
Programming Language

Concepts

for Software Developers

Peter Sestoft

IT University of Copenhagen, Denmark

Draft version 0.50.0 of 2010-08-29

Copyright c© 2010 Peter Sestoft

ii

Preface

This book takes an operational approach to presenting programming language

concepts, studying those concepts in interpreters and compilers for a range of

toy languages, and pointing out where those concepts are found in real-world

programming languages.

What is covered Topics covered include abstract and concrete syntax; func-

tional and imperative; interpretation, type checking, and compilation; contin-

uations and peep-hole optimizations; abstract machines, automatic memory

management and garbage collection; the Java Virtual Machine and Microsoft’s

Common Language Infrastructure (also known as .NET); and reflection and

runtime code generation using these execution platforms.

Some effort is made throughout to put programming language concepts into

their historical context, and to show how the concepts surface in languages

that the students are assumed to know already; primarily Java or C#.

We do not cover regular expressions and parser construction in much detail.

For this purpose, we have used compiler design lecture notes written by Torben

Mogensen [101], University of Copenhagen.

Why virtual machines? We do not consider generation of machine code for

‘real’ microprocessors, nor classical compiler subjects such as register alloca-

tion. Instead the emphasis is on virtual stack machines and their intermediate

languages, often known as bytecode.

Virtual machines are machine-like enough to make the central purpose and

concepts of compilation and code generation clear, yet they are much simpler

than present-day microprocessors such as Intel Pentium. Full understand-

ing of performance issues in ‘real’ microprocessors, with deep pipelines, regis-

ter renaming, out-of-order execution, branch prediction, translation lookaside

buffers and so on, requires a very detailed study of their architecture, usu-

ally not conveyed by compiler text books anyway. Certainly, an understand-

ing of the instruction set, such as x86, does not convey any information about

1

2

whether code is fast and or not.

The widely used object-oriented languages Java and C# are rather far re-

moved from the ‘real’ hardware, and are most conveniently explained in terms

of their virtual machines: the Java Virtual Machine and Microsoft’s Common

Language Infrastructure. Understanding the workings and implementation of

these virtual machines sheds light on efficiency issues and design decisions in

Java and C#. To understand memory organization of classic imperative lan-

guages, we also study a small subset of C with arrays, pointer arithmetics, and

recursive functions.

Why F#? We use the functional language F# as presentation language through-

out to illustrate programming language concepts by implementing interpreters

and compilers for toy languages. The idea behind this is two-fold.

First, F# belongs to the ML family of languages and is ideal for implement-

ing interpreters and compilers because it has datatypes and pattern matching

and is strongly typed. This leads to a brevity and clarity of examples that

cannot be matched by non-functional languages.

Secondly, the active use of a functional language is an attempt to add a new

dimension to students’ world view, to broaden their imagination. The prevalent

single-inheritance class-based object-oriented programming languages (namely,

Java and C#) are very useful and versatile languages. But they have come

to dominate computer science education to a degree where students may be-

come unable to imagine other programming tools, especially such that use a

completely different paradigm. Our thesis is that knowledge of a functional

language will make the student a better designer and programmer, whether

in Java, C# or C, and will prepare him or her to adapt to the programming

languages of the future.

For instance, so-called generic types and methods appeared in Java and C#

in 2004 but has been part of other languages, most notably ML, since 1978.

Similarly, garbage collection has been used in functional languages since Lisp

in 1960, but entered mainstream use more than 30 years later, with Java.

Appendix A gives a brief introduction to those parts of F# we use in the rest

of the book. The intention is that students learn enough of F# in the first third

of this course, using a textbook such as Syme et al. [137].

Supporting material There are practical exercises at the end of each chap-

ter. Moreover the book is accompanied by complete implementations in F# of

lexer and parser specifications, abstract syntaxes, interpreters, compilers, and

runtime systems (abstract machines, in Java and C) for a range of toy lan-

guages. This material and lecture slides in PDF are available separately from

3

the author or from the course home page, currently

http://www.itu.dk/courses/BPRD/E2010/.

Acknowledgements This book originated as lecture notes for courses held

at the IT University of Copenhagen, Denmark. This version is updated and

revised to use F# instead of Standard ML as meta-language. I would like to

thank Andrzej Wasowski, Ken Friis Larsen, Hannes Mehnert and past and

present students, in particular Niels Kokholm and Mikkel Bundgaard, who

pointed out mistakes and made suggestions on examples and presentation in

earlier drafts. I also owe a big thanks to Neil D. Jones and Mads Tofte who

influenced my own view of programming languages and the presentation of

programming language concepts.

Warning This version of the lecture notes probably have a fair number of

inconsistencies and errors. You are more than welcome to report them to me

at sestoft@itu.dk — Thanks!

4

Contents

1 Introduction 11

1.1 What files are provided for this chapter 11

1.2 Meta language and object language 11

1.3 A simple language of expressions 12

1.4 Syntax and semantics . 14

1.5 Representing expressions by objects 15

1.6 The history of programming languages 17

1.7 Exercises . 18

2 Interpreters and compilers 23

2.1 What files are provided for this chapter 23

2.2 Interpreters and compilers . 23

2.3 Scope, bound and free variables 24

2.4 Integer addresses instead of names 28

2.5 Stack machines for expression evaluation 29

2.6 Postscript, a stack-based language 30

2.7 Compiling expressions to stack machine code 33

2.8 Implementing an abstract machine in Java 34

2.9 Exercises . 36

3 From concrete syntax to abstract syntax 39

3.1 Preparatory reading . 39

3.2 Lexers, parsers, and generators 40

3.3 Regular expressions in lexer specifications 41

3.4 Grammars in parser specifications 43

3.5 Working with F# modules . 44

3.6 Using fslex and fsyacc . 45

3.7 Lexer and parser specification examples 57

3.8 A handwritten recursive descent parser 58

3.9 JavaCC: lexer-, parser-, and tree generator 60

5

6 Contents

3.10 History and literature . 63

3.11 Exercises . 65

4 A first-order functional language 69

4.1 What files are provided for this chapter 69

4.2 Examples and abstract syntax . 70

4.3 Runtime values: integers and closures 71

4.4 A simple environment implementation 72

4.5 Evaluating the functional language 73

4.6 Static scope and dynamic scope 74

4.7 Type-checking an explicitly typed language 76

4.8 Type rules for monomorphic types 78

4.9 Static typing and dynamic typing 81

4.10 History and literature . 83

4.11 Exercises . 84

5 Higher-order functions 89

5.1 What files are provided for this chapter 89

5.2 Higher-order functions in F# . 89

5.3 Higher-order functions in the mainstream 90

5.4 A higher-order functional language 94

5.5 Eager and lazy evaluation . 95

5.6 The lambda calculus . 96

5.7 History and literature . 99

5.8 Exercises . 99

6 Polymorphic types 107

6.1 What files are provided for this chapter 107

6.2 ML-style polymorphic types . 107

6.3 Type rules for polymorphic types 111

6.4 Implementing ML type inference 113

6.5 Generic types in Java and C# . 119

6.6 Co-variance and contra-variance 121

6.7 History and literature . 125

6.8 Exercises . 125

7 Imperative languages 131

7.1 What files are provided for this chapter 131

7.2 A naive imperative language . 132

7.3 Environment and store . 133

7.4 Parameter passing mechanisms 135

7.5 The C programming language . 137

Contents 7

7.6 The micro-C language . 140

7.7 Notes on Strachey’s Fundamental concepts 148

7.8 History and literature . 152

7.9 Exercises . 152

8 Compiling micro-C 157

8.1 What files are provided for this chapter 157

8.2 An abstract stack machine . 158

8.3 The structure of the stack at runtime 164

8.4 Compiling micro-C to abstract machine code 165

8.5 Compilation schemes for micro-C 167

8.6 Compilation of statements . 167

8.7 Compilation of expressions . 168

8.8 Compilation of access expressions 172

8.9 History and literature . 172

8.10 Exercises . 173

9 Real-world abstract machines 177

9.1 What files are provided for this chapter 177

9.2 An overview of abstract machines 177

9.3 The Java Virtual Machine (JVM) 179

9.4 The Common Language Infrastructure (CLI) 186

9.5 Generic types in CLI and JVM . 189

9.6 Decompilers for Java and C# . 193

9.7 History and literature . 194

9.8 Exercises . 195

10 Garbage collection 199

10.1 What files are provided for this chapter 199

10.2 Predictable lifetime and stack allocation 199

10.3 Unpredictable lifetime and heap allocation 200

10.4 Allocation in a heap . 201

10.5 Garbage collection techniques . 203

10.6 Programming with a garbage collector 211

10.7 Implementing a garbage collector in C 212

10.8 History and literature . 219

10.9 Exercises . 220

11 Continuations 225

11.1 What files are provided for this chapter 225

11.2 Tail-calls and tail-recursive functions 226

11.3 Continuations and continuation-passing style 229

8 Contents

11.4 Interpreters in continuation-passing style 231

11.5 The frame stack and continuations 236

11.6 Exception handling in a stack machine 236

11.7 Continuations and tail calls . 238

11.8 Callcc: call with current continuation 239

11.9 Continuations and backtracking 240

11.10 History and literature . 244

11.11 Exercises . 245

12 A locally optimizing compiler 251

12.1 What files are provided for this chapter 251

12.2 Generating optimized code backwards 251

12.3 Backwards compilation functions 252

12.4 Other optimizations . 265

12.5 A command line compiler for micro-C 266

12.6 History and literature . 267

12.7 Exercises . 267

13 Reflection 273

13.1 What files are provided for this chapter 273

13.2 Reflection mechanisms in Java and C# 275

13.3 History and literature . 276

14 Runtime code generation 279

14.1 What files are provided for this chapter 279

14.2 Program specialization . 280

14.3 Quasiquote and two-level languages 282

14.4 Runtime code generation using C# 290

14.5 JVM runtime code generation (gnu.bytecode) 295

14.6 JVM runtime code generation (BCEL) 297

14.7 Speed of code and of code generation 297

14.8 Efficient reflective method calls in Java 299

14.9 Applications of runtime code generation 301

14.10 History and literature . 301

14.11 Exercises . 303

A F# crash course 309

A.1 What files are provided for this chapter 309

A.2 Getting started . 309

A.3 Expressions, declarations and types 310

A.4 Pattern matching . 317

A.5 Pairs and tuples . 318

Contents 9

A.6 Lists . 319

A.7 Records and labels . 321

A.8 Raising and catching exceptions 322

A.9 Datatypes . 323

A.10 Type variables and polymorphic functions 326

A.11 Higher-order functions . 328

A.12 F# mutable references . 331

A.13 F# arrays . 332

A.14 Other F# features . 333

Bibliography 334

Index 344

10 Contents

Chapter 1

Introduction

This chapter introduces the approach taken and the plan followed in this book.

1.1 What files are provided for this chapter

File Contents

Intro/Intro1.fs simple expressions without variables, in F#

Intro/Intro2.fs simple expressions with variables, in F#

Intro/SimpleExpr.java simple expressions with variables, in Java

1.2 Meta language and object language

In linguistics and mathematics, an object language is a language we study

(such as C++ or Latin) and the meta language is the language in which we

conduct our discussions (such as Danish or English). Throughout this book we

shall use the F# language as the meta language. We could use Java of C#, but

that would be more cumbersome because of the lack of datatypes and pattern

matching.

F# is a strict, strongly typed functional programming language in the ML

family. Appendix A presents the basic concepts of F#: value, variable, binding,

type, tuple, function, recursion, list, pattern matching, and datatype. Several

books give a more detailed introduction, including Syme et al. [137].

It is convenient to run F# interactive sessions inside Microsoft Visual Stu-

dio (under MS Windows), or executing fsi interactive sessions using Mono

(under Linux and MacOS X); see Appendix A.

11

12 A simple language of expressions

1.3 A simple language of expressions

As an example object language we start by studying a simple language of

expressions, with constants, variables (of integer type), let-bindings, (nested)

scope, and operators; see files Intro/Intro1.fs and Intro/Intro2.fs.

Thus in our example language, an abstract syntax tree (AST) represents an

expression.

1.3.1 Expressions without variables

First, let us consider expressions consisting only of integer constants and two-

argument (dyadic) operators such as (+) and (*). We model an expression as

a term of an F# datatype expr, where integer constants are modelled by con-

structor CstI, and operator applications are modelled by constructor Prim:

type expr =
| CstI of int
| Prim of string * expr * expr

Here are some example expressions in this representation:

Expression Representation in type expr
17 CstI 17
3− 4 Prim("-", CstI 3, CstI 4)
7 ·9+ 10 Prim("+", Prim("*", CstI 7, CstI 9), CstI 10)

An expression in this representation can be evaluated to an integer by a func-

tion eval : expr -> int that uses pattern matching to distinguish the various

forms of expression. Note that to evaluate e1 + e2, it must evaluate e1 and e2

and to obtain two integers, and then add those, so the evaluation function must

call itself recursively:

let rec eval (e : expr) : int =
match e with

| CstI i -> i
| Prim("+", e1, e2) -> eval e1 + eval e2
| Prim("*", e1, e2) -> eval e1 * eval e2
| Prim("-", e1, e2) -> eval e1 - eval e2
| Prim _ -> failwith "unknown primitive";;

The eval function is an interpreter for ‘programs’ in the expression language.

It looks rather boring, as it maps the expression language constructs directly

into F# constructs. However, we might change it to interpret the operator (-)

A simple language of expressions 13

as cut-off subtraction, whose result is never negative, then we get a ‘language’

with the same expressions but a very different meaning. For instance, 3− 4
now evaluates to zero:

let rec eval (e : expr) : int =
match e with
| CstI i -> i
| Prim("+", e1, e2) -> eval e1 + eval e2
| Prim("*", e1, e2) -> eval e1 * eval e2
| Prim("-", e1, e2) ->

let res = eval e1 - eval e2
in if res < 0 then 0 else res

| Prim _ -> failwith "unknown primitive";;

1.3.2 Expressions with variables

Now, let us extend our expression language with variables. First, we add a

new constructor Var to the syntax:

type expr =
| CstI of int
| Var of string
| Prim of string * expr * expr

Here are some expressions and their representation in this syntax:

Expression Representation in type expr
17 CstI 17
x Var "x"
3+ a Prim("+", CstI 3, Var "a")
b ·9+ a Prim("+", Prim("*", Var "b", CstI 9), Var "a")

Next we need to extend the eval interpreter to give a meaning to such vari-

ables. To do this, we give eval an extra argument env, a so-called environment.

The role of the environment is to associate a value (here, an integer) with a

variable; that is, the environment is a map or dictionary, mapping a variable

name to the variable’s current value. A simple classical representation of such

a map is an association list: a list of pairs of a variable name and the associated

value:

let env = [("a", 3); ("c", 78); ("baf", 666); ("b", 111)];;

This environment maps "a" to 3, "c" to 78, and so on. The environment has

type (string * int) list. An empty environment, which does not map any

variable to anything, is represented by the empty association list

14 Syntax and semantics

let emptyenv = [];;

To look up a variable in an environment, we define a function lookup of type

(string * int) list -> string -> int. An attempt to look up variable x in

an empty environment fails; otherwise, if the environment first associates y
with v and x equals y, then result is v; else the result is obtained by looking for

x in the rest r of the environment:

let rec lookup env x =
match env with
| [] -> failwith (x + " not found")
| (y, v)::r -> if x=y then v else lookup r x;;

As promised, our new eval function takes both an expression and an envi-

ronment, and uses the environment and the lookup function to determine the

value of a variable Var x. Otherwise the function is as before, except that env
must be passed on in recursive calls:

let rec eval e (env : (string * int) list) : int =
match e with

| CstI i -> i
| Var x -> lookup env x
| Prim("+", e1, e2) -> eval e1 env + eval e2 env
| Prim("*", e1, e2) -> eval e1 env * eval e2 env
| Prim("-", e1, e2) -> eval e1 env - eval e2 env
| Prim _ -> failwith "unknown primitive";;

Note that our lookup function returns the first value associated with a variable,

so if env is [("x", 11); ("x", 22)], then lookup env "x" is 11, not 22. This is

useful when we consider nested scopes in Chapter 2.

1.4 Syntax and semantics

We have already mentioned syntax and semantics. Syntax deals with form: is

this text a well-formed program? Semantics deals with meaning: what does

this (well-formed) program mean, how does it behave – what happens when

we execute it?

• Syntax – form: is this a well-formed program?

– Abstract syntax – programs as trees, or values of an F# datatype

such as Prim("+", CstI 3, Var "a")

– Concrete syntax – programs as linear texts such as ‘3+ a’.

Representing expressions by objects 15

• Semantics – meaning: what does this well-formed program mean?

– Static semantics – is this well-formed program a legal one?

– Dynamic semantics – what does this program do when executed?

The distinction between syntax and static semantics is not clear-cut. Syntax

can tell us that x12 is a legal variable name (in Java), but it is impractical to

use syntax to tells us that we cannot declare x12 twice in the same scope (in

Java). Hence this restriction is usually enforced by static semantics checks.

In the rest of the book we shall study a small example language, two small

functional languages (a first-order and a higher-order one), a subset of the

imperative language C, and a subset of the backtracking (or goal-directed) lan-

guage Icon. In each case we take the following approach:

• We describe abstract syntax using F# datatypes.

• We describe concrete syntax using lexer and parser specifications (see

Chapter 3), and implement lexers and parsers using fslex and fsyacc.

• We describe semantics using F# functions, both static semantics (checks)

and dynamic semantics (execution). The dynamic semantics can be de-

scribed in two ways: by direct interpretation using functions typically

called eval, or by compilation to another language, such as stack machine

code, using functions typically called comp.

In addition we study some abstract stack machines, both homegrown ones

and two widely used so-called managed execution platforms: The Java Vir-

tual Machine (JVM) and Microsoft’s Common Language Infrastructure (CLI,

also known as .Net).

1.5 Representing expressions by objects

In this book we use a functional language to represent expressions and other

program fragments. In particular, we use the F# algebraic datatype expr to

represent expressions in the form of abstract syntax. We use the eval function

to define their dynamic semantics, using pattern matching to distinguish the

different forms of expressions: constants, variables, operators applications.

In this section we briefly consider an object-oriented modelling (in Java,

say) of expression syntax and expression evaluation. In general, this would in-

volve an abstract base class Expr of expressions (instead of the expr datatype),

and a concrete subclass for each form of expression (instead of datatype con-

structor for each form of expression):

16 Representing expressions by objects

abstract class Expr { }
class CstI extends Expr {
protected final int i;
public CstI(int i) { this.i = i; }

}
class Var extends Expr {
protected final String name;
public Var(String name) { this.name = name; }

}
class Prim extends Expr {
protected final String oper;
protected final Expr e1, e2;
public Prim(String oper, Expr e1, Expr e2) {
this.oper = oper; this.e1 = e1; this.e2 = e2;

}
}

Note that each Expr subclass has fields of exactly the same types as the argu-

ments of the corresponding constructor in the expr datatype from Section 1.3.2.

For instance, class CstI has a field of type int exactly as constructor CstI has

an argument of type int. In object-oriented terms Prim is a composite because

it has fields whose type is its base type Expr; in functional programming terms

one would say that type expr is a recursively defined datatype.

How can we define an evaluation method for expressions similar to the

F# eval function in Section 1.3.2? That eval function uses pattern match-

ing, which is not available in Java or C#. A poor solution would be to use

an if-else sequence that tests on the class of the expression, as in if (e
instanceof CstI) ... and so on. The proper object-oriented solution is to

declare an abstract method eval on class Expr, override the eval method in

each subclass, and rely on virtual method calls to invoke the correct override

in the composite case. Below we use a map from variable name (String) to

value (Integer) to represent the environment:

abstract class Expr {
abstract public int eval(Map<String,Integer> env);

}
class CstI extends Expr {
protected final int i;
...
public int eval(Map<String,Integer> env) {
return i;

}
}
class Var extends Expr {

The history of programming languages 17

protected final String name;
...
public int eval(Map<String,Integer> env) {
return env.get(name);

}
}
class Prim extends Expr {
protected final String oper;
protected final Expr e1, e2;
...
public int eval(Map<String,Integer> env) {
if (oper.equals("+"))
return e1.eval(env) + e2.eval(env);

else if (oper.equals("*"))
return e1.eval(env) * e2.eval(env);

else ...
}

}

Most of the development in this book could have been carried out in an object-

oriented language, but the extra verbosity (of Java or C#) and the lack of nested

pattern matching would often make the presentation considerable more ver-

bose.

1.6 The history of programming languages

Since 1956, thousands of programming languages have been proposed and im-

plemented, but only a modest number of them, maybe a few hundred, have

been widely used. Most new programming languages arise as a reaction to

some language that the designer knows (and likes or dislikes) already, so one

can propose a family tree or genealogy for programming languages, just as for

living organisms. Figure 1.1 presents one such attempt.

In general, languages lower in the diagram (near the time axis) are closer

to the real hardware than those higher in the diagram, which are more ‘high-

level’ in some sense. In Fortran77 or C, it is fairly easy to predict what instruc-

tions and how many instructions will be executed at run-time for a given line

of program. The mental machine model that the C or Fortran77 programmer

must use to write efficient programs is very close to the real machine.

Conversely, the top-most languages (SASL, Haskell, Standard ML, F#) are

functional languages, possibly with lazy evaluation, with dynamic or advanced

static type systems and with automatic memory management, and it is in gen-

eral difficult to predict how many machine instructions are required to eval-

uate any given expression. The mental machine model that the Haskell or

18 Exercises

Standard ML or F# programmer must use to write efficient programs is far

from the details of a real machine, so he can think on a rather higher level. On

the other hand, he loses control over detailed efficiency.

It is remarkable that the recent mainstream languages Java and C#, es-

pecially their post-2004 incarnations, have much more in common with the

academic languages of the 1980’s than with those languages that were used in

the ‘real world’ during those years (C, Pascal, C++).

1.7 Exercises

The goal of these exercises is to make sure that you have a good understanding

of functional programming with algebraic datatypes, pattern matching and

recursive functions. This is a necessary basis for the rest of the book. Also,

you should know how to use these concepts for representing and processing

expressions in the form of abstract syntax trees.

The exercises let you try yourself the ideas and concepts that were intro-

duced in the lectures. Some exercises may be challenging, but they are not

supposed to require days of work.

