Conguest: Interface for Test Automation Design

Anand Gopalakrishnan

Florida Institute Of Technology
Melbourne, Florida
agopalkrishn2010@my.fit.edu

Abstract— Test Automation engineers often need to use mylie

automation test tools and are required to extend ah maintain

automation test scripts across these multiple toald-or the test
automation engineer the problems are the usual: formation

overload and maintenance in multiple environmentsin such an
overwhelming circumstance, the process of maintaing the
automation test scripts from multiple tools and maping it to the

business criteria can be lost. In order to improveest automation
design, we propose an interface to be used by temstitomation

engineers for (Web) application testing. The intdace provides a
single workspace for incorporating multiple open sarce testing
tools and frameworks for system/integration testingof (web)
based applications. The goal of the interface is teimplify the

process of mapping tests to business criteria withio the coding
coming in the way of the process, and thus increasee efficiency
and flexibility in maintaining the test scripts. This paper
describes the background, features and implementatn details of
the interface.

Keywords-Test Automation Design, Conquest, automation
interface, test design.

|. INTRODUCTION

Terry the Test automation engineer has been neglyited
to work on a project. The company has never hashaation
testing done before. The manager got excited \uighstory
sold by an off the shelf automation testing toohiworkshop
and decided to implement automation testing irphigect.
The talk given by the tool vendor set an expeatabibturn-
key simplicity. The manager is under the assumgttian in
automation, the tester has to only record a seguehactions
and then play it without human intervention, to gestet of
nicely formatted report about the test status.ylisrasked to
go ahead and implement the record and playback Teoty
starts implementing the tool in a record/playba@aner and
the manager asks the entire test team to replagentianual
testing with execution of the automation test derip

Marty, a manual software tester finds that the réed
automation scripts are not testing for all the bess scenarios
and reports the problem to Terry. Terry, on furihéeraction
with Marty, understands that the logic flow of dgeplication
is incorrect; the tests only concentrated on g®r interface
of the application. Marty also points out many othesiness
scenarios related to performance, database teslisplm
browser compatibility which are difficult for theanual
testers to carry out and automation could be aaidduaid.
Terry finds out that the tool cannot support théedént

Dr. Keith Gallagher

Florida Institute Of Technology
Melbourne, Florida
kgallagher@fit.edu

scenarios and starts investigating and installerdtiols. Terry
then starts maintaining separate workspaces femmthtiple
tools. Terry also starts understanding the busiloggs and
the requirements from Marty and starts maintairnivem,
leading to information overload and maintenancélams.
Use of multiple tools in different workspaces letmscript
duplication issues. A separate process of docunmptiie
business logic flow compounds the maintenanceegthipts.
Every time Terry finds out a new tool that can hiealpest
automation , the entire test suite must be modiffeuiry now
spends most of the time setting up and maintaittiegest
automation environment and less time concentratimthe
application under test. As a result, Terry runsaf time to
cover all the important business criteria and ttoglpct ships
with issues, leading to irate customers.

The test automation engineer's problems:
e Lack of a clear mapping from the business logic to
the test scripts.
« Technology and tool environment focus, rather than
testing focus.
« Information and maintenance overload.

IIl. BACKGROUND

"The test framework is like application architeetufl].
Good test automation architecture should be able to
parameterize data, log test status, report errdr satup the
environment for test. "Test automation is Software
development. Like all software under developmentyakes a
lot of sense to figure out requirements and creataething
that meets them" [2]. The growth of software ctaxijpy and
the different test patterns involved to cover alkiness logic
flows led to thousands of test scripts written asronultiple
testing tools.

For instance, record and playback tools which made of
User Interface elements for constructing test scitiave been
available since 1990s. However, frequent Ul changesler
the test scripts non-usable. These tools have nehentt-
comings of maintenance, as they heavily rely on Wser
Interface. The need to maintain the test scripts tte the
development of different test automation frameworks

One test automation framework architectural styledlled
data driven. In data driven automation, the test data is held i

separate files which are read by the automatedctetd and
then used as an input for the software under &stData
driven testing made it possible to run the sameofégst for
different data by parameterization. The approactdema
possible to modify data without touching the testipgs.
However, data driven approach proved to be ineffecin
handling procedural or functional changes in tespts.

affecting the overall architecture and implemenotati
of the framework.

In the following sections, detailed implementation
mechanism and design of the interface will be destrated.

