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Abstract

Roughly speaking, an encryption scheme is said to be non-malleable, if
no adversary can modify a ciphertext so that the resulting message is mean-
ingfully related to the original message. We compare this notion of security
to secrecy and authenticity, and provide a complete characterization of
their relative strengths. In particular, we show that information-theoretic
perfect non-malleability is equivalent to perfect secrecy of two different
messages. This implies that for n-bit messages a shared secret key of
length roughly 2n is necessary to achieve non-malleability, which meets the
previously known upper bound. We define approximate non-malleability
by relaxing the security conditions and only requiring non-malleability to
hold with high probability (over the choice of secret key), and show that
any authentication scheme implies approximate non-malleability. Since
authentication is possible with a shared secret key of length roughly logn,
the same applies to approximate non-malleability.

1 Introduction

There exist many different cryptographic goals to protect information. The most
basic is secrecy, namely, that the desired information remain unknown to an
adversary. Information-theoretic perfect secrecy was already fully characterized
by Shannon in the 40’s [1]. Authentication is another important task, which
consists in guaranteeing that the information was not tampered with, that it
really comes from who it claims. Wegman and Carter’s seminal work [2] is
considered the corner stone in information-theoretic authentication, since it is
the first paper to show that the secret key needed can be much shorter than
the message. Non-malleability is yet another goal. This notion of security was
introduced by Dolev, Dwork and Naor [3] for computational security, and has
received quite a lot of attention since.
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Roughly speaking, non-malleability is the requirement that an adversary
cannot perform a “controlled modification” of a message when given the corre-
sponding ciphertext. Or, in other words, the adversary should not be able to
produce a new ciphertext such that the two underlying messages are “meaning-
fully related.” For example, if a document such as a contract is encrypted, a
dishonest party might try to modify the ciphertext in such a way that he only
modifies the amount of money due in the contract. With encryption schemes
such as the one-time pad this is perfectly possible, because flipping a bit of the
ciphertext flips a bit of the underlying message, even though perfect secrecy is
guaranteed.

Shared secret keys are considered a very expensive resource, and thus bound-
ing the length of the key needed and finding schemes which meet this bound are
amongst the most important tasks when studying information-theoretic security.
In his much celebrated work, Shannon [1] showed that to provide (perfect) secrecy
for one message, an encryption scheme requires a shared key at least as long as
that message.

Perfect security can be an expensive or sometimes even an impossible goal to
achieve. Relaxing the security conditions and only requiring the security criteria
to be met with high probability over the choice of keys often results in great
improvements. For example, perfect authentication is impossible: there is always
a small chance that a forged message and authentication code (MAC) match.1

Therefore we can at best guarantee with probability 1− 1/|Z| that a correctly
authenticated message has not been tampered with, where Z is the alphabet
of the MAC appended to the message. To achieve an error of exactly 1/|Z|, a
shared secret key of length at least n bits is needed [4], where n = log |X | is
the length of the message. By simply increasing the error from 1/|Z| to 2/|Z|,
Wegman and Carter [2] showed that the shared secret key needed can be reduced
from n to roughly log n bits.

Previous work on non-malleability. In the case of computational security,
several non-malleable schemes have been proposed with semantical “simulation
based” security definitions [3] and indistinguishability or “comparison based”
security definitions [5, 6]. Many papers focus on comparing and classifying the
relative strengths of these different notions of security, both in the public-key
setting [7, 8] and computational private-key setting [9].

In the case of information-theoretic security, Hanaoka, Shikata, Hanaoka,
and Imai [10, 11] were the first to formalize non-malleable security.2 McAven,
Safavi-Naini, and Yung [12] generalized their definition to the case of ciphertexts
longer than the message and approximate security. Schemes exist which are
known to provide non-malleability and secrecy [10,11] or non-malleability and
authenticity [13]. However, prior to this work, there existed no security reduction
between these different notions. These previous works on information-theoretic
non-malleability [10–12] did not consider the optimality of the secret key length,

1To authenticate a message m, a pair (m,hk(m)) is generated and sent, where k corresponds
to the shared secret key, and hk(m) is the message authentication code (MAC). An adversary
wishing to modify the message also has to guess the correct hk(m′) corresponding to the new
message m′ for it to be accepted.

2The standard information-theoretic definition of non-malleability (Definition 3.3) is not
an immediate adaption of one of the computational definitions, but differs somewhat in the
details. We refer to Section 7 for further comments on this.
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PNM PS2 PS

ε-NM ε-S2 ε-S

ε-A

Thm. 4.1

Cor. 4.3

Thm. 5.1

PNM: perfect non-malleability
PS2: perfect 2-message secrecy
PS: perfect (1-message) secrecy
ε-NM: approx. non-malleability
ε-S2: approx. 2-message secrecy
ε-S: approx. (1-message) secrecy
ε-A: (approx.) authenticity

A → B: If criterion A holds, then B holds.
A 99K B: A → B if and only if the cipher and

message alphabets have the same size.

Figure 1: Complete characterization of the relations between different notions
of information-theoretic non-malleability, secrecy, and authenticity. A directed
path between two notions of security means that any scheme providing the first
also provides the second. If there is no directed path from one security criterion
to another, then there is an example of a scheme that satisfies the first security
definition, but not the second. The dashed arrow means that this relation only
holds if the message and cipher alphabets have the same cardinality.

and no lower bound on this key length was known.

New results. In this work we provide a complete characterization of the
relations between perfect and approximate information-theoretic non-malleability,
secrecy, and authenticity, which we illustrate in Figure 1.3 Only the trivial
relations (depicted in Figure 1 by arrows without any reference to a theorem)
were previously known.

We first study perfect non-malleability and show that it is equivalent to
requiring that the encryption function uniformly maps any two different messages
to all possible pairs of two different ciphertexts. This is equivalent to perfect
secrecy of two different messages (PS2 in Figure 1) when the message and
ciphertext alphabets have the same size, and strictly stronger if the size of the
ciphertext alphabet is larger than that of the message.

An immediate consequence of this is a lower bound on the key needed for
perfect non-malleability, namely log [|X |(|X | − 1)] bits, where X is the message
alphabet, since this is the key length needed for perfect secrecy of two different
messages. This also proves that a scheme by Hanaoka et al. [10,11] is optimal in
the key size.

The converse yields a very easy way to design perfect non-malleable schemes,
since we do not need to consider adversary strategies or invalid ciphertexts.

We then relax the security definition of non-malleability to only hold with high
probability over the choice of secret key, and define approximate non-malleability

3We show in Section 6 that this figure is indeed complete: if there is no directed path from
one security criterion to another, then there is an example of a scheme that satisfies the first
security definition, but not the second.
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(ε-NM in Figure 1).4 We prove that any authentication scheme with error ε (ε-A
in Figure 1) is a non-malleable scheme with error ε′ ≤ 2

√
ε, even though the

formal definition of non-malleability does not consider the adversary to have
failed if his choice of forged ciphertext is invalid. This answers an open question
by Hanaoka [11].

This also means that authentication techniques such as almost strong 2-
universal hashing provide approximate non-malleability with a shared secret key
of length roughly 2 log log |X | + 3 log 1

ε [14], where X is the message alphabet
and ε the error probability.5

Structure of this paper. We start in Section 2 by introducing the notation
and defining the symmetric-key encryption model used for information-theoretic
security. In Section 3 we then define the different notions of perfect and ap-
proximate security needed in this work, namely secrecy, non-malleability, and
authenticity. In Section 4 we prove the first main result about the relation
between perfect non-malleability and perfect secrecy of two messages. In Sec-
tion 5 we consider approximate security, and prove the second main result, that
approximate non-malleability can be achieved by any authentication scheme. In
Section 6 we then show that the relations depicted in Figure 1 are complete
by providing a proof for all necessary separations. And finally in Section 7
we conclude with several remarks on the consequences of these results and a
discussion of alternative information-theoretic non-malleable security definitions.

