
Conquest: Interface for Test Automation Design

Anand Gopalakrishnan
Florida Institute Of Technology

Melbourne, Florida
agopalkrishn2010@my.fit.edu

Dr. Keith Gallagher
Florida Institute Of Technology

Melbourne, Florida
kgallagher@fit.edu

Abstract— Test Automation engineers often need to use multiple
automation test tools and are required to extend and maintain
automation test scripts across these multiple tools. For the test
automation engineer the problems are the usual: information
overload and maintenance in multiple environments. In such an
overwhelming circumstance, the process of maintaining the
automation test scripts from multiple tools and mapping it to the
business criteria can be lost. In order to improve test automation
design, we propose an interface to be used by test automation
engineers for (Web) application testing. The interface provides a
single workspace for incorporating multiple open source testing
tools and frameworks for system/integration testing of (web)
based applications. The goal of the interface is to simplify the
process of mapping tests to business criteria without the coding
coming in the way of the process, and thus increase the efficiency
and flexibility in maintaining the test scripts. This paper
describes the background, features and implementation details of
the interface.

Keywords-Test Automation Design, Conquest, automation
interface, test design.

I. INTRODUCTION

Terry the Test automation engineer has been newly recruited
to work on a project. The company has never had automation
testing done before. The manager got excited with the story
sold by an off the shelf automation testing tool in a workshop
and decided to implement automation testing in his project.
The talk given by the tool vendor set an expectation of turn-
key simplicity. The manager is under the assumption that in
automation, the tester has to only record a sequence of actions
and then play it without human intervention, to get a set of
nicely formatted report about the test status. Terry is asked to
go ahead and implement the record and playback tool. Terry
starts implementing the tool in a record/playback manner and
the manager asks the entire test team to replace their manual
testing with execution of the automation test scripts.

Marty, a manual software tester finds that the recorded
automation scripts are not testing for all the business scenarios
and reports the problem to Terry. Terry, on further interaction
with Marty, understands that the logic flow of the application
is incorrect; the tests only concentrated on the user interface
of the application. Marty also points out many other business
scenarios related to performance, database tests, multiple
browser compatibility which are difficult for the manual
testers to carry out and automation could be a valuable aid.
Terry finds out that the tool cannot support the different

scenarios and starts investigating and installs other tools. Terry
then starts maintaining separate workspaces for the multiple
tools. Terry also starts understanding the business logic and
the requirements from Marty and starts maintaining them,
leading to information overload and maintenance problems.
Use of multiple tools in different workspaces leads to script
duplication issues. A separate process of documenting the
business logic flow compounds the maintenance of the scripts.
Every time Terry finds out a new tool that can help in test
automation , the entire test suite must be modified. Terry now
spends most of the time setting up and maintaining the test
automation environment and less time concentrating on the
application under test. As a result, Terry runs out of time to
cover all the important business criteria and the product ships
with issues, leading to irate customers.

The test automation engineer's problems:

• Lack of a clear mapping from the business logic to
the test scripts.

• Technology and tool environment focus, rather than
testing focus.

• Information and maintenance overload.

II. BACKGROUND

"The test framework is like application architecture" [1].

Good test automation architecture should be able to
parameterize data, log test status, report error and setup the
environment for test. "Test automation is Software
development. Like all software under development, it makes a
lot of sense to figure out requirements and create something
that meets them" [2]. The growth of software complexity and
the different test patterns involved to cover all business logic
flows led to thousands of test scripts written across multiple
testing tools.

For instance, record and playback tools which make use of
User Interface elements for constructing test scripts have been
available since 1990s. However, frequent UI changes render
the test scripts non-usable. These tools have noted short-
comings of maintenance, as they heavily rely on the User
Interface. The need to maintain the test scripts led to the
development of different test automation frameworks.

One test automation framework architectural style is called
data driven. In data driven automation, the test data is held in

separate files which are read by the automated test code and
then used as an input for the software under test [3]. Data
driven testing made it possible to run the same set of test for
different data by parameterization. The approach made it
possible to modify data without touching the test scripts.
However, data driven approach proved to be ineffective in
handling procedural or functional changes in test scripts.

