Cartesian Tensors

Reference: H. Jeffreys Cartesian Tensors

Coordinates

$$
\begin{gather*}
x_{i} \quad i=1,2,3 \\
x_{1}=x \quad x_{2}=y \quad x_{3}=z \tag{1}
\end{gather*}
$$

Unit vectors

$$
\begin{gather*}
\boldsymbol{e}_{i} \quad i=1,2,3 \\
\boldsymbol{e}_{1}=\boldsymbol{e}_{x}=\boldsymbol{i} \quad \boldsymbol{e}_{2}=\boldsymbol{e}_{y}=\boldsymbol{j} \quad \boldsymbol{e}_{3}=\boldsymbol{e}_{z}=\boldsymbol{k} \tag{2}
\end{gather*}
$$

General vector (formal definition to follow) denoted by components e.g. $\boldsymbol{u}=u_{i}$

Notation

The boldface notation for vectors is referred to as dyadic notation

The subscript notation is tensor notation.

Summation convention

Einstein: repeated index means summation:

$$
\begin{aligned}
u_{i} v_{i} & =\sum_{i=1}^{3} u_{i} v_{i} \\
u_{i i} & =\sum_{i=1}^{3} u_{i i}
\end{aligned}
$$

2 Orthogonal Transformations of Coordinates

The behaviour of quantities under orthogonal transformations of the coordinate system is the basis of Cartesian tensors.
We want to formulate equations in such a way that they are independent of the specific coordinate system.

General linear transformation

$$
\begin{gathered}
x_{i}^{\prime}=a_{i j} x_{j} \\
a_{i j}=\text { Transformation Matrix }
\end{gathered}
$$

Consider the position vector expressed in terms of coordinates and unit vectors in two related coordinate systems

$$
\begin{equation*}
r=x_{i} \boldsymbol{e}_{i}=x_{i}{ }^{\prime} \boldsymbol{e}_{i}^{\prime} \tag{4}
\end{equation*}
$$

In view of the transformation from the unprimed to the primed system:

$$
\begin{equation*}
\boldsymbol{r}=a_{i j} x_{j} \boldsymbol{e}_{i}^{\prime}=x_{j}\left(a_{i j} \boldsymbol{e}_{i}^{\prime}\right) \tag{5}
\end{equation*}
$$

Therefore we can write:

$$
\begin{equation*}
\boldsymbol{e}_{j}=a_{i j} \boldsymbol{e}_{i}{ }^{\prime} \tag{6}
\end{equation*}
$$

so that we have the two companion transformations:

$$
\begin{equation*}
x_{i}^{\prime}=a_{i j} x_{j} \quad \boldsymbol{e}_{i}=a_{j i} \boldsymbol{e}_{j}^{\prime} \tag{7}
\end{equation*}
$$

Kronecker Delta

$$
\begin{aligned}
\delta_{i j} & =1 \text { if } i=j \\
& =0 \text { otherwise }
\end{aligned}
$$

In matrix form

$$
\delta_{i j}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Substitution property

$$
\begin{equation*}
\delta_{i j} T_{j k \ldots}=T_{i k \ldots} \tag{9}
\end{equation*}
$$

In the summation over j the only term of the sum that makes any contribution is that for which $j=i$.

2.1 Orthogonal transformation

So far, what we have described is valid for any linear transformation.
Now impose the condition that both the original and the primed reference frames are orthonormal

$$
\begin{equation*}
\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j} \text { and } e_{i}^{\prime} \cdot e_{j}^{\prime}=\delta_{i j} \tag{10}
\end{equation*}
$$

Use transformation of the unit vectors:

$$
\begin{aligned}
\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j} & =a_{k i} \boldsymbol{e}_{k}^{\prime} \cdot a_{l j} \boldsymbol{e}_{l}^{\prime} \\
& =a_{k i} a_{l j} \boldsymbol{e}_{k}^{\prime} \cdot \boldsymbol{e}_{l}^{\prime} \\
& =a_{k i} a_{l j} \delta_{k l} \\
& =a_{k i} a_{k j}
\end{aligned}
$$

NB the last operation is an example of the substitution property of the Kronecker Delta.