It is recommended that you solve Exercises 1.1, 1.2, 1.3 and 1.5, and hand

in the solutions. If you solve more exercises, you are welcome to hand in those

solutions also.

Do this first

Make sure you have F# installed. It should be integrated into Visual Studio

2010, but otherwise can be downloaded from http://msdn.microsoft.com/fsharp/.

Note that Appendix A of this book contains information on F# that may be

valuable when doing these exercises.

Exercise 1.1 Define the following functions in F#:

• A function max2 : int * int -> int that returns the largest of its two

integer arguments. For instance, max(99, 3) should give 99.

• A function max3 : int * int * int -> int that returns the largest of its

three integer arguments.

• A function isPositive : int list -> bool so that isPositive xs returns

true if all elements of xs are greater than 0, and false otherwise.

• A function isSorted : int list -> bool so that isSorted xs returns true

if the elements of xs appear sorted in non-decreasing order, and false oth-

erwise. For instance, the list [11; 12; 12] is sorted, but [12; 11; 12] is

E
x
ercises

1
9

ML

SASL HASKELL

LISP

COBOL

VISUAL BASIC

GJ

JAVA

2000

C#

BASIC

CCPL BBCPL

FORTRAN77

BETA

2010

Java 5

C# 2 C# 4

STANDARD ML

OCAMLCAML LIGHT

VB.NET 10

Go

F#

Scala

FORTRAN90

ADA ADA95 ADA2005

FORTRAN2003

FORTRAN

ALGOL

PASCAL

C++ALGOL 68

SIMULA

SMALLTALK

PROLOG

1956 1970 1980 19901960

SCHEME

F
ig

u
re

1
.1

:
T

h
e

g
e
n

e
a
lo

g
y

o
f

p
ro

g
ra

m
m

in
g

la
n

g
u

a
g
e
s.

20 Exercises

not. Note that the empty list [] and any one-element list such as [23]
are sorted.

• A function count : inttree -> int that counts the number of internal

nodes (Br constructors) in an inttree, where the type inttree is defined

in the lecture notes, Appendix A. That is, count (Br(37, Br(117, Lf,
Lf), Br(42, Lf, Lf))) should give 3, and count Lf should give 0.

• A function depth : inttree -> int that measures the depth of an inttree,

that is, the maximal number of internal nodes (Br constructors) on a path

from the root to a leaf. For instance, depth (Br(37, Br(117, Lf, Lf),
Br(42, Lf, Lf))) should give 2, and depth Lf should give 0.

Exercise 1.2 (i) File Intro/Intro2.fs on the course homepage contains a def-

inition of the lecture’s expr expression language and an evaluation function

eval. Extend the eval function to handle three additional operators: "max",

"min", and "==". Like the existing operators, they take two argument expres-

sions. The equals operator should return 1 when true and 0 when false.

(ii) Write some example expressions in this extended expression language, us-

ing abstract syntax, and evaluate them using your new eval function.

(iii) Rewrite one of the eval functions to evaluate the arguments of a primitive

before branching out on the operator, in this style:

let rec eval e (env : (string * int) list) : int =
match e with
| ...
| Prim(ope, e1, e2) ->

let i1 = ...
let i2 = ...
in match ope with

| "+" -> i1 + i2
| ...

(iv) Extend the expression language with conditional expressions If(e1, e2,
e3) corresponding to Java’s expression e1 ? e2 : e3 or F#’s conditional ex-

pression if e1 then e2 else e3.

You need to extend the expr datatype with a new constructor If that takes

three expr arguments.

(v) Extend the interpreter function eval correspondingly. It should evaluate

e1, and if e1 is non-zero, then evaluate e2, else evaluate e3. You should be

able to evaluate this expression let e5 = If(Var "a", CstI 11, CstI 22) in

an environment that binds variable a.

Note that various strange and non-standard interpretations of the condi-

tional expression are possible. For instance, the interpreter might start by

Exercises 21

testing whether expressions e2 and e3 are syntactically identical, in which

case there is no need to evaluate e1, only e2 (or e3). Although possible, this is

rarely useful.

Exercise 1.3 (i) Declare an alternative datatype aexpr for a representation of

arithmetic expressions without let-bindings. The datatype should have con-

structors CstI, Var, Add, Mul, Sub, for constants, variables, addition, multiplica-

tion, and subtraction.

The idea is that we can represent x ∗ (y+ 3) as Mul(Var "x", Add(Var "y",
CstI 3)) instead of Prim("*", Var "x", Prim("+", Var "y", CstI 3)).

(ii) Write the representation of the expressions v− (w+ z) and 2 ∗ (v− (w+ z))
and x+ y+ z+ v.

(iii) Write an F# function fmt : aexpr -> string to format expressions as

strings. For instance, it may format Sub(Var "x", CstI 34) as the string "(x
- 34)". It has very much the same structure as an eval function, but takes no

environment argument (because the name of a variable is independent of its

value).

(iv) Write an F# function simplify : aexpr -> aexpr to perform expression

simplification. For instance, it should simplify (x+ 0) to x, and simplify (1+ 0)
to 1. The more ambitious student may want to simplify (1+ 0) ∗ (x+ 0) to x.

Hint 1: Pattern matching is your friend. Hint 2: Don’t forget the case where

you cannot simplify anything.

You might consider the following simplifications, plus any others you find

useful and correct:

0+ e −→ e
e+ 0 −→ e
e− 0 −→ e
1 ∗ e −→ e
e∗ 1 −→ e
0 ∗ e −→ 0
e∗ 0 −→ 0
e− e −→ 0

(v) [Only for people with fond recollections of differential calculus]. Write an F#

function to perform symbolic differentiation of simple arithmetic expressions

(such as aexpr) with respect to a single variable.

Exercise 1.4 Write a version of the formatting function fmt from the preced-

ing exercise that avoids producing excess parentheses. For instance,

Mul(Sub(Var "a", Var "b"), Var "c")

22 Exercises

should be formatted as "(a-b)*c" instead of "((a-b)*c)", whereas

Sub(Mul(Var "a", Var "b"), Var "c")

should be formatted as "a*b-c" instead of "((a*b)-c)". Also, it should be taken

into account that operators associate to the left, so that

Sub(Sub(Var "a", Var "b"), Var "c")

is formatted as "a-b-c" whereas

Sub(Var "a", Sub(Var "b", Var "c"))

is formatted as "a-(b-c)".

Hint: This can be achieved by declaring the formatting function to take

an extra parameter pre that indicates the precedence or binding strength of

the context. The new formatting function then has type fmt : int -> expr ->
string.

Higher precedence means stronger binding. When the top-most operator of

an expression to be formatted has higher precedence than the context, there

is no need for parentheses around the expression. A left associative operator

of precedence 6, such as minus (-), provides context precedence 5 to its left

argument, and context precedence 6 to its right argument.

As a consequence, Sub(Var "a", Sub(Var "b", Var "c")) will be parenthe-

sized a - (b - c) but Sub(Sub(Var "a", Var "b"), Var "c") will be parenthe-

sized a - b - c.

Exercise 1.5 This chapter has shown how to represent abstract syntax in

functional languages such as F# (using algebraic datatypes) and in object-

oriented languages such as Java or C# (using a class hierarchy and compos-

ites).

(i) Use Java or C# classes and methods to do what we have done using the

F# datatype aexpr in the preceding exercises. Design a class hierarchy to

represent arithmetic expressions: it could have an abstract class Expr with

subclasses CstI, Var, and Binop, where the latter is itself abstract and has con-

crete subclasses Add, Mul and Sub. All classes should implement the toString()
method to format an expression as a String.

The classes may be used to build an expression in abstract syntax, and then

print it, as follows:

Expr e = new Add(new CstI(17), new Var("z"));
System.out.println(e.toString());

(ii) Create three more expressions in abstract syntax and print them.

(iii) Extend your classes with facilities to evaluate the arithmetic expressions,

that is, add a method int eval(env).

Chapter 2

Interpreters and compilers

This chapter introduces the distinction between interpreters and compilers,

and demonstrates some concepts of compilation, using the simple expression

language as an example. Some concepts of interpretation are illustrated also,

using a stack machine as an example.

2.1 What files are provided for this chapter

File Contents

Intcomp/Intcomp1.fs very simple expression interpreter and compilers

Intcomp/Machine.java abstract machine in Java (see Section 2.8)

Intcomp/prog.ps a simple Postscript program (see Section 2.6)

Intcomp/sierpinski.eps an intricate Postscript program (see Section 2.6)

2.2 Interpreters and compilers

An interpreter executes a program on some input, producing an output or re-

sult; see Figure 2.1. An interpreter is usually itself a program, but one might

also say that an Intel or AMD x86 processor (used in most PC’s) or an ARM

processor (used in many mobile phones) is an interpreter, implemented in sili-

con. For an interpreter program we must distinguish the interpreted language

L (the language of the programs being executed, for instance our expression

language expr) from the implementation language I (the language in which

the interpreter is written, for instance F#). When program in the interpreted

language L is a sequence of simple instructions, and thus looks like machine

code, the interpreter is often called an abstract machine or virtual machine.

23

24 Scope, bound and free variables

InterpreterProgram

Input

Output

Figure 2.1: Interpretation in one stage.

OutputSource program Target programCompiler (Abstract) machine

Input

Figure 2.2: Compilation and execution in two stages.

A compiler takes as input a source program and generates as output an-

other (equivalent) program, called a target program, which can then be exe-

cuted; see Figure 2.2. We must distinguish three languages: the source lan-

guage S (eg. expr) of the input programs, the target language T (eg. texpr) of

the output programs, and the implementation language I (for instance, F#) of

the compiler itself.

The compiler does not execute the program; after the target program has

been generated it must be executed by a machine or interpreter which can

execute programs written in language T . Hence we can distinguish between

compile-time (at which time the source program is compiled into a target pro-

gram) and run-time (at which time the target program is executed on actual

inputs to produce a result). At compile-time one usually also performs vari-

ous so-called well-formedness checks of the source program: are all variables

bound? do operands have the correct type in expressions? etc.

2.3 Scope, bound and free variables

The scope of a variable binding is that part of a program in which it is vis-

ible. For instance, the scope of the binding of x in this F# expression is the

expression x + 3:

let x = 6 in x + 3

A language has static scope if the scopes of bindings follow the syntactic struc-

ture of the program. Most modern languages, such as C, C++, Pascal, Algol,

Scope, bound and free variables 25

Scheme, Java, C# and F# have static scope; but see Section 4.6 for some that

do not.

A language has nested scope if an inner scope may create a ‘hole’ in an outer

scope by declaring a new variable with the same name, as shown by this F#

expression, where the second binding of x hides the first one in x+2 but not in

x+3:

let x = 6 in (let x = x + 2 in x * 2) + (x + 3)

Nested scope is known also from Standard ML, C, C++, Pascal, Algol; and from

Java and C#, for instance when a parameter or local variable in a method hides

a field from an enclosing class, or when a declaration in a Java anonymous

inner class or a C# anonymous method hides a local variable already in scope.

It is useful to distinguish bound and free occurrences of a variable. A vari-

able occurrence is bound if it occurs within the scope of a binding for that

variable, and free otherwise. That is, x occurs bound in the body of this let-

binding:

let x = 6 in x + 3

but x occurs free in this one:

let y = 6 in x + 3

and in this one

let y = x in y + 3

and it occurs free (the first time) as well as bound (the second time) in this

expression

let x = x + 6 in x + 3

2.3.1 Expressions with let-bindings and static scope

Now let us extend the expression language from Section 1.3 with let-bindings

of the form let x = e1 in e2, here represented by the Let constructor:

type expr =
| CstI of int
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr

26 Scope, bound and free variables

Using the same environment representation and lookup function as in Sec-

tion 1.3.2, we can interpret let x = erhs in ebody as follows. We evaluate the

right-hand side erhs in the same environment as the entire let-expression, ob-

taining a value xval for x; then we create a new environment env1 by adding

the association (x, xval) and interpret the let-body ebody in that environment;

finally we return the result as the result of the let-binding:

let rec eval e (env : (string * int) list) : int =
match e with

| CstI i -> i
| Var x -> lookup env x
| Let(x, erhs, ebody) ->
let xval = eval erhs env
let env1 = (x, xval) :: env
in eval ebody env1

| Prim("+", e1, e2) -> eval e1 env + eval e2 env
| Prim("*", e1, e2) -> eval e1 env * eval e2 env
| Prim("-", e1, e2) -> eval e1 env - eval e2 env
| Prim _ -> failwith "unknown primitive";;

The new binding of x will hide any existing binding of x, thanks to the definition

of lookup. Also, since the old environment env is not destructively modified

— the new environment env1 is just a temporary extension of it — further

evaluation will continue on the old environment. Hence we obtain nested static

scopes.

2.3.2 Closed expressions

An expression is closed if no variable occurs free in the expression. In most

programming languages, programs must be closed: they cannot have unbound

(undeclared) names. To efficiently test whether an expression is closed, we

define a slightly more general concept, closedin e vs, of an expression e being

closed in a list vs of bound variables:

let rec closedin (e : expr) (vs : string list) : bool =
match e with

| CstI i -> true
| Var x -> List.exists (fun y -> x=y) vs
| Let(x, erhs, ebody) ->
let vs1 = x :: vs
in closedin erhs vs && closedin ebody vs1

| Prim(ope, e1, e2) -> closedin e1 vs && closedin e2 vs;;

A constant is always closed. A variable occurrence x is closed in vs if x appears

in vs. The expression let x=erhs in ebody is closed in vs if erhs is closed in vs

Scope, bound and free variables 27

and ebody is closed in x :: vs. An operator application is closed in vs if both

its operands are.

Now, an expression is closed if it is closed in the empty environment []:

let closed1 e = closedin e [];;

2.3.3 The set of free variables

Now let us compute the set of variables that occur free in an expression. First,

if we represent a set of variables as a list without duplicates, then [] represents

the empty set, and [x] represents the singleton set containing just x, and one

can compute set union and set difference like this:

let rec union (xs, ys) =
match xs with
| [] -> ys
| x::xr -> if mem x ys then union(xr, ys)

else x :: union(xr, ys);;
let rec minus (xs, ys) =

match xs with
| [] -> []
| x::xr -> if mem x ys then minus(xr, ys)

else x :: minus (xr, ys);;

Now the set of free variables can be computed easily:

let rec freevars e : string list =
match e with
| CstI i -> []
| Var x -> [x]
| Let(x, erhs, ebody) ->

union (freevars erhs, minus (freevars ebody, [x]))
| Prim(ope, e1, e2) -> union (freevars e1, freevars e2);;

The set of free variables in a constant is the empty set []. The set of free

variables in a variable occurrence x is the singleton set [x]. The set of free

variables in let x=erhs in ebody is the union of the free variables in erhs,

with the free variables of ebody minus x. The set of free variables in an operator

application is the union of the sets of free variables in its operands.

This gives a direct way to compute whether an expression is closed; simply

check that the set of its free variables is empty:

let closed2 e = (freevars e = []);;

28 Integer addresses instead of names

2.4 Integer addresses instead of names

For efficiency, symbolic variable names are replaced by variable addresses (in-

tegers) in real machine code and in most interpreters. To show how this may

be done, we define an abstract syntax texpr for target expressions that uses

(integer) variable indexes instead of symbolic variable names:

type texpr = (* target expressions *)
| TCstI of int
| TVar of int (* index into runtime environment *)
| TLet of texpr * texpr (* erhs and ebody *)
| TPrim of string * texpr * texpr

Then we can define a function

tcomp : expr -> string list -> texpr

to compile an expr to a texpr within a given compile-time environment. The

compile-time environment maps the symbolic names to integer variable in-

dexes. In the interpreter teval for texpr, a run-time environment maps in-

tegers (variable indexes) to variable values (accidentally also integers in this

case).

In fact, the compile-time environment in tcomp is just a string list, a list

of the bound variables. The position of a variable in the list is its binding

depth (the number of other let-bindings between the variable occurrence and

the binding of the variable). Correspondingly, the run-time environment in

teval is an int list storing the values of the variables in the same order as

their names in compile-time environment. Therefore we can simply use the

binding depth of a variable to access the variable at run-time. The integer

giving the position is called an offset by compiler writers, and a deBruijn index

by theoreticians (in the lambda calculus): the number of binders between this

occurrence of a variable, and its binding.

The type of teval is

teval : texpr -> int list -> int

Note that in one-stage interpretive execution (eval) the environment had type

(string * int) list and contained both variable names and variable values.

In the two-stage compiled execution, the compile-time environment (in tcomp)

had type string list and contained variable names only, whereas the run-

time environment (in teval) had type int list and contained variable values

only.

Thus effectively the joint environment from interpretive execution has been

split into a compile-time environment and a run-time environment. This is no

Stack machines for expression evaluation 29

accident: the purpose of compiled execution is to perform some computations

(such as variable lookup) early, at compile-time, and perform other computa-

tions (such as multiplications of variables’ values) only later, at run-time.

The correctness requirement on a compiler can be stated using equivalences

such as this one:

eval e [] equals teval (tcomp e []) []

which says that

• if te = tcomp e [] is the result of compiling the closed expression e in

the empty compile-time environment [],

• then evaluation of the target expression te using the teval interpreter

and empty run-time environment [] should produce the same result as

evaluation of the source expression e using the eval interpreter and an

empty environment [],

• and vice versa.

2.5 Stack machines for expression evaluation

Expressions, and more generally, functional programs, are often evaluated by

a stack machine. We shall study a simple stack machine (an interpreter which

implements an abstract machine) for evaluation of expressions in postfix (or

reverse Polish) form. Reverse Polish form is named after the Polish philosopher

and mathematician Jan Łukasiewicz (1878–1956).

Stack machine instructions for an example language without variables (and

hence without let-bindings) may be described using this F# type:

type rinstr =
| RCstI of int
| RAdd
| RSub
| RMul
| RDup
| RSwap

The state of the stack machine is a pair (c,s) of the control and the stack. The

control c is the sequence of instructions yet to be evaluated. The stack s is a

list of values (here integers), namely, intermediate results.

The stack machine can be understood as a transition system, described

by the rules shown in Figure 2.3. Each rule says how the execution of one

30 Postscript, a stack-based language

Instruction Stack before Stack after Effect

RCst i s ⇒ s, i Push constant

RAdd s, i1, i2 ⇒ s,(i1 + i2) Addition

RSub s, i1, i2 ⇒ s,(i1 − i2) Subtraction

RMul s, i1, i2 ⇒ s,(i1 ∗ i2) Multiplication

RDup s, i ⇒ s, i, i Duplicate stack top

RSwap s, i1, i2 ⇒ s, i2, i1 Swap top elements

Figure 2.3: Stack machine instructions for expression evaluation.

instruction causes the machine may go from one state to another. The stack

top is to the right.

For instance, the second rule says that if the two top-most stack elements

are 5 and 7, so the stack has form s,7,5 for some s, then executing the RAdd
instruction will cause the stack to change to s,12.

The rules of the abstract machine are quite easily translated into an F#

function (see file Intcomp1.fs):

reval : rinstr list -> int list -> int

The machine terminates when there are no more instructions to execute (or we

might invent an explicit RStop instruction, whose execution would cause the

machine to ignore all subsequent instructions). The result of a computation is

the value on top of the stack when the machine stops.

The net effect principle for stack-based evaluation says: regardless what is

on the stack already, the net effect of the execution of an instruction sequence

generated from an expression e is to push the value of e onto the evaluation

stack, leaving the given contents of the stack unchanged.

Expressions in postfix or reverse Polish notation are used by scientific pocket

calculators made by Hewlett-Packard, primarily popular with engineers and

scientists. A significant advantage of postfix notation is that one can avoid

the parentheses found on other calculators. The disadvantage is that the user

must ‘compile’ expressions from their usual algebraic notation to stack ma-

chine notation, but that is surprisingly easy to learn.

2.6 Postscript, a stack-based language

Stack-based (interpreted) languages are widely used. The most notable among

them is Postscript (ca 1984), which is implemented in almost all high-end laser-

Postscript, a stack-based language 31

printers. By contrast, Portable Document Format (PDF), also from Adobe Sys-

tems, is not a full-fledged programming language.

Forth (ca. 1968) is another stack-based language, which is an ancestor of

Postscript. It is used in embedded systems to control scientific equipment,

satellites etc.

In Postscript one can write

4 5 add 8 mul =

to compute (4+ 5)∗ 8 and print the result, and

/x 7 def
x x mul 9 add =

to bind x to 7 and then compute x*x+9 and print the result. The ‘=’ function in

Postscript pops a value from the stack and prints it. A name, such as x, that

appears by itself causes its value to be pushed onto the stack. When defining

the name (as opposed to using its value), it must be escaped with a slash as in

/x.

The following defines the factorial function under the name fac:

/fac { dup 0 eq { pop 1 } { dup 1 sub fac mul } ifelse } def

This is equivalent to the F# function declaration

let rec fac n = if n=0 then 1 else n * fac (n-1)

Note that the ifelse conditional expression is postfix also, and expects to find

three values on the stack: a boolean, a then-branch, and an else-branch. The

then- and else-branches are written as code fragments, which in Postscript are

enclosed in curly braces.

Similarly, a for-loop expects four values on the stack: a start value, a step

value, and an end value for the loop index, and a loop body. It repeatedly

pushes the loop index and executes the loop body. Thus one can compute and

print factorial of 0,1, . . . ,12 this way:

0 1 12 { fac = } for

One can use the gs (Ghostscript) interpreter to experiment with Postscript

programs. Under Linux (for instance ssh.itu.dk), use

gs -dNODISPLAY

and under Windows, use something like

32 Postscript, a stack-based language

gswin32 -dNODISPLAY

For more convenient interaction, run Ghostscript inside an Emacs shell (under

Linux or MS Windows).

If prog.ps is a file containing Postscript definitions, gs will execute them on

start-up if invoked with

gs -dNODISPLAY prog.ps

A function definition entered interactively in Ghostscript must fit on one line,

but a function definition included from a file need not.

The example Postscript program below (file prog.ps)) prints some text in

Times Roman and draws a rectangle. If you send this program to a Postscript

printer, it will be executed by the printer’s Postscript interpreter, and a sheet

of printed paper will be produced:

/Times-Roman findfont 25 scalefont setfont
100 500 moveto
(Hello, Postscript!!) show
newpath
100 100 moveto
300 100 lineto 300 250 lineto
100 250 lineto 100 100 lineto stroke
showpage

Another short but fancier Postscript example is found in file sierpinski.eps.

