

CENTRAL GROUND WATER BOARD MINISTRY OF WATER RESOURCES GOVERNMENT OF INDIA

GROUND WATER INFORMATION NALGONDA DISTRICT, ANDHRA PRADESH

SOUTHERN REGION HYDERABAD JULY, 2007

CENTRAL GROUND WATER BOARD MINISTRY OF WATER RESOURCES GOVERNMENT OF INDIA

GROUND WATER INFORMATION NALGONDA DISTRICT, ANDHRA PRADESH

SOUTHERN REGION GSI Post, Bandlaguda Hyderabad-500068 Andhra Pradesh Tel: 24222508 Gram: Antarjal BHUJAL BHAWAN, NH.IV, FARIDABAD-121001 HARYANA, INDIA TEL: 0129-2418518 Gram: Bhumijal

GROUND WATER INFORMATION NALGONDA DISTRICT, ANDHRA PRADESH

By

M.K. Rafiuddin

Asst. Hydrogeologist

CONTENTS

CONTRIBUTORS PAGE NALGONDA DISTRICT AT A GLANCE

1.0 INTRODUCTION

- 1.1. General
- 1.2. Distress situation
- 1.3. Drainage
- 1.4. Land Use
- 1.5. Irrigation
- 1.6. Cropping pattern

2.0 RAINFALL

3.0 GROUND WATER SCENARIO

- 3.1 Hydrogeology
- 3.2 Shallow aquifer system
- 3.3 Deep aquifer system
- 3.4 Water level
- 3.5 Ground water resources
- 3.6 Ground water quality
- 3.7 Status of ground water development

4.0 GROUND WATER MANAGEMENT STRATEGY

- 4.1 Ground water development
- 4.2 Water conservation and artificial recharge

5.0 **RECOMMENDATIONS**

CONTRIBUTORS

GROUND WATER INFORMATION NALGONDA DISTRICT, ANDHRA PRADESH

Principal Author

M.K.Rafiuddin Asst.Hydrogeologist

Hydrometeorology & Map Generation

P.Sudhakar, Scientist-B D.V.Anjaneyulu, Asst.Hydrometeorologist B.Sarath, Draughtsman (Grade-II)

Scrutiny

B.Jaya Kumar, Suptdg.Hydrogeologist G.Sudarshan, Scientist-D

DISTRICT AT A GLANCE

1. GENERAL

Location	North Latitude	16° 25′	17° 50′
	East Longitude	78° 40′	80° 05′
Headquarters		Nalgonda	
No. of revenue mandals		59	
No. of revenue villages		1186	
Population (2001)	Urban	432678	
	Rural	2815304	
Total		3247982	
Population density		227	
Work force		1594666	
	Cultivators	406502	
	Agricultural labour	671241	
Major rivers		Musi and Dindi	
Geology		Granites, gneisses,	
		limestones and	
		alluvium	
Soils		Red loamy	
		soil	
Agroclimatic zone		Southern	
		Telangana	
		and Krishna	
		Godavari zone	
2. RAINFALL			
Normal annual rainfall	Total	753 mm	
	Southwest monsoon	70%	
	Northeast monsoon	18%	
Cumulative departure from			
normal rainfall for the last 5 years		-90%	

3.1	LA]	ND	USE	(2005 -	'06) ((in ha.)
-----	-----	----	-----	---------	--------	----------

Forest	86000
Barren and uncultivated	90000
Cultivable waste	28000
Current fallows	305000
Net area sown	538000

4. IRRIGATION (2005-'06) (Area in ha.)

a	c	• •	
Source	ot.	1rri	oation
Dource	O1	1111	Sanon

	Canals	75000
	Tanks	19000
	Dug wells	46000
	Bore / Tube wells	93000
	Others	10000
Net area irrig	ated	243000
Gross area irr	igated	374000
Major irrigati	on projects	Nagarjunasagar
Medium irrig	ation proejcts	Musi, Dindi
		Utkoor Asifnagar

5. GEOLOGY

Major rock types

Granites,

gneisses,

Limestones, alluvium

6. GROUND WATER

Well census (2005-'06)		
	Dug wells		109,380
	Shallow tube / bore wells		55556
	Deep tube / bore wells		62
Exploration b	y CGWB		
	No. of wells drilled		EW-98, WT-40
	Major aquifer zones		35.0-80.0 m
	Aquifer parametres		
	Transmissivity (sq.m/day) Hard rock	25 to 120
		Soft rock	470
	Storage Co-efficient	Hard rock	1.6 x 10 -4 to

```
Soft rock
```

Monitoring

No. of observation wells			
Dug wells		15	
Piezometers	Manual	35	
		(8 DWLRs + 27 manual	
		Digital recording	
Range of water levels (Ma	ny 2005)		
Minimum (m below gro	ound level)	1.4	
Maximum (m bgl)		20.43	
General range (m bgl)		10 to 16	

7. GROUND WATER RESOURCES (MCM)

Net annual ground water availability	1870.08
Net annual draft	976.2
Balance resource	937
Stage of ground water development	52%

8. GROUND WATER DEVELOPMENT CATEGORY

No. of mandals categorised as	
Safe (<70 % of net available resource)	27
Semi Critical (70 - 90 %)	25
Critical (90 - 100 %)	4
Over exploited (> 100 %)	3
No. of villages notified for restricted development	367

(by State Ground Water Authority)

9. CHEMICAL QUALITY

Electrical Conductivity (micro Siemens / cm at 25 deg. C) 1000-2500					
Chloride	(mg/l)	150-500			
Fluoride	(mg/l)	0.5-4.25			
Nitrate	(mg/l)	30.0-200.0			

GROUND WATER INFORMATION NALGONDA DISTRICT, ANDHRA PRADESH

1.0 INTRODUCTION

1.1 General:

Nalgonda district is one of the 23 districts of Andhra Pradesh, with a total geographical area of 14,322.4 sq.km. with 59 mandals and four Revenue Divisions inhabitating the population of 3247982(2001-census) spreading across 1186 revenue villages, with 87% of population lives in rural areas, and are mainly dependent on agriculture and other occupations.

The district lies between North latitudes 16 25' and 17 50' and between East longitudes 78 40' and 80 05' forms a part of major basin of Krishna river and is covered by Survey of India toposheet Nos. 56K, 56L, 56O and 56 P. The district with headquarters at Nalgonda town is well connected with road, railway and telecommunications. Two railway lines, Secunderabad-Vijayawada and Secunderabad-Guntur pass through the district (**Fig.1**.).

No major industries in the district, but small scale industries are operating at Ravoor,Dondapad and Vishnupuram. The district is endowed with minerals like limestone, clay, building materials and recently big Uranium deposits have been discovered in P.A. Pally mandal area. As for the agriculture is concerned, the main source of irrigation is groundwater being 65.90% of total gross area irrigated, where as surface water irrigation accounts for 34.09% of gross area.

There are seven surface irrigation projects in the district viz; Nagarjunasagar, Musi, Dindi, Asifnagar, Pendlipalkala, Shaligowraram and Bheemanpally projects. There are 4404 tanks including 421 large Tanks. With regard to groundwater abstraction structures are concerned, about 55556 bore wells and about 109380 dug wells exist in the district. Paddy is the staple food crop, which is mostly cultivated under canals, tanks and wells. The other

1

principal crops are Jowar, Bajra, maiz, chillies groundnut and cotton also grown as well.

