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Concave and Quasi-Concave Functions
A set X C R™ is convez if x,y € X implies Az + (1 — A\)y € X for all A € [0,1].

Geometrically, if z,y € R”, then {z € R" : z = Az + (1 — ) y for A € [0, 1]} constitutes the straight
line connecting = and y. So a convex set is any set that contains the entire line segment between

any two vectors in the set.
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e The intersection of two convex sets is convex. Can you prove this?

e The union of two convex sets is not necessarily convex. Why not?

A vector z € R" is a convex combination of z!,..., 2™ € R" if

z= Z)\ja:j for some Ag, ..., Ay, > 0 with Z)\j =1.
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Theorem 1: A set X C R” is convex if and only if it contains any convex combination of any

vectors !, ...,z™ € X.

Proof. (if) If X contains any convex combination of its vectors, then as a special case, \x +
(I-MNyeXforallz,ye X and A € [0,1]..

(only if) The proof is by mathematical induction on m. For m = 1, the only convex combination of
vector x is x itself. So the basis statement for m = 1 is true. The induction step is to suppose that
the proposition is true for m — 1 > 0 vectors, and then to show that this implies the proposition is
true for m vectors. So consider any convex combination Z;”Zl Ajz? of m vectors contained in X.
Since m > 2 and each \; > 0 with Z;nzl Aj = 1, we may suppose WLOG that \,, < 1. Then since

! Aj _Z?:ElAj_l—Am_l
j:11—Am* 1—=XAm 1=X\n

St <1%t> 27 € X. Then the definition of a convex

the induction hypothesis implies that y =1

set implies

m ) m—1 A m—1 bV .
Z/\jsz Z)\jx]+)\mxm:(1—)\m) (1 J)\ >x]+/\mxm:(1—)\m)y+)\mxmeX.
i=1 i=1 oo

7j=1
The proposition then follows from mathematical induction. m

Given any set X C R", the convex hull Co(X) is the intersection of all convex sets that contain X.

e Since the intersection of any two convex sets is convex, it follows that the convex hull is the
smallest convex set that contains X.

e If X is convex, then Co(X) = X. Why?
Theorem 2: Suppose X C R™. Then Co(X) is the set of all convex combinations of vectors in X.

Proof. See Appendix. m
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Concave Functions
For the remainder of these notes, we suppose that X C R™ is a convex set.

f: X — Ris concave if for any z,z € X, we have, for all A € (0,1),
FOe+ (=N a) > Af () + (1) f(x).
f X — Ris strictly concave if for any x,z € X with = # z, we have, for all A € (0,1),

fOz+ 1 =XNx)>Af(2)+ (1 =] f(x).

concave not concave
f(x) f(x)

foz+ (1A fl2)
M2+ (1)) 2(2)+(1-1)f(x)
(x) f(hz+(1-A)X) f(;]

Xzt (1K z X X Azt (1 z X

A constant function is concave. Why?

A linear function is concave. Why?

f: X — Ris concave if and only if f(A(z—z)+2) > A(f(2) — f(z))+ f(x) for all z, 2 € X and
A€ (0,1). Why?

e f: X — Ris concave if and only if f(AAz + x) > A(f(z + Az) — f(z)) + f(z) for all
z,(x+Azx) € X and X\ € (0,1). Why?

Theorem 3: (Jensen’s Inequality) Suppose that f : X — R is concave. If z!,... 2™ € X and
1y, € Ry with S0 o = 1, then f(O1, aix®) > Yo7 o f(2h).

Proof. Left as an exercise [Hint: use the definition of a concave function and mathematical induc-

tion.] m

Linear Combinations of Concave Functions

Consider a list of functions f; : X — R for ¢ = 1,...,n, and a list of numbers ay, ..., a,. The function
[ =" aif; is called a linear combination of fi,..., fn. If each of the weights a; > 0, then f is a

nonnegative linear combination of fi, ..., fa.

The next proposition establishes that any nonnegative linear combination of concave functions is

also a concave function.

http://homepages.nyu.edu/ cawl/



V31.0006: Concave and Quasi-Concave Functions September 15, 2011 Page 4

Theorem 4: Suppose fi,..., fn are concave functions. Then for any aq,...,a,, for which each
a; >0, f =", oif; is also a concave function. If, in addition, at least one f; is strictly concave

and a; > 0, then f is strictly concave.

Proof. Consider any z,y € X and A € (0,1). If each f; is concave, we have
fiQz+ (1 =N y) > Afi(z) + (1= A) fi(y)
Therefore,

f()\:E—i-(l—)\)y) Zazfz )\$+ 1-A Zaz )\fz _A)fz(y))

=1
= )\Zazfz(in) Zazfz = ) (1_)‘)f(y)
i=1

This establishes that f is concave. If some f; is strictly concave and a; > 0, then the inequality is
strict. ®m

Since a constant function is concave, Theorem 4 implies:
e If f is concave, then any affine transformation af 4+ 8 with o > 0 is also concave.

e If f is strictly concave, then any affine transformation af + 8 with « > 0 is also strictly concave.