2 Preliminaries

2.1 Notation

In this paper we use calligraphic letters for alphabets (e.g., X ), lowercase letters
for elements of these sets (e.g., x ∈ X ) and uppercase letters for random variables
(e.g., X). We write PX(x) for the probability that X takes the value x. For two
random variables X and Y with joint probability distribution PXY (·, ·), we write

X|Y=y to denote the random variable X given Y = y, and PX|Y (·|y) := PXY (·,y)
PY (y)

for the corresponding distribution. We also denote by X ·Y the random variable
with distribution PX·Y (x, y) := PX(x)PY (y). Note that unless X and Y are
independent, X · Y 6= XY .

To measure the distance between two random variables over a common alpha-
bet we use the variational distance (sometimes also called statistical distance)
and write

d(X,Y ) =
1

2

∑
x∈X
|PX(x)− PY (x)| .

We denote the expected variational distance between X and Y over a third
random variable Z by

d(X,Y |Z) :=
1

2

∑
x,z

PZ(z)
∣∣PX|Z(x|z)− PY |Z(x|z)

∣∣ .
4We note that McAven et al.’s definition of approximate non-malleability [12] does not

capture the notion of “security with high probability.” We therefore redefine approximate
non-malleability to reflect this concept.

5Since authentication does not imply secrecy, approximate non-malleability does not imply
secrecy either. We refer to Section 5 for more details on this.
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This will be used in particular to measure how close two random variables (over
possibly different alphabets) are to being independent from each other, i.e., we
are interested in d(XY,X · Y ). In this case, conditioning on a third random
variable Z results in

d(XY,X · Y |Z) =
1

2

∑
x,y,z

PZ(z)
∣∣PXY |Z(x, y|z)− PX|Z(x|z)PY |Z(y|z)

∣∣ .
For an alphabet X and a random variable X distributed over X , we call

domain of X and write D(X) the subset of X with non-zero probability, that is
D(X) = {x ∈ X : PX(x) > 0}. We will often be interested in several random
variables (usually two) X1 · · ·X`, each one defined over the same alphabet X ,
but such that D(X1 · · ·X`) consists only of tuples of all different elements, i.e.,
for any i, j ∈ [`], i 6= j, Pr[Xi = Xj ] = 0. So we will introduce the notation

X×`diff := {(x1, . . . , x`) ∈ X×` : ∀i, j ∈ [`], i 6= j ⇒ xi 6= xj}

for the subset over which these random variables are defined, and say that they
are different.

We write H(X) for the (Shannon) entropy of X and I(X;Y ) := H(X) +
H(Y )−H(XY ) for the mutual information between X and Y . This notation
extends in the usual way for conditional entropies, e.g., H(X|Y ), I(X;Y |Z).

2.2 Symmetric-key model

To achieve information-theoretic security, we consider the symmetric-key model,
in which the two honest parties wishing to communicate share a secret key
k ∈ K. No matter what notion of security is desired — whether it be secrecy,
non-malleability, or authenticity — the protocol follows the same steps. To
transmit a message m, the sender applies a function fk to the message, obtaining
c = fk(m), which we will refer to as the ciphertext. This is transmitted on an
insecure channel to the receiver, who applies the inverse function, m = f−1

k (c).
Since decryption must always be possible (if the ciphertext was not tampered
with during transmission), the functions {fk}k∈K must be injective. If c has
been modified, then there might not be any corresponding message m, in which
case the decryption results in ⊥.

In the following we will loosely refer to any such scheme as an encryption
scheme, and to the corresponding operations as encryption and decryption, even
when secrecy is not required.

Definition 2.1. A symmetric-key encryption scheme is defined by a set of keys
k ∈ K, a probability distributions PK(·) over these keys and injective encryption
functions fk : X → Y associated with each key. The decryption functions are
defined as

gk : Y → X ∪ {⊥}

c 7→
{
f−1
k (c) if this is well defined.
⊥ otherwise.

The two legitimate players wishing to securely communicate a message m
must share the key k ∈ K with probability PK(k) at the beginning of the
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protocol. The sender creates the ciphertext c = fk(m) and transmits it on an
insecure channel to the receiver, who applies the decryption function m̃ = gk(c̃)
to whatever (possibly modified) ciphertext c̃ he receives.

In the following we will usually describe the messages, ciphertexts and keys
by random variables M , C and K respectively, with C = fK(M).

3 Information-theoretic security notions

In this section we define the three notions of security, secrecy, non-malleability,
and authenticity, in Sections 3.1, 3.2, and 3.3 respectively. All these definitions
already appear in the literature, except the definition of approximate non-mal-
leability (Definition 3.4), which is slightly different from previous ones [12].
Definition 3.4 is however a straightforward generalization of perfect non-mal-
leability (Definition 3.3, [10, 11]).

3.1 Secrecy

Since in the symmetric-key model described in Section 2.2 the ciphertext is
sent on an insecure channel, an adversary can intercept it, and try to gain
information about the message from it. So for a given message random variable
M , an encryption scheme is considered to provide perfect secrecy if the adversary
cannot learn anything about the message given the ciphertext, no matter how
much time and computation power he has, that is, if

H(M |C) = H(M) or I(M ;C) = 0, (1)

as already defined by Shannon [1] in the 40’s.
When we design an encryption scheme, we do not want it to be secure for

some random variable M1 with distribution PM1
(·), but insecure for some other

random variable M2 with distribution PM2(·). Ideally, the scheme should still
be secure, no matter how the messages are distributed over the message space,
as long as they are independent from the key. We will therefore require that
Eq. (1) be fulfilled for all distributions PM (·) on X independent from the key,
i.e., for all M such that I(M ;K) = 0.

Eq. (1) is called perfect secrecy, since the adversary’s information is zero.
However, in most practical situation, it is sufficient to have approximate secrecy,
in which the adversary’s probability (over the choice of keys) of noticing a
difference between the real situation and the ideal one in which the ciphertext is
independent from the message, is bounded by some very small ε. We therefore do
not require any more that the message and ciphertext be perfectly independent,
but that they be ε-close to independent according to the variational distance.6

Definition 3.1. An encryption scheme is said to provide ε-secrecy (ε-S) if
for all message random variables M on X independent from the key — i.e.,
I(M ;K) = 0 — we have

d (MC,M · C) ≤ ε, (2)

where C is the resulting ciphertext random variable.

6There exist several alternative ways to formulate approximate secrecy. We give a brief
overview of these in Appendix A.1, and show that they are equivalent.
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If ε = 0, Eq. (2) is equivalent to Eq. (1), and we say that the scheme provides
perfect secrecy (PS).

This secrecy criterion is defined for encrypting one message. If the key is
much larger than the message, the same encryption function and key could be
used several times to encrypt different messages and still preserve secrecy. Since
we only need a security definition for the secrecy of two messages in this work, we
restrict the following definition to two messages. Generalizing it to any number
of messages is however straightforward.

Definition 3.2. An encryption scheme is said to provide 2-message ε-secrecy
(ε-S2) if for all pairs of different message random variables M1M2 on X×2

diff

independent from the key — i.e., I(M1M2;K) = 0 and Pr[M1 = M2] = 0 — we
have

d (M1M2C1C2,M1M2 · C1C2) ≤ ε, (3)

where C1 and C2 are the resulting ciphertext random variables, i.e., Ci = fK(Mi)
for i = 1, 2.