Keyword driven framework came in to existence to address
procedural and functional changes. The functionality of the
application under test is documented in a table as well as the
step-by-step instruction for each test. The action that needs to
be performed as a part of testing is passed along with the data.
Modularized methods are developed in corresponding to each
business action. The methods can either be generalized at a
level for all web based elements; or it could have a layered
approach, with one layer having actions customized for an
application under test.

A more effective version of keyword-driven frameworks is
to externalize the business logic flow with combinations of data
required to carry out the testing. This style is termed as a
hybrid framework.

Test patterns that are used to address the logic flows may
include web functional testing, web database testing, web
performance testing and browser compatibility testing.

Based on a layered approach to test automation, the overall
testing work is divided in to two parts: (a) a framework for
incorporating new automation tools to meet the business logic
and (b) writing test scripts to meet the logic flow for testing the
application under test. Accordingly, we have two stakeholders
in our testing effort: (a) Test automation engineers who design
and extend the framework and (b) software testers who analyze
the business logic for the application under test. Our approach
is to create an interface to aid the test automation engineers in
maintaining a single workspace for the multiple test automation
tools and also to make it easy for them to map the business
logic flow from the software testers to their test scripts for easy
traceability.

CONTRIBUTIONS

From the above background introduction, the following
main features in our interface can be highlighted and specified :

1. A direct mapping of business logic to code. The
interface will make it possible to provide a Domain
Specific Language which will link the business logic
from the software testers in the form of comments in
the code written by the test automation engineers.

2. Reusable code. A single interface for multiple tools
will make it possible to share code across tools, if the
tools are using the same underlying programming
language for developing the test scripts.

3. Easy maintenance. Having all the different test
automation tools under a single workspace would
avoid duplication of test scripts. Single interface will
make it possible to add and remove tools without

affecting the overall architecture and implementation
of the framework.

In the following sections, detailed implementation
mechanism and design of the interface will be demonstrated.

III. INTERFACE ARCHITECTURE

The interface is built on top of the well known Integrated
development environment (IDE) Eclipse for Java and an open
source web application testing system, Selenium. Figure-1
shows the interface model.

Figure-1 Test Automation design model

A. Eclipse Environment

The interface is provided as an EclipsePortable Java
project. The user only needs the latest Java Environment (JDK)
setup on his machine to start using the interface. Modified
version of EclipsePortable is provided as a part of the interface.

a. Framework Library:

Framework library contains all the classes which are for the
framework and are product/project independent. The
framework interface has functions for the following:

a.1. Initialize System:

This function deals with initializing the interface system.
This could mean different functionalities for different testing
tools. The function is responsible for initializing and starting
the specific automation test tool and making it available to the
interface. By default it has Selenium setup and initialized to be
used by the interface. Any new tool can be added to it and
made available for the interface. The interface engine described
in the next section explains how to add a new tool. Extracting
the tool support in to a separate class makes it possible to add
and remove tools from the interface without affecting the test
suite.

a.2. Test Logic:

This function deals with providing a wrapper for all the
methods available in a test tool API. Providing a wrapper
makes it easier to control the manipulation of API functions
and enhance the code readability. Wrappers are provided by
default for Selenium API methods.

Wrapping the complex Selenium API code in to methods
has the following advantages:

• It provides common operation on controls and
strong support for custom verification.

• Readability of the code is improved.

