate equal to 1/
√
k if j ∈ S and 0 otherwise. Finally,

define the Gaussian mixture PS by

PS =
1

|S|
∑

S∈S

Pu(S) .

The following theorem holds.

Theorem 5.1. Fix ν > 0 and define θ > 0 by

(5.1) θ :=

√

k log (νp/k2 + 1)

n
.

Then there exists a constant Cν > 0 such that for any θ < θ ∧ 1/
√
2, it holds

inf
Ψ











P
n
0 (Ψ = 1) ∨ max

|v|2=1
|v|0≤k

P
n
v (Ψ = 0)











≥ Cν .

where the infimum is taken over all possible tests, i.e., measurable functions of

the observations that take values in {0, 1}. Moreover, by taking ν small enough,

Cν can be made arbitrary close to 1/2.

We write for simplicity PS = PuS
when this leads to no confusion. Our proof

relies on the following lemma.

Lemma 5.1. For any S, T ∈ S and any θ < 1/2, it holds

IEP0

(

dPS

dP0

dPT

dP0

)

=
(

1− θ2(u(S)⊤u(T ))2
)−1/2

.

Proof. Fix S ∈ S and observe that

dPS

dP0
(X) =

det(Ip)
1/2

det(ΣS)1/2

exp(−1
2X

⊤Σ−1
u(S)X)

exp(−1
2X

⊤I−1
p X)

.

Furthermore , since det(Ip) = 1 and |u(S)|2 = 1, we get by Sylvester’s determi-
nant theorem that

det(Σu(S)) = det(Ip + θu(S)u(S)⊤) = det(I1 + θ u(S)⊤u(S)) = 1 + θ .

Moreover, the Sherman-Morrison formula yields

Σ−1
S = (Ip + θu(S)u(S)⊤)−1 = Ip −

θu(S)u(S)⊤

1 + θ
.

By substitution, the above three displays yield

dPS

dP0
(X) =

1√
1 + θ

exp

(

1

2

θ

1 + θ
(X⊤u(S))2

)
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and

(5.2)
dPS

dP0

dPT

dP0
(X) =

1

1 + θ
exp(X⊤MX) ,

where M is defined by

M =
1

2

θ

1 + θ
(u(S)u(S)⊤ + u(T )u(T )⊤) .

Note that M has at most two non-zero eigenvalues given by

λ1 =
1

2

θ

1 + θ
(1 + u(S)⊤u(T )) <

1

2
and λ2 =

1

2

θ

1 + θ
(1− u(S)⊤u(T )) <

1

2
,

and let Λ denote the diagonal matrix with elements (λ1, λ2, 0, . . . , 0) ∈ R
p.

Together with (5.2), it yields

IEP0

(

dPS

dP0

dPT

dP0

)

=
1

1 + θ
IEP0 [exp(X

⊤MX)]

=
1

1 + θ
IEP0 [exp(X

⊤ΛX)]

=
1

1 + θ
IEP0 [exp(λ1X

2
1 )] IEP0 [exp(λ2X

2
2 )]

=
1

1 + θ
[(1− 2λ1)(1− 2λ2)]

−1/2 ,

where, in the second equality, the substitution of M by Λ is valid by rotational
invariance of the distribution of X under P0. The last equation yields the desired
result.

We now turn to the proof of Theorem 5.1

Proof. Observe now that

χ2(PS ,P0) = IEP0

[

(

dPS

dP0
− 1

)2
]

=
1

|S|2
∑

S,T∈S

IEP0

(

dPS

dP0

dPT

dP0

)

− 1 .

Lemma 5.1 together with the fact u(S)⊤u(T ) = |S ∩ T |/k yields

(5.3) χ2(PS ,P0) =

k
∑

r=0

{

C(S, r)
|S|2

(

1− θ2
r2

k2

)−1/2
}

− 1 ,

where C(S, r) denotes the number of subsets S, T ∈ S such that |S ∩ T | = r.
We now control the term on the right-hand side of (5.3). Let S, T be chosen

uniformly at random in S, and observe that P(|S ∩ T | = r) = P(R = r), where
R = |S ∩ {1, . . . , k}|. It yields

χ2(Pn
S ,P

n
0 ) =

n
∏

i=1

(

1 + χ2(PS ,P0)
)

− 1

= IES,T

{

[

1− θ2
|S ∩ T |2
k2

]−n/2
}

− 1

= IER

{

[

1− θ2
R2

k2

]−n/2
}

− 1 .
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12 BERTHET AND RIGOLLET

where IES denotes the expectation with respect to the random subset S and IER

the expectation with respect to the hypergeometric random variable R.