If ε = 0, Eq. (3) is equivalent to

I (M1M2;C1C2) = 0,

and we say that the encryption scheme provides 2-message perfect secrecy (PS2).

When the same key is used to encrypt two messages, and these messages are
identical (respectively different), their ciphertexts will necessarily be identical
(respectively different) too, since the encryption scheme is deterministic and uses
the same key each time. It is therefore impossible for I (M1M2;C1C2) = 0 for
all random variables M1M2 defined over X×2, since the adversary can always
learn which messages are identical or different, hence the restriction to different
messages defined on X×2

diff .

3.2 Non-malleability

As briefly explained in Section 1, an encryption scheme is said to be malleable
if an adversary can perform a controlled modification of an encrypted message,
that is, modify a ciphertext in such a way that the new message resulting from
decrypting the modified ciphertext is meaningfully related to the original message.
An encryption scheme is then non-malleable, if the adversary cannot perform
such a controlled modification of the message.

Let the original message be given by a random variable M , and let C be the
corresponding ciphertext when encrypted with the key K. An adversary trying
to perform a controlled modification of the message will replace the ciphertext
with another ciphertext C̃, which, after decryption, becomes the message M̃ .
For simplicity we will assume for the moment that the message and ciphertext
alphabets have the same size, since otherwise the ciphertext C̃ generated by the
adversary might be invalid.

If the encryption scheme is malleable, the adversary can thus create an M̃
which is meaningfully related to M , that is, which satisfies some specific relation
R(M,M̃) with high probability. Thus, if we give M to this adversary (who
already holds C and C̃) he will have some information about M̃ — he knows
that it satisfies this relation R — more information than if he had not created
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C̃ to satisfy R and only held M and C. If on the other hand the scheme is
non-malleable, then he cannot create an M̃ to satisfy any relation R. So given
M , C and C̃, he does not know any more about M̃ than if he only has M and
C.

Let us illustrate this with the one-time pad. The one-time pad is a malleable
encryption scheme, because if an adversary flips some bits of the ciphertext, he
also flips the same bits of the message, and can thus decide how to modify the
message even without knowing what this message is. So if after flipping some
bits of the ciphertext C to create C̃, the adversary is then given the message M ,
he can reconstruct M̃ by flipping the same bits of M . An observer who does not
know how the adversary created C̃ would only learn from M that M̃ is different,
but no more. So an adversary who holds MCC̃ would know more about M̃ than
an observer who only holds MC, but does not know how C̃ was created, i.e.,

H(M̃ |MCC̃) < H(M̃ |MC).

On the other hand, if the encryption scheme is non-malleable, then as described
above, the adversary does not know more about M̃ than had he not created C̃,
so

H(M̃ |MCC̃) = H(M̃ |MC). (4)

Note that this is equivalent to I(M̃ ; C̃|MC) = 0. Criterion (4) was first
proposed by Hanaoka et al. [10] (see also [11]) to define information-theoretic
non-malleability. Following [12], we generalize their definition to the case where
the ciphertext alphabet can be larger than the message alphabet, by extending
the message alphabet to X̄ := X ∪ {⊥}, as described in Section 2.2.

Definition 3.3. An encryption scheme is said to provide perfect non-malleability
(PNM), if for all message random variables M on X independent from the key —
i.e., I(M ;K) = 0 — and all ciphertexts C̃ on Y different from C and independent
from the key given MC — i.e., Pr[C = C̃] = 0 and I(C̃;K|MC) = 0 — we have

I(M̃ ; C̃|MC) = 0,

where M̃ is defined on X ∪ {⊥} and takes the value M̃ = ⊥ whenever C̃ is
invalid.

There are several important remarks to make about this definition. The first
concerns the domains of M and C̃. M is chosen by the legitimate players, so we
can require that they choose it independently from the key. C̃ is however chosen
by the adversary, who might make it depend on whatever information he holds
about the secret key, i.e., in general we have H(K|C̃) < H(K), or equivalently
I(C̃;K) > 0. Information about the key is leaked to him from the ciphertext C.
We can however not exclude that the legitimate players decide to make (part of)
the message public, or that the adversary knows it by some other means. The
pair MC leaks (much) more information about the key, and hence we need to
allow the adversary to make his choice of C̃ depend on this. But the adversary
should not get any information about K from any other source than MC, i.e., C̃
should not depend on any other part of K than that leaked by MC. Expressed
with entropies, this means that we must have H(K|MCC̃) = H(K|MC), or
equivalently I(C̃;K|MC) = H(K|MC)−H(K|MCC̃) = 0, which is one of the
conditions of Definition 3.3.
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The second remark concerns the condition Pr[C = C̃] = 0. The adversary
can always choose whether to modify the ciphertext or not, and hence can always
decide whether M̃ is equal to or different from M . Criterion (4) can thus never
be satisfied for a general ciphertext C̃, since learning C̃ (given C) will always
tell us whether M = M̃ or M 6= M̃ . But since this cannot be avoided, it is of
no concern either. As the informal definition of non-malleability states, we are
only interested in modifications of the original message, and hence restrict our
attention to this case.

Thirdly, we consider it important to extend the message alphabet to include
“⊥” and not simply declare the adversary to be unsuccessful if he produces an
invalid ciphertext. This is because we do not want the adversary to have the
ability to generate an invalid ciphertext given that the message has certain
properties, but not for other messages. We refer to Section 7 for a more detailed
discussion of this.

As in Section 3.1, we are interested in generalizing the security notion to
hold only with high probability over the choice of keys. Instead of requiring
M̃ and C̃ to be perfectly independent given M and C, we require them to be
ε-close to independent.

Definition 3.4. An encryption scheme is said to provide ε-non-malleability
(ε-NM), if for all message random variables M on X independent from the key —
i.e., I(M ;K) = 0 — and all ciphertexts C̃ on Y different from C and independent
from the key given MC — i.e., Pr[C = C̃] = 0 and I(C̃;K|MC) = 0 — we have

d
(
M̃C̃, M̃ · C̃

∣∣∣MC
)
≤ ε,

where M̃ is defined on X ∪{⊥} and takes the value m̃ = ⊥ whenever C̃ is invalid.

It is immediate from this definition that 0-NM is equivalent to PNM. We refer
to Appendix A.2 for a discussion of alternative approximate non-malleability
definitions.

3.3 Authentication

In an authentication protocol, the goal is not to provide any form of secrecy,
but to be sure that the message has not been tampered with, i.e., that it really
comes from the legitimate party. Since no secrecy is needed, authentication
schemes usually append some MAC to the message, which is sent in clear,
i.e., fk(m) = (m,hk(m)), where hk is some hash function. Upon reception of
c̃ = (m̃, s̃), the party sharing the secret key k and wishing to authenticate the
message will simply check if s̃ = hk(m̃), thus

gk(c̃) =

{
m̃ if s̃ = hk(m̃)
⊥ otherwise.

In terms of random variables, the adversary who intercepts the ciphertext to
replace it with his own obtains C. But even if C does not contain a clear copy of
M , just like for non-malleability we have to assume that (part of) the message
might be public, or that the adversary knows it by some other means. Hence when
he creates the ciphertext C̃ he can make it depend on the part of the key leaked
by MC, but not on any other part of K, i.e., H(K|MCC̃) = H(K|MC), or
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equivalently I(C̃;K|MC) = H(K|MC)−H(K|MCC̃) = 0. The authentication
scheme is successful if M̃ = ⊥ whenever the adversary modifies C.

