

Today's Agenda

- WhyWhat
- Results

Promote the advancement and exchange of geologic storage knowledge through international understanding and co-operation

Increase public, government and regulator confidence in the safety and permanence of geologic storage of CO₂

Contribute to creating an emerging Carbon Capture and Storage value chain

Participate in applied CCS research.

Participate in the practical application of commercial scale geologic storage of CO₂

Not-for-profit organization focusing on the geologic storage of CO₂ Risk assessment, risk management, risk mitigation techniques, risk communication

Committed to providing independent, objective information, best practices, advice and assessments

CLIENTS:

- governments
- industry
- academia
- stakeholder groups
- international organizations

Natural Releases of CO.: Building Knowledge for O. Storage Environmental Impact Assessments Maria Laach, Germany, 2nd - 4th November 2010 Organised and Hosted by Level G. GeoNet and BGR

THE IPAC CO2 MISSION

- The world's first performance standards for geologic storage of CO₂
- The Incident Response Protocol (IRP)

INCIDENT RESPONSE PROTOCOL

9 steps

- 1. Response to allegations of the unintentional release of a gas or gases associated with a specific CCS project.
- 2. Irrespective of the outcome of Step 1, what was the response to the allegations by:
 - The operator of the CCS project
 - Other participants in the CCS project
 - The provincial and federal governments

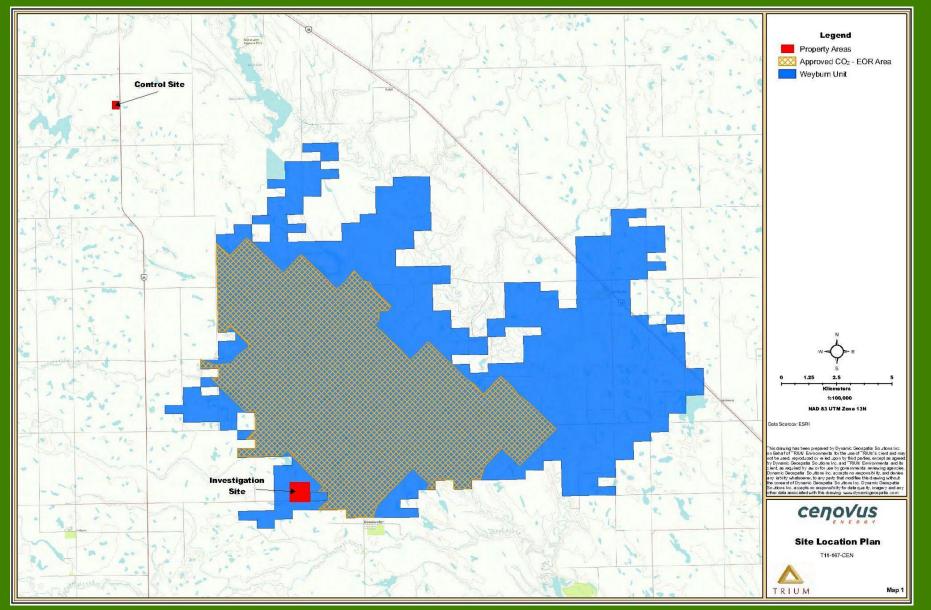
INCIDENT RESPONSE PROTOCOL

- 3. If there has been an unintentional release, what substances were released and what was the scope of the release?
- 4. If there has been an unintentional release, what were the release mechanisms?
- 5. If there has been an unintentional release, when was the release detected?

