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1 Position

Let us consider a particle with no spin that can move in one dimension. Let
us call the coordinate x. How can we describe this in quantum mechanics?

We postulate that if the particle is at x, its state can be represented by
a vector

∣∣x〉. The particle could be anywhere, so we postulate that a general
state should be represented as a linear combination of states

∣∣x〉 with different
values of x.

If there were a discrete set of possible values for x, say xi, we could just
take over the structure that we had for spin, taking

〈
xi
∣∣xj〉 = δxixj . Since

the possible values for x are continuous, we postulate instead that〈
x′
∣∣x〉 = δ(x′ − x) . (1)

Here δ(x′ − x) is the Dirac delta function, defined by∫
dx f(x) δ(x′ − x) = f(x′) . (2)

There is no actual function that does this, although one can think of δ(x′−x)
as a sort of limit of ordinary functions that vanish when x′ − x is not very
close to 0 but are very big when x′−x is very close to 0, with the area under
the graph of δ(x′ − x) equal to 1. The precise way to think of it is that
δ(x′ − x) is a “distribution”, where a distribution F maps nice well behaved
functions f to (complex) numbers F [f ]. For F [f ] we use the convenient
notation F [f ] =

∫
dxf(x)F (x).

We postulate that the vectors
∣∣x〉 make a basis for the space of possible

states, with the unit operator represented as

1 =

∫
dx
∣∣x〉〈x∣∣ . (3)
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This is consistent with the inner product postulate:∣∣x′〉 = 1
∣∣x′〉 =

∫
dx
∣∣x〉〈x∣∣x′〉 =

∫
dx
∣∣x〉δ(x′ − x) =

∣∣x′〉 . (4)

With the completeness relation, we can represent a general state
∣∣ψ〉 as

a linear combination of our basis vectors
∣∣x〉:

∣∣ψ〉 =

∫
dx
∣∣x〉〈x∣∣ψ〉 . (5)

Then for any two states
∣∣ψ〉 and

∣∣φ〉 we have

〈
φ
∣∣ψ〉 =

∫
dx
〈
φ
∣∣x〉〈x∣∣ψ〉 =

∫
dx
〈
x
∣∣φ〉∗〈x∣∣ψ〉 . (6)

In particular, if
∣∣ψ〉 is normalized, we have

1 =
〈
ψ
∣∣ψ〉 =

∫
dx
〈
ψ
∣∣x〉〈x∣∣ψ〉 =

∫
dx
∣∣〈x∣∣ψ〉∣∣2 . (7)

With discrete states, we postulate in quantum mechanics that the prob-
ability that a system in state ψ will be found, if suitably measured, to be in
state

∣∣i〉 is |
〈
i
∣∣ψ〉|2. We generalize this to continuous values x by postulat-

ing that the probability that a system in state ψ will be found, if suitably
measured, to have position between x and x+ dx is is |

〈
x
∣∣ψ〉|2dx. That is,

|
〈
x
∣∣ψ〉|2 is the probability density, and the probability that the system will

be found to be between position a and position b is

P (a, b) =

∫ b

a

dx
∣∣〈x∣∣ψ〉∣∣2 (8)

This is consistent with the state normalization. The probability that the
system is somewhere is

1 = P (−∞,∞) =

∫ ∞
−∞

dx
∣∣〈x∣∣ψ〉∣∣2 (9)

We can now introduce an operator xop that measures x:

xop
∣∣x〉 = x

∣∣x〉 . (10)
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Then

xop =

∫
dx x

∣∣x〉〈x∣∣ . (11)

With this definition, xop is a self-adjoint operator: x†op = xop. Its expansion
in terms of eigenvectors and eigenvalues is Eq. (11).