The soils occurring in the district are, black cotton, alkaline and alluvial soils, of which red soils constitute 85% of the area. Black soil is found over the lime stone area, in the southeastern part of the district.

1.2 Distress situation

Owing to the prevalence of drought conditions in Nalgonda district for long period, distress among the farmers have been on the rise for the last two years. As per the official sources, since May, 2004, as many as 200 farmers committed suicides in the District. Most of the farmers belong to marginal category and noncommand area, who grow rain fed crops are resorting to suicides. The main cause of the distress situation among farmers is due to following factors

- 1. The farmers of small land holdings go on sinking 'spree' of dry bore holes, in thinking the hope of successful bore well by borrowing loans from private lending agencies at exorbitant interest rates. As a result, the farmers are unable to repay the piled up loans and committing suicides.
- Cost of inputs and overall investment on crop is higher than the supporting price for procurement of grains is pushing the farmers into distress situation.
- Because of high fluctuations in the market, farmers are not getting profitable prices for their commercial produce. As such, being pushed into indebtedness.
- 4. Lack of awareness regarding ground water management techniques and cropping pattern resulting in crop failures, pushing the farmers into stress.
- Because of the frequent and long power interruptions, the farmers are unable to irrigate the crop to optimum level, resulting in crop failures and low yields.

1.3 Drainage

The whole of Nalgonda district is drained by the river Krishna along with tributaries Musi, Aler, Dindi, Halia and Peddavagu rivers, which are tributaries of Krishna river. The major Krishna river forms the southern boundary of the district. The Krishna river enters the south western part of the district and flows along the southern boundary for a distance of about 85 kms. The Musi river is the main tributary of river Krishna. The Paler river drains eastern part of the district. The directions of all the three river coarses are controlled by two major lineaments in east-west and northwest southeast directions. All other lower order streams and nallas are controlled by minor lineaments. The district divided into 64 micro-basins.

The major river Krishna is perennial and all other rivers are seasonal and ephemeral. The overall drainage pattern in the districts is dendritic to sub - dendritic and rectangular.

1.4 Land Use:

The land use particulars of the district for the year 2005-2006 is presented in **Table-1**

S.	Category	Area (Ha)	%	to	the
No.			geogra	phical a	area
1	Forest	86000	6.08		
2	Barren & Uncultivable land	90000	6.37		
3	Land put to non-agricultural use	120000	8.50		
4	Cultivable waste	28000	1.98		
5	Permanent pastures and other	66000	4.69		
	grazing lands				
6	Miscellaneous tree crops and groves not	9000	0.63		
	included in the net area son				
7	Other fallow lands	180000	12.73		
8	Current fallows	305000	21.58		
9	Net area sown	538000	38.07		
10	Total cropped area	686000	48.55		
11	Area sown more than once	148000	10.47		

Table-1. Land Use

The neat area sown is about 36.60% and the total cropped area is 48.55% of total geographical area of the District.

1.5. Irrigation:

The total gross area irrigated by various sources in 2005-2006 stood at 374000 ha, out of which the area irrigated by ground water resources was 199000 ha, which constitutes 53.20% to total gross irrigated area, whereas the area under surface water irrigation was 166000 ha., which accounts for 44.38% to gross irrigated area. The total net irrigated area was about 243000 ha, which constitutes 17..2% of geographical area (1412886 ha)

Ground water plays a predominant role in the net irrigated area by constituting to 57.20%, whereas surface water irrigation accounts for 38.63%. The details of the source-wise irrigation pattern is presented in **Table –2**

S.	Source	Gross area	% total	Net area	% to total
No.		(in 000' ha)	gross area	(000'Ha.)	Net area
1	Tanks	30	8	19	7.8
2	Canals	128	34.22	75	30.86
3	Tube well and filter point wells	133	35.56	93	38.27
4	Dug wells	66	17.64	46	18.93
5	Surface water	166	44.38	98	40.32
6	Ground water	199	53.2	139	57.2

 Table-2:
 Area irrigated by different sources

1.6 Cropping Pattern

The cropping pattern is always practised with respect to climatic conditions and availability of irrigation sources. Paddy has been a staple crop since ages in the agrarian district, which is mostly grown under canals, tanks and wells. Other principle crops like jowar, bajra, grams, are mostly rainfed crops.

The commercial crops like chillies, cotton and groundnut are grown under irrigation. In food crops, the paddy was grown in gross was 1292692 ha, which accounts for 33.9% total sown gross principle crops in the district. The net area sown is about 36.60% and the total cropped area is 42.7% of total geographical area of the district.

1.7 Studies and activities by CGWB: Central Ground Water Board, Ministry of Water Resources, Govt. of India, has been carrying out ground water studies since 1967, which includes basic systematic hydrogeological studies, periodical reappraising the resource estimation and ground water exploration. The Board has constructed 40 water table wells down to depth of 30 m for monitoring water levels and 98 deep exploratory bore wells down to 300 m to study hydrological parameters and ground water regime. Ground water level measurements are being carried out four times in a year and water samples are being collected every year in the month of May and are being analysed in the chemical laboratory of Hyderabad. The micro level studies were also carried out in the Fluoride affected areas. In addition, the Board is also carrying out ground water exploration by drilling deep tube wells down to the depth of 200 m in order to study various hydrogeological and hydrological parameters of the ground water regime. Conjunctive Use Studies are also carried out in the canal command area of the District. Piezometer wells were constructed ranging from 20-30 m depth to monitor the water levels.

Mass awareness programmes were also conducted in Suryapet in order to disseminate information to farmers, village assistants, sarpanch, etc. regarding ground water management techniques and artificial recharge techniques in various parts of the District. The district functionaries, NGOs, students, etc., were trained in 2004 in the aspects of ground water management adopting the roof top rain water harvesting and artificial recharge techniques.

2.0 RAINFALL

The normal rainfall of Nalgonda district is 753 mm as per the data collected from the 56 revenue rain gauge stations located at Mandal headquarters. The rainfall ranges from 573 mm (Chintapalli) to 900 mm (Tungaturthi).

The Mandal-wise annual rainfall data for crop season from June to May in a year for the period of 2002-2005 is presented in Table-3. The mean rainfall of the district is 628 mm, 693 mm, 450 mm, 753 mm and 520 mm during 2000-01, 2001-02, 2002-03, 2003-04 and 2004-05 respectively. The data shows that there is a deficit of rainfall during the period 2002-2003 and 2004-2005. Cumulative effect of the rainfall departure is 90% less than normal. The year 1998-99 received more than normal rainfall. The departure was highest during the period 1999-2000. The data is presented in Table 3 and **Fig.2**.

3.0 GROUND WATER SCENARIO

3.1 Hydrogeology

The Archean crystalline rocks, which occupy 90% of the district comprise granites, gneisses, schists and intrusives. The consolidated metasedimentary rocks of Cuddapah and Kurnool system comprising limestones, quartzites and shales occupy 9% in the southern part of the district. The unconsolidated deposits comprising alluvial sands, clay, occur as isolated and narrow patches along the major rivers and streams occupying around 1% of the area.