INCIDENT RESPONSE PROTOCOL

- 6. If there has been an unintentional release, what was the response to the release?
- 7. If there has been an unintentional release, what were the consequences of the release?
- 8. If there has been an unintentional release, was there compliance with applicable industry performance standards / best practices?
- 9. Conclusions and recommendations

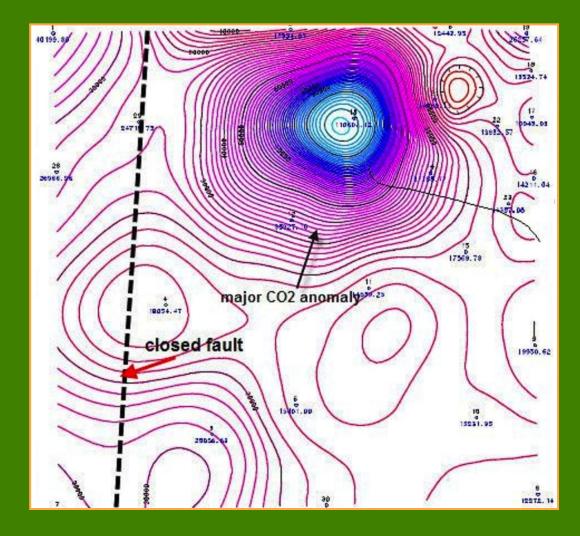
THE KERR INVESTIGATION


To reduce the uncertainty regarding the carbon dioxide anomaly reported to exist on the property owned by Cameron and **Jane Kerr**

CENOVUS ENERGY

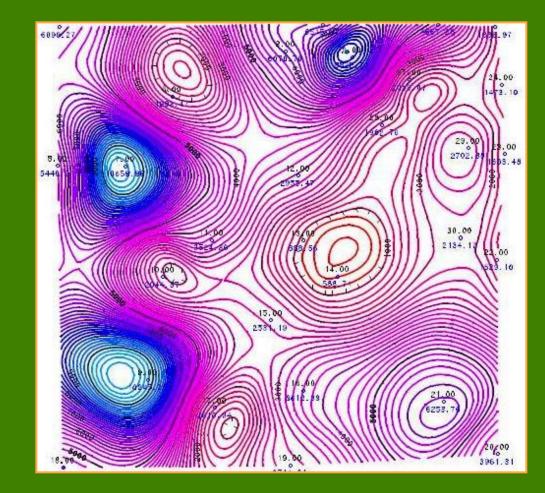
CENOVUS SITE LOCATION PLAN

PROTOCOL IMPLEMENTATION


The Kerr Property

PROTOCOL IMPLEMENTATION

The summer CO₂ anomaly

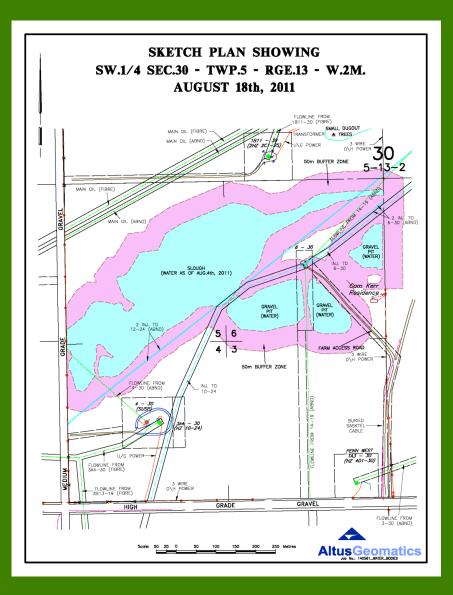

Source: Lafleur, P. 2010. Geochemical Soil Gas Survey: A Site Investigation of SW30-5-13-W2M Weyburn Field, Saskatchewan. Saskatoon, SK: Petro-Find Geochem Ltd.)

PROTOCOL IMPLEMENTATION

The winter CO₂ anomalies

Source: Lafleur, P. 2011. Geochemical Soil Gas Survey: A Site Investigation of SW30-5-13-W2M, Weyburn Field, Saskatchewan, Monitoring Project Number 2. Saskatoon, SK: Petro-Find Geochem Ltd.