[ll. INTERFACE ARCHITECTURE

Keyword driven framework came in to existence to address

procedural and functional changes. The functiopadit the
application under test is documented in a tablevels as the

step-by-step instruction for each test. The actimi needs to

be performed as a part of testing is passed aladtigtiae data.
Modularized methods are developed in corresponttingach
business action. The methods can either be geredalit a
level for all web based elements; or it could havéayered
approach, with one layer having actions customifedan
application under test.

A more effective version of keyword-driven framew®iis
to externalize the business logic flow with combiimies of data
required to carry out the testing. This style ismted as a
hybrid framework.

Test patterns that are used to address the logic flows may

include web functional testing, web database rtgstiveb
performance testing and browser compatibility tegti

Based on a layered approach to test automatiomgvibill
testing work is divided in to two parts: (a) a franork for
incorporating new automation tools to meet the fess logic
and (b) writing test scripts to meet the logic fltaw testing the
application under test. Accordingly, we have twaksholders
in our testing effort: (a) Test automation engisesho design
and extend the framework and (b) software testés analyze
the business logic for the application under t@str approach
is to create an interface to aid the test automagitgineers in
maintaining a single workspace for the multiple sagomation
tools and also to make it easy for them to maphihgness
logic flow from the software testers to their testipts for easy
traceability.

CONTRIBUTIONS

From the above background introduction, the folluyvi
main features in our interface can be highlighted specified :

1. A direct mapping of business logic to code. The
interface will make it possible to provide a Domain
Specific Language which will link the business gi

The interface is built on top of the well knowndgtated
development environment (IDE) Eclipse for Java andpen
source web application testing system, Seleniungureil
shows the interface model.

Figure-1 Test Automation design model

XL
Ot Concurrent Interface BUSINESS
Repasiory Engine LoGIc
SELENIUM {} @
TEST TEMPLATE <: Framework Product ELEMENT
Library Library
Eclipse Environment

COMMENT

A. Eclipse Environment

The interface is provided as an EclipsePortablea Jav
project. The user only needs the latest Java Emvient (JDK)
setup on his machine to start using the interfadedified
version of EclipsePortable is provided as a pathefinterface.

a. Framework Library

Framework library contains all the classes whi@hfar the
framework and are product/project independent.
framework interface has functions for the following

The

a.l. Initialize System:

This function deals with initializing the interfacg/stem.

from the software testers in the form of comments i 1hiS could mean different functionalities for diféat testing

the code written by the test automation engineers.

tools. The function is responsible for initializiregnd starting
the specific automation test tool and making itilatée to the

2. Reusable code. A single interface for multiple ool interface. By default it has Selenium setup antiiiged to be

will make it possible to share code across toblthed

used by the interface. Any new tool can be added &md

tools are using the same underlying programmingnade available for the interface. The interfacerendescribed

language for developing the test scripts.

avoid duplication of test scripts. Single interfagid

in the next section explains how to add a new tBatracting

3. Easy maintenance. Having all the different testthe tool support in to a separate class makesstiple to add

automation tools under a single workspace woul

nd remove tools from the interface without affegtthe test
suite.

make it possible to add and remove tools without

a.2. Test Logic:

This function deals with providing a wrapper fot tie
methods available in a test tool API. Providing sapper
makes it easier to control the manipulation of ARictions
and enhance the code readability. Wrappers areidam\by
default for Selenium API methods.

we divide the web application as a series of vigmtas
opposed to objects. The variables are placed in then class
files which are then imported in the test file fbe scenario.
Every scenario will now have a test file containithg test
scripts for the business logic and a test variéitdecontaining
all the web elements involved in the scenario angst
variables. The pattern makes it possible to takeamtdge of

Wrapping the complex Selenium API code in to method Eclipse code completion feature to relate the wigments

has the following advantages:

with the test cases. The interface engine autoaibtic
generates the link between the variable file astl fiee for a

* It provides common operation on controls andscenario, thus avoiding the tester to worry abouindane

strong support for custom verification.

