Cartesian Tensors

Reference: H. Jeffreys Cartesian Tensors
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1 Coordinates and Vectors
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Coordinates

X | = 1,2, 3
X; = X Xo =Y Xq = Z (1)
Unit vectors
e | = 1,2 3
e, = e = | e2:ey:j e; = e, =K (2)

General vector (formal definition to follow) denoted by compo-

nents €.g. U = U,
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Notation

The boldface notation for vectors 1s referred to as dyadic nota-
tion
The subscript notation is zensor notation.

Summation convention

Einstein: repeated index means summation:

3
WLV = Y WY,
=1

3
Ui = 2 Wi
=1

(3)
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2 Orthogonal Transformations of Coordinates

The behaviour of quantities under orthogonal transformations of
the coordinate system 1s the basis of Cartesian tensors.

We want to formulate equations 1n such a way that they are in-
dependent of the specific coordinate system.
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General linear transformation

a, j = Transformation Matrix
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Position vector

Consider the position vector expressed in terms of coordinates
and unit vectors 1n two related coordinate systems

r=xe = xi’ei’ (4)

In view of the transformation from the unprimed to the primed
system:

r = aijxjei’ = xj(aijei’) (5)
Therefore we can write:

e. = a.e’ (6)
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so that we have the two companion transformations:
Kronecker Delta

o = Lif i = ]

O otherwise
In matrix form

100
6”: 010 ()
001
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Substitution property
OiTik.. = Tik.. (%)

In the summation over | the only term of the sum that makes any
contribution is that for which | = 1.

2.1 Orthogonal transformation

So far, what we have described 1s valid for any linear transfor-
mation.

Now 1mpose the condition that both the original and the primed
reference frames are orthonormal

=8.. (10)

ei-e-:éij and € € I

J
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Use transformation of the unit vectors:

L T 11
= 4439

A Aj
NB the last operation 1s an example of the substitution property
of the Kronecker Delta.

Since e e j = Bi i then the orthonormal condition on a; j 1S
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In matrix notation:

ala = | (13)
We also have as a consequence of the properties of matrices, that
aa' = | (14)
In tensor notation:
Ty.. = —
(aa )IJ = 3y = 6” (15)

Any of equations (12), (13), (14) or (15) defines an orthogonal
transformation.
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2.2 Reverse transformations

Xi = aijxj=>aikxi = aikaijxj = 6ijj = Xy

1.e. the reverse transformation 1s simply determined by the trans-

pose.

Similarly, following from
e. = a.e’ (16)

we have

@D

[
Q
D

= € (17)
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Transformations for both coordinates and basis vec-
tors

The complementary set of transformations 1s then

Xif — aijxj ei, = aijej (18)

2.3 Interpretation of the matrix aij

Since

then the a.. are the components of ei’ wrt the unit vectors in the

1]
original system.e.g.
€' = 2118 t 2,6y + 31385 (19)
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2.4 Example: 2D rotation

It 1s easiest here to determine the

zY relationship between the unit ba-
y’ \iy / Te sis vectors:
4 /éx, e, = coste, +snbe
X o (20)
ey = —SlnGeX+ coso

—_ X In matrix form:
e
X
e, I
e, | =
’ 0
_ez_ |
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Then the transformation equation for the coordinates is:

_x’_ _COSG sino 6 _x_
y'| = |-sin® cosO 0] |y (22)
z; | 0 0 1z

3 Scalars, Vectors & Tensors

We define these objects by the way in which they transform with
respect to orthogonal coordinate transformations.

3.1 Scalar (f):
f(xj) = f(x) (23)
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Example of a scalaris f = r2 = X; X; . Examples from fluid dy-

namics are the density and temperature.

3.2 Vector (u):
Prototype vector: X

General transformation law:

as the transformation law for a generic vector.
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3.3 Gradient operator
Suppose that f is a scalar. The gradient of f is defined by

(grad 1), = (vf), = 9T 25)

| axi

Need to show this 1s a vector by its transformation properties.

of _ af 9% -
0X; axjaxi

Since,
X = ayX, (27)
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then

axj
- = a O = a..
axi K] ~Ki 1]
(28)
and af’ — ali

| J
Hence the gradient operator satisfies our definition of a vector.

Scalar Product
U*V = UV, = UVy+ UV, +UgV, (29)

18 the scalar product of the vectors u; and V.
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Exercise:

Show that U - v 1s a scalar.

3.4 Tensor

Prototype second rank tensor X; X j

General definition by transformation of components:

Tij = aaj Ty (30)

Exercise:

Show that u; v [ 1s a second rank tensor 1f u; and Vv j are vectors.
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Exercise:

ou.

_ |
ui,J_a—xj

1s a second rank tensor. (Introduces the comma notation for par-
tial derivatives.) In dyadic form this 1s written as grad u or Vu.

3.5 Divergence
Exercise:

Show that the quantity

Vi

V-v:dlvv:a—xi (31)
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1S a scalar.