PROTOCOL IMPLEMENTATION: QUALITY ASSURANCE



MR. ERIC S. RINGLER Consultant, Research Triangle, North Carolina, U.S.A

Protocol Implementation: Constraints

Northern Leopard Frog (*Lithobates pipiens*)

National Energy Board pipeline setback requirements

PROTOCOL IMPLEMENTATION

- Vicinity inspection:
 - Overview
 - Wells (active and abandoned)
 - Pipelines (active and abandoned)
 - Injection sites
 - Monitoring sites
 - Study sites

PROTOCOL IMPLEMENTATION

- Vicinity history:
 - Chronology of events
 - Injection history (substances, depth, formations)
 - Land use history
 - Incidents in vicinity (e.g., hydrocarbon spills)
 - Release history (if any)

THE KERR INVESTIGATION TEAM

 Dr. Janis Dale, Department of Geology, University of Regina, Canada

 Dr. Stuart M.V. Gilfillan, Scottish Carbon Capture and Storage, School of Geosciences, University of Edinburgh, Scotland

 Mr. Eric S. Ringler, Consultant, Research Triangle, North Carolina, U.S.A.

THE KERR INVESTIGATION TEAM

 Dr. Katherine D. Romanak, Principle Investigator, Gulf Coast Carbon Center, Bureau of Economic Geology, University of Texas at Austin, U.S.A.

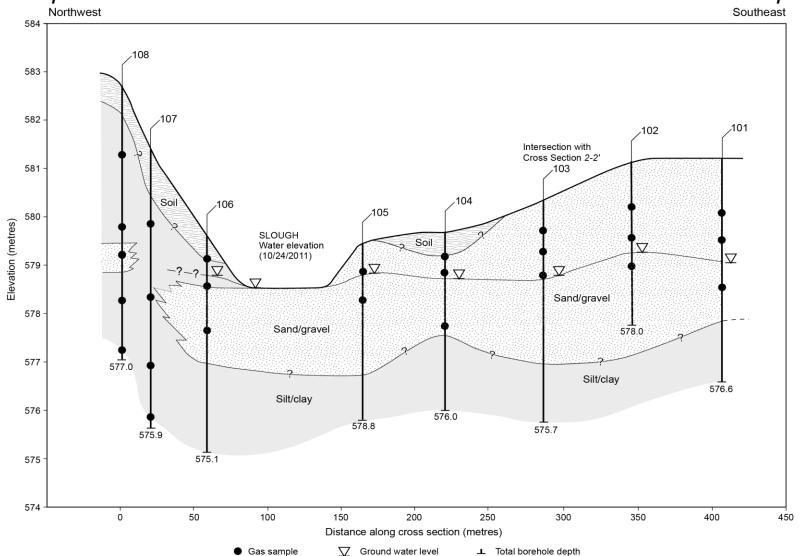
 Dr. Brad D. Wolaver, Gulf Coast Carbon Center, Bureau of Economic Geology, University of Texas at Austin, U.S.A.

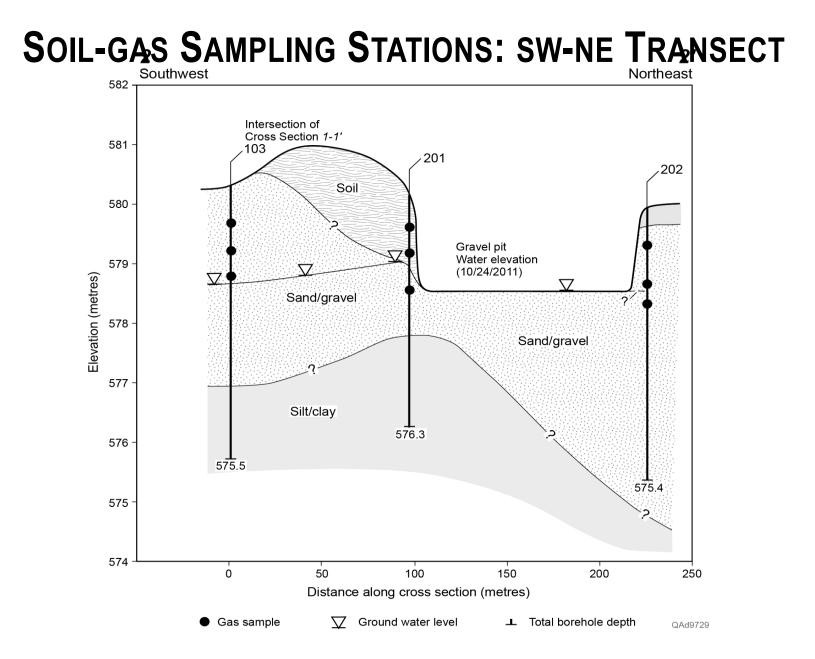
 Dr. Changbing Yang, Gulf Coast Carbon Center, Bureau of Economic Geology, University of Texas at Austin, U.S.A.