It defines a recursive function that draws a Sierpinski curve, a recursively

defined figure in which every part is similar to the whole. The core of the

program is function sierp, which either draws a triangle (first branch of the

ifelse) or calls itself recursively three times (second branch). The percent sign

(%) starts and end-of-line comment in Postscript:

%!PS-Adobe-2.0 EPSF-2.0
%%Title: Sierpinski
%%Author: Morten Larsen (ml@dina.kvl.dk) LIFE, University of Copenhagen
%%CreationDate: Fri Sep 24 1999
%%BoundingBox: 0 0 444 386
% Draw a Sierpinski triangle

/sierp { % stack xtop ytop w h
dup 1 lt 2 index 1 lt or {
% Triangle less than 1 point big - draw it

4 2 roll moveto
1 index -.5 mul exch -1 mul rlineto 0 rlineto closepath stroke

} {

Compiling expressions to stack machine code 33

% recurse
.5 mul exch .5 mul exch
4 copy sierp
4 2 roll 2 index sub exch 3 index .5 mul 5 copy sub exch 4 2 roll sierp
add exch 4 2 roll sierp

} ifelse
} bind def

0 setgray
.1 setlinewidth
222 432 60 sin mul 6 add 432 1 index sierp
showpage

A complete web-server has been written in Postscript, see

http://www.pugo.org/main/project_pshttpd/
The Postscript Language Reference [7] can be downloaded from Adobe Cor-

poration.

2.7 Compiling expressions to stack machine code

The datatype sinstr is the type of instructions for a stack machine with vari-

ables, where the variables are stored on the evaluation stack:

type sinstr =
| SCstI of int (* push integer *)
| SVar of int (* push variable from env *)
| SAdd (* pop args, push sum *)
| SSub (* pop args, push diff. *)
| SMul (* pop args, push product *)
| SPop (* pop value/unbind var *)
| SSwap (* exchange top and next *)

Since both stk in reval and env in teval behave as stacks, and because of

lexical scoping, they could be replaced by a single stack, holding both variable

bindings and intermediate results. The important property is that the binding

of a let-bound variable can be removed once the entire let-expression has been

evaluated.

Thus we define a stack machine seval that uses a unified stack both for

storing intermediate results and bound variables. We write a new version

scomp of tcomp to compile every use of a variable into an (integer) offset from

the stack top. The offset depends not only on the variable declarations, but

also the number of intermediate results currently on the stack. Hence the

same variable may be referred to by different indexes at different occurrences.

In the expression

34 Implementing an abstract machine in Java

Let("z", CstI 17, Prim("+", Var "z", Var "z"))

the two uses of z in the addition get compiled to two different offsets, like this:

[SCstI 17, SVar 0, SVar 1, SAdd, SSwap, SPop]

The expression 20 + let z = 17 in z + 2 end + 30 is compiled to

[SCstI 20, SCstI 17, SVar 0, SCst 2, SAdd, SSwap, SPop, SAdd,
SCstI 30, SAdd]

Note that the let-binding z = 17 is on the stack above the intermediate result

20, but once the evaluation of the let-expression is over, only the intermediate

results 20 and 19 are on the stack, and can be added.

The correctness of the scomp compiler and the stack machine seval relative

to the expression interpreter eval can be asserted as follows. For an expression

e with no free variables,

seval (scomp e []) [] equals eval e [] eval e []

More general functional languages may be compiled to stack machine code

with stack offsets for variables. For instance, Moscow ML is implemented that

way, with a single stack for temporary results, function parameter bindings,

and let-bindings.

2.8 Implementing an abstract machine in Java

An abstract machine implemented in F# may not seem very machine-like. One

can get a step closer to real hardware by implementing the abstract machine

in Java. One technical problem is that the sinstr instructions must be repre-

sented as numbers, so that the Java program can read the instructions from a

file. We can adopt a representation such as this one:

Instruction Bytecode

SCst i 0 i
SVar x 1 x
SAdd 2
SSub 3
SMul 4
SPop 5
SSwap 6

Implementing an abstract machine in Java 35

Note that most sinstr instructions are represented by a single number (‘byte’)

but that those that take an argument (SCst i and SVar x) are represented

by two numbers: the instruction code and the argument. For example, the

[SCstI 17, SVar 0, SVar 1, SAdd, SSwap, SPop] instruction sequence will be

represented by the number sequence 0 17 1 0 1 1 2 6 5.

This form of numeric program code can be executed by the method seval
shown in Figure 2.4.

class Machine {
final static int
CST = 0, VAR = 1, ADD = 2, SUB = 3, MUL = 4, POP = 5, SWAP = 6;

static int seval(int[] code) {
int[] stack = new int[1000]; // evaluation and env stack
int sp = -1; // pointer to current stack top
int pc = 0; // program counter
int instr; // current instruction
while (pc < code.length)
switch (instr = code[pc++]) {
case CST:
stack[sp+1] = code[pc++]; sp++; break;

case VAR:
stack[sp+1] = stack[sp-code[pc++]]; sp++; break;

case ADD:
stack[sp-1] = stack[sp-1] + stack[sp]; sp--; break;

case SUB:
stack[sp-1] = stack[sp-1] - stack[sp]; sp--; break;

case MUL:
stack[sp-1] = stack[sp-1] * stack[sp]; sp--; break;

case POP:
sp--; break;

case SWAP:
{ int tmp = stack[sp];

stack[sp] = stack[sp-1];
stack[sp-1] = tmp;
break;

}
default: ... error: unknown instruction ...

return stack[sp];
}

}

Figure 2.4: Stack machine in Java for expression evaluation.

36 Exercises

2.9 Exercises

The goal of these exercises is (1) to better understand F# polymorphic types

and functions, and the use of accumulating parameters; and (2) to understand

the compilation and evaluation of simple arithmetic expressions with variables

and let-bindings.

Exercise 2.1 Define an F# function linear : int -> int tree so that linear
n produces a right-linear tree with n nodes. For instance, linear 0 should

produce Lf, and linear 2 should produce Br(2, Lf, Br(1, Lf, Lf)).

Exercise 2.2 Lecture 2 presents an F# function preorder1 : ’a tree -> ’a
list that returns a list of the node values in a tree, in preorder (root before left

subtree before right subtree).

Now define a function inorder that returns the node values in inorder (left

subtree before root before right subtree) and a function postorder that returns

the node values in postorder (left subtree before right subtree before root):

inorder : ’a tree -> ’a list
postorder : ’a tree -> ’a list

Thus if t is Br(1, Br(2, Lf, Lf), Br(3, Lf, Lf)), then inorder t is [2; 1;
3] andpostorder t is [2; 3; 1].

It should hold that inorder (linear n) is [n; n-1; ...; 2; 1] and postorder
(linear n) is [1; 2; ...; n-1; n], where linear n produces a right-linear

tree as in Exercise 2.1.

Note that the postfix (or reverse Polish) representation of an expression is

just a postorder list of the nodes in the expression’s abstract syntax tree.

Finally, define a more efficient version of inorder that uses an auxiliary

function ino : ’a tree -> ’a list -> ’a list with an accumulating param-

eter; and similarly for postorder.

Exercise 2.3 Extend the expression language expr from Intcomp1.fs with mul-

tiple sequential let-bindings, such as this (in concrete syntax):

let x1 = 5+7 x2 = x1*2 in x1+x2 end

To evaluate this, the right-hand side expression 5+7 must be evaluated and

bound to x1, and then x1*2 must be evaluated and bound to x2, after which the

let-body x1+x2 is evaluated.

The new abstract syntax for expr might be

Exercises 37

type expr =
| CstI of int
| Var of string
| Let of (string * expr) list * expr (* CHANGED *)
| Prim of string * expr * expr;;

so that the Let constructor takes a list of bindings, where a binding is a pair of

a variable name and an expression. The example above would be represented

as:

Let ([("x1", ...); ("x2", ...)], Prim("+", Var "x1", Var "x2"))

Revise the eval interpreter from Intcomp1.fs to work for the expr language

extended with multiple sequential let-bindings.

Exercise 2.4 Revise the function freevars : expr -> string list to work for

the language as extended in Exercise 2.3. Note that the example expression

in the beginning of Exercise 2.3 has no free variables, but let x1 = x1+7 in
x1+8 end has the free variable x1, because the variable x1 is bound only in the

body (x1+8), not in the right-hand side (x1+7), of its own binding. There are

programming languages where a variable can be used in the right-hand side

of its own binding, but this is not such a language.

Exercise 2.5 Revise the expr-to-texpr compiler tcomp : expr -> texpr from

Intcomp1.fs to work for the extended expr language. There is no need to modify

the texpr language or the teval interpreter to accommodate multiple sequen-

tial let-bindings.

Exercise 2.6 Write a bytecode assembler (in F#) that translates a list of byte-

code instructions for the simple stack machine in Intcomp1.fs into a list of

integers. The integers should be the corresponding bytecodes for the inter-

preter in Machine.java. Thus you should write a function assemble : sinstr
list -> int list.

Use this function together with scomp from Intcomp1.fs to make a compiler

from the original expressions language expr to a list of bytecodes int list.

You may test the output of your compiler by typing in the numbers as an int
array in the Machine.java interpreter. (Or you may solve Exercise 2.7 below to

avoid this manual work).

Exercise 2.7 Modify the compiler from Exercise 2.6 to write the lists of inte-

gers to a file. An F# list inss of integers may be output to the file called fname
using this function (found in Intcomp1.fs):

38 Exercises

let intsToFile (inss : int list) (fname : string) =
let text = String.concat " " (List.map string inss)
in System.IO.File.WriteAllText(fname, text);;

Then modify the stack machine interpreter in Machine.java to read the se-

quence of integers from a text file, and execute it as a stack machine program.

The name of the textfile may be given as a command-line parameter to the

Java program. Reading from the text file may be done using the StringTok-

enizer class or StreamTokenizer class; see e.g. Java Precisely Example 145.

It is essential that the compiler (in F#) and the interpreter (in Java) agree

on the intermediate language: what integer represents what instruction.

Exercise 2.8 Now modify the interpretation of the language from Exercise 2.3

so that multiple let-bindings are simultaneous rather than sequential. For

instance,

let x1 = 5+7 x2 = x1*2 in x1+x2 end

should still have the abstract syntax

Let ([("x1", ...); ("x2", ...)], Prim("+", Var "x1", Var "x2"))

but now the interpretation is that all right-hand sides must be evaluated be-

fore any left-hand side variable gets bound to its right-hand side value. That

is, in the above expression, the occurrence of x1 in the right-hand side of x2 has

nothing to do with the x1 of the first binding; it is a free variable.

Revise the eval interpreter to work for this version of the expr language.

The idea is that all the right-hand side expressions should be evaluated, after

which all the variables are bound to those values simultaneously. Hence

let x = 11 in let x = 22 y = x+1 in x+y end end

should compute 12 + 22 because x in x+1 is the outer x (and hence is 11), and

x in x+y is the inner x (and hence is 22). In other words, in the let-binding

let x1 = e1 ... xn = en in e end

the scope of the variables x1 ... xn should be e, not e1 ... en.

Exercise 2.9 Define a version of the (naive) Fibonacci function

let rec fib n = if n<2 then n else fib(n-1) + fib(n-2);;

in Postscript. Compute Fibonacci of 0,1, . . . ,25.

Exercise 2.10 Write a Postscript program to compute the sum 1+ 2 + · · ·+
1000. It must really do the summation, not use the closed-form expression
n(n+1)

2 with n = 1000. (Trickier: do this using only a for-loop, no function defini-

tion).

Chapter 3

From concrete syntax to

abstract syntax

Until now, we have written programs in abstract syntax, which is convenient

when handling programs as data. However, programs are usually written in

concrete syntax, as sequences of characters in a text file. So how do we get

from concrete syntax to abstract syntax?

First of all, we must give a concrete syntax describing the structure of well-

formed programs.

We use regular expressions to describe local structure, that is, small things

such as names, constants, and operators.

We use context free grammars to describe global structure, that is, state-

ments, the proper nesting of parentheses within parentheses, and (in Java) of

methods within classes, etc.

Local structure is often called lexical structure, and global structure is

called syntactic or grammatical structure.

3.1 Preparatory reading

Read parts of Torben Mogensen: Basics of Compiler Design [101]:

• Sections 2.1 to 2.9 about regular expressions, non-deterministic finite au-

tomata and lexer generators. A lexer generator such as fslex turns a reg-

ular expression into a non-deterministic finite automaton, then creates a

deterministic finite automaton from that.

• Sections 3.1 to 3.6 about context-free grammars and syntax analysis.

39

40 Lexers, parsers, and generators

• Sections 3.12 and 3.13 about LL-parsering, also called recursive descent

parsing.

• Section 3.17 about using LR parser generators and 3.17. An LR parser

generator such as fsyacc turns a context-free grammar into an LR parser.

This statement probably makes better sense once we have discussed a

concrete example application of an LR parser in the lecture, and Sec-

tion 3.6 below.

3.2 Lexers, parsers, and generators

A lexer or scanner is a program that reads characters from a text file and as-

sembles them into a stream of lexical tokens or lexemes. A lexer usually ig-

nores the amount of whitespace (blanks " ", newlines "\n", carriage returns

"\r", tabulation characters "\t", and page breaks "\f") between non-blank

symbols.

A parser is a program that accepts a stream of lexical tokens from a lexer,

and builds an abstract syntax tree (AST) representing that stream of tokens.

Lexers and parser work together as shown in Figure 3.1.

 LexerProgram text Program tokens Program ASTParser Interpreter

Input

Output

Figure 3.1: From program text to abstract syntax tree (AST).

A lexer generator is a program that converts a lexer specification (a collec-

tion of regular expressions) into a lexer (which recognizes tokens described by

the regular expressions).

A parser generator is a program that converts a parser specification (a deco-

rated context free grammar) into a parser. The parser, together with a suitable

lexer, recognizes program texts derivable from the grammar. The decorations

on the grammar say how a text derivable from a given production should be

represented as an abstract syntax tree.

We shall use the lexer generator fxlex and the parser generator fsyacc that

are included with the F# distribution.

The classical lexer and parser generators for C are called lex and yacc (Bell

Labs, 1975). The modern powerful GNU versions are called flex and bison;

they are part of all Linux distributions. There are also free lexer and parser

Regular expressions in lexer specifications 41

generators for Java, for instance JLex and JavaCup (available from Princeton

University), or JavaCC (lexer and parser generator in one, see Section 3.9).

For C#, there is a combined lexer and parser generator called CoCo/R from the

University of Linz. Another set of C# compiler tools was created by Malcolm

Crowe [35].

The parsers we are considering here are called bottom-up parsers, or LR

parsers, and they are characterized by reading characters from the Left and

making derivations from the Right-most nonterminal. The fsyacc parser gen-

erator is quite representative of modern LR parsers.

Hand-written parsers (including those built using so-called parser combi-

nators in functional languages), are usually top-down parsers, or LL parsers,

which read characters from the Left and make derivations from the Left-most

nonterminal. The JavaCC and Coco/R parser generators generate LL-parsers,

which make them in some ways weaker than bison and fsyacc. Section 3.8

presents a simple hand-written LL-parser. For an introductory presentation of

hand-written top-down parsers in Java, see Grammars and Parsing with Java

[124].

3.3 Regular expressions in lexer specifications

The regular expression syntax used in fslex lexer specifications is shown in

Figure 3.2. Regular expressions for the tokens of our example expression lan-

guage may look like this. There are three keywords:

LET let
IN in
END end

There are six special symbols:

PLUS +
TIMES *
MINUS -
EQ =
LPAR (
RPAR)

An integer constant INT is a non-empty sequence of the digits 0 to 9:

[’0’-’9’]+

A variable NAME begins with a lowercase (a–z) or uppercase (A–Z) letter, ends

with zero or more letters or digits (and is not a keyword):

[’a’-’z’’A’-’Z’][’a’-’z’’A’-’Z’’0’-’9’]*

42 Regular expressions in lexer specifications

Fslex token Meaning

’char’ A character constant, with a syntax similar

to that of F# character constants. Match

the denoted character.

_ Match any character.

eof Match the end of the lexer input.

"string" A string constant, with a syntax similar to

that of F# string constants. Match the de-

noted string.

[character-set] Match any single character belonging to the

given character set. Valid character sets

are: single character constants ’c’; ranges

of characters ’c1’ - ’c2’ (all characters be-

tween c1 and c2, inclusive); and the union

of two or more character sets, denoted by

concatenation.

[^character-set] Match any single character not belonging

to the given character set.

regexp * Match the concatenation of zero or more

strings that match regexp. (Repetition).

regexp + Match the concatenation of one or more

strings that match regexp. (Positive

repetition).

regexp ? Match either the empty string, or a string

matching regexp. (Option).

regexp1 | regexp2 Match any string that matches either

regexp1 or regexp2. (Alternative).

regexp1 regexp2 Match the concatenation of two strings, the

first matching regexp1, the second match-

ing regexp2. (Concatenation).

abbrev Match the same strings as the regexp in the

let-binding of abbrev.

(regexp) Match the same strings as regexp.

Figure 3.2: Notation for token specifications in fslex.

Grammars in parser specifications 43

3.4 Grammars in parser specifications

A context free grammar has four components:

• terminal symbols such as identifiers x, integer constants 12, string con-

stants "foo", special symbols (+ and *) etc, keywords let, in, . . .

• nonterminal symbols A, denoting grammar classes

• a start symbol S

• grammar rules or productions of the form

A ::= tnseq

where tnseq is a sequence of terminal or nonterminal symbols.

The grammar for our expression language may be given as follows:

Expr ::= NAME
| INT
| - INT
| (Expr)
| let NAME = Expr in Expr end
| Expr * Expr
| Expr + Expr
| Expr - Expr

Usually one specifies that there must be no input left over after parsing, by

requiring that the well-formed expression is followed by end-of-file:

Main ::= Expr EOF

Hence we have two nonterminals (Main and Expr), of which Main is the start

symbol. There are eight productions (seven for Expr and one for Main), and the

terminal symbols are the tokens of the lexer specification.

The grammar given above is ambiguous: a string such as 1 + 2 * 3 can be

derived in two ways:

Expr
-> Expr * Expr
-> Expr + Expr * Expr
-> 1 + 2 * 3

and

44 Working with F# modules

Expr
-> Expr + Expr
-> Expr + Expr * Expr
-> 1 + 2 * 3

where the former derivation corresponds to (1 + 2) * 3 and the latter corre-

sponds to 1 + (2 * 3). The latter is the one we want: multiplication (*) should

bind more strongly than addition (+) and subtraction (-). With most parser gen-

erators, one can specify that some operators should bind more strongly than

others.

Also, the string 1 - 2 + 3 could be derived in two ways:

Expr
-> Expr - Expr
-> Expr - Expr + Expr

and

Expr
-> Expr + Expr
-> Expr - Expr + Expr

where the former derivation corresponds to 1 - (2 + 3) and the latter corre-

sponds to (1 - 2) + 3. Again, the latter is the one we want: these particu-

lar arithmetic operators of the same precedence (binding strength) should be

evaluated from left to right. This is indicated in the parser specification in file

expr/Exprpar.grm by the %left declaration of the symbols PLUS and MINUS (and

TIMES).

3.5 Working with F# modules

So far we have been working inside the F# Interactive windows of Visual Stu-

dio, or equivalently, the fsi, interactive system, entering type and function

declarations, and evaluating expressions. Now we need more modularity and

encapsulation in our programs, so we shall declare the expression language

abstract syntax inside a separate file called Expr/Absyn.fs:

module Absyn

type expr =
| CstI of int
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr

Using fslex and fsyacc 45

Such a file defines an F# module Absyn, where the module name is specified in

the

It makes sense to let the file name Absyn.fs correspond to the module name.

Other modules may refer to type expr in module Absyn by Absyn.expr, or may

use the declaration open Absyn and then refer simply to expr. Any modules

referring to Absyn must come after it in the Solution Explorer’s file list in Visual

Studio, and in command line arguments to fsi or fsc.

We shall primarily use fsi from a command prompt for F# interactive ses-

sions; this works the same way under Windows, Linux and MacOSX. If one

starts fsi with command line argument Absyn.fs, then fsi will compile and

load the module but not open it. In the interactive session we can then open it

or not as we like; executing #q;; terminates the session:

fsi Absyn.fs
> Absyn.CstI 17;;
> open Absyn;;
> CstI 17;;
> #q;;

The same approach works for compiling and loading multiple modules, as we

shall see below.

3.6 Using fslex and fsyacc

The following subsections present an example of complete lexer and parser

specifications for fslex and fsyacc. These lexer and parser specifications, as

well as an F# program to combine them, can be found in the Expr subdirectory:

File Contents

Expr/Absyn.fs abstract syntax

Expr/ExprLex.fsl lexer specification, input to fslex
Expr/ExprPar.fsy parser specification, input to fsyacc
Expr/Parse.fs declaration of an expression parser

Although information about fslex and fsyacc can be found in Syme et al.

[137, chapter 16], some parts of that documentation are outdated. This sec-

tion decribes the May 2009 CTP release of F# and its tools. In that version,

fslex will by default generate a lexer that processes ASCII files, defining a

LexBuffer<byte>. One can use command line option fslex -unicode to gener-

ate a lexer that processes Unicode files, defining a LexBuffer<char>, but it is

unclear how to pass this option from within the Visual Studio build process.

For simplicity we consider only byte-based (ASCII) lexers here.

46 Using fslex and fsyacc

3.6.1 Setting up fslex and fsyacc for command line use

To use fslex and fsyacc from a Command Prompt in Windows, one must add

the F# install bin folder to the PATH environment variable, something like

this:

Start > Control Panel > System > Advanced > Environment Variables
> User variables > PATH > Edit
...;C:\Program Files\FSharpPowerPack-2.0.0.0\bin
> OK > OK > OK

The F# code generated by fslex and fsyacc uses the modules Lexing and Pars-

ing which are found in the FSharp.PowerPack library. When compiling the

generated F# code, one must refer to this library using the -r FSharp.PowerPack
option, as shown below.

3.6.2 Using fslex and fsyacc in Visual Studio

It is possible to integrate fslex and fsyacc in the build process of Visual Stu-

dio, so that fslex ExprLex.fsl is automatically re-run every time the lexer

specification ExprLex.fsl has been edited, and so on. However, this is rather

fragile, it seems easily to confuse Visual Studio, and the details change from

time to time. See link from the course homepage for up to date information.

