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Concave and Quasi-Concave Functions
A set X ⊂ Rn is convex if x, y ∈ X implies λx+ (1− λ) y ∈ X for all λ ∈ [0, 1] .

Geometrically, if x, y ∈ Rn, then {z ∈ Rn : z = λx+ (1− λ) y for λ ∈ [0, 1]} constitutes the straight
line connecting x and y. So a convex set is any set that contains the entire line segment between

any two vectors in the set.

• The intersection of two convex sets is convex. Can you prove this?

• The union of two convex sets is not necessarily convex. Why not?

A vector z ∈ Rn is a convex combination of x1, ..., xm ∈ Rn if

z =
mX
j=1

λjx
j for some λ1, ..., λm ≥ 0 with

mX
j=1

λj = 1.
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Theorem 1: A set X ⊂ Rn is convex if and only if it contains any convex combination of any

vectors x1, ..., xm ∈ X.

Proof. (if) If X contains any convex combination of its vectors, then as a special case, λx +

(1− λ) y ∈ X for all x, y ∈ X and λ ∈ [0, 1] ..
(only if) The proof is by mathematical induction on m. For m = 1, the only convex combination of

vector x is x itself. So the basis statement for m = 1 is true. The induction step is to suppose that

the proposition is true for m− 1 > 0 vectors, and then to show that this implies the proposition is
true for m vectors. So consider any convex combination

Pm
j=1 λjx

j of m vectors contained in X.

Since m ≥ 2 and each λj ≥ 0 with
Pm

j=1 λj = 1, we may suppose WLOG that λm < 1. Then since

m−1X
j=1

λj
1− λm

=

Pm−1
j=1 λj

1− λm
=
1− λm
1− λm

= 1,

the induction hypothesis implies that y ≡
Pm−1

j=1

³
λj

1−λm

´
xj ∈ X. Then the definition of a convex

set implies

mX
j=1

λjx
j =

m−1X
j=1

λjx
j + λmx

m = (1− λm)
m−1X
j=1

µ
λj

1− λm

¶
xj + λmx

m = (1− λm) y + λmx
m ∈ X.

The proposition then follows from mathematical induction.

Given any set X ⊂ Rn, the convex hull Co(X) is the intersection of all convex sets that contain X.

• Since the intersection of any two convex sets is convex, it follows that the convex hull is the
smallest convex set that contains X.

• If X is convex, then Co(X) = X. Why?

Theorem 2: Suppose X ⊂ Rn. Then Co(X) is the set of all convex combinations of vectors in X.

Proof. See Appendix.
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Concave Functions
For the remainder of these notes, we suppose that X ⊂ Rn is a convex set.

f : X → R is concave if for any x, z ∈ X, we have, for all λ ∈ (0, 1) ,

f(λz + (1− λ)x) ≥ λf (z) + (1− λ) f(x).

f : X → R is strictly concave if for any x, z ∈ X with x 6= z, we have, for all λ ∈ (0, 1) ,

f(λz + (1− λ)x) > λf (z) + (1− λ) f(x).

concave not concave

• A constant function is concave. Why?

• A linear function is concave. Why?

• f : X → R is concave if and only if f(λ(z−x)+x) ≥ λ (f(z)− f(x))+ f(x) for all x, z ∈ X and
λ ∈ (0, 1) . Why?

• f : X → R is concave if and only if f(λ∆x + x) ≥ λ (f(x+∆x)− f(x)) + f(x) for all
x, (x+∆x) ∈ X and λ ∈ (0, 1) . Why?

Theorem 3: (Jensen’s Inequality) Suppose that f : X → R is concave. If x1, . . . , xm ∈ X and

α1, . . . , αm ∈ R+ with
Pm

i=1 αi = 1, then f(
Pm

i=1 αix
i) ≥

Pm
i=1 αif(x

i).

Proof. Left as an exercise [Hint: use the definition of a concave function and mathematical induc-
tion.]

Linear Combinations of Concave Functions
Consider a list of functions fi : X → R for i = 1, ..., n, and a list of numbers α1, ..., αn. The function
f ≡

Pn
i=1 αifi is called a linear combination of f1, ..., fn. If each of the weights αi ≥ 0, then f is a

nonnegative linear combination of f1, ..., fn.

The next proposition establishes that any nonnegative linear combination of concave functions is

also a concave function.
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Theorem 4: Suppose f1, ..., fn are concave functions. Then for any α1, ..., αn, for which each

αi ≥ 0, f ≡
Pn

i=1 αifi is also a concave function. If, in addition, at least one fj is strictly concave

and αj > 0, then f is strictly concave.

Proof. Consider any x, y ∈ X and λ ∈ (0, 1) . If each fi is concave, we have

fi (λx+ (1− λ) y) ≥ λfi(x) + (1− λ) fi(y)

Therefore,

f(λx+ (1− λ) y) ≡
nX
i=1

αifi (λx+ (1− λ) y) ≥
nX
i=1

αi (λfi(x) + (1− λ) fi(y))

= λ
nX
i=1

αifi(x) + (1− λ)
nX
i=1

αifi(y) ≡ λf(x) + (1− λ) f(y).