Using now the convexity inequality (1− t)−n/2 ≤ e
nt

2(1−t) ≤ ent valid for 1− t ≥
1/2, and noticing that R ≤ k, the above display leads to

(5.4) χ2(Pn
S ,P

n
0 ) ≤ IER

[

exp

(

nθ2R

k

)]

− 1 .

Define µ2 = nθ2/k. We have, as in Addario-Berry et al. (2010); Arias-Castro et al.
(2011) that

IER

[

eµ
2R
]

= IES

[

k
∏

i=1

exp(µ21{i ∈ S})
]

− 1

≤
k
∏

i=1

IES

[

exp(µ21{i ∈ S})
]

− 1 , by negative association

≤
(

(

eµ
2 − 1

) k

p
+ 1

)k

− 1 .

Assume now that θ < θ. It yields

IER

[

eµ
2R
]

≤
(

(

eµ
2 − 1

) k

p
+ 1

)k

− 1 ≤
(

(νp

k2

) k

p
+ 1

)k

− 1

≤
(

1 +
ν

k

)k
− 1 ≤ eν − 1 .

Together with (5.4) it yields χ2(Pn
S ,P

n
0 ) ≤ eν − 1.

We are now in a position to apply standard results from minimax theory. Note
that for all measurable tests Ψ, we have

P
n
0 (Ψ = 1) ∨ max

|v|2=1
|v|0≤k

P
n
v (Ψ = 0) ≥ P

n
0 (Ψ = 1) ∨max

S∈S
P

n
u(S)(Ψ = 0)

≥ P
n
0 (Ψ = 1) ∨P

n
S (Ψ = 0)

≥ e1−eν

4
∨ 1−

√

(eν − 1)/2

2
=: Cν .

where the last inequality is a direct consequence of Tsybakov (2009, Theorem 2.2,
case (iii)). Observe that Cν → 1/2 if ν → 0.

We observe a gap between our upper and lower bound, with a term in log(p/k)
in the upper bound, and one in log(p/k2) in the lower bound. This gap has been
observed in the detection literature before (see, e.g., Baraud, 2002; Verzelen, 2012,
for an explicit remark) and, to our knowledge has never been addressed. However,
by considering certain regimes for p, n and k, it disappears. Indeed, as soon as
p ≥ k2+ε, for some ε > 0, upper and lower bounds match up to constants, and
the detection rate for the sparse eigenvalue is optimal in a minimax sense. Under
this assumption, detection becomes impossible if

θ < C

√

k log (p/k)

n
.

for a small enough constant C > 0.
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6. SEMIDEFINITE METHODS FOR SPARSE PRINCIPAL COMPONENT

TESTING

Computing the largest k-sparse eigenvalue λkmax of a symmetric matrix A is,
in general, a hard computational problem. To see this, consider the particular
case where A is a p × p symmetric matrix with values in {0, 1} and Aii = 1
for all diagonal entries, so that A corresponds to the adjacency matrix of an
undirected graph. It is not hard to see that λkmax(A) ≤ k, with equality if and
only if the graph of A contains a clique of size k. Yet, it is a well known fact
of computational complexity (see, e.g., Sipser, 1996) that the decision problem
associated to finding whether a graph contains a clique of size k is NP-complete.
Note that if k were fixed, this problem would actually be polynomial in the size
p of the graph since there are “only”

(p
k

)

≤ pk subgraphs to enumerate. However,
the exponential dependence in k is clearly concerning even for moderate values
of k.

6.1 Semidefinite relaxation for λk

max

Semidefinite programming (SDP) is the matrix equivalent of linear program-
ming. Define the Euclidean scalar product in S

+
d by 〈A,B〉 = Tr (AB). A semidef-

inite program can be written in the canonical form.