Definition 3.5. An encryption scheme is said to provide ε-authenticity (ε-A),
if for all message random variables M on X independent from the key — i.e.,
I(M ;K) = 0 — and all ciphertexts C̃ on Y different from C and independent
from the key given MC — i.e., Pr[C = C̃] = 0 and I(C̃;K|MC) = 0 — we have

PM̃ (⊥) ≥ 1− ε.

Unlike secrecy, authenticity can only be defined with high probability over
the choice of keys, since it is always possible that an adversary might be lucky
and choose a valid ciphertext. Definition 3.5 can however still be strengthened
a little, since it corresponds to average case security over C. We discuss this
further in Appendix A.3.

We note that this definition could equivalently have been written with the
variational distance notation. Abusing slightly notation, we write ⊥ for the
random variable on X ∪ {⊥} which takes value ⊥ with probability 1. Then
Definition 3.5 is equivalent to d(M̃,⊥) ≤ ε.

The notation used in this definition — in particular the use of random
variables — is not quite standard. We use it for compatibility with the definitions
of non-malleability. This definition and the alternative Definition A.4 are however
identical to what is found in textbooks, e.g., [15]. We additionally give a proof
in Appendix B.2, Lemma B.2, that ε-almost 2-strong universal hashing forms an
ε-authentication scheme according to both these definitions.

4 Non-malleability and 2-message secrecy

The main result of this section, stated here under as Theorem 4.1 is that
information-theoretic perfect non-malleability (PNM) is equivalent to uniformly
mapping any pair of different messages to all possible pairs of different ciphertexts.
As noted in Corollary 4.3, this means PNM is equivalent to 2-message perfect
secrecy (PS2) if the message and ciphertext alphabets have the same size, and
strictly stronger than PS2 if the ciphertext alphabet is larger. This immediately
gives a lower bound on the necessary key size for PNM, and an easy way to
design and prove the secrecy of these schemes.

Theorem 4.1. Let {fk : X → Y}k∈K be a set of encryption functions with key
given by K and |Y| > 2. The corresponding encryption scheme provides perfect
non-malleability (PNM) if and only if for any two different random variables M1

and M2 with domain D(M1M2) ⊆ X×2
diff and independent from the key — i.e.,

Pr[M1 = M2] = 0 and I(M1M2;K) = 0 — and any values (m1,m2) ∈ D(M1M2)
and (c1, c2) ∈ Y×2

diff ,

PC1C2|M1M2
(c1, c2|m1,m2) =

1∣∣Y×2
diff

∣∣ . (5)

Note that this theorem immediately implies the equivalence between PNM
and PS2 if |X | = |Y|.

Eq. (5) makes a statement about the distribution of two ciphertext random
variables C1C2, given that the messages M1M2 are independent from the key.
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PNM on the other hand, makes a statement about the distribution of some
message M̃ , given that the corresponding ciphertext C̃ is somewhat independent
from the key. In both cases the random variables M1M2C1C2K and MM̃CC̃K
are defined over different domains, e.g., M2 is independent from the key but
M̃ can be correlated. So to simplify the proof of Theorem 4.1, we will use a
proposition which will allows us to convert more easily between the two domains,
namely Proposition 4.2 here below.

Proposition 4.2. Let {fk : X → Y}k∈K be the encryption functions from a
symmetric-key encryption scheme. For any random variable M on X independent
from the key — i.e., I(M ;K) = 0 — and any m ∈ X and c ∈ Y, we have

PC|M (c|m) =
1

|Y|
(6)

if and only if for any random variable C̃ on the ciphertext alphabet Y independent
from the key — i.e., I(C̃;K) = 0 — we have

I(M̃ ; C̃) = 0, (7)

where M̃ = gK(C̃) and gk is the decryption function corresponding to fk with
range X ∪ {⊥}.

We provide a proof of Proposition 4.2 in Appendix C as Lemma C.1.
Imagine that the random variables M1 and C1 in Eq. (5) are fixed and fall

out of the equation. The result would be Eq. (6). In the definition of PNM,
namely in I(M̃ ; C̃|MC) = 0, imagine that M and C are fixed and also fall out
of the equation. The result would be Eq. (7). This proposition basically shows
that Theorem 4.1 holds for fixed values of MC and M1C1. To finish the proof,
we still need to show that it holds for arbitrary MC and M1C1 on the given
domains.

Proof of Theorem 4.1. We start with the “if direction” (Eq. (5) =⇒ PNM).
Note that for any random variables X, Y and Z, I(X;Y |Z) = 0 if and only if
for all z ∈ D(Z), I(X;Y |Z = z) = 0. So to prove PNM, it is sufficient to fix m1

and c1 arbitrarily, and show that I(M̃ ; C̃|MC = m1c1) = 0.
We define new random variables M ′, C ′ and K ′ on alphabets X ′ := X \{m1},

Y ′ := Y \ {c1} and K′ := {k ∈ K : fk(m1) = c1} with joint distribution

PM ′C′K′(m, c, k) := PM2C2K|M1C1
(m, c, k|m1, c1). (8)

It follows from Eq. (5) that PC2|M1M2C1
(c2|m1,m2, c1) = 1

|Y|−1 . Hence from

Eq. (8),

PC′|M ′(c|m) =
PM2C2|M1C1

(m, c|m1, c1)

PM2|M1C1
(m|m1, c1)

= PC2|M1M2C1
(c|m1,m, c1) =

1

|Y ′|
.

All the conditions are gathered to apply Proposition 4.2, which tells us that
for any C̃ ′ defined on Y ′ with I(C̃ ′;K ′) = 0, I(M̃ ′; C̃ ′) = 0. By repeating this
for different values of M1 and C1, we can extend C̃ ′ to any random variable C̃
such that I(C̃;K|M1C1) = 0, but otherwise arbitrarily correlated to M1 and C1,
and with I(M̃ ; C̃|M1C1) = 0.

11



Now for the “only if direction” (PNM =⇒ Eq. (5)). Let M1 be any
random variable with D(M1) = X and pick any values (m1,m2) ∈ X×2

diff and

(c1, c2) ∈ Y×2
diff . Since the scheme provides PNM we have I(M̃ ; C̃|M1C1) for any

C̃ with I(C̃;K|M1C1) = 0 and Pr[C̃ = C1] = 0. Similar to what we did above,
we define random variables M̃ ′, C̃ ′,K ′ and M̃ ′′, C̃ ′′,K ′′ as

PM̃ ′C̃′K′(m, c, k) := PM̃C̃K|M1C1
(m, c, k|m1, c1),

PM̃ ′′C̃′′K′′(m, c, k) := PM̃C̃K|M1C1
(m, c, k|m2, c2).

So I(M̃ ′; C̃ ′) = I(M̃ ′′; C̃ ′′) = 0. We can now apply Proposition 4.2 to the
encryption functions of K ′ and K ′′ respectively, and get that for any M ′ and
M ′′ on X \ {m1} and X \ {m2} and independent from K ′ and K ′′ respectively,

PC′|M ′(c
′|m′) =

1

|Y| − 1
,

PC′′|M ′′(c
′′|m′′) =

1

|Y| − 1
.

(9)

LetM2 be any random variable such that D(M1M2) ⊆ X×2
diff , m1,m2 ∈ D(M2)

and I(M1M2;K) = 0, and choose the M ′ and M ′′ from Eq. (9) such that

PM ′C′(m, c) = PM2C2|M1C1
(m, c|m1, c1)

and PM ′′C′′(m, c) = PM2C2|M1C1
(m, c|m2, c2).

We then have

PC1C2|M1M2
(c1, c2|m1,m2) = PC1|M1M2

(c1|m1,m2)PC2|M1M2C1
(c2|m1,m2, c1)

= PC1|M1
(c1|m1)

1

|Y| − 1
, (10)

PC1C2|M1M2
(c2, c1|m2,m1) = PC1|M1

(c2|m2)
1

|Y| − 1
.