In a first course in quantum mechanics, one usually denotes
〈
x
∣∣ψ〉 by

ψ(x) and calls it the “wave function.” The wave function notation is helpful
for many purposes and we will use it frequently. With the wave function
notation, 〈

φ
∣∣ψ〉 =

∫
dx φ(x)∗ ψ(x) . (12)

The state vector is expressed as a linear combination of basis kets
∣∣x〉 using

Eq. (5), ∣∣ψ〉 =

∫
dx ψ(x)

∣∣x〉 . (13)

2 Translation in space

We can define an operator U(x) that translates the system a distance a along
the x-axis. The definition is simple:

U(a)
∣∣x〉 =

∣∣x+ a
〉
. (14)

Evidently
U(b)U(a) = U(a+ b) . (15)

In particular
U(−a)U(a) = U(0) = 1 , (16)

so
U(−a) = U(a)−1 . (17)

It will be helpful to express what U(a) does to an arbitrary state
∣∣ψ〉 by
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using the wave function representation. If U(a)
∣∣ψ〉 =

∣∣ψ′〉, we have∫
dx ψ′(x)

∣∣x〉 =
∣∣ψ′〉

= U(a)
∣∣ψ〉

=

∫
dy ψ(y)U(a)

∣∣y〉
=

∫
dy ψ(y)

∣∣y + a
〉

=

∫
dx ψ(x− a)

∣∣x〉 .

(18)

From this, we identify
ψ′(x) = ψ(x− a) . (19)

Note the minus sign.
If U(a)

∣∣ψ〉 =
∣∣ψ′〉 and U(a)

∣∣φ〉 =
∣∣φ′〉, then the inner product between∣∣ψ′〉 and

∣∣φ′〉 is

〈
φ′
∣∣ψ′〉 =

∫
dx φ′(x)∗ψ′(x)

=

∫
dx φ(x− a)∗ψ(x− a)

=

∫
dy φ(y)∗ψ(y)

=
〈
φ
∣∣ψ〉 .

(20)

Thus U(a) is unitary, U(a)† = U(a)−1 = U(−a).
In particular,

〈
x
∣∣U(a) can be considered to be the conjugate of U †(a)

∣∣x〉,
which is then U(−a)

∣∣x〉 =
∣∣x− a〉. That is〈
x
∣∣U(a) =

〈
x− a

∣∣ . (21)

If U(a)
∣∣ψ〉 =

∣∣ψ′〉, this gives

ψ′(x) =
〈
x
∣∣U(a)

∣∣ψ〉 =
〈
x− a

∣∣ψ〉 = ψ(x− a) . (22)

This is our previous result, just looked at a different way.
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3 Momentum

We now consider a translation through an infinitesimal distance δa. Since δa
is infinitesimal, we expand in powers of δa and neglect terms of order (δa)2

and higher. For U(δa) we write

U(δa) = 1− i pop δa+ · · · . (23)

This defines the operator pop, which we call the momentum operator. I take
it as a postulate that pop, defined in this fashion as the infinitesimal generator
of translations, represents the momentum in quantum mechanics.

We have
U(δa)† = 1 + i p†op δa+ · · · . (24)

and also
U(δa)† = U(−δa) = 1 + i pop δa+ · · · . (25)

Comparing these, we see that

p†op = pop . (26)

That is, pop is self-adjoint.
Let us see what pop does to an arbitrary state

∣∣ψ〉. We have〈
x
∣∣U(δa)

∣∣ψ〉 =
〈
x− δa

∣∣ψ〉 (27)

but 〈
x
∣∣U(δa)

∣∣ψ〉 =
〈
x
∣∣1− i pop δa+ · · ·

∣∣ψ〉 (28)

Thus 〈
x
∣∣ψ〉− iδa〈x∣∣pop∣∣ψ〉+ · · · =

〈
x− δa

∣∣ψ〉 . (29)

If we expand the right hand side in a Taylor series, we have〈
x
∣∣ψ〉− iδa〈x∣∣pop∣∣ψ〉+ · · · =

〈
x
∣∣ψ〉− δa ∂

∂x

〈
x
∣∣ψ〉+ · · · . (30)