The crystalline rocks inherently devoid of primary porosity. However, subsequently, with dynamic process of weathering, the rocks undergo fracturing and fissuring and joints over a period of time, lead to the development of secondary porosity, which forms the repository for ground water. The ground water occurs under water table conditions in weathered zone and semi-confined and confined conditions in fractured zone.

Table 3.

				RAINF	ALL(mm)			DEPARTURE FROM NORMAL 2000-01 2001-02 2002-03 2003-04 2004-05			-	CUMMULATIVE		
S NO	MANDAL NAME	NORMAL	2000-01	2001-02	2002-03	2003-04	2004-05	2000-01	2001-02	2002-03	2003-04	2004-05	DEPARTURE	REMARK
1	Alair	784	662	620	494	846	639	-16%	-21%	-37%	8%	-18%	-84%	Scanty
2	B.Ramaram	689	534		599	827	721	-22%		-13%	20%	5%	-11%	Normal
3	Bhongir	818	747	707	449	923	783	-9%	-14%	-45%	13%	-4%	-59%	Deficit
4	Bibinagar	786	456	769	554	895	656	-42%	-2%	-30%	14%	-17%	-76%	Scanty
5	Chandur	778	669	887	444	834	704	-14%	14%	-43%	7%	-10%	-45%	Deficit
6	Chendampet	600	606	503	621	1097	390	1%	-16%	4%	83%	-35%	36%	Excess
7	Chilkur	796	810	740	515	768	411	2%	-7%	-35%	-4%	-48%	-92%	Scanty
8	Chintapalle	573		463	299	522	313		-19%	-48%	-9%	-45%	-121%	Scanty
9	Chityal	719	694	832	393	691	504	-3%	16%	-45%	-4%	-30%	-67%	Scanty
10	Choutuppal	693	442	952	562	799	494	-36%	37%	-19%	15%	-29%	-31%	Deficit
11	Damarcherla	737	728	721	350	755	521	-1%	-2%	-53%	2%	-29%	-83%	Scanty
12	Devarakonda	639	617	706	604	814	398	-3%	10%	-5%	27%	-38%	-9%	Normal
13	Garedepalle	723	689	635	355	656	410	-5%	-12%	-51%	-9%	-43%	-120%	Scanty
14	Gundala	788	652	624	385	826	481	-17%	-21%	-51%	5%	-39%	-123%	Scanty
15	Gundlapalli	738	630	535	749	637	508	-15%	-28%	1%	-14%	-31%	-86%	Scanty
16	Gurrampod	553	292	295	214	564	276	-47%	-47%	-61%	2%	-50%	-203%	Scanty
17	Huzurnagar	789	906	754	519	918	311	15%	-4%	-34%	16%	-61%	-68%	Scanty
18	Jagireddigudem	870			574	933	485			-34%	7%	-44%	-71%	Scanty

MANDAL-WISE ANNUAL RAINFALL AND ITS DEPARTURE FROM NORMAL NALGONDA DISTRICT

19	Kanagal	718	541	794	370	679	689	-25%	11%	-48%	-5%	-4%	-72%	Scanty
20	Kattangur	793	389	803	363	821	561	-51%	1%	-54%	4%	-29%	-130%	Scanty
21	Kethepalle	872	793	832	452	769	649	-9%	-5%	-48%	-12%	-26%	-99%	Scanty
22	Kodad	889			455	824	487			-49%	-7%	-45%	-101%	Scanty
23	M.Atmakur	718			316	580	375			-56%	-19%	-48%	-123%	Scanty
24	M.Turkapalli	711	367	516	269	292	287	-48%	-27%	-62%	-59%	-60%	-257%	Scanty
25	Marriguda	605	428	515	317	668	384	-29%	-15%	-48%	10%	-37%	-118%	Scanty
26	Mattampalle	681	648	406	219	495	355	-5%	-40%	-68%	-27%	-48%	-188%	Scanty
27	Medlacheruvu	861	791	650	334	1037	515	-8%	-25%	-61%	2.0%	-40%	-114%	Scanty
28	Mirvalaguda	763	867	825	376	904	710	14%	8%	-51%	18%	-7%	-17%	Normal
29	Mothey	809	465	420	325	503	374	-43%	-48%	-60%	-38%	-54%	-242%	Scanty
30	Mothkur	813	717	708	452	830	606	-12%	-13%	-44%	2%	-25%	-92%	Scanty
31	Munagala	878	746	700	554	887	462	-10%	-10%	_33%	7%	-44%	-92%	Scanty
32	Munugode	745	569		503	651	645	-24%	10/0	_32%	-13%	_13%	-78%	Sconty
22	Nadigudam	971		626	164	800	404	470/	2704	-3270	-1370	-1370	-/0/0	Scanty
24	Nalmakal	0/1	430	030	201	790	510	-4770	-2170	-47%	150/	-43%	-101 /0	Scality
34		915	451	(00	301	780	310	270/	110/	-07%	-13%	-44%	-120%	Scanty
35	Nampally	622	451	689	368	393	340	-27%	11%	-41%	-37%	-44%	-139%	Scanty
36	Narayanpur	581	345	111	510	/91	276	-41%	34%	-12%	36%	-52%	-35%	Deficit
37	Narketpalle	701	638	821	566	854	537	-9%	17%	-19%	22%	-23%	-13%	Normal
38	Nereducherla	817	638	794	361	777	645	-22%	-3%	-56%	-5%	-21%	-106%	Scanty
39	Nidamanuru	726	794	826	431	669	680	9%	14%	-41%	-8%	-6%	-32%	Deficit
40	Nutankal	876	961	777	647	639	373	10%	-11%	-26%	-27%	-57%	-64%	Scanty

41	P.A.Pally	540	364	625	407	497	337	-33%	16%	-25%	-8%	-38%	-87%	Scanty
42	Peddavoora	682	665	833	541	817	661	-2%	22%	-21%	20%	-3%	16%	Normal
43	Penpahad	835	324	353	180	266	243	-61%	-58%	-78%	-68%	-71%	-336%	Scanty
44	Pochampally	773	688	801	502	266	675	-11%	4%	-35%	-66%	-13%	-121%	Scanty
45	Raiapet	651	392	349	185	345	630	-40%	-46%	-72%	-47%	-3%	-208%	Scanty
46	Ramannapet	649	754	867	558	1030	566	16%	34%	-14%	59%	-13%	82%	Surplus
47	S Atmakur	771			492	912	436	10/0	0170	-36%	18%	-43%	-61%	Scanty
48	Shaligowraram	839			554	1030	558			-34%	23%	-33%	-45%	Deficit
10	Survenet	8/3	766	730	742	998	694	_9%	-12%	-12%	18%	-18%	-33%	Deficit
50	Thungathurthi	900	904	684	673	1078	708	0%	-24%	-25%	20%	_21%	-50%	Deficit
51	Tipparti	722	420	693	266	1078	606		-/1%	-63%	-38%	-16%	-163%	Sconty
52	Tirumalairi	022	420	707	421	060	626	-4270	-470	-03%	-3870	-10/0	-103 /6	Scality
52	Trinunaigiri	952	004	012	451	909	714	-27%	-24%	-34%	4% 50/	-35%	-133%	Normal
53	Valiaanda	795	022	912	408	1119	/14	12%	110/	-33%	-3%	3%	170/	Normal
54		785	923	8/1	098	1118	445	18%	11%	-11%	42%	-43%	1/%	Normai
55	vemalapalli	720	/58	/68	361	910	655	5%	/%	-50%	26%	-9%	-21%	Deficit
56	Yadagirigutta	815			496	802	589			-39%	-2%	-28%	-68%	Scanty
1	MEAN	753	628	693	450	753	520	-17%	-8%	-40%	0%	-31%	-95%	Scanty