• Custom implementation and extended methods
can be added to the API methods through wrapper
without modifying the underlying API code.

a.3. Data Driver:

This function deals with providing support for data driven
testing. Data driven testing is implemented using the
@DataProvider annotation provided by TestNG. An object
array is implemented to take Excel datasheets as input and use
the data for parameterization.

a.4. Reporting:

This function deals with capturing the reports from
different test runs across multiple test tools and integrating
them to form a single seamless report. The function also deals
with capturing screenshot on failure and linking it to
corresponding step.

a.5. Database Check:

This function deals with checking the state of the database
on providing user inputs and changing application outputs. The
function also deals with updating and modifying the database
to aid in testing disaster recovery scenarios.

a.6. Non Web:

This function deals with browser specific actions like
testing the download of a file in Firefox or Internet Explorer
etc. This function also provides support for cross browser
testing. The cross browser testing is implemented using
Selenium Grid, an open source java add on for Selenium, while
the non-browser Windows API based testing is implemented
using AutoIT, an open source windows testing tool.

b. Product Library:

Each Product will have its own library structure. The
interface is designed to be a single workspace for multiple
products.

b.1. Variable File Pattern:

Page Object pattern popularly advocated by the open source
tool Selenium RC is a pattern that represents the screen of the
web application as a series of objects [4]. Variable File Pattern
introduced by the interface proposed in this paper is an
addendum to the page object pattern. In Variable File pattern

we divide the web application as a series of variables as
opposed to objects. The variables are placed in their own class
files which are then imported in the test file for the scenario.
Every scenario will now have a test file containing the test
scripts for the business logic and a test variable file containing
all the web elements involved in the scenario as string
variables. The pattern makes it possible to take advantage of
Eclipse code completion feature to relate the web elements
with the test cases. The interface engine automatically
generates the link between the variable file and test file for a
scenario, thus avoiding the tester to worry about mundane
maintenance and environment setup tasks and concentrate more
on the test scenarios.

The folder structure generated by the interface engine for
each product can be explained as follows:

b.2. Product Variables:

Following the variable file pattern, this contains the class
file with variables that are used throughout the product. Some
examples of such variables can be given as URL of the
product, Database driver details for the product etc.

b.3. Queries:

This folder contains all the database queries needed to carry
out the database testing. The queries are provided as '.sql' files
which are interpreted by the database check function of the
framework library and used in the test scripts.

b.4. Test Cases:

This folder contains all the excel datasheets to be used by
the data driver function for parameterization of test scripts
using multiple data provided by the sheet (data driven testing).

b.5. Test Scripts:

This folder contains the test script files for different
scenarios having the test logic flow implemented.

b.6. Test Variables:

Based on the Variable file pattern explained above, this
folder contains the test variable files for different scenarios.
The association between these files and their respective test
script files are done by the interface engine.

B. Object Repository

The interface provides a custom format for Selenium IDE.
Using this format while recording will generate an xml file
with the page elements accessed while recording a scenario
inside custom formatted xml tags. The record and playback
tools are always used to record a scenario and then playback
the scenario, but in our interface, the custom format provided
modifies the record functionality of Selenium IDE. The
Selenium IDE is used as an interpretation engine and not as a
record/playback tool. Using Selenium IDE on a web page with
the custom format will get the DOM element information for
the objects in an xml format and not record the scenario. For
example, in our scenario of testing the login to Gmail, the
pages involved in our scenario are the Login page and the
Landing Page. We need the elements in the Login page to
perform actions and we need the elements in the Landing page

for verification purpose. We will start with using Selenium IDE
with our custom format: "ATSFormat" and perform actions
(click, type etc.) on all the elements (that we expect to be a part
of the scenario) in the Login and Landing page. On completion
of the record, we save the recording as an XML file under the
Workspace folder provided by the interface. The recorded
XML sheet for our scenario will have contents as shown
below:

<page>

<field >

<Text>Email </Text>

</field>

<field >

<Text>Passwd </Text>

</field>

<field >

<link>signIn </link></field>

</page>

As seen above, the XML sheet contains the DOM element
identifiers for the web elements on the login page of Gmail. It
also classifies the elements as <Text> element for text boxes
and <link> element for links. The interface engine then parses
the XML file to form a test variable file for the login page. The
engine then adds an import of the test variable file to the test
script file, thus associating the elements with the test script for
the scenario. The test variable file output of the parser can be
shown as follows:

=======================================

public class TestLoginVar extends Toolset {

public static String TestLoginOutput=
"TestLoginOutput.xls";

public static String TestLoginOutputDB=
"TestLoginOutputDB.csv";

public static String DBRoot =
"Result\\Gmail\\Data\\DBOutput\\";

public static String txtEmail= "Email";

public static String txtPasswd= "Passwd";
public static String lnsignIn= "signIn";

}

===

As discussed in the variable file pattern, it is seen that the
parser generates the test variable file with the web elements as
static string variables. The reason it defined the elements as
static is because the elements may be used across different
scenarios. As seen in the output, the class in the variable
extends the Toolset class. Toolset class contains the functions
needed to initialize the system (as discussed in the Framework
Library). The two static strings TestLoginOutput and
TestLoginOutputDB are the report files created for functional
test report and database test report.

C. Concurrent Interface Engine

The concurrency characteristics of the engine is in the idea
that it can be modified and extended without affecting the
implemented test suite execution. The tester and the test
automation engineer can use the tool concurrently.

Concurrent interface engine is a HTML Application (HTA)
built on top of the Eclipse environment and provided as a part
of the interface. The engine has a built in xml parser to parse
the object files coming from the object repository, scenario
editor and a tool plug-in module that allows for seamless and
easy integration of new tools in to the interface. The
concurrency characteristics of the engine is in the idea that it
allows to extend and modify the framework without affecting
the implemented test suite execution. The interface engine also
makes it possible to keep track of the business logic while
writing the test scripts without the need of a separate process
for the same.

a. Parser: The xml parser is built in VbScript which accepts
a pre-formatted xml sheet from the object repository and
converts it in to a java file containing the web elements of
application - under - test as static variables. The parser also
generates the java test script template.

b. Scenario Editor: The scenario editor is built in HTA
using VbScript, which accepts workflow and business criteria
and adds them as a separate method and comment to the
method respectively.

The functionality of the engine can be explained in detail
with the following scenario to be automated:

"Test the Login functionality of Gmail"

The test automation engineer will pair with a software test
engineer and document the logic flow in a Domain Specific
language using the Scenario editor. The logic flow for testing a
successful login can be expressed in DSL as follows:

Product: Gmail

Scenario: TestLogin

Workflow name: PositiveLogin (this can be named
anything that seems to agree with the application domain).

Criteria : Login to Gmail with the correct "username" and
"password" and the user should be able to see the landing page.
(This is a sample criteria, of course in a real test
implementation we would be adding more details about the
landing page. The details about the landing page can be
specified in the same criteria or in a collection of criteria based
on the application domain).

The main entities of the DSL can be explained as follows:

Workflow : Workflow is a name given to a sequence of
actions that will be carried out in the test scenario.

Criteria : Criteria is the sequence of actions that represent
the test logic flow.

The engine converts the workflow provided as a java
method and the criteria as a comment for the method. Figure -2

shows the Scenario editor with the DSL entered for the above
stated scenario.

Figure-2 Interface Engine Scenario Editor

As seen in the image, On entering the Workflow name and
clicking on Create button will automatically add the workflow
inside the <Method></Method> tags. On clicking the criteria
button it will create the <Criteria></Criteria> tags for us for
entering our test criteria in between the tags. After the criteria
is added, the engine generates a '.java' test file and '.java' test
variable file (the concept of test variable file is explained in
detail in the next section). The test file has the following code
generated for the workflow:

=======================================

// <Method>PositiveLogin</Method>

// <Criteria>Login to Gmail with the correct

"username" and "password" and the user should
be able to see the landing page</Criteria>

//

// <Parameter>: String username

// <Parameter>: String password

@Test
public static void PositiveLogin(){

}

==

As seen above, it creates a Java method having a name as
that of the workflow and it adds the criteria as a comment for
the method. The comment system makes it possible to map the
business criteria with the test script eliminating the test
automation engineer to go through a separate process for the
same. Also, the engine identifies the parameters which has
been specified in double quotes and makes a suggestion to the
test automation engineer to consider them for parameterization.