SDP = max. Tr(CX)(6.1)

subject to Tr(AiX) ≤ bi, ∀i ∈ {1, . . . ,m}
X � 0

As convex problems, they are computationally efficient and can be solved us-
ing interior point or first order methods (see, e.g., Boyd and Vandenberghe, 2004;
Nesterov and Nemirovskii, 1987). Using SDP relaxations of problems with non-
convex constraints is a common method to find an approximate solution. Tight-
ness bounds are sometimes proven (see, e.g., Goemans (1995) for the MAXCUT
problem). A major breakthrough for sparse PCA was achieved by d’Aspremont et al.
(2007), who introduced a SDP relaxation for λkmax, but tightness of this relax-
ation is, to this day, unknown. Our task is not as difficult though. Indeed, we only
need to prove that the SDP objective criterion has significantly different behavior
under H0 and H1.

Making the change of variables Z = xx⊤, in (4.1) yields

λkmax(A) = max. Tr(AZ)

subject to Tr(Z) = 1, |Z|0 ≤ k2

Z � 0, rank(Z) = 1 .

Note that this problem contains two sources of non-convexity: the ℓ0 norm con-
straint and the rank constraint. We make two relaxations in order to have a
convex feasible set.

First, for a semidefinite matrix Z, with trace 1, and sparsity k2, the Cauchy-
Schwarz inequality yields |Z|1 ≤ k, which is substituted to the cardinality con-
straint in this relaxation. Simply dropping the rank constraint leads to the fol-

imsart-sts ver. 2009/08/13 file: BerRig12_arxiv.tex date: February 23, 2012



14 BERTHET AND RIGOLLET

lowing relaxation of our original problem:

SDPk(A) = max. Tr(AZ)(6.2)

subject to Tr(Z) = 1, |Z|1 ≤ k

Z � 0 .

Note that this optimization problem is convex since it consists in minimizing a
linear objective over a convex set. Moreover, it is a standard exercise to show
that it can be expressed in the canonical form (6.1). As such, it can be solved
efficiently using any of the aforementioned algorithms.

As a relaxation of the original problem, for any A � 0, it holds

(6.3) λkmax(A) ≤ SDPk(A) .

Since we have proved in Section 4 that λkmax(Σ̂) takes large values under H1, this
inequality tells us that using SDPk(Σ̂) as a test statistic will be to our advantage
under H1. It remains to show that it stays small under H0. This can be achieved
by using the dual formulation of the SDP.

Lemma 6.1.(Bach et al., 2010). For a given A � 0, we have by duality

SDPk(A) = min
U∈Sp

{λmax(A+ U) + k|U |∞} .

Together with (6.3), Lemma 6.1 implies that for any z ≥ 0 and any matrix U
such that |U |∞ ≤ z, it holds

(6.4) λkmax(A) ≤ SDPk(A) ≤ λmax(A+ U) + kz .

A direct consequence of (6.4) is that the functional λkmax is robust to perturbations
by matrices that have small |·|∞-norm. Formally, let A � 0 be such that its largest
eigenvector has ℓ0 norm bounded by k. Then, for any matrix N , (6.4) yields

λkmax(A+N) ≤ λmax((A +N)−N) + k|N |∞ = λkmax(A) + k|N |∞ .

6.2 High probability bounds for convex relaxation

We now study the properties of SDPk(Σ̂) and other computationally efficient
variants as test statistics for our detection problem. Recall that SDPk(Σ̂) ≥
λkmax(Σ̂). In view of (6.3), the following proposition follows directly from Propo-
sition 4.1.

Proposition 6.1. Under H1, we have, with probability 1− δ

SDPk(Σ̂) ≥ 1 + θ − 2(1 + θ)

√

log(1/δ)

n
.

Akin to Proposition 4.1, Proposition 6.1 shows that H1 is the easy case. Indeed,
under H1, the lower deviations of SDPk(Σ̂) remain small and do not depend on
k or p. We now turn to the upper deviations under H0.
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Proposition 6.2. Under H0, we have, with probability 1− δ,

SDPk(Σ̂) ≤ 1 + 2

√

k2 log(4p2/δ)

n
+ 2

k log(4p2/δ)

n
+ 2

√

log(2p/δ)

n
+ 2

log(2p/δ)

n
.

Proof. Let stz(A) be the soft-threshold of A, with threshold z defined by
(stz(A))ij = sign (Aij)(|Aij | − z)+ . It follows from (6.4) that

(6.5) λkmax(A) ≤ SDPk(A) ≤ λmax(stz(A)) + kz .