Comparing terms gives 〈
x
∣∣pop∣∣ψ〉 = −i ∂

∂x

〈
x
∣∣ψ〉 . (31)
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With this result, we can easily compute the commutator of xop and pop:〈
x
∣∣[xop, pop]

∣∣ψ〉 =
〈
x
∣∣xoppop∣∣ψ〉− 〈x∣∣popxop∣∣ψ〉

= x
〈
x
∣∣pop∣∣ψ〉+ i

∂

∂x

〈
x
∣∣xop∣∣ψ〉

= − ix ∂

∂x

〈
x
∣∣ψ〉+ i

∂

∂x
x
〈
x
∣∣ψ〉

= − ix ∂

∂x

〈
x
∣∣ψ〉+ i

〈
x
∣∣ψ〉+ ix

∂

∂x

〈
x
∣∣ψ〉

= + i
〈
x
∣∣ψ〉 .

(32)

Since this works for any state
∣∣ψ〉, we have

[xop, pop] = i . (33)

Since every operator commutes with itself, we also have

[xop, xop] = 0 ,

[pop, pop] = 0 .
(34)

These are known as the canonical commutation relations for xop and pop.

4 Momentum eigenstates

Since pop is self-adjoint, we can find a complete set of basis states
∣∣p〉 with

pop
∣∣p〉 = p

∣∣p〉 . (35)

To find the wave functions
〈
x
∣∣p〉, we just have to solve a very simple differ-

ential equation

−i ∂
∂x

〈
x
∣∣p〉 = p

〈
x
∣∣p〉 . (36)

The solution is 〈
x
∣∣p〉 =

1√
2π

eipx . (37)

Evidently, this solves the differential equation; the normalization factor 1/
√

2π
is a convenient choice. We will see why presently.
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Let us calculate the inner product〈
p′
∣∣p〉 =

∫
dx
〈
p′
∣∣x〉〈x∣∣p〉 =

1

2π

∫
dx ei(p

′−p)x . (38)

You can look up the value of this integral in a book, but let’s see if we can
derive it.

The integral. We need

I(k) =

∫
dx eikx (39)

This integral is not so well defined, but it is better defined if we treat it
as a distribution. For that, we should integrate it against an arbitrary test
function h(k). However, we can cheat a little by just integrating against the
function equal to 1 for a < k < b and 0 otherwise. Thus we look at∫ b

a

dk I(k) =

∫
dx

∫ b

a

dk eikx = −i
∫
dx

1

x
[eibx − eiax] . (40)

The integrand appears to have a pole at x = 0, but really it doesn’t because
exp(ibx) cancels exp(iax) at x = 0. For this reason, we can replace 1/x by
1/(x+ iε) with ε > 0 and take the limit ε→ 0:∫ b

a

dk I(k) = −i lim
ε→0

∫
dx

1

x+ iε
[eibx − eiax] . (41)

Now, for finite ε the integral of each term exists separately and we can write∫ b

a

dk I(k) = −i lim
ε→0

{∫
dx

1

x+ iε
eibx −

∫
dx

1

x+ iε
eiax
}

. (42)

Now we need the integral

f(b) =

∫
dx

1

x+ iε
eibx . (43)

We can consider x to be a complex variable. We are integrating a function
of x that is analytic except for a pole at x = −iε. Our integral runs along
the real x-axis.
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If b > 0, we can “close the contour in the upper half plane” by integrating
over from x from −R to R and adding an integration over a semicircle of
radius R in the upper half x-plane. Then we take R → ∞. The integral
along the big semicircle has a 1/R from the 1/x and it is suppressed by

exp(ibx) = exp(ibR cos θ) exp(−bR sin θ) (44)

for x = R cos θ+ iR sin θ. Thus the integral over the big semicircle gives zero
in the limit R→∞ and we can add it for free. But now we have the integral
over a closed contour of a function that is analytic (with no poles) inside the
contour. The result is zero.