Source: Directorate of Economics and Statistics, Andhra Pradesh

RAINFALL DISTRIBUTION, NALGONDA DISTRICT, AND HRA PRADESH

RAINFALL DEPARTURE FROM NORMAL, NALGONDA DISTRICT, AND HRA PRADESH

Deviation from normal(%)

The phreatic aquifer is developed by means of open dug wells with depth ranging from 6-15 m and dug-cum-bore wells up to 45m. From the bottom of dug wells The shallow bore wells are drilled generally to a depth of 50-60 m. The yield of the irrigation wells range between 100 to 150 cu.m/day. At places, it is upto 200 cu.m/day. Hydrogeological conditions of the District are shown in **Fig.3**.

Ground Water in Meta Sediments

The Meta sedimentary belonging to the Kadapa and Kurnool group occurs along the southern boundary of the district. In the shale formations, the ground water occurs along bedding plains, cleavages, joints and weathered zones etc. In lime stones, the ground water occurs mainly in solution channels, caverns and joints etc. The depth of open wells in shales and limestones varies from 5 to 20 m, whereas the bore wells down to a depth of 50-60 m. As per the yield is concerned, it ranges between 2 and 3 lps.

Ground Water in Unconsolidated Formations

The unconsolidated sediments like alluvial formations occur along the stream courses. The ground water occurs under water table condition. The major alluvial patch is located along the Aler River between Kolanpaka and Mothkur. The depth of the dug well ranges from 3 to 6 m only.

3.2 Shallow Aquifer System:

The Central Ground Water Board so far has constructed 40 shallow bore wells ranging depth from 10.0 m bgl (Munagala) to 35.0 m (Bommalaramaram). The thickness of the weathered mantle ranges between 5.0 and 30.0 m bgl. The depth of phreatic and semi-confined aquifers (fractures) ranges between 7 m (Miryalaguda) and 24 m (Madugulapally). The majority of the aquifer zones encountered within the depth range of 10.0 and 20.0 m bgl. The discharge of the shallow bore wells ranges between 0.5 and 2.0 liters per second (lps). The transmissivity of the wells ranges from 5 to 23 sq.m/day. The aquifers that are encountered in the pink granite are more potential than that of grey granites.

The shallow aquifers are exploited by means of large diameter dug wells for irrigation. Yield tests which were conducted on the open wells revealed that specific capacity of the gneissic granite ranges from 41.1 lpm to 260.3 lpm per meter draw down, whereas the wells tapping weathered and jointed gneissic granites have specific capacities vary from 169.3 to 319.7 lpm/dd. The majority values of specific capacity fall in the range of 17.8 to 114.0 lpm/dd.

The depth of shallow aquifer depends on rock type, degree of weathering, geomorphological and drainage conditions. The shallow aquifer system constitutes weathered mantle limited to a maximum depth of 40 m. The shallow aquifer system is normally tapped by dug wells and dug-cum-bore wells. The yield of the wells is generally in the range of 50-100 cu.m/day. The yield of open wells in Aler river basin ranges between 250 to 850 cu.m/day.

3.3 Deep Aquifer System

To study the deep aquifer regime, the Central Ground Water Board has sunk about 98 deep wells down to the depth of 200 m in various hydrogeological conditions in the district. The deep exploratory drilling revealed that the fractures are of vertical to sub-vertical and also of horizontal in their disposition. It has been found that about 80% of the aquifer zones are encountered within the range of 40-60 m depth. About 20% of the fractured zones are encountered beyond 60 m down to 150 m depth. In the aquifer zones, within 60m depth, the ground water occurs under semi-confined conditions, whereas in deep seated aquifers found under semi-confined to confined conditions. The transmissivity of aquifer ranges between 5 and 400 sq.m/day (Anantaram, Bhongir mandal). The general range of transmissivity varies from 10 to 60 sq.m/day in the granitic terrain. The specific capacity of the fracture zone ranges from 5.0 lpm/m.dd to 10 lpm/m.dd. The storativity of the aquifer zones is found to be from 1.5 x 10 $-^5$ to 1x 10 $-^3$. It has been observed that the aquifers in the pink granite found to be more potential than that of basic rocks.

Deep aquifers are by and large encountered at a depth of 40-80 m, occasionally fracture zones exist beyond 120 m. The yield of the aquifer ranges between 1 to 4 lps, occasionally upto 19 lps at Anantaram, (Bhongir Mandal), which is located along East West lineament.

3.4 Water level

In order to study ground water level and change in storage conditions, a total number of 50 observation wells including 15 open dug wells and 35 purpose-built piezometers, which have been established across the district, are being monitored four times a year including pre-monsoon (May) and post monsoon (November).

Pre-monsoon

The water level scenario map for the year 2004-2005 (**Fig.4**) shows that in the north east, south west and north eastern parts, which constitute together 40% of the district, the depth to water level was in the range of 5 to 10 meters below ground level. In the central part, south-west and eastern part, which constitutes about 40% of the district, the water levels were found between 10 and 20 m bgl. The range of 2m to 5 m depth was found as isolated patches in eastern fringe and around southwest boundary in the mandals of Mettampally, Mellacheruvu, Kodad and Nadigudem of the district. The water level of less than 2m was found in Miryalaguda mandal, which indicates the prevalence of water logging conditions in the area.

Post-monsoon

Analysis of data of the post-monsoon season of 2005 (Fig.5) shows that water level of 2 m was found in almost 30% of the area, covering the mandals of Peddavoora, Nidamanur, Aliya, parts of Devarakonda and Chandampet in the south and Nadigudem, Munagala, Kodad, Chilkur, Garidepalli in eastern part of the district. The water level between 2 and 5 m bgl was found in the central and

eastern parts of the district, covering the mandals of Damarcherla, Miryalaguda, Vemulapalli, Narkatpally, Ketipalli and Suryapet in the eastern part of the district and Bommalaramam in the north-west of the district. The water level between 5 and 10 m bgl was found along the northern and western boundary of the district, covering the mandals of Trimulgerry, Tungaturthi, Gundala, Atmakakur and parts of Marriguda, Chintapally, Narayanpur and Aler. The deep-water levels beyond 10 m were found in northern tip of district, covering the mandals of Rajapet, Aler and Gundala.

Fluctuation

Rise of water levels was observed all over the district (**Fig.6**), after the monsoon. Rise of more than 4 m was witnessed almost in 70% of the district, covering entire western and north eastern parts of the district and the rise between 2 and 4 m was found south eastern parts covering the mandals of Damarcherla, Mattampally, Miryalaguda, Mellacheruvu and parts of Kodad and also in the mandals of Rajapet, Aler and Gundala in north of the district. The minimum rise of less than 2 m was found in the parts of Garudepally.