« Readability of the code is improved.

e« Custom implementation and extended methods
can be added to the API methods through Wrappe‘?

without modifying the underlying API code.
a.3. Data Driver:

This function deals with providing support for dabaven
testing. Data driven testing is implemented usirte t
@DataProvider annotation provided by TestNG. Aneobj
array is implemented to take Excel datasheetsag end use
the data for parameterization.

a.4. Reporting:

This function deals with capturing the reports from

different test runs across multiple test tools amgrating
them to form a single seamless report. The funaiso deals
with capturing screenshot on failure and linking ti

corresponding step.

a.5. Database Check:

This function deals with checking the state of da¢abase
on providing user inputs and changing applicatiotpots. The
function also deals with updating and modifying ttetabase
to aid in testing disaster recovery scenarios.

a.6. Non Web:

This function deals with browser specific actiorikel
testing the download of a file in Firefox or IntetrExplorer
etc. This function also provides support for crasswser
testing. The cross browser testing is implementeihgu
Selenium Grid, an open source java add on for &eterwhile
the non-browser Windows API based testing is imgletad
using AutolT, an open source windows testing tool.

b. Product Library

Each Product will have its own library structureheT
interface is designed to be a single workspaceniattiple
products.

b.1. Variable File Pattern:

Page Object pattern popularly advocated by the sparce
tool Selenium RC is a pattern that represents ¢heea of the
web application as a series of objects [4]. Vaddfile Pattern
introduced by the interface proposed in this pajgeran
addendum to the page object pattern. In Variabke pattern

maintenance and environment setup tasks and coatentore
on the test scenarios.

The folder structure generated by the interfaceinentpr
ach product can be explained as follows:

b.2. Product Variables:

Following the variable file pattern, this contaitie class
file with variables that are used throughout thedpct. Some
examples of such variables can be given as URLhef t
product, Database driver details for the produxt et

b.3. Queries:

This folder contains all the database queries rietmlearry
out the database testing. The queries are prowddégql files
which are interpreted by the database check fumatiothe
framework library and used in the test scripts.

b.4. Test Cases:

This folder contains all the excel datasheets taudet by
the data driver function for parameterization ofttscripts
using multiple data provided by the sheet (dateedrtesting).

b.5. Test Scripts:

This folder contains the test script files for diffnt
scenarios having the test logic flow implemented.

b.6. Test Variables:

Based on the Variable file pattern explained abdhies
folder contains the test variable files for differescenarios.
The association between these files and their ctispetest
script files are done by the interface engine.

B. Object Repository

The interface provides a custom format for SeleniDia.
Using this format while recording will generate aml file
with the page elements accessed while recordingeaasio
inside custom formatted xml tags. The record arai/lgack
tools are always used to record a scenario and plsack
the scenario, but in our interface, the custom &rprovided
modifies the record functionality of Selenium IDHhe
Selenium IDE is used as an interpretation engirterant as a
record/playback tool. Using Selenium IDE on a walbewith
the custom format will get the DOM element inforioatfor
the objects in an xml format and not record thenade. For
example, in our scenario of testing the login to &@mthe
pages involved in our scenario are the Login pagg the
Landing Page. We need the elements in the Logire gag
perform actions and we need the elements in theibhgrpage

for verification purpose. We will start with usii@glenium IDE

with our custom format: "ATSFormat" and perform iaas

(click, type etc.) on all the elements (that weestgdo be a part
of the scenario) in the Login and Landing page.cOmpletion

of the record, we save the recording as an XML fiteler the
Workspace folder provided by the interface. Theoreded

XML sheet for our scenario will have contents a®ve

below:

<page>

<field >

<Text>Email </Text>
<[field>

<field >

<Text>Passwd </Text>
<[field>

<field >

<link>signIn </link></field>
</page>

As seen above, the XML sheet contains the DOM aieme
identifiers for the web elements on the login paf&mail. It
also classifies the elements as <Text> elementefdr boxes
and <link> element for links. The interface engthen parses
the XML file to form a test variable file for thedin page. The
engine then adds an import of the test variabtetbl the test
script file, thus associating the elements withtdst script for
the scenario. The test variable file output of plagser can be
shown as follows:

public class TestLoginVar extends Toolset {
public static String TestLoginOutput=
"TestLoginOutput.xls";

public static String TestLoginOutputDB=
"TestLoginOutputDB.csv";
public static String DBRoot
"Result\\Gmail\\Data\\DBOutput\\";

public static String txtEmail= "Email";
public static String txtPasswd= "Passwd";
public static String LnsignIn= "signIn";

}

As discussed in the variable file pattern, it isrs¢hat the
parser generates the test variable file with thb alements as
static string variables. The reason it defined ¢l@ments as
static is because the elements may be used aciffecert
scenarios. As seen in the output, the class invir&able
extends the Toolset class. Toolset class conthmgunctions
needed to initialize the system (as discussedar-tamework
Library). The two static strings TestLoginOutpuhda
TestLoginOutputDB are the report files created fforctional
test report and database test report.