If b < 0, we can “close the contour in the lower half plane” by integrating
over from x from −R to R and adding an integration over a semicircle of
radius R in the lower half x-plane. Then we take R → ∞. The integral
along the big semicircle has a 1/R from the 1/x and it is suppressed by

exp(ibx) = exp(−i|b|R cos θ) exp(−|b|R sin θ) (45)

for x = R cos θ− iR sin θ. Thus the integral over the big semicircle gives zero
in the limit R→∞ and we can add it for free. But now we have the integral
over a closed contour of a function that is analytic inside the contour except
for one pole, the one at x = −iε. The result is −2πi times the residue of the
pole: ∫

dx
1

x+ iε
eibx = −2πiebε . (46)

For ε→ 0, this is just −2πi.
Putting this together for b > 0 and b > 0, we have

f(b) = −θ(b < 0) 2πi ebε . (47)

Applying this to both integrals in the integral of I(k) and then taking
the limit ε→ 0, we have, assuming that a < b,∫ b

a

dk I(k) = 2π {θ(a < 0)− θ(b < 0)} = 2πθ(a < 0 & b > 0) . (48)

That is to say, I(k) vanishes on any interval that does not include k = 0,
while if we integrate it over any interval that includes k = 0, its integral is
2π. We thus identify

I(k) = 2π δ(k) . (49)
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Well, perhaps you would have preferred to just pull the answer out of a math
book. However, this style of derivation is useful in many circumstances. We
will see derivations like this again. For that reason, it is worthwhile to learn
how to do it right from the start of this course.

Our result is〈
p′
∣∣p〉 =

1

2π

∫
dx ei(p

′−p)x =
1

2π
2π δ(p′ − p) . (50)

Since we included a factor 1/
√

2π in the normalization of
∣∣p〉, we have〈

p′
∣∣p〉 = δ(p′ − p) . (51)

The vectors
∣∣p〉 are guaranteed to constitute a complete basis set. The com-

pleteness sum with the normalization that we have chosen is

1 =

∫
dp
∣∣p〉〈p∣∣ . (52)

5 Momentum space wave functions

If the system is in state
∣∣ψ〉, the amplitude for the particle to have momentum

p is
ψ̃(p) =

〈
p
∣∣ψ〉 , (53)

We call this the momentum-space wave function. If
∣∣ψ〉 and

∣∣φ〉 represent
two states, then by just inserting 1 =

∫
dp
∣∣p〉〈p∣∣ between the two state

vectors we can write the inner product
〈
φ
∣∣ψ〉 as〈

φ
∣∣ψ〉 =

∫
dp
〈
φ
∣∣p〉〈p∣∣ψ〉 =

∫
dp φ̃(p)∗ψ(p) . (54)

Assuming that
〈
ψ
∣∣ψ〉 = 1, we have∫

dp |ψ̃(p)|2 = 1 . (55)

With our standard interpretation of probabilities, the probability that
the system will be found to have momentum between a and b if we measure
momentum is

P (a, b) =

∫ b

a

dp |ψ̃(p)|2 (56)
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You are encouraged by this notation to think of the system as having one
state

∣∣ψ〉, which can be represented by either
〈
x
∣∣ψ〉 or

〈
p
∣∣ψ〉, depending on

what sort of analysis you want to do.
We can go from the x-representation to the p-representation by writing

ψ̃(p) =
〈
p
∣∣ψ〉 =

∫
dx
〈
p
∣∣x〉〈x∣∣ψ〉 =

1√
2π

∫
dx e−ipx ψ(x) . (57)

The inverse transformation is

ψ(x) =
〈
x
∣∣ψ〉 =

∫
dp
〈
x
∣∣p〉〈p∣∣ψ〉 =

1√
2π

∫
dp eipx ψ̃(p) . (58)

This is known as the Fourier transformation and its inverse.