3.6.3 Parser specification for expressions

A complete parser specification for the simple expression language is found in

file Expr/Exprpar.fsy. It begins with declarations of the tokens, or terminal

symbols, CSTINT, NAME, and so on, followed by declarations of operator associa-

tivity and precedence:

%token <int> CSTINT
%token <string> NAME
%token PLUS MINUS TIMES EQ
%token END IN LET
%token LPAR RPAR
%token EOF

%left MINUS PLUS /* lowest precedence */
%left TIMES /* highest precedence */

After the token declarations, the parser specification declares that nonterminal

Main is the start symbol, and then gives the grammar rules for both nontermi-

nals Main and Expr:

Using fslex and fsyacc 47

%start Main
%type <Absyn.expr> Main
%%
Main:

Expr EOF { $1 } ;
Expr:

NAME { Var $1 }
| CSTINT { CstI $1 }
| MINUS CSTINT { CstI (- $2) }
| LPAR Expr RPAR { $2 }
| LET NAME EQ Expr IN Expr END { Let($2, $4, $6) }
| Expr TIMES Expr { Prim("*", $1, $3) }
| Expr PLUS Expr { Prim("+", $1, $3) }
| Expr MINUS Expr { Prim("-", $1, $3) }

For instance, the first rule says that to parse a Main, one must parse an Expr
followed by an EOF, that is, end of file. The rules for Expr say that we can

parse an Expr by parsing a NAME token, or a CSTINT token, or a negative sign (-)

followed by a CSTINT token, or a left parenthesis followed by an Expr followed

by a right parenthesis, and so on.

The expressions in curly braces on the right side describe what result will

be produced by a successful parse — remember that the purpose of parsing is

to produce an abstract syntax representation by reading a text file (concrete

syntax). For instance, the result of parsing an Expr as NAME is Var($1), that is,

a variable represented as abstract syntax. The name of that variable is taken

from the string carried by the previously declared NAME token; the $1 means ‘the

value associated with symbol number 1 on the right-hand side of the grammar

rule’, here NAME. Similarly, the result of parsing an Expr as Expr MINUS Expr is

Prim("-", $1, $3), that is, abstract syntax for an subtraction operator whose

operands are the two expressions on the rule right-hand side, namely $1 and

$3.

To summarize, the curly braces contain F# expressions that produce the

result of a successful parse. They are sometimes called semantic actions.

The %type declaration says that a successful parse of a Main nonterminal

produces a value of type Absyn.expr, that is, an expression in abstract syntax.

To turn the above parser specification file Expr/ExprPar.fsy into a parser

program, we must run the fsyacc tool like this:

fsyacc --module ExprPar ExprPar.fsy

This produces a parser as an F# source program in file ExprPar.fs, with module

name ExprPar, and a corresponding signature file ExprPar.fsi (similar to a

Java or C# interface).

48 Using fslex and fsyacc

3.6.4 Lexer specification for expressions

A complete lexer specification for the simple expression language is found in

file Expr/ExprLex.fsl. The first part of the lexer specification contains declara-

tions of auxiliary functions and so on. This is ordinary F# code, but note that

all of it is enclosed in a pair of curly braces ({) and (}):

{
module ExprLex

open System.Text (* for Encoding *)
open Microsoft.FSharp.Text.Lexing
open ExprPar

let lexemeAsString (lexbuf : Lexing.LexBuffer<byte>) =
Encoding.UTF8.GetString lexbuf.Lexeme

let keyword s =
match s with
| "let" -> LET
| "in" -> IN
| "end" -> END
| _ -> NAME s

}

The open declarations make some F# modules accessible, in particular the

ExprPar module generated from the parser specification, because it declares

the tokens NAME, CSTINT, and so on; see Section 3.6.3 above.

The function declarations are standard for all lexer specifications, except

keyword. This function is used by the actual lexer (see below) to distinguish

reserved names (here let, in, end) of the expression language from variable

names (such as x, square, and so on). Although one could use regular expres-

sions to distinguish reserved names from variable names, this may make the

resulting automaton very large. So in practice, it is better to let the lexer rec-

ognize everything that looks like a variable name or reserved word by a single

regular expression, and then use an auxiliary function such as keyword to dis-

tinguish them.

The real core of the lexer specification, however, is the second part which

defines the tokenizer Token. It specifies the possible forms of a token as a list

of regular expressions, and for each regular expression, it gives the resulting

token:

Using fslex and fsyacc 49

rule Token = parse
| [’ ’ ’\t’ ’\r’] { Token lexbuf }
| ’\n’ { lexbuf.EndPos <- lexbuf.EndPos.NextLine; Token lexbuf }
| [’0’-’9’]+ { CSTINT (System.Int32.Parse (lexemeAsString lexbuf)) }
| [’a’-’z’’A’-’Z’][’a’-’z’’A’-’Z’’0’-’9’]*

{ keyword (lexemeAsString lexbuf) }
| ’+’ { PLUS }
| ’-’ { MINUS }
| ’*’ { TIMES }
| ’=’ { EQ }
| ’(’ { LPAR }
| ’)’ { RPAR }
| ’[’ { LPAR }
| ’]’ { RPAR }
| eof { EOF }
| _ { failwith "Lexer error: illegal symbol" }

For instance, the third rule says that the regular expression [’0’-’9’]+ cor-

responds to a CSTINT token. The fourth rule gives a more complicated regular

expression that covers both reserved words and names; the auxiliary function

keyword, defined above, is called to decide whether to produce a LET, IN, END or

NAME token.

The first rule deals with whitespace (blank, tab, and carriage return) by

calling the tokenizer recursively instead of returning a token, thus simply dis-

carding the whitespace. The second rule deals with a newline by updating the

lexer’s line counter and then discarding the newline character.

Comments can be dealt with in much the same way as whitespace, see the

lexer example mentioned in Section 3.7.1.

The lexemeAsString lexbuf calls return the F# string matched by the regu-

lar expression on the left-hand side, such as the integer matched by [’0’-’9’]+.

To turn the above lexer specification file Expr/ExprLex.fsl into a lexer pro-

gram, we must run the fslex tool like this:

fslex ExprLex.fsl

This generates a lexer as an F# program in file ExprLex.fs.

Since the parser specification defines the token datatype, which is used by

the generated lexer, the parser must be generated and compiled before the

resulting lexer is compiled.

In summary, to generate the lexer and parser, and compile them together

with the abstract syntax module, do the following (in the directory Expr/ which

contains file ExprPar.fsy and so on):

fsyacc --module ExprPar ExprPar.fsy

50 Using fslex and fsyacc

fslex ExprLex.fsl
fsi -r FSharp.PowerPack Absyn.fs ExprPar.fs ExprLex.fs

The example file Expr/Parse.fs defines a function fromString : string -> expr
that combines the generated lexer function Exprlex.Token and the generated

parser function ExprPar.Main like this:

let fromString (str : string) : expr =
let bytes = Array.ConvertAll(str.ToCharArray(), fun ch -> (byte)ch)
let lexbuf = Lexing.LexBuffer<byte>.FromBytes(bytes)
in try

ExprPar.Main ExprLex.Token lexbuf
with
| exn -> let pos = lexbuf.EndPos

in failwithf "%s near line %d, column %d\n"
(exn.Message) (pos.Line+1) pos.Column

The function creates a lexer buffer lexbuf from the string, and then calls

the parser’s entry function ExprPar.Main (Section 3.6.3) to produce an expr by

parsing, using the lexer’s tokenizer Exprlex.Token (Section 3.6.4) to read from

lexbuf. If the parsing succeeds, the function returns the expr as abstract syn-

tax. If lexing or parsing fails, an exception is raised, which will be reported on

the console in this style:

Lexer error: illegal symbol near line 17, column 12

3.6.5 The ExprPar.fsyacc.output file generated by fsyacc

The generated parser in file ExprPar.fs is just an F# program, so one may try

to read and understand it, but that is an unpleasant experience: it consists of

many tables represented as arrays of unsigned integers, plus various strange

program fragments.

Luckily, one can get a high-level description of the generated parser by call-

ing fsyacc with option -v, as in

fsyacc -v --module ExprPar ExprPar.fsy

This produces a log file ExprPar.fsyacc.output containing a description of the

parser as a stack (or pushdown) automaton: a finite automaton equipped with

a stack of the nonterminals parsed so far.

The file contains a description of the states of the finite stack automaton; in

the ExprPar.fsy case the states are numbered from 0 to 23. For each numbered

Using fslex and fsyacc 51

automaton state, three pieces of information are given: the corresponding pars-

ing state (as a set of so-called LR(0)-items), the state’s action table, and its goto

table.

For an example, consider state 11. In state 11 we are trying to parse an

Expr, we have seen the keyword LET, and we now expect to parse the remain-

der of the let-expression. This is shown by the dot (.) in the LR-item, which

describes the current position of the parser inside a phrase. The transition re-

lation says that if the remaining input does begin with a NAME, we should read

it and go to state 12; all other inputs lead to a parse error:

state 11:
items:
Expr -> ’LET’ . ’NAME’ ’EQ’ Expr ’IN’ Expr ’END’

actions:
action ’EOF’ (noprec): error
action ’LPAR’ (noprec): error
action ’RPAR’ (noprec): error
action ’END’ (noprec): error
action ’IN’ (noprec): error
action ’LET’ (noprec): error
action ’PLUS’ (noprec): error
action ’MINUS’ (noprec): error
action ’TIMES’ (noprec): error
action ’EQ’ (noprec): error
action ’NAME’ (noprec): shift 12
action ’CSTINT’ (noprec): error
action ’error’ (noprec): error
action ’#’ (noprec): error
action ’$$’ (noprec): error

immediate action: <none>
gotos:

The read operation is called a shift:: the symbol is shifted from the input to the

parse stack; see Section 3.6.6 below.

For another example, consider state 8. According to the parsing state, we

are trying to parse an Expr, we have seen a left parenthesis LPAR, and we now

expect to parse an Expr and then a right parenthesis RPAR. According to the

transition relation, the remaining input must begin with a left parenthesis, or

the keyword LET, or a minus sign, or a name, or an integer constant; all other

input leads to a parse error. If we see an acceptable input symbol, we shift

(read) it and go to state 8, 11, 6, 4, or 5, respectively. When later we have

completed parsing the Expr, we go to state 9, as shown at the end of the state

description:

52 Using fslex and fsyacc

state 8:
items:
Expr -> ’LPAR’ . Expr ’RPAR’

actions:
action ’EOF’ (noprec): error
action ’LPAR’ (noprec): shift 8
action ’RPAR’ (noprec): error
action ’END’ (noprec): error
action ’IN’ (noprec): error
action ’LET’ (noprec): shift 11
action ’PLUS’ (noprec): error
action ’MINUS’ (explicit left 9999): shift 6
action ’TIMES’ (noprec): error
action ’EQ’ (noprec): error
action ’NAME’ (noprec): shift 4
action ’CSTINT’ (noprec): shift 5
action ’error’ (noprec): error
action ’#’ (noprec): error
action ’$$’ (noprec): error

immediate action: <none>
gotos:

goto Expr: 9

For yet another example, consider state 19 below. According to the state’s LR

items, we have seen Expr PLUS Expr. According to the state’s actions (the tran-

sition relation) the remaining input must begin with one of the operators TIMES,

PLUS or MINUS, or one of the the keywords IN or END, or a right parenthesis, or

end of file.

In all cases except the TIMES symbol, we will reduce using the grammar rule

Expr -> Expr PLUS Expr backwards. Namely, we have seen Expr PLUS Expr,

and from the grammar rule we know that may have been derived from the

nonterminal Expr.

In case we see the TIMES symbol, we shift (read) the symbol and go to state

21. Further investigation of parser states (not shown here) reveals that state

21 expects to find an Expr, and after that goes to state 18, where we have:

Expr PLUS Expr TIMES Expr

which will then be reduced, using the grammar rule Expr -> Expr PLUS Expr
backwards, to

Expr PLUS Expr

at which point we’re back at state 19 again. The effect is that TIMES binds more

strongly than PLUS, as we are used to in arithmetics. If we see any other input

Using fslex and fsyacc 53

symbol, we reduce Expr ’PLUS’ Expr on the parse stack by using the grammar

rule Expr -> Expr ’PLUS’ Expr backwards, thus getting an Expr.

state 19:
items:
Expr -> Expr . ’TIMES’ Expr
Expr -> Expr . ’PLUS’ Expr
Expr -> Expr ’PLUS’ Expr .
Expr -> Expr . ’MINUS’ Expr

actions:
action ’EOF’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’LPAR’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’RPAR’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’END’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’IN’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’LET’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’PLUS’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’MINUS’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’TIMES’ (explicit left 10000): shift 21
action ’EQ’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’NAME’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’CSTINT’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’error’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’#’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr
action ’$$’ (explicit left 9999): reduce Expr --> Expr ’PLUS’ Expr

immediate action: <none>
gotos:

The terminal symbols ’#’ and ’$$’ used in a few of the states are auxiliary

symbols introduced by the parser generator to properly handle the start and

end of the parsing process; we shall ignore them here.

3.6.6 Exercising the parser automaton

The parser generated by e.g. fsyacc looks like a finite automaton, but instead

of just a single current state, it has a stack containing states and grammar

symbols.

If there is an automaton state such as #20 on top of the stack, then that

state’s action table and the next input symbol determines the action. As ex-

plained above, the action may be ‘shift’ or ‘reduce’.

For example, if state 19 is on the stack top and the next input symbol is *,

then according to the action table of state 19 (shown above) the action is shift

21 which means that * is removed from the input and pushed on the stack

together with state #21.

54 Using fslex and fsyacc

If again state 19 is on the stack top but the next input symbol is EOF, then

the action is to reduce by this grammar rule from the parser specification:

Expr ::= Expr PLUS Expr

The reduce action uses the grammar rule ‘in reverse’, to remove the grammar

symbols Expr PLUS Expr from the stack, and push Expr instead. After a reduce

action, the state below the new stack top symbol Expr (for instance, state 0) is

inspected for a suitable goto rule (for instance, goto Expr: 2), and the new

state 2 is pushed on the stack.

For a complete parsing example, consider the parser states traversed dur-

ing parsing of the string x + 52 * wk EOF:

Input Parse stack (top on right) Action

x+52*wk EOF #0 shift #4
+52*wk EOF #0 x #4 reduce by B
+52*wk EOF #0 Expr goto #2
+52*wk EOF #0 Expr #2 shift #22
52*wk EOF #0 Expr #2 + #22 shift #5
*wk EOF #0 Expr #2 + #22 52 #5 reduce by C
*wk EOF #0 Expr #2 + #22 Expr goto #19
*wk EOF #0 Expr #2 + #22 Expr #19 shift #21
wk EOF #0 Expr #2 + #22 Expr #19 * #21 shift #4
EOF #0 Expr #2 + #22 Expr #19 * #21 wk #4 reduce by B
EOF #0 Expr #2 + #22 Expr #19 * #21 Expr goto #18
EOF #0 Expr #2 + #22 Expr #19 * #21 Expr #18 reduce by G
EOF #0 Expr #2 + #22 Expr goto #19
EOF #0 Expr #2 + #22 Expr #19 reduce by H
EOF #0 Expr goto #2
EOF #0 Expr #2 shift 3

#0 Expr #2 EOF #3 reduce by A
#0 Main goto #1
#0 Main #1 accept

The numbers #0, #1, . . . are parser automaton state numbers from the Ex-

prPar.fsyacc.output file, and the letters A, B, . . . used to indicate which grammar

rule is used (backwards) in a reduce step:

Main ::= Expr EOF rule A
Expr ::= NAME rule B

| CSTINT rule C
| MINUS CSTINT rule D
| LPAR Expr RPAR rule E
| LET NAME EQ Expr IN Expr END rule F

Using fslex and fsyacc 55

| Expr TIMES Expr rule G
| Expr PLUS Expr rule H
| Expr MINUS Expr rule I

When the parser performs a reduction using a given rule, it evaluates the

semantic action associated with that rule, and pushes the result on the stack —

this is not shown above. Hence the $1, $2, and so on in a semantic action refers

to the value, on the stack, associated with a given terminal or nonterminal

symbol.

3.6.7 Shift/reduce conflicts

Studying the ExprPar.fsyacc.output file is useful if there are shift/reduce con-

flicts or reduce/reduce conflicts in the generated parser. Such conflicts arise

because the grammar is ambiguous: some string may be derived in more than

one way.

For instance, if we remove the precedence and associativity declarations

(%left) from the tokens PLUS, MINUS and TIMES in the ExprPar.fsy parser speci-

fication, then there will be shift/reduce conflicts in the parser.

Then fsyacc will produce a conflict message like this on the console:

state 19: shift/reduce error on PLUS
state 19: shift/reduce error on TIMES
state 19: shift/reduce error on MINUS

and now state 19 looks like this:

state 19:
items:
Expr -> Expr . ’TIMES’ Expr
Expr -> Expr . ’PLUS’ Expr
Expr -> Expr ’PLUS’ Expr .
Expr -> Expr . ’MINUS’ Expr

actions:
action ’EOF’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’LPAR’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’RPAR’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’END’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’IN’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’LET’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’PLUS’ (noprec): shift 22
action ’MINUS’ (noprec): shift 23
action ’TIMES’ (noprec): shift 21
action ’EQ’ (noprec): reduce Expr --> Expr ’PLUS’ Expr

56 Using fslex and fsyacc

action ’NAME’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’CSTINT’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’error’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’#’ (noprec): reduce Expr --> Expr ’PLUS’ Expr
action ’$$’ (noprec): reduce Expr --> Expr ’PLUS’ Expr

immediate action: <none>
gotos:

The LR-items of the state describe a parser state in which the parser has rec-

ognized Expr PLUS Expr (which can be reduced to Expr), or is about to read a

TIMES or PLUS or MINUS token while recognizing Expr <operator> Expr.

The third line of the conflict message says that when the next token is

MINUS, for instance the second MINUS found while parsing this input:

11 + 22 - 33

then the parser generator does not know whether it should read (shift) the mi-

nus operator, or reduce Expr PLUS Expr to Expr before proceeding. The former

choice would make PLUS right associative, as in 11 + (22 - 33), and the latter

would make it left associative, as in (11 + 22) - 33.

We see from this line in the action table of state 19:

action ’MINUS’ (noprec): shift 23

that that the parser generator decided, in the absence of other information, to

shift (and go to state 23) when the next symbol is MINUS, which would make

PLUS right associative. This not what we want.

By declaring

%left MINUS PLUS

in the parser specification we tell the parser generator to reduce instead, mak-

ing PLUS and MINUS left associative, and this one problem goes away. This also

solves the problem reported for PLUS in the second line of the message.

The problem with TIMES is similar, but the desired solution is different. The

second line of the conflict message says that when the next token is TIMES, for

instance the TIMES found while parsing this input:

11 + 22 * 33

then it is unclear whether we should shift that token, or reduce Expr PLUS
Expr to Expr before proceeding. The former choice would make TIMES bind more

strongly than PLUS, as in 11 + (22 * 33), and the latter would make TIMES and

PLUS bind equally strongly and left associative, as in (11 + 22) * 33.

The former choice is the one we want, so in Expr/ExprPar.fsy we should

declare

Lexer and parser specification examples 57

%left MINUS PLUS /* lowest precedence */
%left TIMES /* highest precedence */

Doing so makes all conflicts go away.

3.7 Lexer and parser specification examples

The following subsections show three more examples of lexer and parser spec-

ifications for fslex and fsyacc.

3.7.1 A small functional language

Chapter 4 presents a simple functional language micro-ML, similar to a small

subset of F#, in which one can write programs such as these:

let f x = x + 7 in f 2 end

let f x = let g y = x + y in g (2 * x) end
in f 7 end

The abstract syntax and grammar for that functional language are described

in the following files:

File Contents

Fun/grammar.txt an informal description of the grammar

Fun/Absyn.sml abstract syntax

Fun/FunLex.lex lexer specification

Fun/FunPar.fsy parser specification

Fun/Parse.fs declaration of a parser

Build the lexer and parser using fslex and fsyacc as directed in Fun/README,

then start

fsi -r FSharp.PowerPack Absyn.fs FunPar.fs FunLex.fs Parse.fs

and evaluate

open Parse;;
fromString "let f x = x + 7 in f 2 end";;

What is missing, of course, is an interpreter (a semantics) for the abstract

syntax of this language. We shall return to that in Chapter 4.

58 A handwritten recursive descent parser

3.7.2 Lexer and parser specifications for micro-SQL

The language micro-SQL is a small subset of SQL SELECT statements without

WHERE, GROUP BY, ORDER BY etc. It permits SELECTs on (qualified) column

names, and the use of aggregate functions. For instance:

SELECT name, zip FROM Person
SELECT COUNT(*) FROM Person
SELECT * FROM Person, Zip
SELECT Person.name, Zip.code FROM Person, Zip

The micro-SQL language abstract syntax and grammar are described in the

following files:

File Contents

Usql/grammar.txt an informal description of the grammar

Usql/Absyn.fs abstract syntax for micro-SQL

Usql/UsqlLex.fsl lexer specification

Usql/UsqlPar.fsy parser specification

Usql/Parse.fs declaration of a micro-SQL parser

Build the lexer and parser using fslex and fsyacc as directed in Usql/README,

then start

fsi -r FSharp.PowerPack Absyn.fs UsqlPar.fs UsqlLex.fs Parse.fs

and evaluate, for instance:

open Parse;;
fromString "SELECT name, zip FROM Person";;

3.8 A handwritten recursive descent parser

The syntax of the Lisp and Scheme languages is particularly simple: An ex-

pression is a number, a symbol (a variable name or an operator), or a paren-

thesis enclosing zero or more expressions, as in these six examples:

42
x
(define x 42)
(+ x (* x 1))
(define (fac n) (if (= n 0) 1 (* n (fac (- n 1)))))

A handwritten recursive descent parser 59

Such expressions, which are very similar to so-called S-expressions in the Lisp

or Scheme languages, can be described by this context-free grammar:

sexpr ::= number
| symbol
| (sexpr*)

There are no infix operators and no operator precedence rules, so it is very easy

to parse it using recursive descent in a hand-written top-down parser. This can

be done in any language that supports recursive function calls; here we use C#.