Long-term water level trends

An analysis of water level date collected by the C.G.W.B, the network of ground water monitoring wells shows that during the Pre-monsoon, rise in the water is found in 9 wells ranging from 0.01 to 2.05 m/year (Bommalaramaram). Falling trend is observed in 40 wells ranging from 0.157(Nampally) to 1.25 m/year (Chintapally). During the post-monsoon period rising trend in 17 wells ranging from 0.008 (miryalguda) to 3.816 m/year (Huzurnagar). Falling trend is observed in 34 wells. The annual rising trend found in 12 wells where as falling trend is observed in 38 wells. The pattern of change in water levels with time is shown in the form of hydrographs in **Fig.7**.

Fig-7

20

3.5 Ground Water Resources

Based on the Ground Water Estimation committee (G.E.C.-97) norms ground water assessment was done in 2004. The mandal wise details are present in the table-6. The ground water resource available is 694.66 MCM in command area and 1175.43 is in non-command area of the district. The groundwater utilization is in the order of 75.22MCM and 900.09MCM in command area and non-command area respectively. The resultant groundwater balance is 619.44 and 317.56MCM in command and non-command areas Overall the district falls under safe category with stage of respectively. development being at 52%. The stage of development in command area is 11% (safe) and in non-command area it is 77% (semi-critical category). With respect to stage of development, 27 mandals are found to be safe, 24 semi-critical, 3 mandals viz., Pochampally (985%), Chandur (98%) and Mothkur (91%) are critical and 3 mandals viz., Chityal (111%), Rajapet (109%) and Yadigirigutta (104%) are in over-exploited category. Stage of ground water development is shown in **Table-4**.

3.6 Ground water quality

In general, the ground water in the district found to be suitable for domestic and irrigation purpose. The general range of Electrical conductivity is between 1500 and 2500 micro Seimen/cm at 25 ...However it was found that Fluoride concentration is more than permissible limits of 1.5 mg/l in the South Western part of Nalgonda district covering the mandals of Deverkonda, Gundlapalem, Chandampet, Chintaplly, Nampally, Gurrampode, Kanagal, Chandur, Marriguda, Munugode, Narayanpur and Narketpally. The quality of groundwater is brackish in the command area in eastern part of the district. In the north-west parts of the district, the fluoride concentration is found to be excessive in isolated patches. So far, 346 villages, are afflicted by Fluoride problem being highest in Nalgonda followed by Nampally and Chintapally mandals. There is brackish water problem in 62 villages spreading across 5 mandals.

21

Table 4.

MANDAL WISE GROUNDWATER RESOURCE 2004 NALGONDA DISTRICT, ANDHRA PRADESH

S.No	Mandal	Area	in the	basin	Gro av	ound v vailabi Ha.m	vater lity	Gra u	ound v tilisat Ha.rr	water ion 1.	Gro b	und v alanc Ha.m	vater :e	S dev	Stage velop %	e of oment	Ca	ateg	ory
		С	NC	Т	С	NC	Total	С	NC	Total	С	NC	Total	С	NC	Total	С	NC	Total
1	2	3	4	5		3			4		5	=(3-4)	6 =	{(4/3)	* 100}		7	
1	Alair	0	19791	19791	0	2106	2106	0	1789	1789	0	374	374	NA	85	85	NA	SC	SC
2	Anumula	16909	17560	34469	3864	1791	5655	656	960	1615	3208	850	4058	17	54	29	Safe	Safe	Safe
3	Athmakur(S)	0	21360	21360	0	2652	2652	0	1659	1659	0	1064	1064	NA	63	63	NA	Safe	Safe
4	Atmakur(M)	0	23432	23432	0	3047	3047	0	2465	2465	0	679	679	NA	81	81	NA	SC	SC
5	B. Ramaram	0	16751	16751	0	2293	2293	0	1891	1891	0	497	497	NA	82	82	NA	SC	SC
6	B.Pochampally	0	18397	18397	0	2012	2012	0	1965	1965	0	176	176	NA	98	98	NA	Cri	Cri
7	Bhongir	0	24913	24913	0	2868	2868	0	2545	2545	0	443	443	NA	89	89	NA	SC	SC
8	Bibinagar	0	18180	18180	0	2185	2185	0	1704	1704	0	604	604	NA	78	78	NA	SC	SC
9	Chandampet	0	39065	39065	0	3243	3243	0	2368	2368	0	966	966	NA	73	73	NA	SC	SC
10	Chandur	0	20083	20083	0	1739	1739	0	1712	1712	0	102	102	NA	98	98	NA	Cri	Cri
11	Chilkur	11486	0	11486	4496	0	4496	138	0	138	4357	0	4357	3	NA	3	Safe	NA	Safe
12	Chinthapally	0	27307	27307	0	2219	2219	0	1454	1454	0	921	921	NA	66	66	NA	Safe	Safe
13	Chityal	0	23769	23769	0	2189	2189	0	2422	2422	0	-69	-69	NA	111	111	NA	OE	OE
14	Chivemla	0	14867	14867	0	1771	1771	0	1272	1272	0	546	546	NA	72	72	NA	SC	SC
15	Choutuppal	0	26392	26392	0	2492	2492	0	2239	2239	0	355	355	NA	90	90	NA	SC	SC
16	Dameracharla	29968	4246	34214	4717	275	4992	719	67	786	3999	214	4213	15	24	16	Safe	Safe	Safe