6 The translation operator again

Now that we know something, let’s look at the translation operator U(a)
again. If a is a finite distance and δa is an additional infinitesimal distance,
we have

U(a+ δa) = U(δa)U(a) . (59)

We have defined U(δa) as

U(δa) = 1− ipopδa+ · · · , (60)

so
U(a+ δa) = U(a)− ipopδaU(a) + · · · . (61)

That is
1

δa
[U(a+ δa)− U(a)] = −ipop U(a) + · · · . (62)

Taking the limit δa→ 0, this is

d

da
U(a) = −ipop U(a) . (63)

To see what this tells us, it is convenient to use the momentum represen-
tation. For an arbitrary state

∣∣ψ〉 we have

d

da

〈
p
∣∣U(a)

∣∣ψ〉 = −i
〈
p
∣∣popU(a)

∣∣ψ〉 = −ip
〈
p
∣∣U(a)

∣∣ψ〉 (64)
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That’s a differential equation that we know how to solve. Using the boundary
condition

〈
p
∣∣U(0)

∣∣ψ〉 =
〈
p
∣∣ψ〉, we have〈
p
∣∣U(a)

∣∣ψ〉 = e−ipa
〈
p
∣∣ψ〉 . (65)

This is the same thing as〈
p
∣∣U(a)

∣∣ψ〉 =
〈
p
∣∣ exp(−ipopa)

∣∣ψ〉 . (66)

Here we define exp(−ipopa) by saying that, applied to a pop eigenstate, it
gives 〈

p
∣∣ exp(−ipopa) =

〈
p
∣∣ exp(−ipa) . (67)

Equally well, we can define

exp(−ipopa) =
∞∑
n=0

1

n!
(−ia)npnop . (68)

Since Eq. (66) holds for any state
∣∣ψ〉 and any

〈
p
∣∣, we have

U(a) = exp(−ipopa) . (69)

That is, U(a) is an exponential of its infinitesimal generator pop. Note that
this relation seems a little more mysterious if we think of pop as represented
by the differential operator −i∂/∂x. It is, however, perfectly sensible. To
apply exp(−ipopa) to a wave function, you can Fourier transform the wave
function, multiply by exp(−ipa) and then Fourier transform back. Try it!

7 The uncertainty relation

There is a general relation between the commutator of two self-adjoint oper-
ators A and B and how precisely the values of A and B can be known in a
single state

∣∣ψ〉. Let us pick a (normalized) state
∣∣ψ〉 of interest and define〈

A
〉

=
〈
ψ
∣∣A∣∣ψ〉 ,〈

B
〉

=
〈
ψ
∣∣B∣∣ψ〉 .

(70)

Then consider the quantity 〈
ψ
∣∣(A− 〈A〉)2∣∣ψ〉 .
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We can call this the variance of A in the state
∣∣ψ〉; its square root can be

called the uncertainty of A in the state. To understand this, expand in
eigenvectors

∣∣i〉 of A with eigenvalues ai. We have〈
A
〉

=
∑
i

ai
∣∣〈i∣∣ψ〉∣∣2 (71)

That is, 〈A〉 is the expectation value of A, the average of the eigenvalues ai
weighted by the probability that the system will be found in the state with
that eigenvalue. Then〈

ψ
∣∣(A− 〈A〉)2∣∣ψ〉 =

∑
i

(
ai −

〈
A
〉)2∣∣〈i∣∣ψ〉∣∣2 .

This is the average value of the square of the difference between the eigenvalue
ai and the average value

〈
A
〉
. That is what one calls the variance of a

distribution of values in statistics. If the variance is small, then we know
the value of A very well; if the variance is large, then the value of A is very
uncertain.