Since $\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}$, then the orthonormal condition on $a_{i j}$ is

$$
\begin{equation*}
a_{k i} a_{k j}=\delta_{i j} \tag{12}
\end{equation*}
$$

In matrix notation:

$$
\boldsymbol{a}^{T} \boldsymbol{a}=\boldsymbol{I}
$$

(13)

We also have as a consequence of the properties of matrices, that

$$
\begin{equation*}
a a^{T}=I \tag{14}
\end{equation*}
$$

In tensor notation:

$$
\begin{equation*}
\left(\boldsymbol{a} \boldsymbol{a}^{T}\right)_{i j}=a_{i k} a_{j k}=\delta_{i j} \tag{15}
\end{equation*}
$$

Any of equations (12), (13), (14) or (15) defines an orthogonal transformation.

2.2 Reverse transformations

$$
\begin{gathered}
x_{i}^{\prime}=a_{i j} x_{j} \Rightarrow a_{i k} x_{i}^{\prime}=a_{i k} a_{i j} x_{j}=\delta_{k j} x_{j}=x_{k} \\
\therefore x_{k}=a_{i k} x_{i}^{\prime} \Rightarrow x_{i}=a_{j i} x_{j}^{\prime}
\end{gathered}
$$

i.e. the reverse transformation is simply determined by the transpose.
Similarly, following from

$$
\begin{equation*}
\boldsymbol{e}_{j}=a_{i j} \boldsymbol{e}_{i}^{\prime} \tag{16}
\end{equation*}
$$

we have

$$
\begin{equation*}
\boldsymbol{e}_{i}^{\prime}=a_{i j} \boldsymbol{e}_{j} \tag{17}
\end{equation*}
$$

Transformations for both coordinates and basis vectors

The complementary set of transformations is then

$$
\begin{equation*}
x_{i}^{\prime}=a_{i j} x_{j} \quad \boldsymbol{e}_{i}^{\prime}=a_{i j} \boldsymbol{e}_{j} \tag{18}
\end{equation*}
$$

2.3 Interpretation of the matrix $a_{i j}$

Since

$$
\boldsymbol{e}_{i}^{\prime}=a_{i j} \boldsymbol{e}_{j}
$$

then the $a_{i j}$ are the components of $\boldsymbol{e}_{i}^{\prime}$ wrt the unit vectors in the original system.e.g.

$$
\begin{equation*}
\boldsymbol{e}_{1}^{\prime}=a_{11} \boldsymbol{e}_{1}+a_{12} \boldsymbol{e}_{2}+a_{13} \boldsymbol{e}_{3} \tag{19}
\end{equation*}
$$

Cartesian tensors

2.4 Example: 2D rotation

Then the transformation equation for the coordinates is:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

3 Scalars, Vectors \& Tensors

We define these objects by the way in which they transform with respect to orthogonal coordinate transformations.
3.1 Scalar (f):

$$
\begin{equation*}
f\left(x_{i}^{\prime}\right)=f\left(x_{i}\right) \tag{23}
\end{equation*}
$$

Example of a scalar is $f=r^{2}=x_{i} x_{i}$. Examples from fluid dynamics are the density and temperature.

3.2 Vector (u):

Prototype vector: x_{i}
General transformation law:

$$
\begin{equation*}
x_{i}^{\prime}=a_{i j} x_{j} \Rightarrow u_{i}^{\prime}=a_{i j} u_{j} \tag{24}
\end{equation*}
$$

as the transformation law for a generic vector.

3.3 Gradient operator

Suppose that f is a scalar. The gradient of f is defined by

$$
\begin{equation*}
(\operatorname{grad} f)_{i}=(\nabla f)_{i}=\frac{\partial f}{\partial x_{i}} \tag{25}
\end{equation*}
$$

Need to show this is a vector by its transformation properties.

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}^{\prime}}=\frac{\partial f \partial x_{j}}{\partial x_{j} \partial x_{i}^{\prime}} \tag{26}
\end{equation*}
$$

Since,

$$
\begin{equation*}
x_{j}=a_{k j} x_{k}^{\prime} \tag{27}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{\partial x_{j}}{\partial x_{i}^{\prime}} & =a_{k j} \delta_{k i}=a_{i j} \tag{28}\\
\text { and } \frac{\partial f}{\partial x_{i}^{\prime}} & =a_{i j} \frac{\partial f}{\partial x_{j}}
\end{align*}
$$

Hence the gradient operator satisfies our definition of a vector.