Let ∆̂ = diag(Σ̂) be the diagonal matrix with the same diagonal entries as Σ̂,
and Ψ̂ = Σ̂− ∆̂ the matrix of its off-diagonal entries, so that Σ̂ = ∆̂ + Ψ̂. Since
Ψ̂ and ∆̂ have disjoint supports, it follows that

(6.6) stz(Σ̂) = stz(∆̂) + stz(Ψ̂) .

We first control the largest off-diagonal element of Σ̂ by bounding |Ψ̂|∞ with
high probability. For every i, j, we have

Ψ̂ij =
1

n

n
∑

k=1

XkiXkj

=
1

2

[

n
∑

k=1

[
1

2
(Xki +Xkj)

2 − 1]−
n
∑

k=1

[
1

2
(Xki −Xkj)

2 − 1]

]

.

Under H0, we have X ∼ N (0, Ip), so by Laurent and Massart (2000, Lemma 1),
it holds for t > 0 that

P

(

|Ψ̂ij | ≥ 2

√

t

n
+ 2

t

n

)

≤ 4e−t .

Hence, by union bound on the off-diagonal terms, we get

P

(

max
i<j

|Ψ̂ij| ≥ 2

√

t

n
+ 2

t

n

)

≤ 2p2e−t .

Taking t = log(4p2/δ) yields with probability 1− δ/2, that |Ψ̂|∞ ≤ z, where

(6.7) z = 2

√

log(4p2/δ)

n
+ 2

log(4p2/δ)

n
.

Next, we control the largest diagonal element of Σ̂ as follows. We have by
definition of ∆̂, for every i

∆̂ii =
1

n

n
∑

j=1

X2
ji .

Applying Laurent and Massart (2000, Lemma 1) and a union bound over the p
diagonal terms, we get

P

(

max
1≤i≤p

∆̂ii ≥ 1 + 2

√

t

n
+ 2

t

n

)

≤ p e−t .
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16 BERTHET AND RIGOLLET

Taking t = log(2p/δ) yields yields with probability 1− δ/2

(6.8) max
1≤i≤p

∆̂ii ≤ 1 + 2

√

log(2p/δ)

n
+ 2

log(2p/δ)

n
.

To conclude the proof of Proposition 6.2, observe that (6.5) and (6.6) implies
that for all z ≥ 0, we have

λkmax(Σ̂) ≤ SDPk(Σ̂) ≤ λmax(stz(Σ̂)) + kz

≤ λmax(stz(∆̂)) + λmax(stz(Ψ̂)) + kz .

where the last inequality follows from (6.6) and the triangle inequality for the
operator norm.

Note now that if we take z as in (6.7), then stz(Ψ̂) = 0 with probability 1−δ/2.
Furthermore, since ∆̂ is a non negative diagonal matrix, then

(6.9) λmax(stz(∆̂)) ≤ λmax(∆̂) = max
1≤i≤p

∆̂ii .

Using that (6.8) holds with probability 1− δ/2, and a simple union bound allows
us to ensure that the desired inequality is valid with probability 1− δ.

6.3 Hypothesis testing with convex methods

Using the notation from Section 2, the results of the previous subsection can
be written as

PH0(SDPk(Σ̂) > τ̃0) ≤ δ

PH1(SDPk(Σ̂) < τ̃1) ≤ δ ,

where τ̃0 and τ̃1 are given by

τ̃0 = 1 + 2

√

k2 log(4p2/δ)

n
+ 2

k log(4p2/δ)

n
+ 2

√

log(2p/δ)

n
+ 2

log(2p/δ)

n

τ̃1 = 1 + θ − 2(1 + θ)

√

log(1/δ)

n
.

Whenever τ̃1 > τ̃0, we take τ ∈ [τ̃0, τ̃1] and define the following computationally
efficient test

ψ̃(Σ̂) = 1{SDPk(Σ̂) > τ} .
It discriminates between H1 and H0 with probability 1− δ.

It remains to find for which values of θ the condition τ̃1 > τ̃0 holds. It corre-
sponds to our minimum detection level.

Theorem 6.1. Assume that p, n, k and δ are such that θ̃ ≤ 1, where
(6.10)

θ̃ := 2

√

k2 log(4p2/δ)

n
+2

k log(4p2/δ)

n
+2

√

log(2p/δ)

n
+2

log(2p/δ)

n
+4

√

log(1δ )

n
.