17	Devarakonda	0	34882	34882	0	3185	3185	0	2716	2716	0	621	621	NA	85	85	NA	SC	SC
18	Garidepally	17906	1148	19054	8598	113	8711	647	134	781	7951	-21	7930	8	118	9	Safe	OE	Safe
19	Gundala	0	20429	20429	0	2651	2651	0	2263	2263	0	430	430	NA	85	85	NA	SC	SC
20	Gundlapally	0	26490	26490	0	2488	2488	0	1973	1973	0	597	597	NA	79	79	NA	SC	SC
21	Gurrampode	0	30737	30737	0	2976	2976	0	1875	1875	0	1171	1171	NA	63	63	NA	Safe	Safe
22	Huzurnagar	11047	0	11047	5745	0	5745	302	0	302	5444	0	5444	5	NA	5	Safe	NA	Safe
23	Jajireddygudem	0	19460	19460	0	2682	2682	0	1748	1748	0	952	952	NA	65	65	NA	Safe	Safe
24	Kanagal	0	23356	23356	0	2495	2495	0	2315	2315	0	247	247	NA	93	93	NA	Cri	Cri
25	Kattangur	0	19025	19025	0	2039	2039	0	1288	1288	0	840	840	NA	63	63	NA	Safe	Safe
26	Kethepalli	0	14865	14865	0	1657	1657	0	1326	1326	0	390	390	NA	80	80	NA	SC	SC
27	Kodad	24252	0	24252	6704	0	6704	661	0	661	6043	0	6043	10	NA	10	Safe	NA	Safe
28	Marriguda	0	22989	22989	0	1941	1941	0	1254	1254	0	758	758	NA	65	65	NA	Safe	Safe
29	Mattampally	12550	5116	17666	2321	319	2640	422	126	548	1899	193	2092	18	40	21	Safe	Safe	Safe
30	Mellachervu	24587	10089	34676	5022	688	5710	233	118	352	4789	570	5358	5	17	6	Safe	Safe	Safe
31	Miryalguda	23325	1044	24369	3563	93	3657	361	63	423	3203	36	3238	10	67	12	Safe	Safe	Safe
32	Mothey	0	18131	18131	0	2218	2218	0	1769	1769	0	487	487	NA	80	80	NA	SC	SC
33	Mothkur	0	28005	28005	0	3832	3832	0	3492	3492	0	484	484	NA	91	91	NA	Cri	Cri
34	Munagala	7314	8550	15864	1679	1002	2681	653	751	1404	1026	268	1294	39	75	52	Safe	SC	Safe
35	Munugode	0	22253	22253	0	1902	1902	0	1636	1636	0	355	355	NA	86	86	NA	SC	SC
36	Nadigudem	10725	5522	16247	2768	668	3437	887	337	1224	1881	349	2230	32	50	36	Safe	Safe	Safe
37	Nakrekal	0	14889	14889	0	1474	1474	0	1252	1252	0	353	353	NA	85	85	NA	SC	SC
38	Nalgonda	0	32246	32246	0	3667	3667	0	2641	2641	0	1090	1090	NA	72	72	NA	SC	SC
39	Nampally	0	26995	26995	0	2262	2262	0	1998	1998	0	358	358	NA	88	88	NA	SC	SC
40	Narketpally	0	24349	24349	0	2679	2679	0	1961	1961	0	793	793	NA	73	73	NA	SC	SC
41	Neredcherla	21564	6175	27739	12233	427	12660	1231	267	1498	11002	162	11163	10	63	12	Safe	Safe	Safe

42	Nidmanoor	12911	12951	25862	3006	1465	4472	260	1129	1389	2746	386	3132	9	77	31	Safe	SC	Safe
43	Nuthankal	0	20494	20494	0	2851	2851	0	2224	2224	0	716	716	NA	78	78	NA	SC	SC
44	P A Pally	0	31230	31230	0	3005	3005	0	2232	2232	0	990	990	NA	74	74	NA	SC	SC
45	Peddavoora	0	46577	46577	0	4177	4177	0	1944	1944	0	2391	2391	NA	47	47	NA	Safe	Safe
46	Penpahad	1162	17385	18547	752	1528	2280	59	1009	1068	693	550	1243	8	66	47	Safe	Safe	Safe
47	Rajapet	0	19667	19667	0	1850	1850	0	2022	2022	0	-113	-113	NA	109	109	NA	OE	OE
48	Ramannapet	0	21148	21148	0	2401	2401	0	2258	2258	0	224	224	NA	94	94	NA	Cri	Cri
49	Saligowaraam	0	20541	20541	0	2538	2538	0	1696	1696	0	937	937	NA	67	67	NA	Safe	Safe
50	S.Narayanpur	0	20854	20854	0	1710	1710	0	1274	1274	0	587	587	NA	74	74	NA	SC	SC
51	Suryapet	0	20826	20826	0	2348	2348	0	1607	1607	0	809	809	NA	68	68	NA	Safe	Safe
52	Thipparthy	0	25480	25480	0	2375	2375	0	1718	1718	0	773	773	NA	72	72	NA	SC	SC
53	Thungathurthy	0	20696	20696	0	2871	2871	0	2016	2016	0	1006	1006	NA	70	70	NA	SC	SC
54	Thurkapally	0	19319	19319	0	2130	2130	0	1746	1746	0	479	479	NA	82	82	NA	SC	SC
55	Tirmalgiri	0	16887	16887	0	2355	2355	0	1615	1615	0	770	770	NA	69	69	NA	Safe	Safe
56	Tripuraram	14065	3318	17383	2746	320	3066	173	179	353	2572	152	2725	6	56	12	Safe	Safe	Safe
57	Vemulapalli	3933	16935	20868	1251	1588	2840	120	1020	1140	1132	616	1748	10	64	40	Safe	Safe	Safe
58	Voligonda	0	29268	29268	0	3564	3564	0	2376	2376	0	1294	1294	NA	67	67	NA	Safe	Safe
59	Yadagirigutta	0	22694	22694	0	2126	2126	0	2220	2220	0	-15	-15	NA	104	104	NA	OE	OE
	Total	243704	1119128	1362832	69466	117543	187008	7522	90099	97620	61944	31756	93700	11	77	52	Safe	SC	Safe

Note: OE = Over exploited; Cri = Critical; SC = Semi critical; C = Command; NC = Non command; NA = Not applicable

3.7 Status of Ground Water Development:

Ground water development in the district is carried out through bore wells of 60 to 80m depth and through shallow tube well 40 m depth in the non-command area and through the dug wells of 10 to12m depth in the command area. In the sedimentary terrain of lime stones, the groundwater is tapped through deep wells of about 80m depth and through filter points with depth range from 10 to 15 m along the banks Alair and Kanagal rivers. The district is largely dependent on groundwater for irrigation requirement as 64.5% of area which accounts for 1,39,000 ha., irrigated by ground water resources with a total number of 1,54,936 ground water extraction structures. To meet the domestic and drinking water needs of the 1136 inhabitant villages about 10,228 groundwater extraction structures are constructed under the control of Panchayat Raj Department. The details of the drinking water facilities are presented in **Table-5**.

Large diameter dug wells either of rectangular or circular shape are found in the district for irrigation purpose. The depth of the dug wells vary from 8 to 15 m bgl in non-command area, but most of the wells are dried up or with deep water levels in the summer. These wells have 1-2 m water column, which would sustain pumping for 2-4 hrs. in two spells a day, by 5 H.P motor. The yield of the wells varies from 100 to 200 cu.m/day during post-monsoon period.

The depth of bore wells vary between 40 and 60 m in non-command area to tap fractured aquifers, whose discharge would be 2 lps to 5 lps, with draw down of 6-10 m for a pumping period of about 6 hours.

The depths of dug wells in command area vary from 8-10 m with yield from 75-200 cu.m/day. Post monsoon period with 3-5 m draw down.