Since the same encryption function with the same key is applied to m1 and
m2, we must have PC1C2|M1M2

(c1, c2|m1,m2) = PC1C2|M1M2
(c2, c1|m2,m1), and

hence for all (m1,m2) ∈ X×2
diff and (c1, c2) ∈ Y×2

diff ,

PC1|M1
(c1|m1) = PC1|M1

(c2|m2).

Since |Y| > 2, this implies that for any (m1,m2) ∈ X×2
diff and (c1, c2, c3) ∈ Y×3

diff ,

PC1|M1
(c1|m1) = PC1|M1

(c3|m2) = PC1|M1
(c2|m1).

Since
∑
c PC1|M1

(c|m) = 1, we get PC1|M1
(c|m) = 1

|Y| . Putting this in Eq. (10)

proves the theorem.

Theorem 4.1 equates PNM with a uniform mapping from pairs of different
messages to different ciphertexts (Eq. (5)). This latter condition is slightly
different from PS2. Corollary 4.3 makes the correspondence between PNM and
PS2 explicit.
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Corollary 4.3. For any symmetric-key encryption scheme with ciphertext al-
phabet size |Y| > 2,7

PNM|X |=|Y| ⇔ PS2
|X |=|Y|,

PNM|X |<|Y| ⇒ PS2
|X |<|Y|,

PNM|X |<|Y| : PS2
|X |<|Y|.

Proof. Eq. (5) is clearly a sufficient condition to imply PS2, no matter what the
ciphertext length is. So from Theorem 4.1 we immediately have

PNM|X |=|Y| ⇒ PS2
|X |=|Y|,

PNM|X |<|Y| ⇒ PS2
|X |<|Y|.

If |X | = |Y|, then for any scheme providing PS2, and random variables M1M2

uniformly distributed on X×2
diff ,

H(C1C2|M1M2) = H(C1C2) ≥ log |X×2
diff | = log |Y×2

diff |.

The inequality above holds because the entropy of the ciphertexts must be at
least as large as the entropy of the messages. Thus Eq. (5) holds as well, which
means that

PNM|X |=|Y| ⇐ PS2
|X |=|Y|.

Finally, to show that
PNM|X |<|Y| : PS2

|X |<|Y|,

we give an example in Lemma 6.1 of an encryption scheme with |X | < |Y| and
providing PS2, but not satisfying Eq. (5).

We note that the requirement that |Y| > 2 is essential, since otherwise PNM
does not even imply PS. This can easily be seen by considering the following
example. Let X = Y = {0, 1} and the encryption function be the identity
function. For such a small alphabet H(M̃ |MC) = H(M̃ |MCC̃) = 0, because as
Pr[M̃ = M ] = 0, once M = m is fixed, M̃ can only take the other value, and
hence has zero entropy. This scheme thus provides PNM, because the ciphertext
C̃ chosen by the adversary provides no information about M̃ .

An important consequence of Theorem 4.1 is that we get an immediate lower
bound on the size of the secret key needed for PNM for any ciphertext size.

Corollary 4.4. If an encryption scheme with key K provides PNM, then

H(K) ≥ log |Y×2
diff | = log |Y| (|Y| − 1) .

This immediately implies that the perfect non-malleable scheme proposed by
Hanaoka et al. [10, 11] is optimal in the key size.8 We describe this scheme in
Appendix B.1 for completeness.

7By PNM|X|=|Y|, PNM|X|<|Y|, etc., we simply mean encryption functions with message
and ciphertext alphabet sizes corresponding to the subscript and meeting the corresponding
security definitions. We did not formally introduce this notation, because it is quite intuitive
and is not used anywhere else. All other results about PNM, PS2, etc., apply to all message
and ciphertext alphabet sizes if not clearly stated otherwise.

8This scheme is also optimal in the ciphertext size, since |X | = |Y|.
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5 Non-malleability and authentication

We show in this section that any authentication scheme provides approximate non-
malleability. In Appendix A.3 we provide a proof that the same holds when we
replace the notions of authenticity and non-malleability with strong authenticity
(Definition A.4) and strong approximate non-malleability (Definition A.2).

Theorem 5.1. Any scheme which provides ε-authenticity also provides (
√
ε+ε)-

non-malleability.

Proof. For all (m, c) ∈ D(MC), let εm,c := 1 − PM̃ |MC(⊥|m, c). So we have∑
m,c PMC(m, c)εm,c ≤ ε. Note that

PM̃ |MC(⊥|m, c) =

∑
c̃ PM̃C̃MC(⊥, c̃,m, c)

PMC(m, c)

=
∑
c̃

PC̃|MC(c̃|m, c)PM̃ |MCC̃(⊥|m, c, c̃).

From Lemma C.2 we then have that

1

2

∑
c̃

PC̃|MC(c̃|m, c)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣ ≤ √εm,c.
Using Jensen’s inequality we get

1

2

∑
m,c,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣ ≤ √ε.
Putting this in the definition of non-malleability we finally obtain

1

2

∑
m,c,m̃,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)

∣∣∣
≤ 1

2

∑
m,c,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣
+
∑
m̃∈X

PM̃ (m̃)

≤
√
ε+ ε.

ε-(strong) authentication can be achieved with a shared key of length

log |K| ≤ 2 log log |X |+ 3 log
1

ε
(11)

by using almost strong 2-universal hashing. For completeness we show this
in Appendix B.2. The parameters of Eq. (11) are from a specific family of
almost strong 2-universal hash functions by Bierbrauer et al. [14]. We refer to
an expository paper on 2-universal hashing by Stinson [16] for an overview of
constructions.

We note that since (approximate) secrecy is only possible if the key is as
long as the message, this means that ε-NM does not imply secrecy. This might
seem surprising at first, because in the public-key setting non-malleability does
imply secrecy [7]. This difference between non-malleability and secrecy in the
private-key setting has however already been noted by Katz and Yung [9].9

9In [9], the adversary is declared unsuccessful if the message produced is invalid, in which
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PNM PS2 PS

ε-NM ε-S2 ε-S

ε-A

/

/

/

/

/

/

/Lem.
6.2

/Lem
. 6.

1

PNM: perfect non-malleability
PS2: perfect 2-message secrecy
PS: perfect (1-message) secrecy
ε-NM: approx. non-malleability
ε-S2: approx. 2-message secrecy
ε-S: approx. (1-message) secrecy
ε-A: (approx.) authenticity

A → B: If criterion A holds, then B holds.
A 9 B: There exist schemes for which

criterion A holds, but not B.

Figure 2: Complete characterization of the relations between different notions
of information-theoretic non-malleability, secrecy, and authenticity with explicit
separations. This is an extension of Figure 1 in which some separations —
relations for which there exist examples of schemes satisfying the first security
definition but not the second — are explicitly depicted by crossed arrows. All
other separations — all pairs of security definitions not connected by a directed
path — can immediately be deduced from the ones that are depicted.

6 Completing the picture

As described in Section 1, the relations depicted in Figure 1 are complete: if
there is no directed path between two security definitions, then there exists an
encryption scheme satisfying the first definition but not the second. Unlike the
more detailed treatment given to non-malleability in the previous sections, we
do not make a distinction here between the cases in which the message and
ciphertexts have the same cardinality or not. We refer to Remark 6.3 for a
further comment on this.

The complete list of separations amongst these notions is quite long. We
fortunately only need to prove this property for a subset of all pairs of security
definitions for which it holds, and the others follow immediately. We depict this
subset of separations in Figure 2 by crossed arrows.

