New York University
Department of Economics

Concave and Quasi-Concave Functions

A set $X \subset \mathbb{R}^{n}$ is convex if $x, y \in X$ implies $\lambda x+(1-\lambda) y \in X$ for all $\lambda \in[0,1]$.
Geometrically, if $x, y \in \mathbb{R}^{n}$, then $\left\{z \in \mathbb{R}^{n}: z=\lambda x+(1-\lambda) y\right.$ for $\left.\lambda \in[0,1]\right\}$ constitutes the straight line connecting x and y. So a convex set is any set that contains the entire line segment between any two vectors in the set.

- The intersection of two convex sets is convex. Can you prove this?
- The union of two convex sets is not necessarily convex. Why not?

A vector $z \in \mathbb{R}^{n}$ is a convex combination of $x^{1}, \ldots, x^{m} \in \mathbb{R}^{n}$ if

$$
z=\sum_{j=1}^{m} \lambda_{j} x^{j} \quad \text { for some } \lambda_{1}, \ldots, \lambda_{m} \geq 0 \text { with } \sum_{j=1}^{m} \lambda_{j}=1 .
$$

In the figure below:

$$
\begin{aligned}
x^{12} & =\frac{1}{2} x^{1}+\frac{1}{2} x^{2}, \quad x^{13}=\frac{1}{2} x^{1}+\frac{1}{2} x^{3}, \quad x^{23}=\frac{1}{2} x^{2}+\frac{1}{2} x^{3} \\
x^{123} & =\frac{2}{3} x^{12}+\frac{1}{3} x^{3}=\frac{2}{3} x^{13}+\frac{1}{3} x^{2}=\frac{2}{3} x^{23}+\frac{1}{3} x^{1}=\frac{1}{3} x^{1}+\frac{1}{3} x^{2}+\frac{1}{3} x^{3}
\end{aligned}
$$

Theorem 1: A set $X \subset \mathbb{R}^{n}$ is convex if and only if it contains any convex combination of any vectors $x^{1}, \ldots, x^{m} \in X$.

Proof. (if) If X contains any convex combination of its vectors, then as a special case, $\lambda x+$ $(1-\lambda) y \in X$ for all $x, y \in X$ and $\lambda \in[0,1]$..
(only if) The proof is by mathematical induction on m. For $m=1$, the only convex combination of vector x is x itself. So the basis statement for $m=1$ is true. The induction step is to suppose that the proposition is true for $m-1>0$ vectors, and then to show that this implies the proposition is true for m vectors. So consider any convex combination $\sum_{j=1}^{m} \lambda_{j} x^{j}$ of m vectors contained in X. Since $m \geq 2$ and each $\lambda_{j} \geq 0$ with $\sum_{j=1}^{m} \lambda_{j}=1$, we may suppose WLOG that $\lambda_{m}<1$. Then since

$$
\sum_{j=1}^{m-1} \frac{\lambda_{j}}{1-\lambda_{m}}=\frac{\sum_{j=1}^{m-1} \lambda_{j}}{1-\lambda_{m}}=\frac{1-\lambda_{m}}{1-\lambda_{m}}=1,
$$

the induction hypothesis implies that $y \equiv \sum_{j=1}^{m-1}\left(\frac{\lambda_{j}}{1-\lambda_{m}}\right) x^{j} \in X$. Then the definition of a convex set implies

$$
\sum_{j=1}^{m} \lambda_{j} x^{j}=\sum_{j=1}^{m-1} \lambda_{j} x^{j}+\lambda_{m} x^{m}=\left(1-\lambda_{m}\right) \sum_{j=1}^{m-1}\left(\frac{\lambda_{j}}{1-\lambda_{m}}\right) x^{j}+\lambda_{m} x^{m}=\left(1-\lambda_{m}\right) y+\lambda_{m} x^{m} \in X .
$$

The proposition then follows from mathematical induction.
Given any set $X \subset \mathbb{R}^{n}$, the convex hull $C o(X)$ is the intersection of all convex sets that contain X.

- Since the intersection of any two convex sets is convex, it follows that the convex hull is the smallest convex set that contains X.