Scalar Product

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{v}=u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \tag{29}
\end{equation*}
$$

is the scalar product of the vectors u_{i} and v_{i}.

Exercise:

Show that $\boldsymbol{u} \cdot \boldsymbol{v}$ is a scalar.

3.4 Tensor

Prototype second rank tensor $x_{i} x_{j}$
General definition by transformation of components:

$$
\begin{equation*}
T_{i j}^{\prime}=a_{i k} a_{j l} T_{k l} \tag{30}
\end{equation*}
$$

Exercise:

Show that $u_{i} v_{j}$ is a second rank tensor if u_{i} and v_{j} are vectors.

Exercise:

$$
u_{i, j}=\frac{\partial u_{i}}{\partial x_{j}}
$$

is a second rank tensor. (Introduces the comma notation for partial derivatives.) In dyadic form this is written as grad \boldsymbol{u} or $\nabla \boldsymbol{u}$.

3.5 Divergence

Exercise:

Show that the quantity

$$
\begin{equation*}
\nabla \cdot v=\operatorname{div} v=\frac{\partial v_{i}}{\partial x_{i}} \tag{31}
\end{equation*}
$$

is a scalar.

4 Products and Contractions of Tensors

It is easy to form higher order tensors by multiplication of lower rank tensors, e.g. $T_{i j k}=T_{i j} u_{k}$ is a third rank tensor if $T_{i j}$ is a second rank tensor and u_{k} is a vector (first rank tensor). It is straightforward to show that $T_{i j k}$ has the relevant transformation properties.
Similarly, if $T_{i j k}$ is a third rank tensor, then $T_{i j j}$ is a vector. Again the relevant transformation properties are easy to prove.

5 Differentiation following the motion

This involves a common operator occurring in fluid dynamics. Suppose the coordinates of an element of fluid are given as a function of time by

$$
\begin{equation*}
x_{i}=x_{i}(t) \tag{32}
\end{equation*}
$$

The velocities of elements of fluid at all spatial locations within a given region constitute a vector field, i.e. $v_{i}=v_{i}\left(x_{j}, t\right)$
If we follow the trajectory of an element of fluid, then on a particular trajectory $x_{i}=x_{i}(t)$. The acceleration of an element is then given by:

$$
f_{i}=\frac{d v_{i}}{d t}=\frac{d}{d t} v_{i}\left(x_{j}(t), t\right)=\frac{\partial v_{i}}{\partial t}+\frac{\partial v_{i} d x_{j}}{\partial x_{j} d t}=\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}} \text { (33) }
$$

Exercise: Show that f_{i} is a vector.

6 The permutation tensor $\varepsilon_{i j k}$

$$
\begin{aligned}
\varepsilon_{i j k} & =0 \quad \text { if any of } i, j, k \text { are equal } \\
& =1 \quad \text { if } i, j, k \text { unequal and in cyclic order } \\
& =-1 \text { if } i, j, k \text { unequal and not in cyclic order }
\end{aligned}
$$

e.g.

$$
\begin{equation*}
\varepsilon_{112}=0 \quad \varepsilon_{123}=1 \quad \varepsilon_{321}=-1 \tag{35}
\end{equation*}
$$

Is $\varepsilon_{i j k}$ a tensor?
In order to show this we have to demonstrate that $\varepsilon_{i j k}$, when defined the same way in each coordinate system has the correct transformation properties.