The general relation concerns the product of the variance of A and the
variance of B in the state

∣∣ψ〉:
〈
ψ
∣∣(A− 〈A〉)2∣∣ψ〉 〈ψ∣∣(B − 〈B〉)2∣∣ψ〉 ≥ 1

4

∣∣〈ψ∣∣[A,B]
∣∣ψ〉∣∣2 . (72)

The proof is given in Sakurai.
We have seen that

[xop, pop] = i . (73)

Thus 〈
ψ
∣∣(xop − 〈xop〉)2∣∣ψ〉 〈ψ∣∣(pop − 〈pop〉)2∣∣ψ〉 ≥ 1

4
. (74)

Thus if we know the position of a particle very well, then we cannot know
its momentum well; if we know the momentum of a particle very well, then
we cannot know its position well.

There is a class of functions for which the “≥” becomes “=”: gaussian
wave packets. Lets see how this works. Define

ψ(x) =
1

(2π)1/4
1√
a
eik0(x−x0) exp

(
−(x− x0)2

4a2

)
. (75)
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This function is normalized to 1:∫
dx |ψ(x)|2 =

1

(2π)1/2
1

a

∫
dx exp

(
−(x− x0)2

2a2

)
=

1

(2π)1/2
1

a

∫
dy exp

(
− y2

2a2

)
=

1

(2π)1/2

√
2

∫
dz exp

(
−z2

)
= 1 .

(76)

Here we have used the integral∫
dz exp

(
−z2

)
=
√
π , (77)

which one needs often.
It is pretty much self evident that 〈xop〉 = x0.
Let us evaluate the variance. We have〈
ψ
∣∣(xop − 〈xop〉)2∣∣ψ〉 =

1

(2π)1/2
1

a

∫
dx (x− x0)2 exp

(
−(x− x0)2

2a2

)
=

1

(2π)1/2
1

a

∫
dy y2 exp

(
− y2

2a2

)
=

2a2

π1/2

∫
dz z2 exp

(
−z2

)
= − 2a2

π1/2

[
d

dλ

∫
dz exp

(
−λz2

)]
λ=1

= − 2a2

π1/2

[
d

dλ

√
π

λ

]
λ=1

=
2a2

π1/2

√
π

2
= a2 .

(78)

Thus the variance is just a2.
Now, let’s look at what the same state looks like in momentum space. To

find ψ̃(p), we need to “complete the square” in the exponent. This is often
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a useful manipulation. We find

ψ̃(p) =
1√
2π

∫
dx e−ipxψ(x)

=
1

(2π)3/4
1√
a

∫
dx e−ipxeik0(x−x0) exp

(
−(x− x0)2

4a2

)
=

1

(2π)3/4
1√
a
e−ipx0

∫
dx e−ipyeik0y exp

(
− y2

4a2

)
=

1

(2π)3/4
1√
a
e−ipx0

∫
dy exp

(
−i(p− k0)y −

y2

4a2

)
=

1

(2π)3/4
2
√
a e−ipx0

∫
dz exp

(
−i2a(p− k0)z − z2

)
=

1

(2π)3/4
2
√
a e−ipx0e−a

2(p−k0)2
∫
dz exp

(
−[z + ia(p− k0)]2

)
=

1

(2π)3/4
2
√
a e−ipx0e−a

2(p−k0)2
∫
dw exp

(
−w2

)
=

1

(2π)3/4
2
√
a e−ipx0e−a

2(p−k0)2√π

=
1

(2π)1/4

√
2a e−ipx0 exp

(
−a2(p− k0)2

)
.

(79)

By comparing to the definition of ψ(x), we see that ψ̃(p) is a properly
normalized wave function with 〈

pop
〉

= k0 . (80)

This same comparison shows that〈
ψ
∣∣(pop − 〈pop〉)2∣∣ψ〉 =

1

4a2
. (81)

Thus the uncertainty product is〈
ψ
∣∣(xop − 〈xop〉)2∣∣ψ〉 〈ψ∣∣(pop − 〈pop〉)2∣∣ψ〉 = a2

1

4a2
=

1

4
. (82)

That is, the uncertainty product is as small as it is allowed to be. This
example shows us rather directly how making the state more concentrated
in x makes it more spread out in p.
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