The S-expression language has only four kinds of tokens: number, symbol,

left parenthesis, and right parenthesis. We can model this using an interface

and four classes:

interface IToken { } // Supports: String ToString()
class NumberCst : IToken { ... }
class Symbol : IToken { ... }
class Lpar : IToken { ... }
class Rpar : IToken { ... }

We can write a lexer as a static method that takes a character source in the

form of a System.IO.TextReader and produces a stream of tokens in the form

of an IEnumerator<IToken>:

public static IEnumerator<IToken> Tokenize(TextReader rd) {
for (;;) {
int raw = rd.Read();
char ch = (char)raw;
if (raw == -1) // End of input
yield break;

else if (Char.IsWhiteSpace(ch)) // Whitespace; skip
{}

else if (Char.IsDigit(ch)) // Nonneg number
yield return new NumberCst(ScanNumber(ch, rd));

else switch (ch) {
case ’(’: // Separators

yield return Lpar.LPAR; break;
case ’)’:

yield return Rpar.RPAR; break;
case ’-’: // Neg num, or Symbol

...
default: // Symbol

yield return ScanSymbol(ch, rd);
break;

}

60 JavaCC: lexer-, parser-, and tree generator

}
}

Now a parser can be written as a static method that takes a token stream ts
and looks at the first token to decide which form the S-expression being parsed

must have. If the first token is a right parenthesis ‘)’ then the S-expression is

ill-formed; otherwise if it is a left parenthesis ‘(’ then the parser keeps reading

complete (balanced) S-expressions until it encounters the corresponding right

parenthesis; otherwise if the first token is a symbol then S-expression is a

symbols; otherwise if it is number, then the S-expression is a number:

public static void ParseSexp(IEnumerator<IToken> ts) {
if (ts.Current is Symbol) {
Console.WriteLine("Parsed symbol " + ts.Current);

} else if (ts.Current is NumberCst) {
Console.WriteLine("Parsed number " + ts.Current);

} else if (ts.Current is Lpar) {
Console.WriteLine("Started parsing list");
Advance(ts);
while (!(ts.Current is Rpar)) {

ParseSexp(ts);
Advance(ts);

}
Console.WriteLine("Ended parsing list");

} else
throw new ArgumentException("Parse error at token: " + ts.Current);

}

The auxiliary function Advance(ts) discards the current token and reads the

next one, or throws an exception if there is no next token:

private static void Advance(IEnumerator<IToken> ts) {
if (!ts.MoveNext())
throw new ArgumentException("Expected sexp, found eof");

}

3.9 JavaCC: lexer-, parser-, and tree generator

JavaCC [145] can generate a lexer, a parser, and Java class representation of

syntax trees from a single specification file. The generated parsers are of the

LL or recursive descent type. They do not support operator precedence and

associativity declarations, so often the grammar must be (re)written slightly

to be accepted by JavaCC.

JavaCC: lexer-, parser-, and tree generator 61

A JavaCC lexer and parser specification is written in a single file, see for in-

stance expr/javacc/Exprparlex.jj. This file must be processed by the javacc
program to generate several Java source files, which are subsequently com-

piled:

javacc Exprparlex.jj
javac *.java

The lexer specification part of a JavaCC file Expr/javacc/Exprparlex.jj de-

scribing the simple expression language discussed above may look like this:

SKIP :
{ " "
| "\r"
| "\n"
| "\t"
}

TOKEN :
{ < PLUS : "+" >
| < MINUS : "-" >
| < TIMES : "*" >
}

TOKEN :
{ < LET : "let" >
| < IN : "in" >
| < END : "end" >
}

TOKEN : /* constants and variables */
{ < CSTINT : (<DIGIT>)+ >
| < #DIGIT : ["0" - "9"] >
| < NAME : <LETTER> (<DIGIT> | <LETTER>)* >
| < #LETTER : ["a"-"z", "A"-"Z"] >
}

The SKIP declaration says that blanks, newlines, and tabulator characters

should be ignored. The first TOKEN declaration defines the operators, the second

one defines the keywords, and the third one defines integer constants (CSTINT)

and variables (NAME). There is no requirement to divide the declarations like

this, but it may improve clarity. Note that TOKEN declarations may introduce

and use auxiliary symbols such as #DIGIT and #LETTER. The format of this lexer

specification is different from the fslex specification, but it should be easy to

relate one to the other.

62 JavaCC: lexer-, parser-, and tree generator

The parser specification part of the JavaCC file for the expression language

is quite different, on the other hand:

void Main() :
{}
{
Expr() <EOF>

}

void Expr() :
{}
{
Term() ((<PLUS> | <MINUS>) Term())*

}

void Term() :
{ }
{
Factor() (<TIMES> Factor())*

}

void Factor() :
{ }
{

<NAME>
| <CSTINT>
| <MINUS> <CSTINT>
| "(" Expr() ")"
| <LET> <NAME> "=" Expr() <IN> Expr() <END>
}

There are two reasons for this. First, JavaCC generates top-down or LL parsers,

and these cannot handle grammar rules N ::= N ... in which the left-hand

nonterminal appears as the first symbol in the right-hand side. Such rules are

called left-recursive grammar rules; see for example the last three rules of the

original Expr grammar:

Expr ::= NAME
| INT
| - INT
| (Expr)
| let NAME = Expr in Expr end
| Expr * Expr
| Expr + Expr
| Expr - Expr

History and literature 63

Secondly, in JavaCC one cannot specify the precedence of operators, so the

grammar above is highly ambiguous. For these reasons, one must transform

the grammar to avoid the left-recursion and to express the precedence. The

resulting grammar will typically look like this:

Expr ::= Term
| Term + Expr
| Term - Expr

Term ::= Factor
| Factor * Term

Factor ::= NAME
| INT
| - INT
| (Expr)
| let NAME = Expr in Expr end

Moreover, JavaCC has several extensions of the grammar notation, such as

(... | ...) for choice and (...)* for zero or more occurrences. Using such

abbreviations we arrive at this shorter grammar which corresponds closely to

the JavaCC parser specification on page 62:

Expr ::= Term ((+ | -) Term)*
Term ::= Factor (* Factor)*
Factor ::= NAME

| INT
| - INT
| (Expr)
| let NAME = Expr in Expr end

To use JavaCC, download it [145], unzip it, and run the enclosed Java program

which will unpack and install it. See JavaCC’s file examples/SimpleExamples/README
for a careful walkthrough of several other introductory examples.

3.10 History and literature

Regular expressions were introduced by Stephen Cole Kleene, a mathemati-

cian, in 1956.

Michael O. Rabin and Dana Scott in 1959 gave the first algorithms for con-

structing a deterministic finite automaton (DFA) from a nondeterministic fi-

nite automaton (NFA), and for minimization of DFAs [113].

Formal grammars were developed within linguistics by Noam Chomsky

around 1956. They were first used in computer science by John Backus and

64 History and literature

Peter Naur in 1960 to describe the Algol 60 programming language. This vari-

ant of grammar notation was subsequently called Backus-Naur Form or BNF.

Chomsky originally devised four grammar classes, each class more general

than those below it:

Chomsky hierarchy Example rules Characteristics

0: Unrestricted a B b → c General rewrite system

1: Context-sensitive a B b → a c b Non-abbreviating rewr. sys.

2: Context-free B → a B b
Some subclasses of context-free grammars:

LR(1) general bottom-up parsing, Earley

LALR(1) bottom-up, Yacc, fsyacc
LL(1) top-down, recursive descent

3: Regular B → a | a B parsing by finite automata

The unrestricted grammars cannot be parsed by machine in general; they are

of theoretical interest but of little practical use in computing. All context-

sensitive grammars can be parsed, but may take an excessive amount of time

and space, and so are of little practical use. The context-free grammars are

very useful in computing, in particular the subclasses LL(1), LALR(1), and

LR(1) mentioned above. Earley gave an O(n3) algorithm for parsing general

context-free grammars in 1969. The regular grammars are just regular ex-

pressions; parsing according to a regular grammar can be done in linear time

using a constant amount of memory.

Donald E. Knuth described the LR subclass of context-free grammars and

how to parse them in 1965 [85]. The first widely used implementation of an LR

parser generator tool was the influential Yacc LALR parser generator for Unix

created by S. C. Johnson at Bell Labs in 1975.

There is a huge literature about regular expressions, automata, grammar

classes, formal languages, the associated computation models, practical lexing

and parsing, and so on. Two classical textbooks are: Aho, Hopcroft, Ullman

1974 [8], and Hopcroft, Ullman 1979 [62].

A classical compiler textbook with good coverage of lexing and parsing (and

many many other topics) is the famous ‘dragon book’ by Aho, Lam, Sethi and

Ullman [9], which has appeared in multiple versions since 1977.

Parser combinators for recursive descent (LL) parsing with backtracking

are popular in the functional programming community. A presentation using

lazy languages is given by Hutton, [64], and one using Standard ML is given by

Paulson [109]. There is also a parser combinator library for F# called fparsec

[142].

Parser combinators were introduced by Burge in his — remarkably early —

Exercises 65

1975 book on functional programming techniques [24]. There is a parser com-

binator library in mosml/examples/parsercomb in the Moscow ML distribution.

3.11 Exercises

The main goal of these exercises is to familiarize yourself with regular expres-

sions, automata, grammars, the fslex lexer generator and the fsyacc parser

generator.

Exercise 3.1 Do exercises 2.2 and 2.3 in Mogensen’s book [101].

Exercise 3.2 Write a regular expression that recognizes all sequences con-

sisting of a and b where two a’s are always separated by at least one b. For

instance, these four strings are legal: b, a, ba, ababbbaba; but these two

strings are illegal: aa, babaa.

Construct the corresponding NFA. Try to find a DFA corresponding to the

NFA.

Exercise 3.3 Write out the rightmost derivation of this string from the ex-

pression grammar presented in the lecture, corresponding to Expr/ExprPar.fsy.

Take note of the sequence of grammar rules (A–I) used.

let z = (17) in z + 2 * 3 end EOF

Exercise 3.4 Draw the above derivation as a tree.

Exercise 3.5 Get expr.zip from the course homepage and unpack it. Using

a command prompt, generate (1) the lexer and (2) the parser for expressions

by running fslex and fsyacc; then (3) load the expression abstract syntax, the

lexer and parser modules, and the expression interpreter and compilers, into

an interactive F# session (fsi):

fslex ExprLex.fsl
fsyacc --module ExprPar ExprPar.fsy
fsi -r FSharp.PowerPack.dll Absyn.fs ExprPar.fs ExprLex.fs Parse.fs

Now try the parser on several example expressions, both well-formed and ill-

formed ones, such as these, and some of your own invention:

open Parse;;
fromString "1 + 2 * 3";;
fromString "1 - 2 - 3";;
fromString "1 + -2";;

66 Exercises

fromString "x++";;
fromString "1 + 1.2";;
fromString "1 + ";;
fromString "let z = (17) in z + 2 * 3 end";;
fromString "let z = 17) in z + 2 * 3 end";;
fromString "let in = (17) in z + 2 * 3 end";;
fromString "1 + let x = 5 in let y = 7 + x in y + y end + x end";;

Exercise 3.6 Using the expression parser from Expr/Parse.fs and the expression-

to-stack-machine compiler scomp and associated datatypes from Expr.fs, de-

fine a function compString : string -> sinstr list that parses a string as

an expression and compiles it to stack machine code.

Exercise 3.7 Extend the expression language abstract syntax and the lexer

and parser specifications with conditional expressions. The abstract syntax

should be If(e1, e2, e3); so you need to modify file Expr/Absyn.fs as well

as Expr/ExprLex.fsl and Expr/ExprPar.fsy. The concrete syntax may be the

keyword-laden F#/ML-style:

if e1 then e2 else e3

or the more light-weight C/C++/Java/C#-style:

e1 ? e2 : e3

Some documentation for fslex and fsyacc is found in this chapter and in Ex-

pert F#.

Exercise 3.8 Determine the steps taken by the parser generated from Expr/ExprPar.fsy
during the parsing of this string:

let z = (17) in z + 2 * 3 end EOF

For each step, show the remaining input, the parse stack, and the action (shift,

reduce, or goto) performed. You will need a printout of the parser states and

their transitions in ExprPar.fsyacc.output to do this exercise. Sanity check:

the sequence of reduce action rule numbers in the parse should be the exact

reverse of that found in the derivation in Exercise 3.3.

Exercise 3.9 Files in the subdirectory Usql/ contain abstract syntax abstract

syntax (file Absyn.fs), an informal grammar (file grammar.txt), a lexer specifi-

cation (UsqlLex.fsl) and a parser specification (UsqlPar.fsy) for micro-SQL, a

small subset of the SQL database query language.

Extend micro-SQL to cover a larger class of SQL SELECT statements. Look

at the examples below and decide your level of ambition. You should not need

Exercises 67

to modify file Parse.fs. Don’t forget to write some examples in concrete syntax

to show that your parser can parse them.

For instance, to permit an optional WHERE clause, you may add one more

component to the Select constructor:

type stmt =
| Select of expr list (* fields are expressions *)

* string list (* FROM ... *)
* expr option (* optional WHERE clause *)

so that SELECT ... FROM ... WHERE ... gives Select(..., ..., SOME ...),and

SELECT ... FROM ... gives Select(..., ..., NONE).

The argument to WHERE is just an expression (which is likely to involve a

comparison), as in these examples:

SELECT name, zip FROM Person WHERE income > 200000

SELECT name, income FROM Person WHERE zip = 2300

SELECT zip, AVG(income) FROM Person GROUP BY zip

SELECT name, town FROM Person, Zip WHERE Person.zip = Zip.zip

More ambitiously, you may add optional GROUP BY and ORDER BY clauses in

a similar way. The arguments to these are lists of column names, as in this

example:

SELECT town, profession, AVG(income) FROM Person, Zip
WHERE Person.zip = Zip.zip
GROUP BY town, profession
ORDER BY town, profession

68 Exercises

Chapter 4

A first-order functional

language

This chapter presents a functional language micro-ML, a small subset of ML

or F#. A functional programming language is one in which the evaluation of

expressions and function calls is the primary means of computation. A pure

functional language is one in which expressions cannot have side effects, such

as changing the value of variables, or printing to the console. The micro-ML

language is first-order, which means that functions cannot be used as values.

Chapter 5 presents a higher-order functional language, in which functions can

be used as values as in ML and F#.

4.1 What files are provided for this chapter

File Contents

Fun/Absyn.sml the abstract syntax (see Figure 4.1)

Fun/grammar.txt an informal grammar

Fun/FunLex.fsl lexer specification

Fun/FunPar.fsy parser specification

Fun/Parse.fs combining lexer and parser

Fun/Fun.fs interpreter eval for first-order expr
Fun/ParseAndRun.fs load both parser and interpreter

TypedFun/TypedFun.fs an explicitly typed expr, and its type checker

69

70 Examples and abstract syntax

4.2 Examples and abstract syntax

Our first-order functional language extends the simple expression language

of Chapter 1 with if-then-else expressions, function bindings, and function

calls. A program is just an expression, but let-bindings may define functions

as well as ordinary varables. Here are some example programs:

z + 8

let f x = x + 7 in f 2 end

let f x = let g y = x + y in g (2 * x) end
in f 7 end

let f x = if x=0 then 1 else 2 * f(x-1) in f y end

The first program is simply an expression. The program’s input is provided

through its free variable z, and its output is the result of the expression. The

second program declares a function and calls it, the third one declares a func-

tion f that declares another function g, and the last one declares a recursive

function which computes 2y. Note that in the third example, the first occur-

rence of variable x is free relative to g, but bound in f.

For simplicity, functions can take only one argument. The abstract syntax

for the language is shown in Figure 4.1.

type expr =
| CstI of int
| CstB of bool
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr
| If of expr * expr * expr
| Letfun of string * string * expr * expr (* (f, x, fBody, letBody) *)
| Call of expr * expr

Figure 4.1: Abstract syntax of a small functional language.

The first two example programs would look like this in abstract syntax:

Prim("+", Var "z", CstI 8)

Letfun("f", "x", Prim("+", Var "x", CstI 7), Call(Var "f", CstI 2))

Runtime values: integers and closures 71

The components of a function binding Letfun (f, x, fBody, letBody) in Fig-

ure 4.1 have the following meaning, as in the concrete syntax let f x = fBody
in letBody end:

f is the function name

x is the parameter name

fBody is the function body, or function right-hand side

letBody is the let-body

The language is supposed to be first-order, but actually the abstract syntax in

Figure 4.1 allows the function f in a function call f(e) to be an arbitrary ex-

pression. In this chapter we restrict the language to be first-order by requiring

f in f(e) to be a function name. In abstract syntax, this means that in a func-

tion call Call(e, earg), the function expression e must be a name. So for now,

all function calls must have the form Call(Var f, earg), where f is a function

name, as in the example above.

In Section 4.5 we shall show how to interpret this language (without an ex-

plicit evaluation stack) using an environment env which maps variable names

to integers and function names to function closures.

4.3 Runtime values: integers and closures

A function closure is a tuple (f, x, fbody, decenv) consisting of the name of

the function, the name of the function’s parameter, the function’s body expres-

sion, and the function’s declaration environment. The latter is needed because

a function declaration may have free variables. For instance, x is free in the

declaration of function g above (but y is not free, because it is bound as a pa-

rameter to g). Thus the closures created for f and g above would be

("f", "x", "let g y = x + y in g (2 * x) end", [])

and

("g", "y", "x + y", [("x", 7)])

The name of the function is included in the closure to allow the function to call

itself recursively.

In the eval interpreter in file Fun/Fun.fs, a recursive closure is a value

Closure(f, x, fBody, fDeclEnv)

72 A simple environment implementation

where f is the function name, x is the parameter name, fBody is the function

body, and fDeclEnv is the environment in which the function was declared: this

is the environment in which fBody should be evaluated when f is called.

Since we do not really distinguish variable names from function names, the

interpreter will use the same environment for both variables and functions.

The environment maps a name (a string) to a value, which may be either an

integer or a function closure, which in turn contains an environment. So we

get a recursive definition of the value type:

type value =
| Int of int
| Closure of string * string * expr * value env

A value env is an environment that maps a name (a string) to a corresponding

value; see Section 4.4.

4.4 A simple environment implementation

When implementing interpreters and type checkers, we shall use a simple en-

vironment representation: a list of pairs, where each pair (k,d) contains a key

k which is a name, in the form of a string, and some data d. The pair says that

name k maps to data d. We make the environment type ’v env polymorphic in

the type ’v of the data, as shown in Figure 4.2.

type ’v env = (string * ’v) list;;

let rec lookup env x =
match env with

| [] -> failwith (x + " not found")
| (y, v)::r -> if x=y then v else lookup r x;;

let emptyEnv = [];;

Figure 4.2: A simple implementation of environments.

For example, a runtime environment mapping variable names to values

will have type value env (where type value was defined in Section 4.3 above),

whereas a type checking environment mapping variable names to types will

have type typ env (where type typ will be defined later in Section 4.3).

The value [] represents the empty environment.

The call lookup env x looks up name x in environment env and returns the

data associated with x. The lookup function has type ’a env -> string -> ’a.

Evaluating the functional language 73

The expression (x, v) :: env creates a new environment which is env ex-

tended with a binding of x to v.

4.5 Evaluating the functional language

Evaluation of programs (expressions) in the first-order functional language is

a simple extension of evaluation the expression language from Chapter 2.

The interpreter (file Fun/Fun.fs) uses integers to represent numbers as well

as logical values (0 representing false and 1 representing true). A variable x is

looked up in the runtime environment, and it value must be an integer (not a

function closure). Primitives are evaluated by evaluating the arguments, and

then evaluating the primitive operation. Let-bindings are evaluated by evalu-

ating the right-hand side in the old environment, extending the environment,

and then evaluating the body of the let:

let rec eval (e : expr) (env : value env) : int =
match e with
| CstI i -> i
| CstB b -> if b then 1 else 0
| Var x -> match lookup env x with

| Int i -> i
| _ -> failwith "eval Var"

| Prim(ope, e1, e2) ->
let i1 = eval e1 env
let i2 = eval e2 env
in match ope with

| "*" -> i1 * i2
| "+" -> i1 + i2
| "-" -> i1 - i2
| "=" -> if i1 = i2 then 1 else 0
| "<" -> if i1 < i2 then 1 else 0
| _ -> failwith ("unknown primitive " + ope)

| Let(x, eRhs, letBody) ->
let xVal = Int(eval eRhs env)
let bodyEnv = (x, xVal) :: env
in eval letBody bodyEnv

| ...

All of this is as in the expression language. Now let us consider the cases that

differ from the expression language, namely conditionals, function bindings,

and function application:

let rec eval (e : expr) (env : value env) : int =

74 Static scope and dynamic scope

match e with
| ...
| If(e1, e2, e3) ->

let b = eval e1 env
in if b<>0 then eval e2 env

else eval e3 env
| Letfun(f, x, fBody, letBody) ->

let bodyEnv = (f, Closure(f, x, fBody, env)) :: env
in eval letBody bodyEnv

| Call(Var f, eArg) ->
let fClosure = lookup env f
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
let xVal = Int(eval eArg env)
let fBodyEnv = (x, xVal) :: (f, fClosure) :: fDeclEnv
in eval fBody fBodyEnv

| _ -> failwith "eval Call: not a function"
| Call _ -> failwith "eval Call: only first-order functions allowed"

A conditional expression If(e1, e2, e3) is evaluated by first evaluating e1. If

the result is true (not zero), then evaluate e2, otherwise evaluate e3.

A function binding Letfun(f, x, fBody, letBody) is evaluated by creating

a function closure Closure(f, x, fBody, env) and binding that to f. Then

letBody is evaluated in the extended environment.

A function call Call(Var f, eArg) is evaluated by first checking that f is

bound to a function closure Closure (f, x, fBody, fDeclEnv). Then the argu-

ment expression eArg is evaluated to obtain an argument value xVal. A new

environment fBodyEnv is created by extending the function’s declaration envi-

ronment fDeclEnv with a binding of f to the function closure and a binding of

x to xVal. Finally, the function’s body fBody is evaluated in this new environ-

ment.

4.6 Static scope and dynamic scope

The language implemented by the interpreter (eval function) in Section 4.5

has static scope, also called lexical scope. Static scope means that a variable

occurrence refers to the (statically) innermost enclosing binding of a variable of

that name. Thus one needs only look at the program text to see which binding

the variable occurrence refers to.