- If X is convex, then $\operatorname{Co}(X)=X$. Why?

Theorem 2: Suppose $X \subset \mathbb{R}^{n}$. Then $\operatorname{Co}(X)$ is the set of all convex combinations of vectors in X.
Proof. See Appendix.

Concave Functions

For the remainder of these notes, we suppose that $X \subset \mathbb{R}^{n}$ is a convex set.
$f: X \rightarrow \mathbb{R}$ is concave if for any $x, z \in X$, we have, for all $\lambda \in(0,1)$,

$$
f(\lambda z+(1-\lambda) x) \geq \lambda f(z)+(1-\lambda) f(x) .
$$

$f: X \rightarrow \mathbb{R}$ is strictly concave if for any $x, z \in X$ with $x \neq z$, we have, for all $\lambda \in(0,1)$,

$$
f(\lambda z+(1-\lambda) x)>\lambda f(z)+(1-\lambda) f(x) .
$$

- A constant function is concave. Why?
- A linear function is concave. Why?
- $f: X \rightarrow \mathbb{R}$ is concave if and only if $f(\lambda(z-x)+x) \geq \lambda(f(z)-f(x))+f(x)$ for all $x, z \in X$ and $\lambda \in(0,1)$. Why?
- $f: X \rightarrow \mathbb{R}$ is concave if and only if $f(\lambda \Delta x+x) \geq \lambda(f(x+\Delta x)-f(x))+f(x)$ for all $x,(x+\Delta x) \in X$ and $\lambda \in(0,1)$. Why?

Theorem 3: (Jensen's Inequality) Suppose that $f: X \rightarrow \mathbb{R}$ is concave. If $x^{1}, \ldots, x^{m} \in X$ and $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}_{+}$with $\sum_{i=1}^{m} \alpha_{i}=1$, then $f\left(\sum_{i=1}^{m} \alpha_{i} x^{i}\right) \geq \sum_{i=1}^{m} \alpha_{i} f\left(x^{i}\right)$.

Proof. Left as an exercise [Hint: use the definition of a concave function and mathematical induction.]

Linear Combinations of Concave Functions

Consider a list of functions $f_{i}: X \rightarrow \mathbb{R}$ for $i=1, \ldots, n$, and a list of numbers $\alpha_{1}, \ldots, \alpha_{n}$. The function $f \equiv \sum_{i=1}^{n} \alpha_{i} f_{i}$ is called a linear combination of f_{1}, \ldots, f_{n}. If each of the weights $\alpha_{i} \geq 0$, then f is a nonnegative linear combination of f_{1}, \ldots, f_{n}.

The next proposition establishes that any nonnegative linear combination of concave functions is also a concave function.

Theorem 4: Suppose f_{1}, \ldots, f_{n} are concave functions. Then for any $\alpha_{1}, \ldots, \alpha_{n}$, for which each $\alpha_{i} \geq 0, f \equiv \sum_{i=1}^{n} \alpha_{i} f_{i}$ is also a concave function. If, in addition, at least one f_{j} is strictly concave and $\alpha_{j}>0$, then f is strictly concave.

Proof. Consider any $x, y \in X$ and $\lambda \in(0,1)$. If each f_{i} is concave, we have

$$
f_{i}(\lambda x+(1-\lambda) y) \geq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

Therefore,

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \equiv \sum_{i=1}^{n} \alpha_{i} f_{i}(\lambda x+(1-\lambda) y) \geq \sum_{i=1}^{n} \alpha_{i}\left(\lambda f_{i}(x)+(1-\lambda) f_{i}(y)\right) \\
& =\lambda \sum_{i=1}^{n} \alpha_{i} f_{i}(x)+(1-\lambda) \sum_{i=1}^{n} \alpha_{i} f_{i}(y) \equiv \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

This establishes that f is concave. If some f_{i} is strictly concave and $\alpha_{i}>0$, then the inequality is strict.

Since a constant function is concave, Theorem 4 implies:

- If f is concave, then any affine transformation $\alpha f+\beta$ with $\alpha \geq 0$ is also concave.
- If f is strictly concave, then any affine transformation $\alpha f+\beta$ with $\alpha>0$ is also strictly concave.