C. Concurrent Interface Engine

The concurrency characteristics of the engine ihénidea
that it can be modified and extended without afifectthe
implemented test suite execution. The tester ared tést
automation engineer can use the mmwicurrently.

Concurrent interface engine is a HTML Applicati¢iT@)
built on top of the Eclipse environment and prodides a part
of the interface. The engine has a built in xmisparto parse
the object files coming from the object repositosgenario
editor and a tool plug-in module that allows foas#ess and
easy integration of new tools in to the interfackhe
concurrency characteristics of the engine is initdea that it
allows to extend and modify the framework withotfeeting
the implemented test suite execution. The interéaggne also
makes it possible to keep track of the businesgt lagile
writing the test scripts without the need of a safaprocess
for the same.

a. ParserThe xml parser is built in VbScript which accepts
a pre-formatted xml sheet from the object repogitand
converts it in to a java file containing the wekerakents of
application - under - test as static variables. Pheser also
generates the java test script template.

b. Scenario EditorThe scenario editor is built in HTA
using VbScript, which accepts workflow and businesteria
and adds them as a separate method and commehe to t
method respectively.

The functionality of the engine can be explainediatail
with the following scenario to be automated:

"Test the Login functionality of Gmail"

The test automation engineer will pair with a seaiitevtest
engineer and document the logic flow in a DomairecHjc
language using the Scenario editor. The logic flomtesting a
successful login can be expressed in DSL as follows

Product: Gmail
Scenario: TestLogin

Workflow name: PositiveLogin (this can be named
anything that seems to agree with the applicatammain).

Criteria: Login to Gmail with the correct "username" and
"password" and the user should be able to seaitting page.
(This is a sample criteria, of course in a realt tes
implementation we would be adding more details alibe
landing page. The details about the landing page lba
specified in the same criteria or in a collectidreidteria based
on the application domain).

The main entities of the DSL can be explained He\is:

Workflow : Workflow is a name given to a sequence of
actions that will be carried out in the test scenar

Criteria : Criteria is the sequence of actions that repttesen
the test logic flow.

The engine converts the workflow provided as a java
method and the criteria as a comment for the methigdire -2

shows the Scenario editor with the DSL enteredHerabove
stated scenario.

Figure-2 Interface Engine Scenario Editor

.
1 Conguest Test Editor e M

o

Scenario Editor

Select Project:| Gmail ~
Select Scenario:| TestLogin

Workflow Name:|PosiivaLogin
Criteria

[KMethod>Posi tiveLogin</Method>
(KCriteria>Login to Gmail with the correct "username" and "password" and the
jser should be able to see the landing page{(/Criteri»

| import

.| import

As seen in the image, On entering the Workflow name:
clicking on Create button will automatically ada ttvorkflow
inside the <Method></Method> tags. On clicking tiréeria
button it will create the <Criteria></Criteria> tador us for
entering our test criteria in between the tagsewhe criteria
is added, the engine generates a 'java' tesafiite'.java' test
variable file (the concept of test variable filedgplained in
detail in the next section). The test file has fiilowing code
generated for the workflow:

// <Method>Positivelogin</Method>

// <Criteria>Login to Gmail with the correct
"username" and "password" and the user should
be able to see the landing page</Criteria>

!/

// <Parameter>: String username

// <Parameter>: String password

@Test

public static void PositivelLogin(){

}

As seen above, it creates a Java method havingna aa
that of the workflow and it adds the criteria asceanment for
the method. The comment system makes it possibiejnthe
business criteria with the test script eliminatitige test
automation engineer to go through a separate mdoeshe
same. Also, the engine identifies the parameters&hwhas
been specified in double quotes and makes a suggyéstthe
test automation engineer to consider them for patarzation.

also generates the standard import statementsraatbs a new
class for every scenario. The following code isegated by the
engine in the test file before the workflow codewh above.

package Gmail.TestScripts;
import org.testng.annotations.*;
org.testng.annotations.Test;
java.sql.*;
java.util.Properties;
jx1.%;

java.io.*;
Gmail.ProductVariables.*;
Gmail.TestVariables. *;
Gmail.*;