The @Test annotation added by the engine is for the
integrated test harness: TestNG. The scenario entered in the
scenario editor is also saved as a separate xml file. The existing
scenarios can be opened and edited using the editor. The engine

also generates the standard import statements and creates a new
class for every scenario. The following code is generated by the
engine in the test file before the workflow code shown above.

===
package Gmail.TestScripts;

import org.testng.annotations.*;

import org.testng.annotations.Test;

import java.sql.*;
import java.util.Properties;

import jxl.*;
import java.io.*;

import Gmail.ProductVariables.*;

import Gmail.TestVariables.*;
import Gmail.*;

import Framework.*;

public class TestLogin extends Gmail {
@DataProvider(name = "DP1")

public Object[][] createDataImaging() throws

Exception{
Object[][]

retObjArr=driver.getExcel("Tests\\Gmail\\Test
Cases",

"DataProvider","Login");

 return(retObjArr);

}

@BeforeClass

public static void TestInit() throws

Exception{

driver.Xlogger(TestLoginVar.TestLoginOutput,"

Gmail");

DBFunction.DBLogger(TestLoginVar.TestLoginOut

putDB,"Gmail");

}
==
The @DataProvider and the @BeforeClass are TestNG
annotations added for the TestNG harness in the interface. The
job of the interface engine is to setup the Test Suite and
generate template to start writing tests.

IV. ADD A NEW TOOL

Interface Engine provides an easier mechanism to add new
java web testing tools (jar) to the interface. As discussed in the
earlier section, all the tools used in the interface are extracted
and maintained in a separate class file. Maintaining the tools
in a separate file makes it possible to add new tools to the
interface without affecting the test suite structure. The tester
needs to add the jar file to the class path and then define a
class and instance in the tool class file. Interface engine
provides a simple user interface to carry out this task. Figure-3
shows the implementation of this feature:

Figure-3 Adding a Tool using Interface Engine

As seen in the image, the tester only needs to provide the main
class name used by the tool, which he can obtain from the
JavaDocs of the tools. He then needs to provide an instance
name with which he wants the tool to be recognized in the
interface. The engine will then open up the folder where he
needs to place the jar file. Once the tester places the jar file,
the engine will add a class instance for the tool in the tools
class file and also automatically add it to the class path,
making the tool available for the interface. The tester can then
invoke all the API methods of the tool from the test scripts file
by simply using the instance. An example of the tool adding
process can be given as follows,

Consider the case of adding the tool Tidy (a HTML syntax
checker tool) to the interface. The javadocs for the tool
indicates that the main class for the tool is Tidy. Let us use the
instance name as 'tidynow' (the instance name can be anything
that will make it easier for the tester to identify the tool). Now
the engine will open the library folder and ask the user to put
the tidy jar file in the folder. On moving the tidy jar file inside
the library folder, the engine will add the tool to the class path
and generate the following piece of code in the tool class file:

==
public static Tidy tidynow = new Tidy();
==
So the tool is now available to be used from the test script files
by using the instance name 'tidynow'. Figure-4 shows the
usage of the tool in our test script file

Figure -4 Using the newly added tool in the test script file (the
benefit of eclipse code completion is seen here)

As seen in the image, typing the instance name followed by a
'.' inside our test script workflow method, shows all the
methods provided by the Tidy API.

V. RELATIONSHIP WITH DATA-DRIVEN
FRAMEWORK

Data-driven framework concentrated on externalizing the data
from the test scripts to provide parameterization and easy
maintenance of data.

Positives:

• Test data changes does not affect the test script
• Test data can be easily reviewed
• Test data can be used across different scripts

Negatives:

• Does not deal with frequent functional changes in the
underlying script.