Theorem 5: Let $I \subset \mathbb{R}$ be an interval and let $X=I^{n}$. Suppose $f: X \rightarrow \mathbb{R}$ is defined by $f(x)=\sum_{i=1}^{n} \phi_{i}\left(x_{i}\right)$, where each $\phi_{i}: I \rightarrow \mathbb{R}$.
(a) If each ϕ_{i} is concave, then f is concave.
(b) If each ϕ_{i} is strictly concave, then f is strictly concave.

Proof. Left as an exercise.
A function $f: X \rightarrow \mathbb{R}^{n}$ of the form $f(x)=\sum_{i=1}^{n} \phi_{i}(x)$ is sometimes called a linearly separable function.

- Why does Theorem 5 require that each ϕ_{i} be strictly concave to ensure that f is strictly concave, while Theorem 4 requires only one f_{i} be strictly concave to ensure that f is is strictly concave?

Concave Functions of an Affine Function

Theorem 6: Let $X \subset \mathbb{R}^{n}$ be convex and $f: X \rightarrow \mathbb{R}$ is a concave function.
(a) Let $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be defined by $g(y)=A y+b$, where A is an $n \times m$ matrix and suppose $g[Y] \subset X$. Then $h=(f \circ g): Y \rightarrow \mathbb{R}$ is a concave function.
(b) If f is strictly concave and g is $1-1$, then h is strictly concave.

Proof. Left an exercise.

Quasi-Concave Functions

$f: X \rightarrow \mathbb{R}$ is quasi-concave if for any $x, z \in X$, we have $f(\lambda z+(1-\lambda) x) \geq \min \{f(x), f(z)\}$ for all $\lambda \in(0,1)$.
f is strictly quasi-concave if for any $x, z \in X$ and $x \neq z$, we have $f(\lambda z+(1-\lambda) x)>\min \{f(x), f(z)\}$ for all $\lambda \in(0,1)$.

Theorem 7: A (strictly) concave function is (strictly) quasi-concave.
Proof. The theorem follows immediately from the observation that if f is concave, then for all $x, z \in X$, we have

$$
f(\lambda z+(1-\lambda) x) \geq \lambda f(z)+(1-\lambda) f(x) \geq \min \{f(x), f(z)\} \text { for all } \lambda \in(0,1) .
$$

If f is strictly concave, we have for all $x, z \in X$ and $x \neq z$,

$$
f(\lambda z+(1-\lambda) x)>\lambda f(z)+(1-\lambda) f(x) \geq \min \{f(x), f(z)\} \text { for all } \lambda \in(0,1) .
$$

- If $X \subset \mathbb{R}$, then $f: X \rightarrow \mathbb{R}$ is quasi-concave if and only if it is either monotonic or first nondecreasing and then nonincreasing. Why?

Our next theorem states that any monotone nondecreasing transformation of a quasi-concave function is quasi-concave.

Theorem 8: Suppose $f: X \rightarrow \mathbb{R}$ is quasi-concave and $\phi: f(X) \rightarrow R$ is nondecreasing. Then $\phi \circ f: X \rightarrow \mathbb{R}$ is quasi-concave. If f is strictly quasi-concave and ϕ is strictly increasing, then $\phi \circ f$ is strictly quasi-concave.

Proof. Consider any $x, y \in X$. If f is quasi-concave, then $f(\lambda x+(1-\lambda) y) \geq \min \{f(x), f(y)\}$. Therefore, ϕ nondecreasing implies

$$
\phi(f(\lambda x+(1-\lambda) y)) \geq \phi(\min \{f(x), f(y)\})=\min \{\phi(f(x)), \phi(f(y))\} .
$$

If f is strictly quasi-concave, then for $x \neq y$, we have $f(\lambda x+(1-\lambda) y)>\min \{f(x), f(y)\}$. Therefore, if ϕ is strictly increasing, we have

$$
\phi(f(\lambda x+(1-\lambda) y))>\phi(\min \{f(x), f(y)\})=\min \{\phi(f(x)), \phi(f(y))\} .
$$

