

AT THE HEART OF **INNOVATION** www.narec.co.uk

Ensuring Reliability for Offshore Wind Turbines - Large Testing Facilities

Dr Richard Court, Technology Specialist- Wind Renewables

Outline of Presentation

- NaREC Introduction (1 slide)
- The Move Offshore (1 slide)
- Risks and Problems (1 slide)
- Needs and Solutions (1 slide)
- **7** Full-scale Drive Train Test-rig β slides)
- Increases in Installation Rate (3 slides)
- NaREC's Facility development (2 slides)

NaREC: At the Heart of Innovation

- Independent, Crossdisciplined R&D Platform
- Mission: Enable energy industry to advance technology in order to reach sustainability
- New breakthroughs in design, deployment and commercialisation of sustainable energy technologies

The Move Offshore

- Larger turbines installed:
 - E.g. 5MW machines from
 - RE Power
 - Multibrid
 - Bard
 - Others in development
- Minimises number of units to install.
- Maximises energy yield per unit installed.

RE Power 5M at Beatrice. The Engineering Business's BOWTIS and Rambiz vessel.

Risks and Problems

- The offshore environment is demanding.
- Difficulties in installing and operating turbines:
 - Variable weather
 - Extreme load cases
 - Marine air / salt water
- Access for maintenance and repair not guaranteed.
- With large turbines financial losses from not generating become significant.

Need and Solutions

- The need is to improve reliability prior to deploying turbines offshore.
- Better reliability comes from enhanced and rigorous testing onshore.
- Better testing de-risks the deployment of turbines.
- De-risking enhances the attractiveness of the investment.
- Solution NaREC is developing a new, large drive train and full nacelle test-rig.

Drive train / Full nacelle Test-rig

- 7 15MW drive system capable of testing the full nacelle of a 10MW turbine
 - with either gearbox or direct drive
 - includes drive shafts, bearings, gearbox, generator, convertor
- Mechanical loads:
 - ultimate
 - fatigue
- Electrical loads and grid faults

Drive train load cases

- Mechanical full envelope including side loads
 - Fx Axial Force
 - Fy Radial Force
 - Fz Radial Force
 - Mx -Shaft Torque
 - My Moment about y axis
 - Mz Moment about z axis
- Max side loading70,000kNm
- Axial load continuous 4,000kN

Full scale nacelle test-rig

- Existing route to turbine deployment relies on field testing on a wind turbine test site.
- Can only test with the loads provided by the wind at the test site.
- A test-rig allows all combinations of loads to be appliedas needed.
- With the result that a more comprehensive and thorough test of the turbine is conducted.
- Potential problems with components identified early before offshore deployment.
- The key prize is that of a more rapid insertion into service with increased revenue to manufacturer.

Example of Increase in Installation Rate

Effect on Cumulative Installation Rate

Cumulative Installation Rate - Scenario if 5 manufacturers could deploy 1 year earlier

NaREC's Future facility development

Blade and Nacelle Test Facility - for Large & Offshore Turbines

- First stage industry consultation complete.
- Building design nearing completion.
- Test-rig concept design freeze in Sept '09.
- UK funding in final stages of negotiation.
- Industry involvement discussions with NaREC actively sort.

Thank you and Questions?