SOIL GAS ANALYSIS

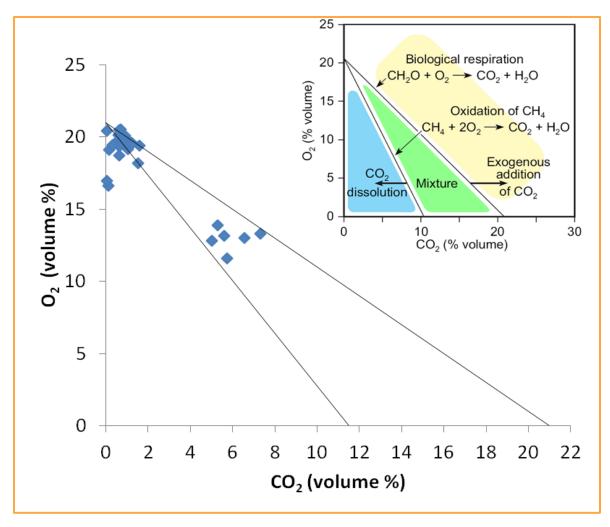
DR. KATHERINE D. ROMANAK

Principle Investigator, Gulf Coast Carbon Center, Bureau of Economic Geology, at the University of Texas in Austin

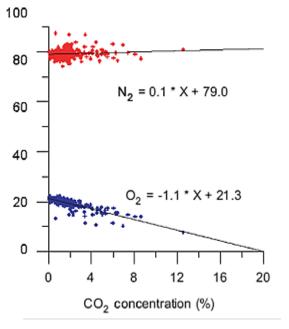

THE KERR PROPERTY



THE KERR PROPERTY



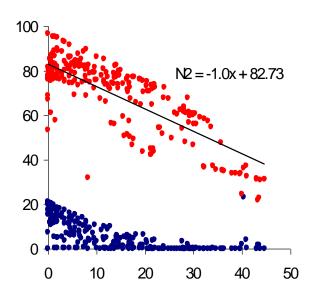
ŞOIL-GAS SAMPLING STATIONS: NW-SE TRANSEÇT



$O_2:CO_2$ Relationships

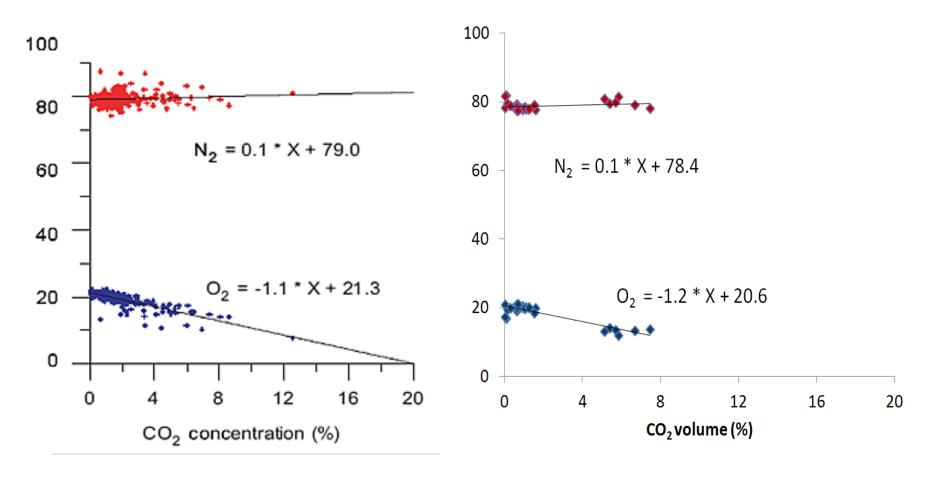
GAS CONCENTRATION RELATIONSHIPS

Weyburn BackgroundMicrobial near-surfaceNo impact on N_2 Slope N_2 : $CO_2 = 0$



CO₂ dissolution Slope N₂:CO₂ is positive 100 🧃 N2 = 1.2 X + 77.180 N2 = 0.19 X + 76.960 40 O2 = -1.3 X + 20.620 Õ2 = -1.7x + 14.9 n 10 12 14 16 18 20 CO₂ concentration (%)

Natural Wetland Soils


Riding and Rochelle, 2005

Romanak, 1997 Romanak and Bennett, 2009 Industrial Site Input of deep gas Dilution of N_2 Slope N_2 :CO₂ is negative

Romanak et. al., 2010

GAS CONCENTRATION RELATIONSHIPS

Weyburn Background

Kerr Investigation

CARBON ISOTOPIC SIGNATURES OF VARIOUS POTENTIAL CO₂ SOURCES



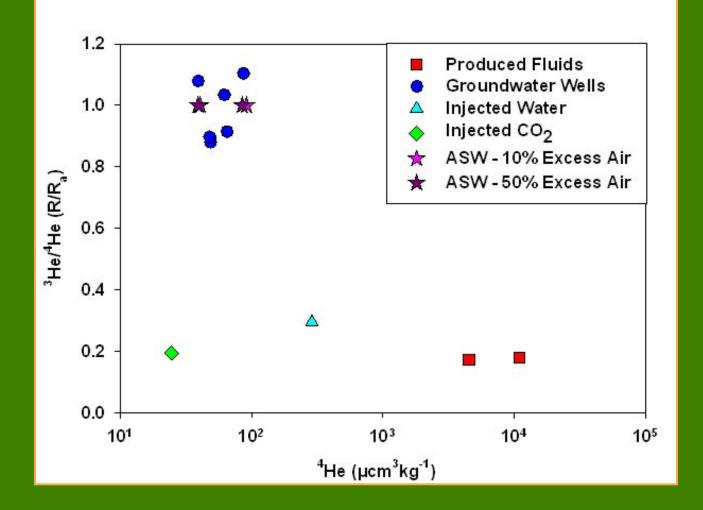