Define

$$
\begin{aligned}
\varepsilon_{i j k} & =\varepsilon_{l m n} a_{i l} a_{j m} a_{k n} \\
& =\varepsilon_{123} a_{i 1} a_{j 2} a_{k 3}+\varepsilon_{312} a_{i 3} a_{j 1} a_{k 2}+\varepsilon_{231} a_{i 2} a_{j 3} a_{k 1} \\
& +\varepsilon_{213} a_{i 2} a_{j 1} a_{k 3}+\varepsilon_{321} a_{i 3} a_{j 2} a_{k 1}+\varepsilon_{132} a_{i 1} a_{j 3} a_{k 2} \\
& =a_{i 1}\left(a_{j 2} a_{k 3}-a_{j 3} a_{k 2}\right)-a_{i 2}\left(a_{j 1} a_{k 3}-a_{j 3} a_{k 1}\right) \\
& +a_{i 3}\left(a_{j 1} a_{k 2}-a_{j 2} a_{k 1}\right) \\
& =\left|\begin{array}{cc}
a_{i 1} & a_{i 2} \\
a_{j 1} & a_{i 3} \\
a_{j 1} & a_{j 2} \\
a_{k 1} & a_{j 3} \\
a_{k 2} & a_{k 3}
\end{array}\right|
\end{aligned}
$$

Cartesian tensors

In view of the interpretation of the $a_{i j}$, the rows of this determinant represent the components of the primed unit vectors in the unprimed system. Hence:

$$
\varepsilon_{i j k}^{\prime}=\boldsymbol{e}_{i}^{\prime} \cdot\left(\boldsymbol{e}_{j}^{\prime} \times \boldsymbol{e}_{k}^{\prime}\right)
$$

This is zero if any 2 of i, j, k are equal, is +1 for a cyclic permutation of unequal indices and -1 for a non-cyclic permutation of unequal indices. This is just the definition of $\varepsilon_{i j k}^{\prime}$. Thus $\varepsilon_{i j k}$ transforms as a tensor.

6.1 Uses of the permutation tensor
 Cross product

Define

$$
\begin{equation*}
c_{i}=\varepsilon_{i j k} a_{j} b_{k} \tag{36}
\end{equation*}
$$

then

$$
\begin{align*}
& c_{1}=\varepsilon_{123} a_{2} b_{3}+\varepsilon_{132} a_{3} b_{2}=a_{2} b_{3}-a_{3} b_{2} \\
& c_{2}=\varepsilon_{231} a_{3} b_{1}+\varepsilon_{213} a_{1} b_{3}=a_{3} b_{1}-a_{1} b_{3} \tag{37}\\
& c_{3}=\varepsilon_{312} a_{1} b_{2}+\varepsilon_{321} a_{2} b_{1}=a_{1} b_{2}-a_{2} b_{1}
\end{align*}
$$

These are the components of $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$.

6.2 Triple Product

In dyadic notation the triple product of three vectors is:

$$
\begin{equation*}
t=u \cdot(v \times w) \tag{38}
\end{equation*}
$$

In tensor notation this is

$$
\begin{equation*}
t=u_{i} \varepsilon_{i j k} v_{j} w_{k}=\varepsilon_{i j k} u_{i} v_{j} w_{k} \tag{39}
\end{equation*}
$$

6.3 Curl

$$
\begin{equation*}
(\operatorname{curl} \boldsymbol{u})_{i}=\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}} \tag{40}
\end{equation*}
$$

egg.

$$
\begin{equation*}
(\operatorname{curl} \boldsymbol{u})_{1}=\varepsilon_{123} \frac{\partial u_{3}}{\partial x_{2}}+\varepsilon_{132} \frac{\partial u_{2}}{\partial x_{3}}=\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}} \tag{41}
\end{equation*}
$$

etc.
6.4 The tensor $\varepsilon_{i k s} \varepsilon_{m p s}$

Define

$$
\begin{equation*}
T_{i k m p}=\varepsilon_{i k s} \varepsilon_{m p s} \tag{42}
\end{equation*}
$$

Properties:

- If $i=k$ or $m=p$ then $T_{i k m p=0}$.