4 Products and Contractions of Tensors

It 1s easy to form higher order tensors by multiplication of lower

rank tensors, e.g.Tijk = Tijuk 1s a third rank tensor 1f Tij 1s a

second rank tensor and Uy 1s a vector (first rank tensor). It 1s
straightforward to show that T, j (has the relevant transformation
properties.

Similarly, 1f T; ik 1s a third rank tensor, then T... 1s a vector.

1]
Again the relevant transformation properties are easy to prove.
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5 Differentiation following the motion

This involves a common operator occurring in fluid dynamics.
Suppose the coordinates of an element of fluid are given as a
function of time by

X = X (t) (32)
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The velocities of elements of fluid at all spatial locations within
a given region constitute a vector field, i.e. v; = vi(X i t)

If we follow the trajectory of an element of fluid, then on a par-
ticular trajectory X, = X (t). The acceleration of an element is

then given by:
av. Vi avi dx j avi oV,
f. = i —vl(x (t),t) = ot Yoxgt T ot (33)

ot axjdt ot JaXJ

Exercise: Show that fi 1S a vector.
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6 The permutation tensor ik

ik = O ifanyof I, |, k are equa

= 1 ifi, j, k unequal and in cyclic order (34)
= -1 if 1, J, k unequal and not in cyclic order
e.g.
€112 =0 g3 =1 £z =1 (39)
IS 8ijk atensor?

In order to show this we have to demonstrate that Ejik: when de-

fined the same way 1n each coordinate system has the correct
transformation properties.
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€iik = &Imn%i1%jm%kn

= £123%18j2%3 T €312@381%2 T £231%283%

T 8213928193 T €301%133291 T €132%13{3%2

= 81(8j283~839) —8j5(8j13,3~a;381)
+8i3(8j185—a)281)

diq Qo A3

ajl ajz aj3
A1 Yo A3
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In view of the interpretation of the a.., the rows of this determi-

ij°
nant represent the components of the primed unit vectors 1n the
unprimed system. Hence:

!

This is zero if any 2 of I, |, K are equal, 1s +1 for a cyclic permu-
tation of unequal indices and -1 for a non-cyclic permutation of

unequal indices. This 1s just the definition of ‘C“i’jk‘ Thus &, ik
transforms as a tensor.
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6.1 Uses of the permutation tensor
Cross product

Detine

then
C1 = &1p38903+ 135830, = ayby—azh,
Cy = £9318301 +£5138103 = azb; —a, b3 (37)
C3 = £319810y + e3p185b; = 810, —ayby

These are the components of ¢ = ax D.
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6.2 Triple Product
In dyadic notation the triple product of three vectors is:

t=u-(vxw) (38)

In tensor notation this 1s

6.3 Curl
éuk
(curl u); = Jilers (40)

J
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e.g.

dUq U, dUg  du,
(curl u)y = €qo0r—t€qq-— = — (41)
dX5 X3 0Xy 0Xq
etc.
6.4 The tensor EiksEmps
Define
Tikmp = 8iksgmps (42)
Properties:

e If1 = korm = pthenTikmp:O.
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e If I = mweonly get acontribution from theterms s= 1 and
k=1,s. Consequently kK = p. Thuse; . = +1 and

= = + = (£1)2 =
€mps = Siks - +1 andtheproduct ¢;, & o = (1) 1.
e IfI = p,smilar argument tells usthat we must have s = | and
k=ms==i.Hence ¢, . = =1,  Emps = Fl=¢, 8 mps — = —1.
SO,

l=mk=p=1 unlessi =k=20
l=p,k=m=-1 unless i = k=0
0

These are the components of the tensor 0.

|m6kp |p6km

= 81Oy =D (43)

~Eiks® mps | pékm
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6.5 Application of iksEmps

d
Leurl (ux V)] eijkﬁ(gklmulvm)

J

)
= &jkEh ma—xj(ulvm) ”

m
(6iI6jm_6im6jl)(a—Xij+ula—xj

oy, oV )
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We then use the substitution property of 0. j to show that:

aui auj avm avi
[uHIUJxv[h::———Wn—vr——+Lw————ur——
axm axj axm 8Xj
ou. V. oV . ou. (45)
— V._I_u._|+u._J_ _J
JoX. JoX. 19 X. 1o X.

J J J J
= (v-VUu—-u-Vv+uVv -v-vV-u)

The Laplacean

V2 = 00,00, 00 _ 0% 46)
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/ Tensor Integrals

7.1 Green’s Theorem
In dyadic form:

N.
f(v -V)dVv = f(v- n)ds (47)
V S

S In tensor form:

avi
—dV = [vvndS =S
J; X g I (48)

= Hux of v through S
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Extend this to tensors:

oT..

f—” dv
o X:

v

.. N.dS
1)
JJ (49)

Fluxof T, j through S
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7.2 Stoke’s Theorem

t c Indyadic form:

f(curl u)-ndS = fu - tds (50)

In tensor form:

GU

js'ljkaxjnlds futds (51)
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