Then, for any θ > θ̃, any τ ∈ [τ̃0, τ̃1], the test ψ̃(Σ̂) = 1{SDPk(Σ̂) > τ} discrimi-

nates between H0 and H1 with probability 1− δ.
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If we consider asymptotic regimes, for large p, n, k, taking δ = p−β with β >
0, provides a sequence of tests ψ̃n that discriminate between H0 and H1 with
probability converging to 1, for any fixed θ > 0, as soon as

k2 log (p)

n
→ 0 .

Note that, compared to Theorem 4.1, the price to pay for using this convex
relaxation is to multiply the minimum detection level by a factor

√
k. Of course,

in most examples, k remains small so that this is not a very high price.

6.4 Simple methods

While the SDP relaxation proposed in the previous subsection is provably
computationally efficient, it is also known to scale poorly on very large problems.
Simple heuristics such as the diagonal method of Johnstone (2001) become more
attractive for larger problems. A careful inspection of the proofs in the previous
subsection is very informative. It indicates that our results not only hold for
the test ψ̃(Σ̂) but for a simpler statistic arising from the dual formulation (6.5).
Indeed, to control the behavior of SDPk(Σ̂) under H0, we showed that it was no
larger than the minimum dual perturbation MDPk(Σ̂) defined by

(6.11) MDPk(Σ̂) = min
z≥0

{

λmax(stz(Σ̂)) + kz
}

.

ClearlyMDPk(Σ̂) ≥ SDPk(Σ̂) ≥ λkmax(Σ̂) so that both Proposition 6.1 and Propo-
sition 6.2 still hold for SDP(Σ̂) replaced by MDP(Σ̂). As a result, for any θ > θ̃ the
test ψ̂(Σ̂) = 1{MDPk(Σ̂) > τ} discriminates between H0 and H1 with probability
1− δ.

Actually, a detection level of the same order as θ̃ holds already for an even
simpler test statistic: the largest diagonal element of Σ̂. This method called John-

stone’s diagonal method was first proposed by Johnstone (2001) and later studied
by Amini and Wainwright (2009). For the problem of detection considered here,
it dictates to employ the test statistic

D(Σ̂) = max
1≤i≤p

Σ̂ii .

Using even simpler techniques than in Propositions 6.1 and 6.2, it is not hard to
show that

PH0(D(Σ̂) > τd0 ) ≤ δ

PH1(D(Σ̂) < τd1 ) ≤ δ ,

for levels τd0 and τd1 given by

τd0 = 1 +
1

k
θ − 2

(

1 +
1

k
θ

)

√

log(1/δ)

n

τd1 = 1 + 2

√

log(p/δ)

n
+ 2

log(p/δ)

n
.

However, as we shall see in Section 8, MDPk behaves much better than D in prac-
tice. It was proved by Amini and Wainwright (2009) that if the SDP (6.2) has a
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18 BERTHET AND RIGOLLET

solution of rank one then it is strictly better than Johnstone’s diagonal method.
While they study a support recovery problem different from the detection prob-
lem considered here, it seems to indicate that the two methods are qualitatively
different. However, the assumption that the SDP (6.2) has a solution of rank one
is very strong and unnecessary in our problem. Indeed, while rank one solutions
are amenable to extracting sparse eigenvectors, we only need the value of the
objective at its maximum and not the solution itself. In this sense, we avoid the
main limitation of SDP relaxations to vector problems.

7. GENERALIZATION WITH WEAKENED ASSUMPTIONS

In this section we investigate two extensions of our original problem. For sim-
plicity, we denote by ∗DPk any of the two functionals MDPk or SDPk.

7.1 Adversarial noise

While the results for λkmax rely heavily on the fact that the Xi are Gaussian
random vectors, it is not the case for those on the convex relaxation. We can find
that under much weaker assumptions, the results for detection using the SDP
statistic are still valid. We also describe an adversarial noise setting where we
prove that these detection levels are optimal.

In this setting, for an original covariance matrix Σ, assume that

(7.1) Σ̂ = Σ +N .

Where the only assumption on N is that |N |∞ ≤
√

log(p/δ)/n with proba-
bility 1 − δ. Up to a constant, this is a generalization of our initial setting,
and can describe a situation where the data is censured, akin to the setting
of Loh and Wainwright (2011). Here, however, the situation is more general, as
the censured entries are not necessarily chosen randomly.

We show below that the high probability bounds for λkmax(Σ̂),SDPk(Σ̂) and
MDPk(Σ̂) under H0 and H1 that were constructed before depend only on this
very mild assumption.