Since the separations amongst authentication and the different notions of
secrecy are all previously known, we simply discuss and provide proofs for the
separations between non-malleability and secrecy, and non-malleability and
authenticity here. We will use the following shorthand:

{Ai}mi=1 ; {Bj}nj=1,

means that for any pair (Ai,Bj), Ai ; Bj , i.e., there are examples of schemes
satisfying Ai but not Bj .

case it is trivial that authenticity is sufficient to achieve approximate non-malleability. We
refer to Section 7 for a further discussion of how to handle invalid messages.
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The complete list of separations thus reads

ε-NM,PNM ; ε-A, (12)

ε-NM ; ε-S, ε-S2,PS,PS2, (13)

ε-A ; PNM, (14)

ε-S, ε-S2,PS,PS2 ; ε-NM,PNM, (15)

Since PNM ⇒ ε-NM, a scheme which satisfies PNM but not ε-A, also
satisfies ε-NM but not ε-A. Thus to prove Eq. (12), it is sufficient to show that
PNM ; ε-A, which we do in Lemma 6.2.

Similarly, to prove Eq. (13) it is sufficient to find a scheme which satisfies
ε-NM but not ε-S. Since ε-S2, PS, and PS2 are all stronger than ε-S, this example
will not satisfy them either. ε-A is stronger than ε-NM as shown in Theorem 5.1.
So a scheme which provides authenticity but not ε-S is also sufficient to prove
Eq. (13). This result is widely known since Wegman and Carter [2] showed that
authentication is possible with a key of length roughly log log |X |. Eq. (13) thus
follows immediately from this and Theorem 5.1, and we do not need to provide
a proof here.

Likewise, Eq. (14) does not require a proof either, since from Theorem 4.1
PNM is stronger than ε-S, the same example which shows the separation between
ε-A and ε-S also shows the separation between ε-A and PNM.

And finally to prove Eq. (15), we need to show that PS2 ; ε-NM, from
which the other relations follow. We do this in Lemma 6.1.

Lemma 6.1. There exists an encryption scheme with functions {fk : X →
Y}k∈K which provides 2-message perfect security (PS2), but not ε-non-malleabil-
ity (ε-NM) for any ε ∈ o(1).

Proof. Without loss of generality, let X = {0, 1}n = GF(2n) and Y = {0, . . . , 2n}.
We choose K = K1×K2×{0, 1}, where K1 = GF(2n)\{0} and K2 = GF(2n), and
with (k1, k2) ∈ K1 ×K2 chosen with uniform probability. The last bit of the key
is 0 with some constant probability α < 1

2 . We define functions h0, h1 : X → Y
which both map any element from {0, 1}n \{0n} to {1, . . . , 2n−1} in the obvious
way, but h0(0n) = 0 and h1(0n) = 2n. The encryption function is then

f(k1,k2,b)(m) = hb(k1m+ k2).

This function clearly provides PS2, but does not uniformly map X×2
diff to Y×2

diff ,
so by Theorem 4.1 it does not provide PNM. To see that it does not provide
ε-NM either, note that an adversary can always choose to replace the legitimate
cipher by some c̃ ∈ {1, . . . , 2n − 1} if he wants the resulting message to be ⊥
with probability 0 and c̃ = 0 for the message to be ⊥ with probability 1− α. If
the adversary chooses between these two options with probability 1

2 if c 6= 0 and

chooses c̃ = 2n if c = 0, then d
(
M̃C̃, M̃ · C̃

∣∣∣MC
)
≥
(
1− α

2n

)
1−α

2 .

We note that Lemma 6.1 does not hold if we consider an alternative definition
of non-malleability, in which the adversary is not successful if he can control
whether the received ciphertext is invalid or not. We refer to Section 7 for a
further discussion of this.

This last separation is trivial.

16



Lemma 6.2. There exists an encryption scheme with functions {fk : X →
Y}k∈K such that |X | = |Y|, and which provides perfect non-malleability (PNM),
but not ε-authenticity for any ε ∈ o(1).

Proof. The PNM scheme by Hanaoka et al. [10,11] (see also Appendix B.1) is
such an example.

Remark 6.3. If we were to make a distinction between the cases in which the
message and ciphertexts have the same cardinality or not, the landscape of
separations changes a bit.

The separation PS2 ; ε-NM,PNM only holds for |Y| > |X |. When the
message and ciphertexts have the same cardinality, any scheme providing PS2

also provides ε-NM,PNM. However ε-S, ε-S2,PS ; ε-NM,PNM is true even
when |X | = |Y|.

The proof that ε-NM ; ε-S, ε-S2 also only holds for |Y| > |X |. We do not
know if it is still valid for |Y| = |X |.

7 Concluding remarks

In this work we studied information-theoretic non-malleability, extending a line of
research initiated by Hanaoka et al. [10]. The formal definitions used to capture
the intuitive notion of non-malleability follow these previous works [10–12]. There
exist however alternative ways to characterize the same notion. We discuss them
briefly in this section.

Unifying the definitions. Although the works on computational and infor-
mation-theoretic non-malleability in the private-key setting use the same informal
definition, the tools used to formalize this definition are different: the former
computes the probability that the falsified message is related to the original
message in the real and ideal case [9], the latter measures the indistinguishability
of message and ciphertext distributions between the real and ideal case. It
remains open to prove formally that these definitions are indeed equivalent when
the distinguisher in the computational security definition is unlimited, and does
not access oracles.

Invalid ciphertexts. In the formal definition of non-malleability, we chose
that the adversary is allowed to pick invalid ciphertexts and still be successful.
We could have considered an alternative weaker definition, in which the adversary
automatically fails when this happens. In the public-key setting, both ways of
treating invalid ciphertexts can be found, and there is no clear consensus as to
how to deal with this case. Pass et al. [8] investigate the differences between
the two notions in detail. They point out how the stronger notion in which the
adversary can produce an invalid ciphertext makes a critical difference in certain
situations, in particular for composability.

In the case of information-theoretic security, if we had defined the adversary to
be unsuccessful when he picks an invalid ciphertext, then perfect non-malleability
would have been exactly equivalent to 2-message perfect secrecy, and not strictly
strong for a ciphertext longer than the message. And authenticity would trivially
imply approximate non-malleability, instead of requiring some work.
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Accessing oracles. When considering computational security, the adversary
usually has access at various stages to a decryption oracle.10 In information-
theoretic security, when the adversary is computationally unbounded, unlimited
access to an oracle is not possible. McAven et al. [12] and Portmann and
Tanaka [17] propose security definitions in which the adversary can make `
queries to an oracle. The definitions of non-malleability used in this work can
be seen as allowing the adversary 1 query to an encryption oracle, after which
he has to choose his forged ciphertext C̃. By generalizing this to `-queries
to either encryption or decryption oracles, we can define various notions of
`-non-malleability.

We conjecture that the results from this work on the relations between
1-non-malleability, 2-message security, and the 2-universal hashing used for
authentication, directly generalize to `-non-malleability, (`+ 1)-message security
and (`+ 1)-universal hashing.
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Appendices

A More on information-theoretic security notions

A.1 Approximate secrecy

Requiring a security criteria to hold for all random variables X is equivalent to
worst case security over X, that is, to requiring the same condition to hold for
every value x ∈ D(X). We illustrate this in Lemma A.1 by showing that the
definition of approximate secrecy given in Definition 3.1 is equivalent to requiring
that the ciphertext distributions for any two messages m and n be ε-close.

The same can be shown for any security criteria, in particular for ε-NM
(Definition 3.4).