With static scope, the occurrence of y inside f refers to the binding y = 11
in this example, which must therefore evaluate to 3+ 11= 14:

let y = 11

Static scope and dynamic scope 75

in let f x = x + y
in let y = 22

in f 3
end

end
end

An alternative is dynamic scope. With dynamic scope, a variable occurrence

refers to the (dynamically) most recent binding of a variable of that name. In

the above example, when f is called, the occurrence of y inside f would refer to

the second let-binding of y, which encloses the call to f, and the example would

evaluate to 3+ 22= 25.

It is easy to modify the interpreter eval from Section 4.5 to implement dy-

namic scope. In a function call, the called function’s body should simply be

evaluated in an environment fBodyEnv that is built not from the environment

fDeclEnv in the function’s closure, but from the environment env in force when

the function is called. Hence the only change is in the definition of fBodyEnv
below:

let rec eval (e : expr) (env : value env) : int =
match e with
| ...
| Call(Var f, eArg) ->

let fClosure = lookup env f
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
let xVal = Int(eval eArg env)
let fBodyEnv = (x, xVal) :: env
in eval fBody fBodyEnv

| _ -> failwith "eval Call: not a function"
| ...

There are two noteworthy points here. First, since fBodyEnv now includes all

the bindings of env, the binding of f, there is no need to re-bind f when creating

fBodyEnv. Secondly, the fDeclEnv from the function closure is not used at all.

For these reasons, dynamic scope is easier to implement, and that may be

the reason that the original version of the Lisp programming language (1960),

as well as most scripting languages, use dynamic scope. But dynamic scope

makes type checking and high-performance implementation difficult, and al-

lows for very obscure programming mistakes and poor encapsulation, so al-

most all modern programming languages use static scope. The Perl language

has both statically and dynamically scoped variables, declared using the some-

what misleading keywords my and local, respectively.

76 Type-checking an explicitly typed language

4.7 Type-checking an explicitly typed language

We extend our first-order functional language with explicit types on function

declarations, describing the types of function parameters and function results

(as we are used to in Java, ANSI C, C++, Ada, Pascal and so on).

We need a (meta-language) type typ of object-language types. The types

are int and bool (and function types, for use when checking a higher-order

functional language):

type typ =
| TypI (* int *)
| TypB (* bool *)
| TypF of typ * typ (* (argumenttype, resulttype) *)

The abstract syntax of the explicitly typed functional language is shown in

Figure 4.3. The only difference from the untyped syntax in Figure 4.1 is that

types have been added to Letfun bindings (file TypedFun/TypedFun.fs):

type tyexpr =
| CstI of int
| CstB of bool
| Var of string
| Let of string * tyexpr * tyexpr
| Prim of string * tyexpr * tyexpr
| If of tyexpr * tyexpr * tyexpr
| Letfun of string * string * typ * tyexpr * typ * tyexpr

(* (f, x, xTyp, fBody, rTyp, letBody *)
| Call of tyexpr * tyexpr

Figure 4.3: Abstract syntax for explicitly typed function language.

A type checker for this language maintains a type environment of type typ
env that maps bound variables and function names to their types. The type

checker function typ analyses the given expression and returns its type. For

constants it simply returns the type of the constant. For variables, it uses the

type environment:

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with

| CstI i -> TypI
| CstB b -> TypB
| Var x -> lookup env x
| ...

Type-checking an explicitly typed language 77

For a primitive operator such as addition (+) or less than (<) or logical and (&),

and so on, the type checker recursively finds the types of the arguments, checks

that they are as expected, and returns the type of the expression — or throws

an exception if they are not:

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with
| ...
| Prim(ope, e1, e2) ->

let t1 = typ e1 env
let t2 = typ e2 env
in match (ope, t1, t2) with

| ("*", TypI, TypI) -> TypI
| ("+", TypI, TypI) -> TypI
| ("-", TypI, TypI) -> TypI
| ("=", TypI, TypI) -> TypB
| ("<", TypI, TypI) -> TypB
| ("&", TypB, TypB) -> TypB
| _ -> failwith "unknown primitive, or type error"

| ...

For a let-binding

let x = eRhs in letBody end

the type checker recursively finds the type xTyp of the right-hand side eRhs,

binds x to xTyp in the type environment, and then finds the type of the letBody;

the result is the type the entire let-expression:

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with
| ...
| Let(x, eRhs, letBody) ->

let xTyp = typ eRhs env
let letBodyEnv = (x, xTyp) :: env
in typ letBody letBodyEnv

| ...

For an explicitly typed function declaration

let f (x : xTyp) = fBody : rTyp in letBody end

the type checker recursively finds the type of the function body fBody under

the assumption that x has type xTyp and f has type xTyp -> rTyp, and checks

that the type it found for f’s body is actually rTyp. Then it finds the type of

letBody under the assumption that f has type xTyp -> rTyp:

78 Type rules for monomorphic types

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with

| ...
| Letfun(f, x, xTyp, fBody, rTyp, letBody) ->

let fTyp = TypF(xTyp, rTyp)
let fBodyEnv = (x, xTyp) :: (f, fTyp) :: env
let letBodyEnv = (f, fTyp) :: env
in if typ fBody fBodyEnv = rTyp then typ letBody letBodyEnv

else failwith ("Letfun: wrong return type in function " + f)
| ...

For a function call

f eArg

the type checker first looks up the declared type of f, which must be a function

type of form xTyp -> rTyp. Then it recursively finds the typeof eArg and checks

that it equals f’s parameter typexTyp. If so, the type of the function call is f’s

result type rTyp:

let rec typ (e : tyexpr) (env : typ env) : typ =
match e with

| ...
| Call(Var f, eArg) ->

match lookup env f with
| TypF(xTyp, rTyp) ->

if typ eArg env = xTyp then rTyp
else failwith "Call: wrong argument type"

| _ -> failwith "Call: unknown function"

This approach suffices because function declarations are explicitly typed: there

is no need to guess the type of function parameters or function results. We shall

see later that one can in fact systematically ‘guess’ and then verify types, thus

doing type inference as in ML, F# and recent versions of C#, rather than type

checking.

4.8 Type rules for monomorphic types

Now we shall consider a less programming-like and more mathematical way

to present a type system for a functional language like the one we studied in

Section 4.7. A type environment ρ = [x1 7→ t1, . . . ,xn 7→ tn] maps variable names

x to types t. A judgement ρ ⊢ e : t asserts that in type environment ρ, the ex-

pression e has type t. The type rules in Figure 4.4 determine when one may

Type rules for monomorphic types 79

conclude that expression e has type t in environment ρ. By ρ[x 7→ t] we mean ρ
extended with a binding of x to t. In the figure, i is an integer, b a boolean, x a

variable, and e, e1, . . . are expressions.

-- (1)
ρ ⊢ i : int

-- (2)
ρ ⊢ b : bool

ρ(x) = t
---------------------------------- (3)
ρ ⊢ x : t

ρ ⊢ e1 : int ρ ⊢ e2 : int
-- (4)

ρ ⊢ e1 + e2 : int

ρ ⊢ e1 : int ρ ⊢ e2 : int
-- (5)

ρ ⊢ e1 < e2 : bool

ρ ⊢ er : tr ρ[x 7→ tr] ⊢ eb : t
--- (6)
ρ ⊢ let x = er in eb end : t

ρ ⊢ e1 : bool ρ ⊢ e2 : t ρ ⊢ e3 : t
--- (7)

ρ ⊢ if e1 then e2 else e3 : t

ρ[x 7→ tx, f 7→ tx → tr] ⊢ er : tr ρ[f 7→ tx → tr] ⊢ eb : t
--- (8)

ρ ⊢ let f (x : tx) = er : tr in eb : t

ρ(f) = tx → tr ρ ⊢ e : tx
--- (9)

ρ ⊢ f e : tr

Figure 4.4: Type rules for a first-order functional language.

A type rule always has a conclusion, which is a judgement ρ ⊢ e : t about the

type t of some expression e. If the rule has premisses, then there is a horizontal

line separating the premisses (above the line) from the conclusion (below the

line). The rules may be explained and justified as follows, in their order of

appearance:

(1) An integer constant i, such as 0, 1, -1, . . . , has type int.

(2) A boolean constant b, such as true or false, has type bool.

(3) A variable occurrence x has the type t of its binding. This type is given by

the type environment ρ.

80 Type rules for monomorphic types

(4) An addition expression e1 + e2 has type int provided e1 has type int and

e2 has type int.

(5) A comparison expression e1 < e2 has type bool provided e1 has type int
and e2 has type int.

(6) A let-binding let x = er in eb end has the same type t as the body

eb. First find the type tr of er, and then find the type t of eb under the

assumption that x has type tr.

(7) A conditional expression if e1 then e2 else e3 has type t provided e1

has type bool and e2 has type t and e3 has type t.

(8) A function declaration let f (x : tx) = er : tr in eb end has the same type

t as eb. First check that er has type tr under the assumption that x has type

tx and f has type tx → tr. Then find the type t of eb under the assumption

that f has type tx → tr.

(9) A function application f e has type tr provided f has type tx → tr and e has

type tx.

Type rules such as those in Figure 4.4 may be used to build a derivation tree or

proof tree. At the root (bottom) of the tree we find the conclusion a judgement

about the type t of some expression e. At the leaves (top) we find instances of

rules that do not have premisses. Internally in the tree we find nodes (branch-

ing points) that are instances of rules that do have premisses.

As an illustration of this idea, consider the tree below. It shows that the

expression let x = 1 in x<2 end is well-typed and has type bool. It uses rule

(1) for constants twice, rule (3) for variables once, rule (5) for comparisons once,

and rule 8 for let-binding once.

--- (1)
ρ ⊢ 1 : int

ρ[x 7→ int](x) = int
-- (3)
ρ[x 7→ int] ⊢ x : int

-- (1)
ρ[x 7→ int] ⊢ 2 : int

-- (5)
ρ[x 7→ int] ⊢ x< 2 : bool

--- (6)
ρ ⊢ let x = 1 in x< 2 end : bool

As another illustration, the tree below shows that expression let z = (1<2)
in if z then 3 else 4 end is well-typed and has type int. For brevity we

write ρ′ for the type environment ρ[z 7→ bool]:

Static typing and dynamic typing 81

ρ ⊢ 1 : int

ρ ⊢ 2 : int

-- (5)
ρ ⊢ 1< 2 : bool

ρ′(z) = bool
--- (3)
ρ′ ⊢ z : bool

ρ′ ⊢ 3 : int

ρ′ ⊢ 4 : int

-- (7)
ρ[z 7→ bool] ⊢ if z then 3 else 4 end : int

-- (6)
ρ ⊢ let z = (1< 2) in if z then 3 else 4 end : int

4.9 Static typing and dynamic typing

Our original untyped functional language is not completely untyped. More pre-

cisely it is dynamically typed: it forbids certain monstrosities, such as adding

a function and an integer. Hence this program is illegal, and its execution fails

at runtime:

let f x = x+1 in f + 4 end

whereas this slightly odd program is perfectly valid in the original interpreter

Fun.eval:

let f x = x+1 in if 1=1 then 3 else f + 4 end

It evaluates to 3 without any problems, because no attempt is made to evaluate

the else-branch of the if-then-else.

By contrast, our typed functional language (abstract syntax type tyexpr in

file TypedFun/TypedFun.fs) is statically typed: a program such as

if 1=1 then 3 else false+4

or, in tyexpr abstract syntax,

If(Prim("=", CstI 1, CstI 1), CstI 3, Prim("+", CstB false, CstI 4))

is ill-typed even though we never attempt to evaluate the addition false+4.

Thus the type checker in a statically typed language may be overly pessimistic.

Even so, many languages are statically typed, for several reasons. First,

type errors often reflect logic errors, so static (compile-time) type checking

helps finding real bugs early. It is better and cheaper to detect and fix bugs

at compile-time than at run-time, which may be after the program has been

shipped to customers. Secondly, types provide reliable machine-checked docu-

mentation, to the human reader, about the intended and legal ways to use a

variable or function. Finally, the more the compiler knows about the program,

the better code can it generate: types provide such information to the compiler,

82 Static typing and dynamic typing

and advanced compilers use type information to generate target programs that

are faster or use less space.

Languages such as Lisp, Scheme, ECMAScript/Javascript/Flash Action-

script [44], Perl, Postscript, Python and Ruby are dynamically typed. Although

most parts of the Java and C# languages are statically typed, some are not. In

particular, array element assignment and operations on pre-2004 non-generic

collection classes require runtime checks.

4.9.1 Dynamic typing in Java and C# array assignment

In Java and C#, assignment to an array element is dynamically typed when the

array element type is a reference type. Namely, recall that the Java ‘wrapper’

classes Integer and Double are subclasses of Number, where Integer, Double,

and Number are built-in classes in Java. If we create an array whose element

type is Integer, we can bind that to a variable arrn of type Number[]:

Integer[] arr = new Integer[16];
Number[] arrn = arr;

Note that arr and arrn refer to the same array, whose element type is Integer.

Now one might believe (mistakenly), that when arrn has type Number[], one

can store a value of any subtype of Number in arrn. But that would be wrong:

if we could store a Double in arrn, then an access arr[0] to arr could return

a Double object, which would be rather surprising, given that arr has type

Integer[]. However, in general a variable arrn of type Number[] might refer

to an array whose element type is Double, in which can we can store a Double

object in the array. So the Java compiler should not refuse to compile such an

assignment.

The end result is that the Java compiler will actually compile this assign-

ment

arrn[0] = new Double(3.14);

without any complaints, but when it is executed at runtime, it is checked that

the element type of arrn is Double or a superclass of Double, which it is not,

and an ArrayStoreException is thrown.

Hence Java array assignments are not statically typed, but dynamically

typed. Array element assignment in C# works exactly as in Java.

4.9.2 Dynamic typing in non-generic collection classes

When we use pre-2004 non-generic collection classes, Java and C# provide no

compiletime type safety:

History and literature 83

LinkedList names = new LinkedList();
names.add(new Person("Kristen"));
names.add(new Person("Bjarne"));
names.add(new Integer(1998)); // (1) Wrong, but no compiletime check
names.add(new Person("Anders"));
...
Person p = (Person)names.get(2); // (2) Cast needed, may fail at runtime

The elements of the LinkedList names are supposed to have class Person, but

the Java compiler has no way of knowing that; it must assume that all ele-

ments are of class Person. This has two consequences: when storing something

into the list, the compiler cannot detect mistakes (line 1); and when retrieving

an element from the list, it must be checked at runtime that the element has

the desired type (line 2).

Since Java version 5.0 and C# version 2.0, these languages support generic

types and therefore can catch this kind of type errors at compile-time; see

Section 6.5.

4.10 History and literature

Functional, mostly expression-based, programming languages go back to Lisp

[93], invented by John McCarthy in 1960. Lisp is dynamically typed and has

dynamic variable scope, but its main successor, Scheme [135] created by Gerald

Sussman and Guy L. Steele in 1975, has static scope, which is much easier to

implement efficiently. Guy Lewis Steele took part in the design of Java.

Like Lisp, Scheme is dynamically typed, but there are many subsequent

statically typed functional languages, notably the languages in the ML family:

ML [54] and Standard ML [98, 99] by Michael Gordon, Robin Milner, Christo-

pher Wadsworth, Mads Tofte, Bob Harper, and David MacQueen, and OCaml

[88, 107] by Xavier Leroy and Damien Doligez.

Whereas these languages have so-called strict or eager evaluation – func-

tion arguments are evaluated before the function is called – another subfam-

ily is made up of the so-called non-strict or lazy functional languages, includ-

ing SASL and it successor Miranda [143] both developed by David Turner,

Lazy ML [13, 68] developed by Lennart Augustsson and Thomas Johnson,

and Haskell [73] where driving forces are Simon Peyton Jones, John Hughes,

Paul Hudak, and Phil Wadler. All the statically typed languages are statically

scoped as well.

Probably the first published description of type checking in a compiler is

about the Algol 60 compilers developed at Regnecentralen in Copenhagen by

Peter Naur [103].

84 Exercises

More general forms of static analysis or static checking have been studied

under the name of data flow analysis [75], or control flow analysis, or abstract

interpretation [34], and in much subsequent work.

4.11 Exercises

The goal of these exercises is to understand the evaluation of a simple first-

order functional language, and how explicit types can be given and checked.

Exercise 4.1 Get archive fun.zip from the homepage and unpack to directory

Fun. It contains lexer and parser specifications and interpreter for a small

first-order functional language. Generate and compile the lexer and parser

as described in Fun/README. Parse and run some example programs using file

Fun/ParseAndRun.fs.

Exercise 4.2 Write more example programs in the functional language. Then

test them in the same way as in Exercise 4.1. For instance, write programs

that do the following:

• Compute the sum of the numbers from 1000 down to 1. Do this by defin-

ing a function sum n that computes the sum n+(n− 1)+ · · ·+ 2+ 1. (Use

straightforward summation, no clever tricks).

• Compute the number 38, that is, 3 raised to the power 8. Again, use a

recursive function.

• Compute 30 + 31 + · · ·+ 310+ 311, using two recursive functions.

• Compute 18 + 28 + · · ·+ 108, again using two recursive functions.

Exercise 4.3 For simplicity, the current implementation of the functional lan-

guage requires all functions to take exactly one argument. This seriously limits

the programs that can be written in the language (at least it limits what that

can be written without excessive cleverness and complications).

Modify the language to permit functions to take one or more arguments.

Start by modifying the abstract syntax in Fun/Absyn.fs to permit a list of pa-

rameter names in Letfun and a list of argument expressions in Call.

Then modify the eval interpreter in file Fun/Fun.fs to work for the new

abstract syntax. You must modify the closure representation to accommodate a

list of parameters. Also, modify the Letfun and Call clauses of the interpreter.

You will need a way to zip together a list of variable names and a list of variable

values, to get an environment in the form of an association list; so function

List.zip might be useful.

Exercises 85

Exercise 4.4 In continuation of Exercise 4.3, modify the parser specification

to accept a language where functions may take any (non-zero) number of ar-

guments. The resulting parser should permit function declarations such as

these:

let pow x n = if n=0 then 1 else x * pow x (n-1) in pow 3 8 end

let max2 a b = if a<b then b else a
in let max3 a b c = max2 a (max2 b c)

in max3 25 6 62 end
end

You may want to define non-empty parameter lists and argument lists in anal-

ogy with the Names1 nonterminal from Usql/UsqlPar.fsy, except that the pa-

rameters should not be separated by commas. Note that multi-argument ap-

plications such as f a b are already permitted by the existing grammar, but

they would produce abstract syntax of the form Call(Call(Var "f", Var "a"),
Var "b") which the Fun.eval function does not understand. You need to mod-

ify the AppExpr nonterminal and its semantic action to produce Call(Var "f",
[Var "a"; Var "b"]) instead.

Exercise 4.5 Extend the (untyped) functional language with infix operator

‘&&’ meaning sequential logical ‘and’ and infix operator ‘||’ meaning sequential

logical ‘or’, as in C, C++, Java, C#, F#. Note that e1 && e2 can be encoded

as if e1 then e2 else false and that e1 || e2 can be encoded as if e1 then
true else e2. Hence you need only change the lexer and parser specifications,

and make the new rules in the parser specification generate the appropriate

abstract syntax. You need not change Fun/Absyn.fs or Fun/Fun.fs.

Exercise 4.6 Extend the abstract syntax, the concrete syntax, and the inter-

preter for the untyped functional language to handle tuple constructors (...)
and component selectors #i (where the first component is #1):

type expr =
| ...
| Tup of expr list
| Sel of int * expr
| ...

If we use the concrete syntax #2(e) for Sel(2, e) and (e1, e2) for Tup[e1, e2]
then you should be able to write programs such as these:

let t = (1+2, false, 5>8)
in if #3(t) then #1(t) else 14 end

86 Exercises

and

let max xy = if #1(xy) > #2(xy) then #1(xy) else #2(xy)
in max (3, 88) end

This permits functions to take multiple arguments and return multiple results.

To extend the interpreter correspondingly, you need to introduce a new kind

of value, namely a tuple value TupV(vs), and to allow eval to return a result of

type value (not just an integer):

type value =
| Int of int
| TupV of value list
| Closure of string * string list * expr * value env

let rec eval (e : expr) (env : value env) : value = ...

Note that this requires some changes elsewhere in the eval interpreter. For

instance, the primitive operations currently work because eval always returns

an int, but with the suggested change, they will have to check that eval re-

turns an Int i (e.g. by pattern matching).

Exercise 4.7 Modify the abstract syntax tyexpr and the type checker func-

tions typ and typeCheck in TypedFun/TypedFun.fs to allow functions to take

any number of typed parameters.

This exercise is similar to Exercise 4.3, but concerns the typed language.

The changes to the interpreter function eval are very similar to those in Exer-

cise 4.3 and can be omitted; just delete the eval function.

Exercise 4.8 Add lists (CstN is the empty list [], ConC(e1,e2) is e1::e2), and

list pattern matching expressions to the untyped functional language, where

Match(e0, e1, (h,t, e2)) is match e0 with [] -> e1 | h::t -> e2

type expr =
| ...
| CstN
| ConC of expr * expr
| Match of expr * expr * (string * string * expr)
| ..

Exercise 4.9 Add type checking for lists. All elements of a list must have the

same type. You’ll need a new kind of type TypL of typ to represent the type of

lists with elements of a given type.

Exercises 87

Exercise 4.10 Extend the functional language abstract syntax expr with mu-

tually recursive function declarations:

type expr =
| ...
| Letfun of fundef list * expr
| ...

and fundef = string * string list * expr

Also, modify the eval function correctly interpret such mutually recursive func-

tions. This requires a change to the vfenv datatype because you need mutually

recursive function environments.

Exercise 4.11 Write a structural test of the monomorphic type checker.

Exercise 4.12 Write a type checker for mutually recursive function declara-

tions.

Exercise 4.13 Design a concrete syntax for the explicitly typed functional lan-

guage, write lexer and parser specifications, and write some example programs

in concrete syntax (including some that have type errors).

88 Exercises

Chapter 5

Higher-order functions

A higher-order functional language is one in which a function may be used as

a value, just like an integer or a boolean. That is, the value of a variable may

be a function, and a function may take a function as argument and may return

a function as a result.

5.1 What files are provided for this chapter

The abstract syntax of the higher-order functional language is the same as that

of the first-order functional language; see Figure 4.1. Also the concrete syntax,

and hence the lexer and parser specifications, are the same as in Section 4.1.