Theorem 5: Let I C R be an interval and let X = I™. Suppose f : X — R is defined by
f(x) =>" 1 ¢;(z;), where each ¢, : I — R.
(a) If each ¢, is concave, then f is concave.

(b) If each ¢; is strictly concave, then f is strictly concave.

Proof. Left as an exercise. m

A function f : X — R™ of the form f(z) = >, ¢;(x) is sometimes called a linearly separable

function.

e Why does Theorem 5 require that each ¢; be strictly concave to ensure that f is strictly concave,
while Theorem 4 requires only one f; be strictly concave to ensure that f is is strictly concave?

Concave Functions of an Affine Function

Theorem 6: Let X C R” be convex and f : X — R is a concave function.

(a) Let g : R™ — R"™ be defined by g(y) = Ay + b, where A is an n X m matrix and suppose
glY] € X. Then h = (fog):Y — R is a concave function.

(b) If f is strictly concave and g is 1-1, then h is strictly concave.

Proof. Left an exercise. m
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Quasi-Concave Functions

f X — R is quasi-concave if for any x,z € X, we have f(Az+ (1 — A)z) > min{f (), f(z)} for
all A€ (0,1).

f is strictly quasi-concave if for any z, z € X and x # z, we have f(Az+(1 — X\)x) > min {f (z), f(2)}
for all A € (0,1).

Theorem 7: A (strictly) concave function is (strictly) quasi-concave.
Proof. The theorem follows immediately from the observation that if f is concave, then for all
z,z € X, we have
fOz4+ 0 =XNx)>Af(z)+ (1 =) f(x) >min{f (z), f(2)} for all A € (0,1).
If f is strictly concave, we have for all z,z € X and = # z,

fOz4+ 1 =XNzx)>Af(z)+ (1 =) f(x) >min{f (z), f(z)} forall A€ (0,1).

f is quasi-concave f is not quasi-concave
f(x) f(x)

f2)

f(z+(1-A)0- f@)

min(f(x),f(z)) =f(x) min(f(x).f(z))=f(x)

fz+(1-A)x)

X az+(1-0)x z X X Az+(T-A)X z X

e If X C R, then f : X — R is quasi-concave if and only if it is either monotonic or first
nondecreasing and then nonincreasing. Why?

Our next theorem states that any monotone nondecreasing transformation of a quasi-concave

function is quasi-concave.

Theorem 8: Suppose f : X — R is quasi-concave and ¢ : f(X) — R is nondecreasing. Then
¢of: X — Ris quasi-concave. If f is strictly quasi-concave and ¢ is strictly increasing, then ¢ o f

is strictly quasi-concave.

Proof. Consider any z,y € X. If f is quasi-concave, then f(Ax + (1 —X)y) > min{f(x), f(y)}.

Therefore, ¢ nondecreasing implies

o(f Az + (1= A)y)) = o(min {f(z), f(y)}) = min{o(f(x)), o(f(y))} -
If f is strictly quasi-concave, then for = # y, we have f(Ax + (1 —A)y) > min{f(x), f(y)}.

Therefore, if ¢ is strictly increasing, we have

o(f Az + (1= A)y)) > o(min {f(z), f(y)}) = min{o(f(x)), o(f(y))} -
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Recall that for any z € X, P(z) ={z € X : f(2) > f(x)} is called the better set of z.

Theorem 9: f: X — R is quasi-concave if and only if P(x) is a convex set for each z € X.

Proof. (only if) Suppose f is quasi-concave. Choose an arbitrary z° € X. To show that P(z°) is
convex, consider any x,y € P(z"). Then, f(z), f(y) > f(2°) and the quasi-concavity of f imply
that

fOz+ (1= A)y) > min{f(2), f(y)} > f(°)
which implies that Az + (1 — )y € P(2°) for any A € (0,1).
(if) Suppose P(z?) is convex for each 2° € X. Now consider any z,y € X. WLOG, suppose that
f(z) < f(y). Then letting = = 2°, we have that x,y € P(2°) and therefore Ay + (1 — )z € P(z°)
for any A € (0,1). It then follows from the definition of P(z°) that

fQy+ (A =XNz) = f(z) =min{f(z), f(y)}.
|
Theorem 9 is illustrated below for an increasing function f : Ri — R. Notice that all convex

combinations of vectors in P(z!) are also elements of P(z!). Also notice that if f is strictly quasi-

concave, then the level set can contain no straight line segments.

f is strictly quasi-concave P(z') is convex

X, Xy

2=0+(1-A

2=0C+(1-A)X

M IX)

Corollary 1: Suppose f : X — R attains a maximum on X. (a) If f is quasi-concave, then the

set of maximizers is convex. (b) If f is strictly quasi-concave, then the maximizer of f is unique.