Recall that for any $x \in X, P(x) \equiv\{z \in X: f(z) \geq f(x)\}$ is called the better set of x.
Theorem 9: $f: X \rightarrow \mathbb{R}$ is quasi-concave if and only if $P(x)$ is a convex set for each $x \in X$.
Proof. (only if) Suppose f is quasi-concave. Choose an arbitrary $x^{0} \in X$. To show that $P\left(x^{0}\right)$ is convex, consider any $x, y \in P\left(x^{0}\right)$. Then, $f(x), f(y) \geq f\left(x^{0}\right)$ and the quasi-concavity of f imply that

$$
f(\lambda x+(1-\lambda) y) \geq \min \{f(x), f(y)\} \geq f\left(x^{0}\right)
$$

which implies that $\lambda x+(1-\lambda) y \in P\left(x^{0}\right)$ for any $\lambda \in(0,1)$.
(if) Suppose $P\left(x^{0}\right)$ is convex for each $x^{0} \in X$. Now consider any $x, y \in X$. WLOG, suppose that $f(x) \leq f(y)$. Then letting $x=x^{0}$, we have that $x, y \in P\left(x^{0}\right)$ and therefore $\lambda y+(1-\lambda) x \in P\left(x^{0}\right)$ for any $\lambda \in(0,1)$. It then follows from the definition of $P\left(x^{0}\right)$ that

$$
f(\lambda y+(1-\lambda) x) \geq f(x)=\min \{f(x), f(y)\} .
$$

Theorem 9 is illustrated below for an increasing function $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$. Notice that all convex combinations of vectors in $P\left(x^{1}\right)$ are also elements of $P\left(x^{1}\right)$. Also notice that if f is strictly quasiconcave, then the level set can contain no straight line segments.

Corollary 1: Suppose $f: X \rightarrow \mathbb{R}$ attains a maximum on X. (a) If f is quasi-concave, then the set of maximizers is convex. (b) If f is strictly quasi-concave, then the maximizer of f is unique.

Proof. (a) Let x^{0} be a maximizer of f. Then $f(x) \leq f\left(x^{0}\right)$ for all $x \in X$ implies that $P\left(x^{0}\right)$ is the set of maximizers of f. If f is quasi-concave, then Theorem 7 implies that $P\left(x^{0}\right)$ is convex.
(b) If f is strictly quasi-concave, suppose x, y are both maximizers of f. Then $x \neq y$ implies $f\left(\frac{1}{2} x+\frac{1}{2} y\right)>\min \{f(x), f(y)\}=f(x)$ which implies that x is not a maximizer of f.

Example: Let $I>0$ be the income of some household and let $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ denote the vector of prices of the n goods. Then

$$
B(p, I) \equiv\left\{x \in \mathbb{R}_{+}^{n}: p x \leq I\right\}
$$

defines its budget set - the set of all possible nonnegative bundles of goods it may purchase within its budget. You can verify that $y, z \in B(p, I)$ implies $\lambda y+(1-\lambda) z \in B(p, I)$ for all $\lambda \in[0,1]$. Therefore, $B(p, I)$ is a convex set.

Now suppose that the household preferences are given by some utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$. Then Corollary 1 implies that if u is strictly quasi-concave, there is a unique bundle $x \in B(p, I)$ that maximizes $u: B(p, I) \rightarrow \mathbb{R}$.

Convex and Quasi-Convex Functions

If we reverse the inequality sign in the definitions of concave and quasi-concave functions we obtain convex and quasi-convex functions.
$f: X \rightarrow \mathbb{R}$ is a convex function if for any $x, y \in X$, we have, for all $\lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

$f: X \rightarrow \mathbb{R}$ is a strictly convex function if for any $x, y \in X$ where $x \neq y$, we have, for all $\lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

NOTE: A convex set and a convex function are two distinct concepts.
$f: X \rightarrow \mathbb{R}$ is quasi-convex if for any $x, y \in X$, we have $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}$ for all $\lambda \in(0,1)$.
f is strictly quasi-convex if for any $x, y \in X$ and $x \neq y$, we have $f(\lambda x+(1-\lambda) y)<\max \{f(x), f(y)\}$ for all $\lambda \in(0,1)$.