What is new in this chapter is an interpreter that permits higher-order func-

tions:

File Contents

Fun/HigherFun.fs a higher-order evaluator for expr
Fun/ParseAndRunHigher.fs parser and higher-order evaluator

5.2 Higher-order functions in F#

A hallmark of functional programming languages is the ability to treat func-

tions as first-class values, just like integers and strings. Among other things,

this means that a frequently used control structure such as uniform transfor-

mation of the elements of a list can be implemented as a higher-order function:

a function that takes as argument (or returns) another function.

In F#, the uniform transformation of a list’s elements is called List.map, fil-

tering out only those elements that satisfy a given predicate is called List.filter,

89

90 Higher-order functions in the mainstream

and more general processing of a list is called List.foldBack. Definitions of

these functions are shown on Section A.11.2 in the appendix. That section also

shows that many list processing functions, such as computing the sum of a of

list of numbers, can be defined in terms of List.foldBack, which encapsulates

pattern matching and recursive calls.

Another simple but very convenient higher-order function in F# is the infix

‘pipe’ (x |> f) which simply computes f(x), that is, applies function f to argu-

ment x. To see why it is useful, consider a computation where we process an

integer list xs by filtering out small elements, then square the remaining ones,

then compute their sum. This is quite easily expressed:

sum (map (fun x -> x*x) (filter (x -> x>10) xs))

However, this must be read backwards, from right to left and inside out: first

filter, then map, then sum. Using the pipe (|>) performs exactly the same

computation, but makes the three-stage processing much clearer, allowing us

to read it from left to right:

xs |> filter (x -> x>10) |> map (fun x -> x*x) |> sum

5.3 Higher-order functions in the mainstream

A function closure is similar to a Java or C# object containing a method: the

object’s fields bind the free variables of the method (function).

5.3.1 Higher-order functions in Java

To work with functions as values in Java, one may introduce an interface that

describes the type of the function, and then create a function as an instance of

a class that implements that interface. For example, the type of functions int
to int can be described by this Java interface:

interface Int2Int {
int invoke(int x);

}

A function from type int to int can be represented as an object of a class (typ-

ically an anonymous class) that implements the interface. Here is a definition

and an application of the function f that multiplies its argument by two, just

like fun x -> 2*x in F#:

Higher-order functions in the mainstream 91

Int2Int f = new Int2Int() {
public int invoke(int x) {
return 2*x;

}
};
int res = f.invoke(7);

In Java 5, one can define generic interfaces to represent function types with

various numbers of parameters, like this:

interface Func0<R> {
public R invoke();

}
interface Func1<A1, R> {
public R invoke(A1 x1);

}
interface Func2<A1, A2, R> {
public R invoke(A1 x1, A2 x2);

}

A function from int to boolean can now be created as an anonymous inner

class implementing Func1<Integer,Boolean>. This relies on Java 5’s automatic

boxing and unboxing to convert between primitive types and their boxed rep-

resentations:

Func1<Integer,Boolean> p = new Func1<Integer,Boolean>() {
public Boolean invoke(Integer x) { return x>10; }

};

Higher-order functions corresponding to F#’s List.map, List.filter, List.fold
and so on can be defined as generic Java methods. Note that to call a function,

we must use its invoke method:

public static <A,R> List<R> map(Func1<A,R> f, List<A> xs) {
List<R> res = new ArrayList<R>();
for (A x : xs)
res.add(f.invoke(x));

return res;
}
public static <T> List<T> filter(Func1<T,Boolean> p, List<T> xs) {
List<T> res = new ArrayList<T>();
for (T x : xs)
if (p.invoke(x))
res.add(x);

return res;

92 Higher-order functions in the mainstream

}
public static <A,R> R fold(Func2<A,R,R> f, List<A> xs, R res) {
for (A x : xs)
res = f.invoke(x, res);

return res;
}

With these definitions, we can write a Java expression corresponding to the

F# example xs |> filter (x -> x>10) |> map (fun x -> x*x) |> sum from

Section 5.2:

fold(new Func2<Integer,Integer,Integer>()
{ public Integer invoke(Integer x, Integer r) { return x+r; } },

map(new Func1<Integer,Integer>()
{ public Integer invoke(Integer x) { return x*x; } },
filter(new Func1<Integer,Boolean>()
{ public Boolean invoke(Integer x) { return x>10; }},

xs)),
0);

This example shows that it is rather cumbersome to use anonymous inner

classes and generic interfaces to write anonymous functions and their types.

Nevertheless, this approach is used for instance in the embedded database

system db4objects [2] to write so-called native queries:

List <Pilot> pilots = db.query(new Predicate<Pilot>() {
public boolean match(Pilot pilot) {

return pilot.getPoints() == 100;
}

});

Since 2007 there have been several proposals for anonymous function nota-

tions in Java, including Gafter’s [51], but at the time of writing it seems more

probable that Reinhold’s proposal [114] may be adopted in Java version 7, if

any of these.

5.3.2 Higher-order functions in C#

In C#, a delegate created from an instance method is really a function closure:

it encloses a reference to an object instance and hence to the object’s fields

which may be free in the method. Recent versions C# provide two different

ways to write anonymous method expressions, corresponding to anonymous

F#’s of ML’s fun x -> 2*x, namely ‘delegate notation’ and ‘lambda notation’:

Higher-order functions in the mainstream 93

delegate(int x) { return 2*x; } // Since C# 2.0, ‘delegate’
(int x) => 2*x // Since C# 3.0, ‘lambda’
x => 2*x // Same, implicitly typed

Higher-order functions are heavily used in C# since version 3.0, because the

Linq (Language Integrated Query) syntax simply is ‘syntactic sugar’ for calls

to methods that take delegates as arguments. For instance, consider again

the filter-square-sum processing of an integer list from Section 5.2. It can be

expressed in C# by the following Linq query that filters the numbers in xs,

squares them, and sums them:

(from x in xs where x>10 select x*x).Sum()

Although it looks very different from the F# version, it is simply a neater way

to write a C# expression that passes lambda expressions to extension methods

on the IEnumerable<T> interface:

xs.Where(x => x>10).Select(x => x*x).Sum()

Note in particular that the object-oriented ‘dot’ operator o.m() here is very sim-

ilar to the F# ‘pipe’ operator (x |> f) presented in Section 5.2. In general, the

‘dot’ operator performs virtual method calls, but precisely for extension meth-

ods (which are non-virtual) there is little difference between ‘dot’ and ‘pipe’.

Also, the Task Parallel Library in .NET 4.0 relies on expressing computa-

tions as anonymous functions. For instance, the Parallel.For method in the

System.Threading namespace takes as argument a from value, a to value, and

an action function, and applies the action to all the values of from, from+1, . . . ,

to-1 in some order, exploiting multiple processors if available:

For(100, 1000, i => { Console.Write(i + " "); });

5.3.3 Google MapReduce

The purpose of Google’s MapReduce framework, developed by Dean and Ghe-

mawat [39], is to efficiently and robustly perform ‘embarrasingly parallel’ com-

putations on very large (terabyte) datasets, using thousands of networked and

possibly unreliable computers. MapReduce is yet another example of a higher-

order framework, in which users write functions to specify the computations

that the framework must carry out; the framework takes care of scheduling the

execution of these computations. The name is inspired by Lisp’s map and reduce
functions, which correspond to F#’s List.map and List.fold functions. How-

ever, the Google MapReduce functions are somewhat more specialized than

those general functions.

94 A higher-order functional language

5.4 A higher-order functional language

It is straightforward to extend our first-order functional language from Chap-

ter 4 to a higher-order one. The concrete and abstract syntaxes already allow

the function part eFun in a call

Call(eFun, eArg)

to be an arbitrary expression; it need not be a function name.

In the interpreter eval in file Fun/HigherFun.fs) one needs to accommodate

the possibility that an expression evaluates to a function, and that a variable

may be bound to a function, not just to an integer. A value of function type is

a closure, as in the first-order language. Hence the possible values, and the

variable environments, are described by these mutually recursive type decla-

rations:

type value =
| Int of int
| Closure of string * string * expr * value env

where the four components of a closure are the function name, the function’s

parameter name, the function’s body, and an environment binding the func-

tion’s free variables at the point of declaration.

The only difference between the higher-order interpreter and the first-order

one presented in Section 4.5 is in the handling of function calls. A call

Call(eFun, eArg)

is evaluated by evaluating eFun to a closure Closure (f, x, fBody, fDeclEnv),

evaluating eArg to a value xVal, and then evaluating fBody in the environment

obtained by extending fDeclEnv with a binding of x to xVal and of f to the

closure. Here is the corresponding fragment of the eval function for the higher-

order language:

let rec eval (e : expr) (env : value env) : value =
match e with

| ...
| Call(eFun, eArg) ->
let fClosure = eval eFun env
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
let xVal = eval eArg env
let fBodyEnv = (x, xVal) :: (f, fClosure) :: fDeclEnv
in eval fBody fBodyEnv

| _ -> failwith "eval Call: not a function";;

Eager and lazy evaluation 95

5.5 Eager and lazy evaluation

In a function call such as f(e), one may evaluate the argument expression e
eagerly, to obtain a value v before evaluating the function body. That is what

we are used to in Java, C#, F# and languages in the ML family.

Alternatively, one might evaluate e lazily, that is, postpone evaluation of e
until we have seen that the value of e is really needed. If it is not needed, we

never evaluate e. If it is, then we evaluate e and remember the result until the

evaluation of function f is complete.

The distinction between eager and lazy evaluation makes a big difference

in function such as this one:

let loop n = loop n
in let f x = 1

in f (loop(2)) end
end

where the evaluation of loop(2) would never terminate. For this reason, the

entire program would never terminate if we use eager evaluation as in F#.

With lazy evaluation, however, we do not evaluate the expression loop(2) until

we have found that f needs its value. And in fact f does not need it at all —

because x does not appear in the body of f — so with lazy evaluation the above

program would terminate with the result 1.

For a less artificial example, note that in an eager language one cannot

define a function that works like F#’s if-then-else. An attempt would be

let myif b v1 v2 = if b then v1 else v2

but we cannot use that to define factorial recursively:

let myif b v1 v2 = if b then v1 else v2
in let fac n = myif (n=0) 1 (n * fac(n-1))

in fac 3 end
end

because eager evaluation of the third argument to myif would go into an in-

finite loop. Thus it is important that the built-in if-then-else construct is not

eager.

Our small functional language is eager. That is because the interpreter

(function eval in Fun/Fun.fs) evaluates the argument expressions of a func-

tion before evaluating the function body, and because the meta-language F#

is strict. Most widely used programming languages (C, C++, Java, C#, Pas-

cal, Ada, Lisp, Scheme, APL, . . .) use eager evaluation. An exception is Algol

96 The lambda calculus

60, whose call-by-name parameter passing mechanism provides a form of lazy

evaluation.

Some modern functional languages, such as Haskell [1], have lazy evalu-

ation. This provides for concise programs, extreme modularization, and very

powerful and general functions, especially when working with lazy data struc-

tures. For instance, one may define an infinite list of the prime numbers, or

an infinite tree of the possible moves in a two-player game (such as chess),

and if properly done, this is even rather efficient. Lazy languages require a

rather different programming style than eager ones. They are studied primar-

ily at Chalmers University (Gothenburg, Sweden), Yale University, University

of Nottinghamn, and Microsoft Research Cambridge (where the main devel-

opers of GHC, the Glasgow Haskell Compiler, reside). All lazy languages are

purely functional (no updatable variables, no direct input and output func-

tions) because it is nearly impossible to understand side effects in combination

with the hard-to-predict evaluation order of a lazy language.

One can implement lazy evaluation in a strict language by a combination

of anonymous functions (to postpone evaluation of an expression) and side ef-

fects (to keep the value of the expression after it has been evaluated). Doing

this manually is unwieldy, so some strict functional languages, including F#,

provide more convenient syntax for lazy evaluation of particular expressions.

5.6 The lambda calculus

The lambda calculus is the simplest possible functional language, with only

three syntactic constructs: variable, functions, and function applications. Yet

every computable function can be encoded in the untyped lambda calculus.

While this is an interesting topic about which much can be said, it is an aside,

so do not waste too much time on it.

Anonymous functions such as F#’s

fun x -> 2 * x

are called lambda abstractions by theoreticians, and are written

λx.2 ∗ x

where the symbol λ is the Greek lowercase letter lambda. The lambda cal-

culus is the prototypical functional language, invented by the logician Alonzo

Church in the 1930’s to analyse fundamental concepts of computability. The

pure untyped lambda calculus allows just three kinds of expressions e:

The lambda calculus 97

Variables x
Lambda abstractions λx.e
Applications e1 e2

The three kinds of expression are evaluated as follows:

• A variable x may be bound by an enclosing lambda abstraction, or may

be free (unbound).

• A lambda abstraction (λx.e) represents a function.

• A function application (e1 e2) denotes the application of function e1 to ar-

gument e2. To evaluate the application ((λx.e)e2) of a lambda abstraction

(λx.e) to an argument expression e2, substitute the argument e2 for x in e,

and then evaluate the resulting expression.

Thus an abstract syntax for the pure untyped lambda calculus could look like

this:

datatype lam =
Var of string

| Lam of string * lam
| App of lam * lam

This may seem to be a very restricted and rather useless language, but Church

showed that the lambda calculus can compute precisely the same functions as

Turing Machines (invented by the mathematician Alan Turing in the 1930’s),

and both formalism can compute precisely the same functions as an idealized

computer with unbounded storage. Indeed, ‘computable’ formally means ‘com-

putable by the lambda calculus (or by a Turing Machine)’. Everything that can

be expressed in Java, F#, C#, ML, C++ or any other programming language

can be expressed in the pure untyped lambda calculus as well.

In fact, it is fairly easy to encode numbers, lists, trees, arrays, objects, it-

eration, and recursion in the pure untyped lambda calculus. Recursion can be

encoded using one of the so-called Y combinators. This is the recursion combi-

nator for call-by-name evaluation:

Y = λh.(λx.h(x x)) (λx.h(x x))

This is a recursion operator for a call-by-value evaluation,

Yv = λh.(λx.(λa.h(x x) a))(λx.(λa.h(x x) a))

98 The lambda calculus

One can define a non-recursive variant of, say, the factorial function, and then

make it recursive using the Y combinator:

f ac′ = λ f ac.λn.i f n = 0 then 1 else n ∗ f ac(n− 1)

then f ac =Y f ac′ since

f ac 2
= Y f ac′ 2
= (λh.(λx.h(x x)) (λx.h(x x))) f ac′ 2
= (λx. f ac′(x x)) (λx. f ac′(x x)) 2
= f ac′((λx. f ac′(x x)) (λx. f ac′(x x))) 2
= i f 2 = 0 then 1 else 2 ∗ (((λx. f ac′(x x)) (λx. f ac′(x x))) (2− 1))
= 2 ∗ (((λx. f ac′(x x)) (λx. f ac′(x x))) (2− 1))
= 2 ∗ (((λx. f ac′(x x)) (λx. f ac′(x x)))1)
= 2 ∗ f ac′ ((λx. f ac′(x x)) (λx. f ac′(x x))) 1
= 2 ∗ (i f 1 = 0 then 1 else 1 ∗ ((λx. f ac′(x x)) (λx. f ac′(x x))) (1− 1))
= 2 ∗ (1 ∗ ((λx. f ac′(x x)) (λx. f ac′(x x))) (1− 1))
= 2 ∗ (1 ∗ ((λx. f ac′(x x)) (λx. f ac′(x x))) 0)
= 2 ∗ (1 ∗ f ac′((λx. f ac′(x x)) (λx. f ac′(x x))) 0)
= 2 ∗ (1 ∗ (i f 0 = 0 then 1 else 0 ∗ ((λx. f ac′(x x)) (λx. f ac′(x x))) (0− 1)))
= 2 ∗ (1 ∗ 1)
= 2

For the sake of illustration we here assumed that we can use arithmetic on

integers in the lambda calculus, although this was not included in the syntax

above.

In fact, the natural numbers (non-negative integers with addition, subtrac-

tion, multiplication, and test for zero) can be encoded as so-called Church nu-

merals as follows (and also in a number of other ways):

zero is λ f .λx.x
one is λ f .λx. f x
two is λ f .λx. f (f x)
three is λ f .λx. f (f (f x))

and so on. Then successor (+1), addition and multiplication may be defined as

follows:

succ is λm.λ f .λx. f (m f x)
add is λm.λn.λ f .λx.m f (n f x)
mul is λm.λn.λ f .λx.m(n f)x

History and literature 99

Some of these encodings are possible only in the untyped lambda calculus, so

the absence of type restrictions is important. In particular, the pure simply

typed lambda calculus cannot encode unbounded iteration or recursion.

Several different evaluation strategies are possible for the untyped lambda

calculus. To experiment with some encodings and evaluation strategies, you

may try an online lambda calculus reducer [86].

5.7 History and literature

Some references on the history of functional languages have been given al-

ready in Section 4.10, including a discussion of eager and lazy languages.

The lambda calculus was proposed the logician Alonzo Church in 1936 [29],

long before there were programming languages that could be used to program

electronic computers. The lambda calculus is routinely used in theoretical

studies of programming languages, and there is a rich literature about it, not

least Henk Barendregt’s comprehensive monograph [17].

5.8 Exercises

The main goal of these exercises is to understand programming with higher-

order functions in F# as well as Java/C#.

Exercises 5.1 and 5.3 are intended to illustrate the difference between F#

and Java or C# programming style; the latter exercise uses higher-order func-

tions. The exercises may look overwhelming, but that’s mostly because of

the amount of explanation. Do those exercises if you feel that you need to

strengthen your functional programming skills.

Exercises 5.4 and 5.5 illustrate typical higher-order functions in F# and

other ML-like languages.

Exercise 5.1 The purpose of this exercise is to contrast the F# and Java pro-

gramming styles, especially as concerns the handling of lists of elements. The

exercise asks you to write functions that merge two sorted lists of integers,

creating a new sorted list that contains all the elements of the given lists.

(A) Implement an F# function

merge : int list * int list -> int list

that takes two sorted lists of integers and merges them into a sorted

list of integers. For instance, merge ([3;5;12], [2;3;4;7]) should give

[2;3;3;4;5;7;12].

100 Exercises

(B) Implement a similar Java (or C#) method

static int[] merge(int[] xs, int[] ys)

that takes two sorted arrays of ints and merges them into a sorted array

of ints. The method should build a new array, and should not modify the

given arrays. Two arrays xs and ys of integers may be built like this:

int[] xs = { 3, 5, 12 };
int[] ys = { 2, 3, 4, 7 };

Exercise 5.2 This exercise is similar to Exercise 5.1 part (B), but here you

must merge two LinkedLists of Integers instead of arrays of ints. This turns

out to be rather cumbersome, at least if you try to use iterators to traverse the

lists. Implement a Java method

static LinkedList<Integer> merge(List<Integer> xs, List<Integer> ys)

that takes two sorted lists of Integer objects and merges them into a sorted

List of Integer objects. The method should build a new LinkedList, and should

not modify the given lists, only iterate over them. The interface List and the

class LinkedList are from the java.util package.

Two List<Integer> objects xs and ys may be built like this:

LinkedList<Integer> xs = new LinkedList<Integer>();
xs.addLast(3);
xs.addLast(5);
xs.addLast(12);
LinkedList<Integer> ys = new LinkedList<Integer>();
ys.addLast(2);
ys.addLast(3);
ys.addLast(4);
ys.addLast(7);

Exercise 5.3 This exercise is similar to Exercise 5.1, but now you should han-

dle sorted lists of arbitrary element type.

(A) Write an F# function

mergep : ’a list * ’a list * (’a * ’a -> int) -> ’a list

so that mergep(xs, ys, cmp) merges the two sorted lists xs and ys. The

third argument is a comparison function cpm : ’a * ’a -> int so that

cmp(x, y) returns a negative number if x is less than y, zero if they are

equal, and a positive number if x is greater than y.

For instance, with the integer comparison function

Exercises 101

let icmp (x, y) = if x<y then -1 else if x>y then 1 else 0

the call mergep([3;5;12],[2;3;4;7],icmp) should return [2;3;3;4;5;7;12].

Define a string comparison function scmp that compares two strings lexi-

cographically as usual, and write a call to the mergep function that merges

these lists of strings:

ss1 = ["abc"; "apricot"; "ballad"; "zebra"]
ss2 = ["abelian"; "ape"; "carbon"; "yosemite"]

Using this function for lexicographical comparison of integer pairs

let pcmp ((x1, x2), (y1, y2)) =
if x1<y1 then -1 else if x1=y1 then icmp(x1,y2) else 1

write a call to the mergep function that merges these lists of integer pairs:

ps1 = [(10, 4); (10, 7); (12, 0); (12, 1)]
ps2 = [(9, 100); (10, 5); (12, 2); (13, 0)]

(B) Write a similar generic Java method

static <T extends Comparable<T>> ArrayList<T> mergep(T[] xs, T[] ys)

that merges two sorted arrays xs and ys of T objects, where T must imple-

ment Comparable<T>. That is, each T object x a method int compareTo(T
y) so that x.compareTo(y) returns a negative number if x is less than y,

zero if they are equal, and a positive number if x is greater than y. Since

class Integer implements Comparable<Integer>, your mergep method will

be able to merge sorted arrays of Integer objects.

As in (A) above, show how to call the mergep method to merge two arrays

of Strings. Class String implements Comparable<String>.

As in (A) above, show how to call the mergep method to merge two arrays

of IntPair objects, representing pairs of ints. You will need to define a

class IntPair so that it implements Comparable<IntPair>.

(C) Write a Java method

static <T> ArrayList<T> mergec(T[] xs, T[] ys, Comparator<T> cmp)

102 Exercises

that merges two sorted arrays xs and ys. The Comparator<T> interface

(from package java.util) describes a method int compare(T x, T y) so

that cmp.compare(x, y) returns a negative number if x is less than y,

zero if they are equal, and a positive number if x is greater than y.

Show how to call the mergec method to merge two arrays of Integers.

Exercise 5.4 Define the following polymorphic F# functions on lists using the

foldr function for lists:

• filter : (’a -> bool) -> (’a list -> ’a list)

where filter p xs applies p to all elements x of xs and returns a list of

those for which p x is true.