Framework. *;

import
import
import

import
import
import
import

public class TestLogin extends Gmail {
@DataProvider(name = "DP1")

public Object[][] createDataImaging() throws
Exception{

Object[][]

"] retObjArr=driver.getExcel("Tests\\Gmail\\Test

Cases",
"DataProvider","Login");
return(retObjArr);

}

@BeforeClass

public static void TestInit() throws
Exception{
driver.Xlogger(TestLoginVar.TestLoginOutput,"
Gmail");
DBFunction.DBLogger(TestLoginVar.TestLoginOut
putDB,"Gmail");

}

The @DataProvider and the @BeforeClass are TestNG
annotations added for the TestNG harness in teefatte. The
job of the interface engine is to setup the TegieSand
generate template to start writing tests.

IV. ADD A NEW TOOL

Interface Engine provides an easier mechanismdamad/
java web testing tools (jar) to the interface. Ascdssed in the
earlier section, all the tools used in the intezface extracted
and maintained in a separate class file. Maintgitie tools

in a separate file makes it possible to add nevs timothe
interface without affecting the test suite strueturhe tester
needs to add the jar file to the class path andl dedéine a
class and instance in the tool class file. Intexfangine
provides a simple user interface to carry out tsék. Figure-3
shows the implementation of this feature:

The @Test annotation added by the engine is for the

integrated test harnes$estNG. The scenario entered in the

scenario editor is also saved as a separate »aniTlile existing
scenarios can be opened and edited using the .€Hiterengine

Figure-3 Adding a Tool using Interface Engine

s R -
Object File: ™ &
oz | |

|

Submit | Clear ‘

Add Tool:
Class Name: |Tidy

Instance Name: fidynow

Click the button to add a new tool:

AddTool | Reset

As seen in the image, the tester only needs tagediae main
class name used by the tool, which he can obtam the
JavaDocs of the tools. He then needs to providastance
name with which he wants the tool to be recognindtie
interface. The engine will then open up the foMdbere he
needs to place the jar file. Once the tester pldeegar file,
the engine will add a class instance for the todhe tools
class file and also automatically add it to thesslpath,
making the tool available for the interface. Thetée can then
invoke all the API methods of the tool from thet tesipts file
by simply using the instance. An example of the &mlaling
process can be given as follows,

Consider the case of adding the tool Tidy (a HTMhtax
checker tool) to the interface. The javadocs ferttiol
indicates that the main class for the tool is Tidst us use the
instance name as 'tidynow' (the instance name eamyzthing
that will make it easier for the tester to identifie tool). Now
the engine will open the library folder and ask tiser to put
the tidy jar file in the folder. On moving the tigr file inside
the library folder, the engine will add the toolth® class path
and generate the following piece of code in thé ¢tass file:

public static Tidy tidynow =
So the tool is now available to be used from tisegeript files
by using the instance name 'tidynow'. Figure-4 shthe
usage of the tool in our test script file

new Tidy();

Figure -4 Using the newly added tool in the tesipsdile (the
benefit of eclipse code completion is seen here)

public static void LogintoGmail(){
i @ equals(Object arg0) : boolean - Object -
@ getAltText() : String - Tid

@ gethsciiChars() : boolean - Tid,

@ getBreakBeforeBR() : boolean - Tid,

@ getBurstSlides() : boolean - Tidy

@ getClass() : Class«<T> - Object

@ getConfiguration() : Cenfiguration - Tid,

@ getDocType() @ String - Tidy

@ getDropEmptyParas() : boolean - Tid

@ getDropFontTags() : beolean - Tidy =
@ getDropProprietaryAttributes() : boolean - Tid, _ite

. Problems | @ Jav)

» conseles to display | @ getEmacs() : boolean - Tic =

Press "Ctri+Space’ to show Template Proposals [

As seen in the image, typing the instance namevi@tl by a
"' inside our test script workflow method, shaalighe
methods provided by the Tidy API.

V. RELATIONSHIP WITH DATA-DRIVEN
FRAMEWORK

Data-driven framework concentrated on externaliziregdata
from the test scripts to provide parameterizatiod easy
maintenance of data.

Positives:
e Test data changes does not affect the test script
« Test data can be easily reviewed
e Test data can be used across different scripts

Negatives:
« Does not deal with frequent functional changesn t
underlying script.