Table - - 5

STATEMENT SHOWING MANDAL-WISE WELL DENSITY IN NALGONDA DISTRICT, ANDHRA PRADESH

S No	Mandal Name	Geographical in Ha.	No. of wells	Well Density per Sq.Km.	Remark
1	Alair	23398	3186	14	
2	Anumala(Halia)	32917	1195	4	
3	Arvapally	20188	2940	15	
4	Athmakur(M)	23614	3707	16	No Scope for Development
5	Athmakur(S)	20853	3291	16	No Scope for Development
6	B.Ramaram	16950	2017	12	
7	Bhongir	29358	5730	20	No Scope for Development
8	Bibinagar	21957	2088	10	
9	Chandamnet	47831	2847	6	
10	Chandur	20268	3136	15	
11	Chilkur	11907	242	2	
10	Chintonollu	07047	243	40	
12	Chintapaliy	2/21/	2620	10	
13	Chityai	23758	4838	20	No Scope for Development
14	Chivvemla	15114	2967	20	No Scope for Development
15	Choutuppal	26674	3347	13	
16	Deverkonda	36055	3395	9	
17	Damarcherla	35055	1093	3	
18	Garidepally	20144	1009	5	
19	Gundala	20429	3940	19	No Scope for Development
20	Gundlapally	26787	2496	9	
21	Gurrampode	30689	2401	8	
22	Huzumagar	12792	582	5	
23	Kanagal	23577	2877	12	
24	Kattangur	19017	2499	13	
25	Kethepally	15040	2819	19	No Scope for Development
26	Kodad	23411	1477	6	
27	Marriouda	23222	2487	11	
28	Mattampally	10368	1033	5	
20	Mellachenner	36375	674	2	
20	Minualauda	25601	074	4	
21	Mothow	19509	4742	26	No Constant for Development
30	Mothkur	10390	4/43	20	No Scope for Development
32	Mounkur	20070	4065	24	
33	Munagala	10117	3300	40	No Scope for Development
34	Munugode	23213	2967	13	
35	Nadigudem	16609	1/59	11	
36	Nakrekal	15122	3379	22	No Scope for Development
37	Nalgonda	32260	5134	16	No Scope for Development
38	Nampally	29720	3417	11	
39	Narayampuram	25572	3214	13	
40	Narketpally	\$ 24735	3509	14	
41	Nereducharla	27186	174	1	
42	Nidmanur	27120	1596	6	
43	Nuthankal	20977	3926	19	No Scope for Development
44	P.A.Pally	31591	3076	10	
45	Peddavoora	50296	2385	5	
46	Penpahad	19384	3017	16	No Scope for Development
47	Pochampally	19218	2067	11	
48	Rajapet	19516	2947	15	
49	Ramannoet	22755	2976	13	
50	Shalioouraram	21495	3217	15	
51	Survapet	21279	3876	18	No Scope for Development
52	Thioparthy	212/0	3103	13	the scope for bevelopment
52	Thungathurthu	20400	3193	22	No Scone for Douglassent
53	Thurkarally	20659	4529	10	No Scope for Development
54	Tismolatid	19295	3/32	19	No scope for Development
50	Trimaigin	17290	3208	19	No Scope for Development
56	Inpuraram	18155	1128	6	
5/	Valigonda	29167	4364	15	
58	Vemulapally	20947	2161	10	
59	Yadigirigutta	22699	3419	15	

Well density

The highest well density of 26 wells/sq.km is found in Mothey mandal of noncommand area and the lowest density of 1 well per sq.km in the Neruducherla mandal (canal command area). A well density of 16 and above is observed in 17 mandals in non-command area and 5 in canal command area. The well density stands at 12 wells per sq./km in the district as a whole (**Table-6**).

4.0 GROUND WATER MANAGEMENT STRATEGY

Ever-declining ground water levels as a result of frequent dry spells and indiscreet sinking of bore wells, the ground water resources have been depleting and pushing the ground water scenario to the point of no return. In order to arrest the grave situation an effective groundwater management strategy shall be evolved in such a way that there is an optimal utilization of ground water resources maintaining the well spacing norms. Spacing norm for two adjacent bore wells in crystalline rocks is 250 m. As per the stage of development, the mandals of Pochampally, Chandur, Mothkur and Ramannpet of non-command area have been categorized as critical ones, leaving no room for further groundwater exploitation.

The district has considerable command area spreading over 16 mandals and as many mandals are falling under safe category with a ground water balance of 619.44 MCM for development. In command area, the ground water development may be taken up by utilising ground water in conjunction with surface water for construction of shallow bore wells in order to enhance irrigation potential, reduce water logging conditions and to improve ground water quality as well. The farmers in the tail end areas of canal ayacut will also be benefited to a large extent if the ground water development is encouraged in the canal headreaches. This will satisfy the equitable distribution of water resources to the farmers in the command area.

27

		Total	Vill	lages having A	dequate		Pro	blematic	Villages
SI. No	Name of the Mandal	inhabited Villages (No.)	P.W.S.	Bore Wells	Open Wells	Others	Floirde Villages	Brakish Water	Not having Drinking water facility
1	2	3	4	5	6	7	8	9	10
1	ALAIR	14	14	14	0	0	6	0	
2	ANUMULA(HALIYA)	25	13	377	0	68	7	0	
3	ATHMAKUR(M)	21	39	339	0	9	0	0	1
4	ATHMAKUR(S)	19	20	0	20	0	0	0	
5	BHONGIR	29	29	323	0	6	0	0	
6	BIBINAGAR	25	25	23	0	0	0	0	And and a start
7	BOMMALARAMARAM	23	21	25	4	0	5	0	in the second
8	CHANDAMPET	23	11	23	6	0	0	0	
9	CHANDOOK	17	17	284	0	/	/	0	
10	CHINITHADALLY	4	9	4	0	0	0	0	
11	CHINTHAPALLI	22	15	22	0	0	22	0	
12	CHITTAL	16	10	10	0	0	4	0	
1.5	CHOUTUPPAL	- 15	15	323	34	52	5	0	
15	DAMARACHERIA	17	17	17	0	0	12	0	-
16	DEVARAKONDA	1/	13	E10	17	0	0	0	
17	CARIDERALLY	28	14	519	0	0	20	0	
18	CUNDALA	20	10	11	0	0	0	0	
10	CUNDLAPALLY/DINDD	20	10	20	20	0	0	0	
20	GURRAMPODE	20	27	342	20	0	8	0	
21	HUZURNAGAR	7	7	340	30	32	0	0	
22	IAUREDDYGUDEM	14	14	250	50	0	0	0	
23	KANAGAL	26	24	335		30	16	0	
24	KATTANGOOR	17	15	2	0	0	10	0	
25	KETHEPALLY	17	13	13	0	0	0	0	
26	KODAD	16	14	16	16	0	0	0	
27	MARRIGUDA	17	17	267	10	7	17	0	-
28	MATTAMPALLY	10	8	245	122	0	0	0	
29	MELLACHERUVU	14	14	320	2	42	0	0	
30	MIRYALAGUDA	24	14	10	0	0	0	0	
31	MOTHEY	16	16	228	0	0	7	0	
32	MOTHKUR	23	19	420	25	0	0	0	
33	MUNAGALA	11	11	11	7	0	0	1	
34	MUNUGODE	21	21	47	0	0	21	0	
35	NADIGUDEM	16	10	16	3	0	0	0	
36	NAKREKAL	16	16	365	8	0	5	11	0
37	NALGONDA	29	29	29	0	0	29	0	
38	NAMPALLY	28	28	28	1	12	28	28	
39	NARAYANAPURAM	14	14	0	0	0	14	0	
40	NARKETPALLY	19	19	374	1	0	19	0	
41	NEREDCHERLA	27	27	27	0	0	0	0	
42	NIDMANOOR	19	19	19	16	0	7	0	
43	NUTHANKAL	21	13	21	1	0	3	0	
44	P.A.PALLY	22	12	22	22	0	5	0	
45	PEDDAVOORA	24	7	24	23	0	14	0	
46	PENPAHAD	17	8	309	2	0	4	0	
47	POCHAMPALLY	23	22	23	0	0	0	0	
48	RAJAPET	19	17	192	1	9	0	0	
49	RAMANNAPET	21	21	382	0	0	17	4	
50	SHALIGOURARAM	19	19	250	5	0	19	15	
51	SURYAPET	17	10	288	6	0	0	0	
52	THIPPARTHY	19	19	370	0	0	4	0	
53	THUNGATHURTHY	20	20	20	0	0	0	0	
54	THURKAPALLY	22	22	226	0	0	0	(
50	TIRUMALAGIRI	16	16	16	0	0	0	0	
00	TRIPURARAM	19	9	131	20	0	0	3	
57	VALIGONDA	27	27	359	0	0	3	0	
08	VEMULAPALLY	23	21	23	10	4	0	0	
20	A A TO A COTTACT OF COMMENT						1.0		