Proof. (a) Let 2° be a maximizer of f. Then f(z) < f(2°) for all x € X implies that P(z°) is the

set of maximizers of f. If f is quasi-concave, then Theorem 7 implies that P(2°) is convex.

(b) If f is strictly quasi-concave, suppose z,y are both maximizers of f. Then z # y implies

f(3z+1y) > min{f(z), f(y)} = f(z) which implies that z is not a maximizer of f.
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Example: Let I > 0 be the income of some household and let p = (p1, ..., p,) € R’ denote the
vector of prices of the n goods. Then

B(p,I)={z eR} :px < I}

defines its budget set — the set of all possible nonnegative bundles of goods it may purchase
within its budget. You can verify that y,z € B(p,I) implies Ay + (1 — X) z € B(p,I) for all
A € [0, 1]. Therefore, B(p,I) is a convex set.

Now suppose that the household preferences are given by some utility function u : R — R.
Then Corollary 1 implies that if u is strictly quasi-concave, there is a unique bundle = € B(p, I)

that maximizes u : B(p,I) — R.

o,

B(o.1) 1<)

I/p1 X]

Convex and Quasi-Convex Functions

If we reverse the inequality sign in the definitions of concave and quasi-concave functions we obtain

convex and quasi-convex functions.
f: X — Ris a convex function if for any z,y € X, we have, for all A € (0,1),

fAz+ (1 =Ny) <Af(2)+ (1 =N f(y)
f: X — Ris a strictly convex function if for any x,y € X where = # y, we have, for all A € (0,1),

fAz+ (1 =N y) <Af(z)+(1=X) f(y)

NOTE: A convex set and a convex function are two distinct concepts.

f:+ X — Ris quasi-conver if for any z,y € X, we have f(Az + (1 — A\)y) < max{f (z), f(y)} for
all A€ (0,1).

f is strictly quasi-convez if for any x,y € X and = # y, we have f(Az+(1 — \)y) < max{f (z), f(v)}
for all A € (0,1).

The following proposition is an immediate consequence of the definitions.
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Theorem 10: (a) f is a (strictly) convex function if and only if — f is a (strictly) concave function.
(b) fis a (strictly) quasi-convex function if and only if —f is a (strictly) quasi-concave function.

Theorem 6 allows us to easily translate all of our propositions for concave and quasi-concave
functions to the analogues for convex and quasi-convex functions, which are provided here for easy

reference.

e Suppose fi,..., fn are convex functions. Then for any ay, ..., a,, for which each a; > 0, then
[ =" a;f;i is also a convex function. If, in addition, at least one f; is strictly convex and
a; > 0, then f is strictly convex.

e A linear function is both concave and convex.
e A (strictly) convex function is (strictly) quasi-convex.

e Suppose f: X — R is quasi-convex and ¢ : f(X) — R is nondecreasing. Then ¢o f: X — R
is quasi-convex. If f is strictly quasi-convex and ¢ is strictly increasing, then ¢ o f is strictly
quasi-convex.

e A function f: X — R is quasi-convex if and only if for each z € X, W (z) is convex.

e Suppose f: X — R attains a minimum on X. (a) If f is quasi-convex, then the set of minimizers
is convex. (b) If f is strictly quasi-convex, then the minimizer of f is unique.

Appendix
Theorem 2: Suppose X C R™. Then Co(X) is the set of all convex combinations of vectors in X.

Proof. Theorem 1 implies that any convex combination of elements !, ...,2™ € X must be con-
tained in C'o(X). To show that Co(X) contains only vectors that are convex combinations of some
zb, ...,2™ € X, we need to show that Y = {a: € R™: z is a convex combination of some z!, ..., 2™ € X}
is a convex set. So consider any y, z € Y. Then, by definition, there is a set of vectors y!,...,y™ € X
and list of nonnegative numbers o, ..., @y, with 1% «; = 1 such that y = >°1% ;| a;y’. Similarly,
there is a set of vectors z!,...,2" € X and list of nonnegative numbers f31, ..., 3, with i Bi=1

such that z = >"!_, 3,2%. Then for any A € [0,1], we have

Ay+(1=-XNz = Azazy%— (1-X ZBZ

= Z Aoy’ + Z (1-X\)B;2
=1 1=1

which, since A3 " o + (1= X) Y7, B; = A+ (1 — A) = 1, implies that Ay + (1 — X) z is a convex
combination of y', ...y, 2!, .., 2" € X. m

http://homepages.nyu.edu/ cawl/