This establishes that f is concave. If some fi is strictly concave and αi > 0, then the inequality is

strict.

Since a constant function is concave, Theorem 4 implies:

• If f is concave, then any affine transformation αf + β with α ≥ 0 is also concave.

• If f is strictly concave, then any affine transformation αf+β with α > 0 is also strictly concave.

Theorem 5: Let I ⊂ R be an interval and let X = In. Suppose f : X → R is defined by

f(x) =
Pn

i=1 φi(xi), where each φi : I → R.
(a) If each φi is concave, then f is concave.

(b) If each φi is strictly concave, then f is strictly concave.

Proof. Left as an exercise.

A function f : X → Rn of the form f(x) =
Pn

i=1 φi(x) is sometimes called a linearly separable

function.

• Why does Theorem 5 require that each φi be strictly concave to ensure that f is strictly concave,
while Theorem 4 requires only one fi be strictly concave to ensure that f is is strictly concave?

Concave Functions of an Affine Function
Theorem 6: Let X ⊂ Rn be convex and f : X → R is a concave function.
(a) Let g : Rm → Rn be defined by g(y) = Ay + b, where A is an n × m matrix and suppose

g[Y ] ⊂ X. Then h = (f ◦ g) : Y → R is a concave function.
(b) If f is strictly concave and g is 1-1, then h is strictly concave.

Proof. Left an exercise.
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Quasi-Concave Functions
f : X → R is quasi-concave if for any x, z ∈ X, we have f(λz + (1− λ)x) ≥ min {f (x) , f(z)} for
all λ ∈ (0, 1) .

f is strictly quasi-concave if for any x, z ∈ X and x 6= z, we have f(λz+(1− λ)x) > min {f (x) , f(z)}
for all λ ∈ (0, 1) .

Theorem 7: A (strictly) concave function is (strictly) quasi-concave.

Proof. The theorem follows immediately from the observation that if f is concave, then for all

x, z ∈ X, we have

f(λz + (1− λ)x) ≥ λf(z) + (1− λ) f(x) ≥ min {f (x) , f(z)} for all λ ∈ (0, 1) .

If f is strictly concave, we have for all x, z ∈ X and x 6= z,

f(λz + (1− λ)x) > λf(z) + (1− λ) f(x) ≥ min {f (x) , f(z)} for all λ ∈ (0, 1) .

f is quasi-concave f is not quasi-concave

• If X ⊂ R, then f : X → R is quasi-concave if and only if it is either monotonic or first
nondecreasing and then nonincreasing. Why?

Our next theorem states that any monotone nondecreasing transformation of a quasi-concave

function is quasi-concave.

Theorem 8: Suppose f : X → R is quasi-concave and φ : f(X) → R is nondecreasing. Then

φ◦ f : X → R is quasi-concave. If f is strictly quasi-concave and φ is strictly increasing, then φ ◦f
is strictly quasi-concave.

Proof. Consider any x, y ∈ X. If f is quasi-concave, then f (λx+ (1− λ) y) ≥ min {f(x), f(y)} .
Therefore, φ nondecreasing implies

φ(f (λx+ (1− λ) y)) ≥ φ(min {f(x), f(y)}) = min {φ(f(x)), φ(f(y))} .

If f is strictly quasi-concave, then for x 6= y, we have f(λx + (1− λ) y) > min {f(x), f(y)}.
Therefore, if φ is strictly increasing, we have

φ(f (λx+ (1− λ) y)) > φ(min {f(x), f(y)}) = min {φ(f(x)), φ(f(y))} .
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Recall that for any x ∈ X, P (x) ≡ {z ∈ X : f(z) ≥ f(x)} is called the better set of x.

Theorem 9: f : X → R is quasi-concave if and only if P (x) is a convex set for each x ∈ X.

Proof. (only if) Suppose f is quasi-concave. Choose an arbitrary x0 ∈ X. To show that P (x0) is

convex, consider any x, y ∈ P (x0). Then, f(x), f(y) ≥ f(x0) and the quasi-concavity of f imply

that

f(λx+ (1− λ) y) ≥ min {f(x), f(y)} ≥ f(x0)

which implies that λx+ (1− λ) y ∈ P (x0) for any λ ∈ (0, 1) .
(if) Suppose P (x0) is convex for each x0 ∈ X. Now consider any x, y ∈ X. WLOG, suppose that

f(x) ≤ f(y). Then letting x = x0, we have that x, y ∈ P (x0) and therefore λy + (1− λ)x ∈ P (x0)

for any λ ∈ (0, 1) . It then follows from the definition of P (x0) that

f(λy + (1− λ)x) ≥ f(x) = min {f(x), f(y)} .

Theorem 9 is illustrated below for an increasing function f : R2+ → R. Notice that all convex
combinations of vectors in P (x1) are also elements of P (x1). Also notice that if f is strictly quasi-

concave, then the level set can contain no straight line segments.

f is strictly quasi-concave P (x1) is convex

Corollary 1: Suppose f : X → R attains a maximum on X. (a) If f is quasi-concave, then the

set of maximizers is convex. (b) If f is strictly quasi-concave, then the maximizer of f is unique.