Lemma A.1. Let {fk : X → Y}k∈K be a set of injective functions indexed by
keys distributed according to the random variable K, let M be a message random
variable independent from the key — i.e., I(M ;K) = 0 — and C = fK(M).
Then the three following secrecy criteria are equivalent up to a multiplicative
constant.

∀m,n ∈ D(M), d (C|M=m, C|M=n) ≤ ε1, (16)

∀m ∈ D(M), d (C|M=m, C) ≤ ε2, (17)

∀M such that I(M ;K) = 0, d (MC,M · C) ≤ ε3, (18)

10In the case of computational private-key cryptography, he may also access an encryption
oracle.
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Proof. (16) =⇒ (17) for ε2 = ε1 because

d (C|M=m, C) =
1

2

∑
c∈Y

∣∣PC|M (c|m)− PC(c)
∣∣

=
1

2

∑
c∈Y

∣∣∣∣∣PC|M (c|m)−
∑
n∈X

PM (n)PC|M (c|n)

∣∣∣∣∣
≤ 1

2

∑
(n,c)∈X×Y

PM (n)
∣∣PC|M (c|m)− PC|M (c|n)

∣∣
≤
∑
n∈X

PM (n)ε1 = ε1.

Similarly, (17) =⇒ (18) for ε3 = ε2 because

d (MC,M · C) =
1

2

∑
(m,c)∈X×Y

|PMC(m, c)− PM (m)PC(c)|

=
1

2

∑
(m,c)∈X×Y

PM (m)
∣∣PC|M (c|m)− PC(c)

∣∣
≤
∑
m∈X

PM (m)ε2 = ε2.

To prove that (18) =⇒ (16) for ε1 = 2ε3, we consider the message random
variable M which takes the values m and n, each with probability 1/2. We then
have

2ε3 ≥
∑

(x,c)∈X×Y

PM (x)
∣∣PC|M (c|x)− PC(c)

∣∣
=

1

2

∑
c∈Y

∣∣PC|M (c|m)− PC(c)
∣∣+

1

2

∑
c∈Y

∣∣PC(c)− PC|M (c|n)
∣∣

≥ 1

2

∑
c∈Y

∣∣PC|M (c|m)− PC|M (c|n)
∣∣ . (19)

Note that Eq. (19) is independent from the distribution of M . And since Eq. (18)
must hold for all M , the same reasoning can be made for all pairs m,n ∈ X ,
thus Eq. (16) holds for any M and all m,n ∈ D(M).

Expressing ε-S in these different ways makes it easier to understand how this
security criterion captures “security with high probability.” We can construct
a scheme where some bad key value k0 maps any message m to m||0, where ||
stands for the concatenation of two strings, but the other keys uniformly map
m to all possible c||1. If this bad value k0 is chosen with negligible probability
(less than ε), then the scheme is secure even if some ciphertexts (all those of
form m||0) are completely insecure, because these ciphertexts also occur with
negligible probability.

The definition of approximate security can be strength: instead of requiring
that for all m,

∑
c |PC|M (c|m)− PC(c)| ≤ ε, we require that for all m and all c,

|PC|M (c|m)− PC(c)| ≤ εPC(c). (20)
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The encryption scheme described a paragraph higher is not secure anymore
according to this new criterion.

The difference between Eq. (20) and the various equivalent forms of ε-S given
in Lemma A.1 is the same as between the notion of ε-VSNM (Definition A.3)
and its weaker forms, ε-NM or ε-SNM (Definitions 3.4 and A.2).

A.2 Approximate non-malleability

Definition 3.4 can be seen as average case security over the values of C: if
(for a fixed M = m) the scheme is insecure when C = c, but this occurs
with negligible probability (i.e., the keys mapping m to c are only chosen with
negligible probability), then the conditions of Definition 3.4 can still be met. We
can strengthen this definition by considering the worst case over C.11

Definition A.2. An encryption scheme is said to provide ε-strong non-mal-
leability (ε-SNM), if for all message random variables M on X independent from
the key — i.e., I(M ;K) = 0 — and all ciphertexts C̃ on Y different from C and
independent from the key given MC — i.e., Pr[C = C̃] = 0 and I(C̃;K|MC) = 0

— we have for all (m, c, c̃) ∈ D(MCC̃),

d
(
M̃ |MCC̃=mcc̃, M̃ |MC=mc

)
≤ ε.

Since Definition 3.4 can be rewritten as

1

2

∑
m,c,m̃,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)

∣∣∣ ≤ ε
and Definition A.2 is equivalent to

1

2

∑
m̃∈X̄

∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)
∣∣∣ ≤ ε,

we clearly have that any ε-SNM scheme is also ε-NM.
McAven et al. [12] take this reasoning a step further, and also require strict

security no matter what value m̃ is produced.

Definition A.3. An encryption scheme is said to provide ε-very strong non-
malleability (ε-VSNM), if for all message random variables M on X independent
from the key — i.e., I(M ;K) = 0 — and all ciphertexts C̃ on Y different
from C and independent from the key given MC — i.e., Pr[C = C̃] = 0 and
I(C̃;K|MC) = 0 — we have for all (m, c, c̃) ∈ D(MCC̃) and all m̃ ∈ X ∪ {⊥},∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)

∣∣∣ ≤ εPM̃ |MC(m̃|m, c).

It is again clear that ε-VSNM implies ε-SNM. With this definition it is not
sufficient if insecure values m̃ occur with negligible probability PM̃ |MC(m̃|m, c)
(over the choice of key), since the error is measured relative to this. No choice
of key k should ever result in an insecure m̃ for Definition A.3 to be met. This
definition thus provides very strong security, but when only “security with high
probability” is desired, Definition 3.4 or A.2 is sufficient.

11Definition 3.4 already requires the scheme to be secure for all choices of M and C̃, which
is equivalent to taking the worst case over M and C̃ (see Appendix A.1 for a proof of this in
the case of secrecy).
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A.3 Strong authentication

Similar to what we did for approximate non-malleability in Section 3.2, we can
define strong authenticity.12

Definition A.4. An encryption scheme is said to provide ε-strong authenticity
(ε-SA), if for all message random variables M on X independent from the key —
i.e., I(M ;K) = 0 — and all ciphertexts C̃ on Y different from C and independent
from the key given MC — i.e., Pr[C = C̃] = 0 and I(C̃;K|MC) = 0 — we have
for all (m, c, c̃) ∈ D(MCC̃),

PM̃ |MCC̃(⊥|m, c, c̃) ≥ 1− ε.

Any ε-SA scheme also provides ε-A, since for any m̃,∑
m,c,c̃

PMCC̃(m, c, c̃)PM̃ |MCC̃(m̃|m, c, c̃) = PM̃ (m̃).

Similar to what was done in Section 5, we show here that ε-SA implies
ε-SNM.

Theorem A.5. Any scheme which provides ε-strong authenticity also provides
3ε/2-strong non-malleability.

Proof. A scheme provides ε-SA if for all (m, c, c̃) ∈ D(MCC̃),

PM̃ |MCC̃(⊥|m, c, c̃) ≥ 1− ε.

So PM̃ |MC(⊥|m, c) =

∑
c̃ PM̃C̃MC(⊥, c̃,m, c)

PMC(m, c)

=
∑
c̃

PC̃|MC(c̃|m, c)PM̃ |MCC̃(⊥|m, c, c̃)

≥ 1− ε.

This also implies that ∑
m̃∈X

PM̃ |MCC̃(m̃|m, c, c̃) ≤ ε

and
∑
m̃∈X

PM̃ |MC(m̃|m, c) ≤ ε.