Cartesian tensors

- If $i=m$ we only get a contribution from the terms $s \neq i$ and $k \neq i, s$. Consequently $k=p$. Thus $\varepsilon_{i k s}= \pm 1$ and $\varepsilon_{m p s}=\varepsilon_{i k s}= \pm 1$ and the product $\varepsilon_{i k s} \varepsilon_{i k s}=(\pm 1)^{2}=1$.
- If $i=p$, similar argument tells us that we must have $s \neq i$ and $k=m \neq i$. Hence, $\varepsilon_{i k s}= \pm 1, \varepsilon_{m p s}=\mp 1 \Rightarrow \varepsilon_{i k s} \varepsilon_{m p s}=-1$. So,

$$
\begin{aligned}
& i=m, k=p \Rightarrow 1 \text { unless } i=k \Rightarrow 0 \\
& i=p, k=m \Rightarrow-1 \text { unless } i=k \Rightarrow 0
\end{aligned}
$$

These are the components of the tensor $\delta_{i m} \delta_{k p}-\delta_{i p} \delta_{k m}$.

$$
\begin{equation*}
\therefore \varepsilon_{i k s} \varepsilon_{m p s}=\delta_{i m} \delta_{k p}-\delta_{i p} \delta_{k m} \tag{43}
\end{equation*}
$$

6.5 Application of $\varepsilon_{i k s} \varepsilon_{m p s}$

$$
\begin{aligned}
{[\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{v})]_{i} } & =\varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\varepsilon_{k l m} u_{l} v_{m}\right) \\
& =\varepsilon_{i j k} \varepsilon_{k l m} \frac{\partial}{\partial x_{j}}\left(u_{l} v_{m}\right) \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right)\left(\frac{\partial u_{l}}{\partial x_{j}} v_{m}+u_{l} \frac{\partial v_{m}}{\partial x_{j}}\right)
\end{aligned}
$$

We then use the substitution property of $\delta_{i j}$ to show that:

$$
\begin{gather*}
{[\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{v})]_{i}=\frac{\partial u_{i}}{\partial x_{m}} v_{m}-v_{i} \frac{\partial u_{j}}{\partial x_{j}}+u_{i} \frac{\partial v_{m}}{\partial x_{m}}-u_{j} \frac{\partial v_{i}}{\partial x_{j}}} \\
=v_{j} \frac{\partial u_{i}}{\partial x_{j}}-u_{j} \frac{\partial v_{i}}{\partial x_{j}}+u_{i} \frac{\partial v_{j}}{\partial x_{j}}-v_{i} \frac{\partial u_{j}}{\partial x_{j}} \tag{45}\\
=(\boldsymbol{v} \cdot \nabla \boldsymbol{u}-\boldsymbol{u} \cdot \nabla \boldsymbol{v}+\boldsymbol{u} \nabla \cdot \boldsymbol{v}-\boldsymbol{v} \nabla \cdot \boldsymbol{u})_{i}
\end{gather*}
$$

The Laplacean

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x_{1}^{2}}+\frac{\partial^{2} \phi}{\partial x_{2}^{2}}+\frac{\partial^{2} \phi}{\partial x_{3}^{2}}=\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{i}} \tag{46}
\end{equation*}
$$

7 Tensor Integrals

7.1 Green's Theorem

In dyadic form:

$$
\begin{equation*}
\int_{V}(\nabla \cdot \boldsymbol{v}) d V=\int_{S}(\boldsymbol{v} \cdot \boldsymbol{n}) d S \tag{47}
\end{equation*}
$$

In tensor form:

$$
\begin{aligned}
\int_{V} \frac{\partial v_{i}}{\partial x_{i}} d V & =\int_{S} v_{i} n_{i} d S=S \\
& =\text { Flux of } v \text { through } \mathrm{S}
\end{aligned}
$$

Extend this to tensors:

$$
\begin{aligned}
\int_{V} \frac{\partial T_{i j}}{\partial x_{j}} d V & =\int_{S} T_{i j} n_{j} d S \\
& =\text { Flux of } T_{i j} \text { through } S
\end{aligned}
$$

7.2 Stoke's Theorem

In dyadic form:

$$
\begin{equation*}
\int_{S}(\operatorname{curl} \boldsymbol{u}) \cdot \boldsymbol{n} d S=\int_{C} \boldsymbol{u} \cdot \boldsymbol{t} d s \tag{50}
\end{equation*}
$$

In tensor form:

$$
\begin{equation*}
\int_{S}^{\varepsilon_{i j k}} \frac{\partial u_{k}}{\partial x_{j}} n_{i} d S=\int_{C} u_{i} t_{i} d s \tag{51}
\end{equation*}
$$