Interface:

e The interface treats data-driven framework as a
module in its implementation and not as the only
available framework. The interface supports data
driven testing through TestNG data provider. The
interface engine automatically places the belowa dat
provider object implementation for every new
scenario:

@DataProvider(name = "DP1")
public Object[][] createDataImaging()
throws Exception{
Object[][]
retObjArr=driver.getExcel("Tests\\Gmail
\\TestCases\\login.x1ls","DataProvider",
"Login");

return(retObjArr);

}

The Data provider object is pointed to the TesteSdslder
which is created for every project, as explainetheProduct
Library section. The combination of data for driyithe test
can then be passed through a spreadsheet platies] Trest
Cases folder. In our example, the spreadsheetogifiLxIs".
The data to be used for parameterization can ksegas
through the spreadsheet.

VI. RELATIONSHIP WITH KEYWORD-DRIVEN
FRAMEWORK

Keyword-driven framework externalizes the actiomsyf the
test script in to separate library files and presid layered
approach to automation.

Positives:

* Readable tests closely related to business domain

» Enables easy test reviews

Negatives:
» Linking the library files with different test sctip

« Test automation environment setup and maintenance

taking up more time than the test design.

Interface:
« Automated template generation for linking library
files with test scripts.
» Automated and easy test environment setup.

The interface engine automatically adds the import
statements for the framework level class files g¥iene a
new scenario is created.

VII. REUSABLE SCRIPT AND EASY SCRIPT
MAINTENANCE

A single workspace for multiple automation toolskes
it possible to reuse common interface level scridtgher
level scripts such as a random data generatoratabdse
tables can be placed in the framework library tma&ing
it available for database testing, load testing @sability
testing tools.

Single workspace also avoids duplication of tespss.
For instance, Consider a test scenario for addimgea to
an application. Our testing might involve verifyitige
functionality of adding a user as well as loaditesthe
application for performance check. In both the ctse
actions that needs to be performed to add a udler wi
remain the same.

The test scenario will branch out after the stepséiding
the user are done. For functionality testing we lddne
verifying if the added user appears on the aptinas
well as is added as a database record. For the
performance testing we would be using a separate

performance test tool to monitor the performanangdes
for multiple user adds.

Single workspace will avoid the repetition of testipt
for the common actions to be performed on the
application under test for both the tools.

Interface engine maintains the relationship betwtben
business rule and test script implemented. Interfac
engine makes it easy to locate the test scriptémphted
for the business rule, thus making it easier fertést
automation engineer to keep track of the businass c
covered by the test script.

Figure -5 Interface engine: Relationship betweesiriass rule
and code

& Conquest Test Editor ol Y

Workflow Name:|

New 04| [Open] _ ShowCods | clear

As seen in the figure, for every Business rule urdest
scenario, we can look at the implemented codeiblioh the
"show code" button. "Show code" will launch the rfied
eclipseportable version with the respective teshado class
(java file) and the corresponding business workfioaethod.

VIll. SUMMARY

The paper proposed an interface design to extethdnamtain
automation scripts across multiple test automatots. The
paper also demonstrated how an automated template
generation can ease the process of test design.

The interface proposed gives a design patternitd hisingle
platform approach for the different framework
implementations across multiple tools with an édfidt
traceability process built in it.

IX. REFERENCES

[1] Hayes, Linda G "Automated Testing Handbook",
Software Testing Institute, 2nd Edition, March 2004

[2] Kaner, Cem , "Architectures of Test Automatipn”
http://www.kaner.com/pdfs/testarch.pdfugust 2000
(November 1, 2011)

[3]Kent, John, "From Record/Playback to Framewarks"
http://www.simplytesting.com/Downloads/Kent%20-
%20From%20Rec-Playback%20To0%20FrameworksV1.0.pdf
2007

(November 1, 2011)

[4] Stewart, M. Simon, "Page Object Pattern",
http://code.google.com/p/selenium/wiki/PageObjeCistober
2011

(November 1, 2011)

[5] Selenium:
http://seleniumhg.org/
(November 1, 2011)

[6] Selenium IDE: Adding Custom Format
http://wiki.openga.org/display/SIDE/Adding+Custonormat
(November 1, 2011)

[7] EclipsePortable:
http://sourceforge.net/projects/eclipseportable/
(November 1, 2011)

[8] Jennitta Andrea, "Envisioning the Next Generatof
Functional Testing ToolsJEEE Software, vol. 24, no. 3, pp.
58-66, May/June 2007, doi:10.1109/MS.2007.73