In the hard rock terrain of non-command area it is imperative to augment the depleting groundwater resources by evolving artificial recharge strategy in order to sustain the existing ground water extraction structures. The indiscreet 'trend' of sinking bore wells needs to arrested through administrative measures or even legal measures which are already existing in APWALTA Act. But, much effort has to be made in bringing awareness among public/farmers to desist from the present trend and follow the scientific guidelines through the designated Departments.

4.1 Ground Water Development

Further groundwater development in the district should be restricted to the command area, by constructing dug wells of 10 to 15 m depth with radius of about 5m or shallow borewells of 165mm dia.down to a depth of 30 to 40 m in the areas having water levels less than 5m below ground level. The selection of bore well site shall be made consciously based on Geophysical and hydrogeological studies. The unit cost of a dug well and bore well would be around in the order of Rs. 44,500 and Rs.12,500 to 15,000 (Source: NABARD) respectively. The details of the spacing norms are furnished in Table7 and unit cost of ground water abstraction structures is presented in **Table-7**.

Table-7:	Spacing norms for different ground water abstraction
	structures

SI.	Situation		Spacing	g between any two w	ells (m)
No					
		Piccota	Dug wells	Filter point	Bore wells
		wells		or shallow wells	
1	Non-Ayacut	60	160	120	250-300
2	Ayacut	40	100	160	150-200
3	Near perennial source Ike river of tank (within 200m)	40	100	160	200-300
4	Non-perennial streams	50	150	180	200-500

The details of ground water structures and designs in different geological formations with unit cost are presented in **Table-8**.

|--|

S.	Geological	Type of	Din	nensions	Staining	Dimensio	ons	Unit
No.	Formation	MI	Dia	Depth	Depth	Of bore v	vell	cost
		Source	(m)	(m)	(m)			(Rs.)
						Dia	Depth	
						(mm)	(m)	
1	Granite	DW	5	16	4	-	-	44500
	related rocks							
		DCB	6	10	4	100	30	31000
		DCB	4	14	4	100	30	39400
2	Lime stones	DCB	4	12	4	100	35/30	23300
3	Bore wells in	BW	-	-	-	150-160	80	20600
	hard rocks							
4	Alluvium	FP	-	-	-	100	15	4500
5	Development	DOW*	-	-	-	-	-	5000
	of old well							

* Deepening 2 m from 10 to 12 m.

4.2 Water Conservation and Artificial Recharge

For ground water conservation and artificial recharge, a number of structures have been taken since 1995 under the control of District Water Management Agency in a big way in the district under DPAP, IWDP, RIDF, APRLP,EAS, NEERU MEERU and other programmes in the non-command area.The structures, under these Schemes are check dams, percolation tanks, farm ponds, contour bunding and trenches, feeder channel and gully control etc. The forest department also carried out and contour trenching works. So far, as many as 509 structures have been completed and 351 structures are under execution.

The artificial recharge structures must be taken up in non-command area, particularly in the critical and over exploited mandals for the benefit of farmers. As per the geomorphic conditions prevailing, the most suitable recharge structure is percolation tanks. In addition, check dams, gully controls and bunding may be taken up where considerable gradient and length of slope is available. All the works have to be on water shed basis, after careful study of the micro-basin parameters, surface run off and after meeting the needs of the existing structures. Roof top harvesting in urban and rural areas should be made mandatory to enhance groundwater recharge. Area recommended for artificial recharge to ground water is presented in **Fig.8**.

5. **RECOMMENDATIONS**

According to official sources and personal interaction with farmers across the district, as mentioned in the foregoing discussions, it has come to light that the distress situation of the farmers is reportedly due to he causes of indebtedness, Due to the unsteady supply of power, burning of motor pumps, wrong selection of crops, spurious seeds, scarce water resources leading to crop failures etc, pushing the farmers into heavy pecuniary losses.

The high input costs and non-remunerative market rates for the agricultural produce are the other reasons for the farmers' distress.

The above problems can be addressed to maximum extent by observing the groundwater management techniques and other remedial measures as mentioned below.

0 to 50 50 to 75 75 to 100 In non-command area, where further development of groundwater is possible the farmer must take professional advice regarding selection of bore well sites and depth of well on geophysical and hydro-geological studies. There is a wrong notion that more depth of a well will yield more water.

Groundwater conservation and artificial recharge structures must be taken up, based on scientific lines, to arrest surface run off in order to enhance the groundwater storage so as to make the existing bore wells sustainable.

The spacing norms of 250m distance between two adjacent bore wells shall be observed to achieve this the norms of APWALTA act shall strictly be implemented.

In non-command area where groundwater resources are scarce, less water intensive crops be raised and alternative modern irrigation methods like drip irrigation, sprinkler irrigation may be encouraged and farmers may be given loans with enhanced subsidy for its purchase and maintenance.

In the command area, especially in headwater reaches, conjunctive use of groundwater and surface water must be encouraged for irrigation purpose to enhance yield potential and at the same time improving the water quality and minimizing the water logging threat. The tail-end farmers are also benefited with more canal supply, fulfilling the concept of equitable distribution.

The authorities for optimum use of surface and groundwater must adopt watershed wise water management plans.

Mass awareness programmes must widely be conducted on regular basis in the 'rural' areas to educate the farmers regarding the water management to update their knowledge. Training for local government functionaries, NGOs, voluntary

33

organizations engaged in watershed development activity are to be trained in scientific techniques in the selection of sites, design of structures, etc. for construction of rainwater harvesting and artificial recharge structures.

There should be a complete institutional credit cover to the small and marginal farmers for drilling deep bore wells in the scientifically identified ground water potential zones, for procuring water saving equipment like drip and sprinkler systems, etc. Insurance facility should be provided to cover the health of farmers and their families, damaged crops due to severe drought conditions, unforeseen loss, market rates for the agriculture produce, etc.

To minimize the dependence solely on agriculture the government should provide loan facility with enhanced subsidy to the farmers to initiate dairy and poultry for supplementary income for his subsistence.

In order to impart education to the farmers, regarding the cropping pattern, hybrid varieties, pesticides, irrigation techniques etc., 'Agri-clinics' may be established in rural areas for every five villages in non-command areas.

Acknowledgements:

The data provided by the State Ground Water Department, Panchayat Raj Department, Agriculture Department, Irrigation Department, District Water Management Agency and Directorate of Economics & Stastistics, Govt.of Andhra Pradesh, for preparation of the report, is gratefully acknowledged.