Figure is modified from Clark and Fritz, 1997, with data for potential leakage signals from Emberley et al., 2005.

CONCLUSIONS

CO₂ is biological in origin, not the result of leaks associated with the CO₂ storage reservoir

No evidence suggests that gases originating in the deep subsurface migrated to the near surface

ANALYSIS OF NOBLE GAS, CARBON STABLE ISOTOPE AND HYDROGEN CARBONATE HCO₃


DR. STUART GILFILLAN

Scottish Carbon Capture and Storage, School of Geosciences, University of Edinburgh, Scotland

NOBLE GAS ANALYSIS: SAMPLES OBTAINED

- Water injected into the oil field
- CO₂ injected into the oil field
- Fluids produced from the oil field
- Ground water wells on the Kerr and adjacent Thackeray farms

NOBLE GAS ANALYSIS: ³He/⁴He plotted against ⁴He CONCENTRATIONS IN THE PRODUCED RESERVOIR FLUIDS, GROUNDWATER WELLS AND WATER INJECTED INTO THE RESERVOIR SURROUNDING THE KERR QUARTER

CONCLUSIONS

"We find no evidence in any of the noble gas data derived within the ground waters surrounding the Kerr quarter that there is a detectible presence of noble gases derived from the deep injected water or CO_2 or the fluids produced from the Weyburn field."