Putting this together we get

1

2

∑
m̃∈X̄

∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)
∣∣∣

≤ 1

2

∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)
∣∣∣

+
1

2

∑
m̃∈X

PM̃ |MCC̃(m̃|m, c, c̃) +
1

2

∑
m̃∈X

PM̃ |MC(m̃|m, c)

≤ 3ε

2
12Just like for non-malleability, Definition 3.5 is already worst case over M and C̃, because

the definition must hold for all M and C̃ (see Appendix A.1 for a proof of this in the case of
secrecy).
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We note that the notion of ε-very strong non-malleability (Definition A.3)
cannot be satisfied by an authentication scheme. The idea behind authentication
is that with high probability the adversary cannot produce a valid ciphertext
(PM̃ (⊥) ≥ 1 − ε). If however he is lucky enough to guess right, then the new
message created m̃ ∈ X will be completely determined by the ciphertext c̃. But
this only happens with (negligible) probability ε. ε-VSNM requires that the
message m̃ never be determined by the ciphertext c̃, even when this message
occurs with negligible probability (PM̃ |MC(m̃|mc) ≤ ε).

B Practical schemes

In this section we give some constructions for perfect and approximate non-
malleability. The construction for perfect non-malleability can be found in [11].
The approximate non-malleability scheme is simply authentication using 2-
universal hashing. The construction we give is from [14].

B.1 Perfect non-malleability

The results from Section 4 show that the following PNM scheme proposed by
Hanaoka [11] is optimal in the key size. Let the message and ciphertext alphabets
be some finite field X = Y = GF(q), where q is a prime power. The key is
chosen uniformly at random from k = (k1, k2) ∈ (GF(q) \ {0})×GF(q), and the
encryption functions are defined as

c = fk(m) := k1m+ k2. (21)

We immediately have from the properties of finite fields that these functions
are easily invertible, m = k−1

2 (c − k2), and that any two distinct messages
m1 and m2 are mapped to all possible distinct ciphertext pairs (c1, c2) when
choosing different keys. So this scheme provides PS2 and hence PNM with a key
of optimal size |K| = q(q − 1).

B.2 Approximate non-malleability

As shown in Section 5, to achieve approximate non-malleability, we just need an
authentication scheme. Wegman and Carter [2] first noticed how to drastically
reduce the shared key size in authentication schemes using strong 2-universal
hashing, though Stinson [4] gave the first formal definition of this. We refer
to [16] for an overview of 2-universal hashing.

Definition B.1. A set of hash functions {hk : X → Z}k∈K is said to be ε-almost
strongly 2-universal (ε-SU2) if for every x1, x2 ∈ X with x1 6= x2 and every
z1, z2 ∈ Z,

1) |{k ∈ K : hk(x1) = z1}| = |K|
|Z|

2) |{k ∈ K : hk(x1) = z1, hk(x2) = z2}| ≤ ε|K|
|Z| .

To construct an authentication scheme using ε-SU2 hashing, we simply choose
each function uniformly at random and define the encryption function to be

fk(m) = (m,hk(m)). (22)
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As the following lemma shows, this provides ε-strong authenticity (Defini-
tion A.4).

Lemma B.2. An ε-SU2 family of hash functions used as in Eq. (22) provides
ε-strong authenticity.

Proof. Let m ∈ X and c ∈ Y be the message and ciphertext pair obtained by the
adversary, where Y = X × Z and c = (m, z) = (m,hk(m)). Let the adversary
choose the forged ciphertext c̃ = (m̃, z̃). This ciphertext will be valid only if
z̃ = hk(m̃). From Definition B.1 we have that for any choice of (m̃, z̃) with
m̃ 6= m,

Pr [z̃ = hk(m̃)|z = hk(m)] =
Pr [z̃ = hk(m̃) and z = hk(m)]

Pr [z = hk(m)]
≤ ε.

It follows that
PM̃ |MCC̃(⊥|m, c, c̃) ≥ 1− ε.

By Theorem A.5 this implies that a family of ε-SU2 hash functions provides
3ε/2-SNM and 3ε/2-NM. Bierbrauer et al. [14] show that such a family exists
with size

log |K| ≤ 2 log log |X |+ 3 log
1

ε
.

C Technical lemmas

In this section we provide a few technical lemmas needed in the main body of
this work. The following lemma shows that a ciphertext chosen by an adversary
is independent from the corresponding message after decryption if and only if the
encryption scheme maps every message to all ciphertext with equal probability.

Lemma C.1. Let {fk : X → Y}k∈K be the encryption functions from a sym-
metric-key encryption scheme. For any random variable M on X independent
from the key — i.e., I(M ;K) = 0 — and any m ∈ X and c ∈ Y, we have

PC|M (c|m) =
1

|Y|

if and only if for any random variable C̃ on the ciphertext alphabet Y independent
from the key — i.e., I(C̃;K) = 0 — we have

I(M̃ ; C̃) = 0,

where M̃ = gK(C̃) and gk is the decryption function corresponding to fk with
range X ∪ {⊥}.

Proof. We start with the “if direction” (I(M̃ ; C̃) = 0 =⇒ PC|M (c|m) = 1
|Y| ).

If I(M̃ ; C̃) = 0 then for any m ∈ X̄ and c ∈ Y, PM̃ |C̃(m|c) = PM̃ (m) and hence

for any two c, c′ ∈ Y and any m ∈ X̄ ,

PM̃ |C̃(m|c) = PM̃ |C̃(m|c′). (23)
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Since I(C̃;K) = 0, for any m ∈ X and c ∈ Y we have

PM̃ |C̃(m|c) =
∑
k∈K

f−1
k (c)=m

PK(k) =
∑
k∈K

fk(m)=c

PK(k) = PC|M (c|m) (24)

for any M with I(M ;K) = 0. Since the distribution PC|M is well defined, we
have for any m ∈ X that ∑

c∈Y
PC|M (c|m) = 1. (25)

Combining Eqs. (23), (24) and (25) we get that for any m ∈ X and any c ∈ Y,
PC|M (c|m) = 1

|Y| .

The “only if direction” (PC|M (c|m) = 1
|Y| =⇒ I(M̃ ; C̃) = 0) works similarly.

We have for any m ∈ X and c ∈ Y that

1

|Y|
= PC|M (c|m) =

∑
k∈K

fk(m)=c

PK(k) =
∑
k∈K

f−1
k (c)=m

PK(k) = PM̃ |C̃(m|c)

for any C̃ independent from the key. Furthermore

PM̃ |C̃(⊥|c) = 1−
∑
m∈X

PM̃ |C̃(m|c) = 1− |X |
|Y|

for every c ∈ Y. Hence I(M̃ ; C̃) = 0.

This last lemma is needed in the proof of Theorem 5.1.

Lemma C.2. For i ∈ [n], let 0 ≤ ai ≤ 1 and have weighted average
∑
i wiai = a,

where 0 ≤ wi ≤ 1 and
∑
i wi = 1. Then

n∑
i=1

wi |ai − a| ≤ 2 min{
√
a,
√

1− a}.

Proof. Without loss of generality, let a ≤ 1
2 . If a > 1

2 , set anew
i := 1− aold

i for
all i, which leaves |ai − a| unchanged.

Define I := {i ∈ [n] : ai ≥
√
a}. Then

n∑
i=1

wiai ≥
∑
i∈I

wi
√
a,

hence
∑
i∈I wi ≤

√
a. We then have

n∑
i=1

wi |ai − a| =
∑
i∈I

wi |ai − a|+
∑

i∈[n]\I

wi |ai − a|

≤
∑
i∈I

wi(1− a) +
∑

i∈[n]\I

wi max{
√
a− a, a}

≤
√
a(1− a) + (1−

√
a) max{

√
a− a, a}

= 2
√
a.
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