Interface:
• The interface treats data-driven framework as a

module in its implementation and not as the only
available framework. The interface supports data
driven testing through TestNG data provider. The
interface engine automatically places the below data
provider object implementation for every new
scenario:

======================================
@DataProvider(name = "DP1")
public Object[][] createDataImaging()

throws Exception{

Object[][]

retObjArr=driver.getExcel("Tests\\Gmail

\\TestCases\\login.xls","DataProvider",
"Login");

 return(retObjArr);
}

======================================

The Data provider object is pointed to the Test Cases folder
which is created for every project, as explained in the Product
Library section. The combination of data for driving the test
can then be passed through a spreadsheet placed in the Test
Cases folder. In our example, the spreadsheet is "Login.xls".
The data to be used for parameterization can be passed
through the spreadsheet.

VI. RELATIONSHIP WITH KEYWORD-DRIVEN
FRAMEWORK

Keyword-driven framework externalizes the actions from the
test script in to separate library files and provides a layered
approach to automation.

Positives:

• Readable tests closely related to business domain
• Enables easy test reviews

Negatives:

• Linking the library files with different test scripts.
• Test automation environment setup and maintenance

taking up more time than the test design.

Interface:
• Automated template generation for linking library

files with test scripts.
• Automated and easy test environment setup.

The interface engine automatically adds the import
statements for the framework level class files every time a
new scenario is created.

VII. REUSABLE SCRIPT AND EASY SCRIPT
MAINTENANCE

A single workspace for multiple automation tools makes
it possible to reuse common interface level scripts. Higher
level scripts such as a random data generator for database
tables can be placed in the framework library thus making
it available for database testing, load testing and usability
testing tools.

 Single workspace also avoids duplication of test scripts.
For instance, Consider a test scenario for adding a user to
an application. Our testing might involve verifying the
functionality of adding a user as well as load testing the
application for performance check. In both the case, the
actions that needs to be performed to add a user will
remain the same.

The test scenario will branch out after the steps for adding
the user are done. For functionality testing we would be
verifying if the added user appears on the application as
well as is added as a database record. For the
performance testing we would be using a separate

performance test tool to monitor the performance changes
for multiple user adds.

Single workspace will avoid the repetition of test script
for the common actions to be performed on the
application under test for both the tools.

Interface engine maintains the relationship between the
business rule and test script implemented. Interface
engine makes it easy to locate the test script implemented
for the business rule, thus making it easier for the test
automation engineer to keep track of the business case
covered by the test script.

Figure -5 Interface engine: Relationship between business rule
and code

As seen in the figure, for every Business rule under a test
scenario, we can look at the implemented code by clicking the
"show code" button. "Show code" will launch the modified
eclipseportable version with the respective test scenario class
(java file) and the corresponding business workflow method.

VIII. SUMMARY

The paper proposed an interface design to extend and maintain
automation scripts across multiple test automation tools. The
paper also demonstrated how an automated template
generation can ease the process of test design.

The interface proposed gives a design pattern to build a single
platform approach for the different framework
implementations across multiple tools with an efficient
traceability process built in it.

IX. REFERENCES

[1] Hayes, Linda G., "Automated Testing Handbook",
Software Testing Institute, 2nd Edition, March 2004.

[2] Kaner, Cem , "Architectures of Test Automation",
http://www.kaner.com/pdfs/testarch.pdf, August 2000
(November 1, 2011)

[3]Kent, John, "From Record/Playback to Frameworks",
http://www.simplytesting.com/Downloads/Kent%20-
%20From%20Rec-Playback%20To%20FrameworksV1.0.pdf,
2007
(November 1, 2011)

[4] Stewart, M. Simon, "Page Object Pattern",
http://code.google.com/p/selenium/wiki/PageObjects, October
2011
(November 1, 2011)

[5] Selenium:
http://seleniumhq.org/
(November 1, 2011)

[6] Selenium IDE: Adding Custom Format
http://wiki.openqa.org/display/SIDE/Adding+Custom+Format
(November 1, 2011)

[7] EclipsePortable:
http://sourceforge.net/projects/eclipseportable/
(November 1, 2011)

[8] Jennitta Andrea, "Envisioning the Next Generation of
Functional Testing Tools," IEEE Software, vol. 24, no. 3, pp.
58-66, May/June 2007, doi:10.1109/MS.2007.73