Proposition 7.1. Under H1, we have with probability 1− δ

∗DPk(Σ̂) ≥ λkmax(Σ̂) ≥ 1 + θ − k

√

log(p/δ)

n
.

Proof. Recall that for any v such that |v|0 ≤ k, we have

∗DPk(Σ̂) ≥ λkmax(Σ̂) ≥ v⊤Σ̂v ≥ v⊤(Ip + θvv⊤)v + v⊤Nv

≥ 1 + θ − |N |∞|v|21
≥ 1 + θ − k|N |∞ ,

which yields the desired result.

Proposition 7.2. Under H0, we have with probability 1− δ

λkmax(Σ̂) ≤ ∗DPk(Σ̂) ≤ 1 + k

√

log(p/δ)

n
.
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Proof. It follows from (6.4) that

λkmax(Σ̂) ≤ ∗DPk(Σ̂) ≤ λmax(Ip) + k|N |∞ ,

which yields the desired result.

The following theorem follows from Proposition 7.1 and Proposition 7.2. We
omit its proof.

Theorem 7.1. Let ψadv be the test defined by

ψadv(Σ̂) = 1

{

∗DPk(Σ̂) > 1 +
k

2

√

log(p/δ)

n

}

.

Then the test ψadv discriminates between H0 and H1 with probability 1 − δ as

soon as

θ > 2k

√

log(p/δ)

n
.

The lower bound proved in Section 5 can be extended to encompass the ad-
versarial setup of this section. The next theorem gives a lower bound on the
detection level that holds for an adversarial noise that is bounded in | · |∞ norm.
Note that the lower bound in Theorem 7.2 below is not minimax since there exists
one model under which all tests cannot discriminate between H0 and H1 with
probability less than 1/2. The model is the following. Let v = (v1, . . . , vp)

⊤ ∈ R
p

be such that vj = 1/
√
k if j ≤ k and vj = 0 otherwise. Define the random matrix

N that takes values ± θ
2vv

⊤, each with probability 1/2.

Theorem 7.2. There exists an adversarial model of the form (7.1) where

|N |∞ ≤
√

log(p)/n almost surely, such that for any test ψ(Σ̂) ∈ {0, 1} it holds

PH1(ψ(Σ̂) = 0) ∨PH0(ψ(Σ̂) = 1) = 1/2 .

as soon as θ ≤ 2k
√

log(p)/n.

Proof. Note first that the matrix N defined above satisfies the assumptions
on the noise since almost surely, we have

|N |∞ =
θ

2k
≤
√

log(p)

n
.

Therefore, it holds that

PH0(Σ̂ = Ip +
θ

2
vv⊤) =

1

2

PH1(Σ̂ = Ip +
θ

2
vv⊤) =

1

2
.

Therefore, if ψ(Ip+
θ
2vv

⊤) = 1, then PH0(ψ(Σ̂) = 1) = 1/2 and if ψ(Ip+
θ
2vv

⊤) =

0, then PH1(ψ(Σ̂) = 0) = 1/2.

Note that unlike Theorem 5.1, Theorem 7.2 gives a lower bound only for tests
that depend on Σ̂. Nonetheless, in the adversarial model (7.1), these are the only
tests that make sense since Σ̂ is the only observation available.
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7.2 Sparsity in terms of ℓ1 norm

Sparsity in terms of ℓ0 norm is actually very stringent and hardly occurs in
real datasets. Rather, it may be more realistic to perform the test

H0 : X ∼ N (0, Ip)

H̃1 : X ∼ N (0, Ip + θ vv⊤) .

where |v|21 = ω for some small ω > 0. This allows for vectors v ∈ R
p that have

ordered coordinates that decay fast enough but never take value zero. It is not
hard to see that our analysis extends to this case and the following theorem holds
by following the same steps as the proof of Theorem 6.1. We provide it without
proof. Recall that θ̃ is defined in (6.10).

Theorem 7.3. Assume that p, n, δ and k = ω are such that θ̃ ≤ 1. Then,
for any θ > θ̃ and for any τ ∈ [τ̃0, τ̃1], the test 1{∗DPω(Σ̂) > τ} discriminates

between H0 and H̃1 with probability 1− δ.