HYDROGEOLOGICAL ANALYSIS

DR. BRAD D. WOLAVER AND DR. CHANGBING YANG Gulf Coast Carbon Center, Bureau of Economic Geology, University of Texas at Austin, U.S.A.

DR. JANIS DALE Department of Geology, University of Regina

HYDROGEOLOGICAL ANALYSIS: METHODS

HYDROGEOLOGICAL ANALYSIS: PROCESS

HYDROGEOLOGICAL ANALYSIS: WATER CHEMISTRY ANALYSIS - 1

	Well	Sampling date	an 10 - 10		-71	21	2	a - 18			10					
Sample			EC	TDS	Alkalinity	pН	Total Hardness	HCO3+ CO3	HCO3	Sodium	Potassium	Calcium	Magnesium	Chloride	Sulfate	NO3+NO2
			mS/cm	mg/L	mg Caco3/L	9	mg CaCO₃/L	(mg/L)	mg/L	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg N/L)
Saskatchewan's Drinking Water Quality Standards and Objectives		MAC														10
		IMAC														
		AO		1500	500	6.50-9.00	800			300			200	250	500	
1	IPAC-1	9/1/2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	109	14.4	116	94.4	30.8	300	0.74
2	Kerr House	9/1/2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	34.4	7	111	46.8	5.5	180	3.3
3	Thackeray House	9/1/2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	41.4	10.9	111	71.8	43.5	120	18.4
4	Thackeray Farm	9/1/2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	56.6	242	205	87.4	150	167	64
5	Kerr House	6/30/2011	0.74	546	288	7.80	292	351	351	25	9	69	29	8	54	0.54
б	Thackeray House	6/30/2011	1.66	1187	405	8.00	645	495	495	103	20	118	85	86	250	29.9
7	Thackeray Farm	6/30/2011	2.25	1369	471	7.50	707	575	575	67	133	148	82	136	180	48.1

HYDROGEOLOGICAL ANALYSIS: WATER CHEMISTRY ANALYSIS - 2

														10			
Sample	Well	Aluminum	Antimony	Arsenic	Barium	Boron	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Selenium	Uranium	Zinc	$\delta^{13}C_{DIC}^{(a)}$
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(‰)
Saskatchewan's	MAC		0.006 ^(*)		1		0.005	0.05			0.01		0.001	0.01	0.02		
Quality Standards	IMAC			0.025					4		5						
and Objectives	AO	0.1/0.2 ^(*)				5.0			1.0	0.3		0.05				5.0	
1	IPAC-1	<0.02	<0.001	0.00089	0.097	<0.1	<0.0004	<0.004	0.0025	<0.03	<0.001	0.0176	<0.0002	<0.002	0.014	0.09	-14.71
2	Kerr House	<0.02	<0.001	0.00151	0.199	<0.1	<0.0004	<0.004	0.0214	0.059	<0.001	0.0663	<0.0002	0.0045	0.00426	3.77	-14.51
3	Thackeray House	<0.02	<0.001	0.00098	0.097	0.12	<0.0004	<0.004	0.0051	<0.03	<0.001	0.0198	<0.0002	0.003	0.00422	0.666	-13.51
4	Thackeray Farm	<0.05	<0.0025	0.00125	0.273	0.14	<0.001	≪0.01	0.0176	0.5	<0.0025	1.59	<0.0002	<0.005	0.0064	0.103	-17.07
5	Kerr House	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
б	Thackeray House	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	Thackeray Farm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Regardless of whether CO₂ was measured in the soil gases or in groundwater, it was produced by natural processes

THE KERR INVESTIGATION: FINAL REPORT