Proof. (a) Let x0 be a maximizer of f. Then f(x) ≤ f(x0) for all x ∈ X implies that P (x0) is the

set of maximizers of f. If f is quasi-concave, then Theorem 7 implies that P (x0) is convex.

(b) If f is strictly quasi-concave, suppose x, y are both maximizers of f. Then x 6= y implies

f(12x+
1
2y) > min {f(x), f(y)} = f(x) which implies that x is not a maximizer of f.
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Example: Let I > 0 be the income of some household and let p = (p1, ..., pn) ∈ Rn
+ denote the

vector of prices of the n goods. Then

B(p, I) ≡
©
x ∈ Rn

+ : px ≤ I
ª

defines its budget set — the set of all possible nonnegative bundles of goods it may purchase

within its budget. You can verify that y, z ∈ B(p, I) implies λy + (1− λ) z ∈ B(p, I) for all

λ ∈ [0, 1]. Therefore, B(p, I) is a convex set.

Now suppose that the household preferences are given by some utility function u : Rn
+ → R.

Then Corollary 1 implies that if u is strictly quasi-concave, there is a unique bundle x ∈ B(p, I)

that maximizes u : B(p, I)→ R.

Convex and Quasi-Convex Functions
If we reverse the inequality sign in the definitions of concave and quasi-concave functions we obtain

convex and quasi-convex functions.

f : X → R is a convex function if for any x, y ∈ X, we have, for all λ ∈ (0, 1) ,

f(λx+ (1− λ) y) ≤ λf (x) + (1− λ) f(y)

f : X → R is a strictly convex function if for any x, y ∈ X where x 6= y, we have, for all λ ∈ (0, 1) ,

f(λx+ (1− λ) y) < λf (x) + (1− λ) f(y)

NOTE: A convex set and a convex function are two distinct concepts.

f : X → R is quasi-convex if for any x, y ∈ X, we have f(λx+ (1− λ) y) ≤ max {f (x) , f(y)} for
all λ ∈ (0, 1) .

f is strictly quasi-convex if for any x, y ∈ X and x 6= y, we have f(λx+(1− λ) y) < max {f (x) , f(y)}
for all λ ∈ (0, 1) .

The following proposition is an immediate consequence of the definitions.

http://homepages.nyu.edu/ caw1/



V31.0006: Concave and Quasi-Concave Functions September 15, 2011 Page 8

Theorem 10: (a) f is a (strictly) convex function if and only if −f is a (strictly) concave function.

(b) f is a (strictly) quasi-convex function if and only if −f is a (strictly) quasi-concave function.

Theorem 6 allows us to easily translate all of our propositions for concave and quasi-concave

functions to the analogues for convex and quasi-convex functions, which are provided here for easy

reference.
• Suppose f1, ..., fn are convex functions. Then for any α1, ..., αn, for which each αi ≥ 0, then

f ≡
Pn

i=1 αifi is also a convex function. If, in addition, at least one fj is strictly convex and
αj > 0, then f is strictly convex.

• A linear function is both concave and convex.

• A (strictly) convex function is (strictly) quasi-convex.

• Suppose f : X → R is quasi-convex and φ : f(X) → R is nondecreasing. Then φ ◦ f : X → R
is quasi-convex. If f is strictly quasi-convex and φ is strictly increasing, then φ ◦ f is strictly
quasi-convex.

• A function f : X → R is quasi-convex if and only if for each x ∈ X, W (x) is convex.

• Suppose f : X → R attains a minimum on X. (a) If f is quasi-convex, then the set of minimizers
is convex. (b) If f is strictly quasi-convex, then the minimizer of f is unique.

Appendix
Theorem 2: Suppose X ⊂ Rn. Then Co(X) is the set of all convex combinations of vectors in X.

Proof. Theorem 1 implies that any convex combination of elements x1, ..., xm ∈ X must be con-

tained in Co(X). To show that Co(X) contains only vectors that are convex combinations of some

x1, ..., xm ∈ X, we need to show that Y ≡
©
x ∈ Rn : x is a convex combination of some x1, ..., xm ∈ X

ª
is a convex set. So consider any y, z ∈ Y. Then, by definition, there is a set of vectors y1, ..., ym ∈ X

and list of nonnegative numbers α1, ..., αm with
Pm

i=1 αi = 1 such that y =
Pm

i=1 αiy
i. Similarly,

there is a set of vectors z1, ..., zr ∈ X and list of nonnegative numbers β1, ..., βr with
Pr

i=1 βi = 1

such that z =
Pr

i=1 βiz
i. Then for any λ ∈ [0, 1] , we have

λy + (1− λ) z = λ
mX
i=1

αiy
i + (1− λ)

rX
i=1

βiz
i

=
mX
i=1

λαiy
i +

rX
i=1

(1− λ)βiz
i

which, since λ
Pm

i=1 αi+ (1− λ)
Pr

i=1 βi = λ+ (1− λ) = 1, implies that λy+ (1− λ) z is a convex

combination of y1, ..., yn, z1, ..., zr ∈ X.

http://homepages.nyu.edu/ caw1/