8. NUMERICAL EXPERIMENTS

Computation costs are a crucial element in this study. In Bach et al. (2010),
the SDP relaxation with accuracy ε is shown to have a total complexity of
O(kp3

√

log(p)/ε). This is achieved by minimizing a smooth approximation of
the dual function, using first order methods from Nesterov (2003). However, this
polynomial cost is already prohibitive in a very high-dimensional setting, and we
study only tests based on the MDPk statistic. The purpose of this section is to
illustrate the empirical behavior of tests based on MDPk and to compare it with
the diagonal method.

8.1 Comparison of different methods

We simulateN = 1, 000 samples of n independent random vectorsX0
1 , . . . ,X

0
n ∼

N (0, Ip) and X
1
1 , . . . ,X

1
n ∼ N (0, Ip+θvv

⊤), for random unit vectors v supported
on S = {1, . . . , k}. The vector vS is distributed uniformly on the unit sphere of
dimension k.

It yields N empirical covariance matrices Σ̂0
1, . . . , Σ̂

0
N underH0 and N of them,

Σ̂1
1, . . . , Σ̂

1
N under H1. We compare the D and MDPk statistics for these samples

and compare their densities. We take θ = 4 and observe that the D statistic yields
two distributions under H0 and H1 that are hard to distinguish (Figure 1, left).
In particular, it is clear that the statistic D cannot discriminate between H0 and
H1 for θ = 4, with this set of parameters. However, the distributions of MDPk(Σ̂)
underH0 andH1 have almost disjoint support so that it can discriminate between
the two hypothesis with probability close to one.

8.2 Tightness of error bounds

In Section 6, we prove that both the D and MDPk statistics discriminate be-
tween H0 and H1 with high probability as long as θ ≥ Ck

√

log(p/k)/n. The
previous subsection indicates that MDPk actually performs better than D. It is
pertinent to wonder if it performs as well as λkmax. Answering this question would
actually require implementing λkmax, which is impossible even for a moderate
problem size.
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Figure 1. For p = 500, n = 200, k = 30, N = 1, 000, estimated densities for the two statistics,
under H0 (whole line) and under H1 (dashed line)

For MDPk to be considered a performant approximation of λkmax, it would need
to discriminate between H0 and H1 with high probability as soon as θ is of the
order

√

k log(p/k)/n, which is the minimax optimal detection level that is also
achieved by λkmax. This behavior can be illustrated by showing a phase transition
for the probability of error in the testing problem, as a function of θ, for different
choices of (p, n, k). More precisely, there should exist a critical value θcrit and
a constant Ccrit, such that θ > θcrit = Ccrit

√

k log(p/k)/n, the probability of
type II error is very close to 0. Moreover, as a constant, Ccrit should not depend
on (p, n, k).

In order to substantiate such effects, it is actually more pertinent to use a
reciprocal setting. For fixed θ0 = 1 and several choices of parameters p, k, we
exhibit a phase transition for the probability of error in the testing problem, as
a function of

η = η(n) =
k

n
log
(p

k

)

.

In this setting, there should exist a critical value ηcrit, such that when η < ηcrit =
θ20/C

2
crit, the probability of error is very close to 0.

To achieve this goal, we simulate N = 1, 400 samples of n independent random
variables X0

1 , . . . ,X
0
n ∼ N (0, Ip). It yields Σ̂

0
1, . . . , Σ̂

0
N that are drawn under H0,

and used to estimate the quantiles q.01, q.05 at 1% and 5% for the MDPk statistic.
The same process is repeated underH1 to estimate the probability of type II error
PH1(MDPk(Σ̂) > qα). To that end, we simulate X1

1 , . . . ,X
1
n ∼ N (0, Ip + θvv⊤),

for random unit vectors v supported on S = {1, . . . , k}. The restriction of v
to S is distributed uniformly on the unit sphere of dimension k. To display a
one-dimensional dependence, k is chosen equal to the integer part of

√
p.

Figure 2 illustrates a phase transition for the probability of testing error, at a
critical level ηcrit ≃ 0.1 independent of (p, n, k). The concomitance of these curves
for different choices of (p, n, k) indicates that η is the correct scaling factor for
the MDPk statistic. This suggests that the upper bound for convex detection that
we prove in (6.10) is pessimistic and that MDPk(Σ̂) is an even better proxy for
λkmax(Σ̂) than predicted by our theory.
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Figure 2. Type II errors as a function of η(n) for p = {50, 100, 200, 500}, k = ⌊√p⌋, N = 1, 400.
Left: α = 5%, right: α = 1%
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