The following proposition is an immediate consequence of the definitions.

Theorem 10: (a) f is a (strictly) convex function if and only if $-f$ is a (strictly) concave function. (b) f is a (strictly) quasi-convex function if and only if $-f$ is a (strictly) quasi-concave function.

Theorem 6 allows us to easily translate all of our propositions for concave and quasi-concave functions to the analogues for convex and quasi-convex functions, which are provided here for easy reference.

- Suppose f_{1}, \ldots, f_{n} are convex functions. Then for any $\alpha_{1}, \ldots, \alpha_{n}$, for which each $\alpha_{i} \geq 0$, then $f \equiv \sum_{i=1}^{n} \alpha_{i} f_{i}$ is also a convex function. If, in addition, at least one f_{j} is strictly convex and $\alpha_{j}>0$, then f is strictly convex.
- A linear function is both concave and convex.
- A (strictly) convex function is (strictly) quasi-convex.
- Suppose $f: X \rightarrow \mathbb{R}$ is quasi-convex and $\phi: f(X) \rightarrow \mathbb{R}$ is nondecreasing. Then $\phi \circ f: X \rightarrow \mathbb{R}$ is quasi-convex. If f is strictly quasi-convex and ϕ is strictly increasing, then $\phi \circ f$ is strictly quasi-convex.
- A function $f: X \rightarrow \mathbb{R}$ is quasi-convex if and only if for each $x \in X, W(x)$ is convex.
- Suppose $f: X \rightarrow \mathbb{R}$ attains a minimum on X. (a) If f is quasi-convex, then the set of minimizers is convex. (b) If f is strictly quasi-convex, then the minimizer of f is unique.

Appendix

Theorem 2: Suppose $X \subset \mathbb{R}^{n}$. Then $\operatorname{Co}(X)$ is the set of all convex combinations of vectors in X.
Proof. Theorem 1 implies that any convex combination of elements $x^{1}, \ldots, x^{m} \in X$ must be contained in $C o(X)$. To show that $C o(X)$ contains only vectors that are convex combinations of some $x^{1}, \ldots, x^{m} \in X$, we need to show that $Y \equiv\left\{x \in \mathbb{R}^{n}: x\right.$ is a convex combination of some $\left.x^{1}, \ldots, x^{m} \in X\right\}$ is a convex set. So consider any $y, z \in Y$. Then, by definition, there is a set of vectors $y^{1}, \ldots, y^{m} \in X$ and list of nonnegative numbers $\alpha_{1}, \ldots, \alpha_{m}$ with $\sum_{i=1}^{m} \alpha_{i}=1$ such that $y=\sum_{i=1}^{m} \alpha_{i} y^{i}$. Similarly, there is a set of vectors $z^{1}, \ldots, z^{r} \in X$ and list of nonnegative numbers $\beta_{1}, \ldots, \beta_{r}$ with $\sum_{i=1}^{r} \beta_{i}=1$ such that $z=\sum_{i=1}^{r} \beta_{i} z^{i}$. Then for any $\lambda \in[0,1]$, we have

$$
\begin{aligned}
\lambda y+(1-\lambda) z & =\lambda \sum_{i=1}^{m} \alpha_{i} y^{i}+(1-\lambda) \sum_{i=1}^{r} \beta_{i} z^{i} \\
& =\sum_{i=1}^{m} \lambda \alpha_{i} y^{i}+\sum_{i=1}^{r}(1-\lambda) \beta_{i} z^{i}
\end{aligned}
$$

which, since $\lambda \sum_{i=1}^{m} \alpha_{i}+(1-\lambda) \sum_{i=1}^{r} \beta_{i}=\lambda+(1-\lambda)=1$, implies that $\lambda y+(1-\lambda) z$ is a convex combination of $y^{1}, \ldots, y^{n}, z^{1}, \ldots, z^{r} \in X$.