• forall : (’a -> bool) -> (’a list -> bool)

where forall p xs applies p to each element x of xs and returns true if

all the results are true.

• exists : (’a -> bool) -> (’a list -> bool)

where exists p xs applies p to each element x of xs and returns true if

any of the results is true.

• mapPartial : (’a -> ’b option) -> (’a list -> ’b list)

where mapPartial f xs applies f to all elements x of xs and returns a list

of the values y for which f x has form Some y. You can think of mapPartial
as a mixture of map and filter, where None corresponds to false and Some
y corresponds to true.

Thus mapPartial (fun i -> if i>7 then Some(i-7) else None) [4; 12;
3; 17; 10] should give [5; 10; 3].

Exercise 5.5 Consider the polymorphic tree data type used in previous exer-

cises:

type ’a tree =
| Lf
| Br of ’a * ’a tree * ’a tree;;

Just like foldr function for the list datatype, one can define a uniform iterator

treeFold function for trees:

let rec treeFold f t e =
match t with
| Lf -> e
| Br(v, t1, t2) -> f(v, treeFold f t1 e, treeFold f t2 e);;

Exercises 103

Use treeFold to define the following polymorphic F# functions on trees:

• Function count : ’a tree -> int which returns the number of Br nodes

in the tree.

• Function sum : int tree -> int which returns the sum of the Br node

values in the tree.

• Function depth : ’a tree -> int which returns the depth of the tree,

where Lf has depth zero and Br(v,t1,t2) has depth one plus the maxi-

mum of the depths of t1 and t2.

• Function preorder1 : ’a tree -> ’a list which returns the Br node val-

ues in preorder.

• Function inorder1 : ’a tree -> ’a list which returns the Br node val-

ues in inorder.

• Function postorder1 : ’a tree -> ’a list which returns the Br node

values in postorder.

• Function mapTree : (’a -> ’b) -> (’a tree -> ’b tree) which applies

the function to each node of the tree, and returns a tree of the same shape

with the new node values.

Recall that the preorder, inorder, and postorder traversals were defined in

exercise sheet 2.

Exercise 5.6 This exercise is about using higher-order functions for produc-

tion of HTML code. This is handy when generating static webpages from

database information and when writing Web scripts in Standard ML (as in ML

Server Pages, see http://ellemose.dina.kvl.dk/~sestoft/msp/index.msp).

(A) Write an F# function

htmlrow : int * (int -> string) -> string

that builds one row of a numeric HTML table (with right-aligned table

data). For example,

htmlrow (3, fn j => Int.toString(j * 8))

should produce the string

104 Exercises

"<td align=right>0</td><td align=right>8</td><td align=right>16</td>"

Write an F# function

htmltable : int * (int -> string) -> string

that builds an HTML table. For example,

htmltable (3, fun i -> "<td>" + string(i) + "</td>" ^
"<td>" + string(i*8) + "</td>");

should produce an F# string that will print as

<table>
<tr><td>0</td><td>0</td></tr>
<tr><td>1</td><td>8</td></tr>
<tr><td>2</td><td>16</td></tr>
</table>

Newlines are represented by \n characters as in Java. Similarly,

htmltable (10, fun i -> htmlrow(10, fun j -> string((i+1)*(j+1))));;

should produce a 10-by-10 multiplication table in HTML.

(B) Implement methods similar to htmlrow and htmltable in Java. (This is

cumbersome, but instructive).

Exercise 5.7 Extend the monomorphic type checker to deal with lists. Use

the following extra kinds of types:

datatype typ =
...

| TypL of typ (* list, element type is typ *)
| ...

Exercise 5.8 Study a lazy functional language such as Haskell [1]. The Haskell

compiler that is easiest to install and use is probably Hugs.

Exercise 5.9 Study the implementation of a lazy language by reading Peyton

Jones and Lester: Implementing functional languages, Prentice Hall Interna-

tional 1992, or Sestoft: Deriving a lazy abstract machine, Journal of functional

programming 7(3) 1997. Implement an interpreter for a small lazy functional

language in F#. Usable lexer and parser specifications, as well as abstract

syntax, are found in directory mosml/examples/lexyacc/ in the Moscow ML

distribution.

Exercises 105

Exercise 5.10 Define the polymorphic F# function tmap : (’a -> ’b) -> (’a
tree -> ’b tree) so that tmap f t creates a new tree of the same shape as t,

but in which the value of a node is f v if the value of the corresponding node

in the old tree is v.

106 Exercises

Chapter 6

Polymorphic types

This chapter discusses polymorphic types and type inference in F# and other

ML-family languages, as well parametric polymorphism in Java and C#, often

called generic types and methods.

6.1 What files are provided for this chapter

The implementation files include a polymorphic type inference algorithm for

the higher-order functional language micro-ML previously discussed in Sec-

tion 5.4.

File Contents

Fun/TypeInference.fs type inference for micro-ML

Fun/ParseAndType.fs parsing and type inference for micro-ML

Fun/LinkedList.java generic linked list class (Java/C#)

6.2 ML-style polymorphic types

Consider an F# program with higher-order functions, such as this one:

let tw (g : int -> int) (y : int) = g (g y) : int;;
let mul2 (y : int) = 2 * y : int;;
let res = tw mul2 3;;

The function tw takes as argument a function g of type int -> int and a value

y of type int, and applies g to the result of applying g to y, as in g (g y), thus

producing an integer. The function mul2 multiplies its argument by 2. Type

checking of this program succeeds with the type int as result.

107

108 ML-style polymorphic types

The type explicitly ascribed to tw above is

tw : (int -> int) -> (int -> int)

which says that tw can be applied to a function of type int -> int and will

return a function of type int -> int, that is, one that can be applied to an int
and will then return an int. With a modest extension of the abstract syntax,

our micro-ML type checker (file TypedFun/TypedFun.fs) might even have come

up with this result. This is fine so long as we consider only monomorphic type

rules, where every variable, parameter, expression and function is assigned

just one (simple) type.

Now assume we strip the type constraints off the declaration of tw, like this:

let tw g y = g (g y);;

Then type (int -> int) -> (int -> int) is just one of infinitely many possi-

ble types for tw. For instance, another valid type instance would be

tw : (bool -> bool) -> (bool -> bool)

as in this program:

let tw g y = g (g y);;
let neg b = if b then false else true;;
let res = tw neg false;;

We would like to find a polymorphic type, say ∀’b. ((’b -> ’b) -> (’b -> ’b)),

for tw that reflects this potential: it says that tw can have any type of the form

’b. ((’b -> ’b) -> (’b -> ’b)) where ’b is some type. Letting ’b equal int
gives the particular type found previously.

6.2.1 Informal explanation of ML type inference

Here we informally explain polymorphic types in ML-like languages, such as

F#, OCaml and Standard ML, and how such types may be inferred. Later we

give formal type rules (Section 6.3) and sketch a practical implementation of

ML-style type inference for micro-ML (Section 6.4).

We want to find the most general (possibly polymorphic) type for functions

such as tw above. We could proceed by ‘guessing’ suitable types for tw, g and

y, and the prove that we have guessed correctly, but that seems hard to imple-

ment in an algorithm. But if we use type variables, such as ’a, ’b and so on,

that can stand for any so far unknown type, then we can proceed to discover

equalities that must hold between the type variables and ordinary types such

as int and bool, and thereby systematically infer types.

So consider this declaration of tw:

ML-style polymorphic types 109

let tw g y = g (g y);;

First we ‘guess’ that parameter g has type ’a and that parameter y has type ’b,

where ’a and ’b are type variables. Then we look at the body g(g y) of function

tw, and realize that because g is applied to y in subexpression g y, type ’a must

actually be a function type ’b -> ’c, where ’c is a new type variable. From

this we conclude that the result of (g y) must have type ’c. But because g is

applied to (g y), the argument type ’b of g must equal the result type ’c of

g, so type ’b must be equal to type ’c. Moreover, the result type of g (g y)
must be ’c and therefore equal to ’b, so the result of tw g y must have type

’b. Hence the type of tw must be

tw : (’b -> ’b) -> (’b -> ’b)

where ’b can be any type — remember that ’b was a type variable ‘guessed’

at the beginning of this process. So regardless what type ’b stands for, a valid

type for function tw is obtained.

Since the function may have many different types, the type is said to be

polymorphic (Greek: ‘many forms’), and since the type variable may be con-

sidered a kind of parameter for enumerating the possible types, the type is

said be parametrically polymorphic. (Virtual method calls in object-oriented

languages are sometimes said to be polymorphic, but that is not the same as

parametric polymorphism.)

A polymorphic type is represented by a type scheme, which is a list of type

variables together with a type in which those type variables occurs. In the case

of tw, the list of type variables contains just ’b, so the type scheme for tw is

([’b], (’b -> ’b) -> (’b -> ’b))

This type scheme may be read as follows: for all ways to instantiate type vari-

able ’b, the type is (’b -> ’b) -> (’b -> ’b). Therefore this type scheme is

often written like this:

∀’b. ((’b -> ’b) -> (’b -> ’b))

where ∀ is the universal quantifier ‘for all’, known from logic.

In general, a type scheme is a pair (tvs, t) where tvs is a list of type variables

and t is a type. A monomorphic (non-polymorphic) type t is the same as a type

scheme of the form ([], t), also written ∀().t, where the list of type variables is

empty.

A type scheme may be instantiated (or specialized) by systematically re-

placing all occurrences in t of the type variables from tvs by other types or type

variables.

110 ML-style polymorphic types

When x is a program variable (such as tw) with a polymorphic type repre-

sented by a type scheme (tvs, t), then type inference will create a fresh type

instance for every use of the program variable in the program. This means

that function tw may be used as type (int -> int) -> (int -> int) in one

part of the program, and be used as type (bool -> bool) -> (bool -> bool)
in another part of the program, as well as any other type that is an instance of

its type scheme.

6.2.2 Which type parameters may be generalized

There are several restrictions on the generalization of type variables in ML-

style languages. The first restriction is that only type variables in the types of

let-bound variables and functions (such as tw) are generalized. In particular,

type variables in the type of a function parameter g will not be generalized. So

the example below is ill-typed; g cannot be applied both to int and bool in the

body of f:

let f g = g 7 + g false // Ill-typed!

The second restriction is that type variables in the type of a recursive function

h are not generalized in the body of the function itself. So the example below is

ill-typed; h cannot be applied both to int and bool in its own right-hand side:

let rec h x =
if true then 22
else h 7 + h false // Ill-typed!

The above two restrictions are necessary for type inference to be implementable.

The next restriction is necessary for type inference to be sound — that is, not

accept programs that would crash. The restriction is that we cannot generalize

a type variable that has been equated with a yet unresolved type variable in

a larger scope. To understand this, consider the following program. The type

of x in f should be constrained to be the same as that of y in g, because the

comparison (x=y) requires x and y to have the same type:

let g y =
let f x = (x=y)
in f 1 && f false // Ill-typed!

in g 2

So it would be wrong to generalize the type of f when used in the let-body

f 1 && f false. Therefore type inference should proceed as follows, to obey

the third restriction: Guess a type ’a for y in g, guess a type ’b for x in f, and

Type rules for polymorphic types 111

then realize that ’a must equal ’b because x and y are compared by (x=y).

Thus a plausible type for f is ’b -> bool. Now, can we generalize ’b in this

type, obtaining the type scheme ∀’b.(’b -> bool) for f? No, because that

would allow us to apply f to any type, such as boolean, in the let-body. That

would be unsound, because we could apply g to an integer in the outer let-

body (as we actually do), and that would require us to compare booleans and

integers, something we do not want.

The essential observation is that we cannot generalize type variable ’b (or

’a, which is the same) in the type of f because type variable ’b was invented

in an enclosing scope, where it may later be equated to another type, such as

int.

There is an efficient way to decide whether a type variable can be general-

ized. With every type variable we associate a binding level, where the outer-

most binding level is zero, and the binding level increases whenever we enter

the right-hand side of a let-binding. When equating two type variables during

type inference, we reduce the binding level to the lowest (outermost) of their

binding levels. When generalizing a type in a let-binding, we generalize only

those type variables whose binding level is greater than the binding level of

the let-body — those that are not bound in an enclosing scope.

In the above example, type variable ’a for y has level 1, and type variable

’b for x has level 2. When equating the two, we set the level of ’b to 1, and

hence we do not generalize ’b (or ’a) in the inner let-body which is at level 1.

6.3 Type rules for polymorphic types

Section 4.8 presented rules for monomorphic types in a first-order explicitly

typed functional language. This section presents rules for polymorphic types

in a higher-order implicitly typed version of micro-ML, quite similar to the

rules used for F#. These type rules basically present a formalization of ML-

style polymorphic type inference, informally explained in Section 6.2.

In type rules, the type variables ’a, ’b, ’c and ’d are often written as Greek

letters α, β, γ and δ, pronounced alpha, beta, gamma and delta. Likewise, type

schemes are called σ (sigma), and type environments are called ρ (rho). Types

are sometimes called τ (tau), but here we call them t.
A type environment ρ = [x1 7→ σ1, . . . ,xm 7→ σm] maps variable names x to

type schemes σ. A judgement ρ ⊢ e : t asserts that in type environment ρ, the

expression e has type t. The type rules in Figure 6.1 determine when one may

conclude that expression e has type t in environment ρ. In the figure, i is an

integer constant, b a boolean constant, x a variable, and e, e1, and so on are

expressions.

112 Type rules for polymorphic types

The notation [t1/α1, . . . , tn/αn]t means that αi is replaced by ti in t for all i.
For instance, [int/α](α → α) is the type int→ int.

In the figure, the side condition α1, . . . ,αn not free in ρ means that the type

variables must not be bound in an enclosing scope. If they are, they cannot be

generalized.

-- (1)
ρ ⊢ i : int

-- (2)
ρ ⊢ b : bool

ρ(f) = ∀α1, . . . ,αn.t
-- (3)
ρ ⊢ f : [t1/α1, . . . , tn/αn]t

ρ ⊢ e1 : int ρ ⊢ e2 : int
-- (4)

ρ ⊢ e1 + e2 : int

ρ ⊢ e1 : int ρ ⊢ e2 : int
-- (5)

ρ ⊢ e1 < e2 : bool

ρ ⊢ er : tr ρ[x 7→ ∀α1, . . . ,αn.tr] ⊢ eb : t α1, . . . ,αn not free in ρ
--- (6)

ρ ⊢ let x = er in eb end : t

ρ ⊢ e1 : bool ρ ⊢ e2 : t ρ ⊢ e3 : t
--- (7)

ρ ⊢ if e1 then e2 else e3 : t

ρ[x 7→ tx, f 7→ tx → tr] ⊢ er : tr ρ[f 7→ ∀α1, . . . ,αn.tx → tr] ⊢ eb : t α1, . . . ,αn not free in ρ
--- (8)

ρ ⊢ let f x = er in eb end : t

ρ ⊢ e1 : tx → tr ρ ⊢ e2 : tx
--- (9)

ρ ⊢ e1 e2 : tr

Figure 6.1: Type rules for a higher-order functional language.

The type rules for the integer constants (1), Boolean constants (2), addition

(4), comparison (5) and conditional (7) are the same as for the monomorphic

types in Section 4.8.

The following rules for polymorphic types are very different from the monomor-

phic ones:

• Rule (3): An occurrence of a variable f can have any type [t1/α1, . . . , tn/αn]t
resulting from substituting types ti for the type variables αi in f ’s type

scheme, as given by the environment ρ.

For instance, if f has type scheme ρ(x) = ∀α1.α1 → α1 in the environment,

Implementing ML type inference 113

then an occurrence of f can have type int → int, but also type bool→
bool, and type (β → β)→ (β → β) and infinitely many other types.

• Rule (6): A let-binding let x = er in eb end can have type t provided that

(a) the right-hand side er can have type tr; and (b) the let-body eb can

have type t in an environment where the type scheme for x is obtained by

generalizing its type tr with type variables that are not free in the given

environment ρ.

The ‘not free in the environment’ side condition is the same as the ‘not

bound in an outer scope’ condition in Section 6.2.2.

• Rule (8): A function binding let f x = er in eb end can have type t pro-

vided that (a) the function body er can have type tr in an environment

where the function parameter x has type tx and the function f has type

tx → tr; and (b) the let-body er can have type t in an environment where

the type scheme for function f is obtained by generalizing its type tx → tr
with type variables that are not free in the given environment ρ.

Note that, as explained in Section 6.2.2, the type tx → tr of f is not gener-

alized in its own body er, only in the let-body eb. Also, f’s parameter x has

monomorphic type tx in f’s body.

For an example use of the rule, let g y = 1+2 in g false end can have

type int because (a) the function body 1+2 can have type int in an envi-

ronment in which g has type α → int, and (b) the let-body can have type

int in an environment in which the type scheme for g is ∀α.α → int; in

particular the occurrence of g can have the type bool→ int by the third

rule, which is required for the application g false to be well-typed by the

ninth rule.

• Rule (9): A function application e1 e2 can have type tr provided the func-

tion expression e1 can have function type tx → tr and provided the argu-

ment expression e2 can have type tx.

6.4 Implementing ML type inference

Type inference basically is an implementation of the procedure informally pre-

sented in Section 6.2: ‘guess’ types of functions and variables in the form of

type variables ’a, ’b, . . . ; collect equalities between type variables and simple

types; solve the equations; and generalize remaining type variables to obtain

a type scheme when permissible.

This also reflects what goes on in rules such as those in Figure 6.1, with

some differences:

114 Implementing ML type inference

• Do not guess the types t1, . . . , tn to instantiate with in rule 3. Instead

instantiate with new type variables β1, . . . ,βn. Later these new type vari-

ables may be equated with other types. This relies on unification, which

in turn relies on the union-find algorithm.

• Do not look through the type environment ρ to find free type variables in

the let rules. Instead, as explained at the end of Section 6.2.2, associate

with each type variable the level (depth of let-bindings) at which it was

introduced. When equating two type variables, adjust the binding level

of both variables to the lowest, that is outermost, of the two.

If the level of a type variable is lower than the current level, then it is

free in the type environment. In that case, do not generalize it.

So to implement type inference we need to work with type variables as well as

primitive types such as int, bool, and function types such as int -> bool, ’b
-> ’b, and so on. In our meta-language F# we can therefore model micro-ML

(that is, object language) types like this:

type typ =
| TypI (* integers *)
| TypB (* booleans *)
| TypF of typ * typ (* (argumenttype, resulttype) *)
| TypV of typevar (* type variable *)

where a typevar is an updatable pair of type variable’s link and its binding

level:

and typevar =
(tyvarkind * int) ref (* kind and binding level *)

and tyvarkind =
| NoLink of string (* just a type variable *)
| LinkTo of typ (* equated to type typ *)

The link is used in the union-find algorithm (explained in Section 6.4.2) to

solve equations between type variables and types.

With this setup, type inference proceeds by discovering, recording and solv-

ing equations between type variables and types. The required equations are

discovered by traversing the program’s expressions, and the equations between

types are recorded and solved simultaneously by performing unification of

types, as explained in Section 6.4.1 below.

Function typ lvl env e computes and returns the type of expression e at

binding level lvl in type environment env, by pattern matching on the form of

Implementing ML type inference 115

e. The four cases covering constants, variables and primitive operations corre-

spond to the first five rules in Figure 6.1. In the case of a primitive operation

such as e1+e2, we first find the types t1 and t2 of the operands e1 and e2, then

use unification calls such as unify TypI t1 to force the type of e1 to equal TypI,

that is, integer. Similarly, the unification call unify t1 t2 in the (e1=e2) case

forces the types of the two operands e1 and e2 to be equal:

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| CstI i -> TypI
| CstB b -> TypB
| Var x -> specialize lvl (lookup env x)
| Prim(ope, e1, e2) ->
let t1 = typ lvl env e1
let t2 = typ lvl env e2
in match ope with

| "*" -> (unify TypI t1; unify TypI t2; TypI)
| "+" -> (unify TypI t1; unify TypI t2; TypI)
| "-" -> (unify TypI t1; unify TypI t2; TypI)
| "=" -> (unify t1 t2; TypB)
| "<" -> (unify TypI t1; unify TypI t2; TypB)
| "&" -> (unify TypB t1; unify TypB t2; TypB)
| _ -> failwith ("unknown primitive " + ope)

| ...

The case for let corresponds to rule 6. Note that the binding level of the right-

hand side eRhs is lvl+1, one higher than that of the enclosing expression, and

that type variables in the type of the let-bound variable x get generalized (by

an auxiliary function) in the environment of the let-body. The case for if cor-

responds to rule 7. It requires the condition e1 to have type TypB, that is, bool,

and requires the types of the two branches to be equal. Again this is expressed

using unification:

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| ...
| Let(x, eRhs, letBody) ->
let lvl1 = lvl + 1
let resTy = typ lvl1 env eRhs
let letEnv = (x, generalize lvl resTy) :: env
in typ lvl letEnv letBody

| If(e1, e2, e3) ->
let t2 = typ lvl env e2
let t3 = typ lvl env e3
in

116 Implementing ML type inference

unify TypB (typ lvl env e1);
unify t2 t3;
t2

| ...

The case for function definition let f x = fBody in letBody end corresponds

to rule 8 in Figure 6.1. It creates (‘guesses’) fresh type variables for the type

of f and x and adds them to the environment as monomorphic types fTyp and

xTyp, then infers the type rTyp of f’s body in that extended environment. Then

it unifies f’s type fTyp with the type xTyp -> rTyp, as in the first premise of

rule 8. Finally it generalizes f’s type, adds it to the original environment, and

infers the type of the let-body in that environment:

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| ...
| Letfun(f, x, fBody, letBody) ->

let lvl1 = lvl + 1
let fTyp = TypV(newTypeVar lvl1)
let xTyp = TypV(newTypeVar lvl1)
let fBodyEnv = (x, TypeScheme([], xTyp))

:: (f, TypeScheme([], fTyp)) :: env
let rTyp = typ lvl1 fBodyEnv fBody
let _ = unify fTyp (TypF(xTyp, rTyp))
let bodyEnv = (f, generalize lvl fTyp) :: env
in typ lvl bodyEnv letBody

| ...

Finally, the case for function call f x corresponds to rule 9. It infers types tf
and tx for the function and argument expressions, and creates a fresh type

variable tr for the result of the expression, and unifies tf with tx -> tr. The

unification forces f to have a function type, checks that f’s argument type

matches the given tx, and binds tr to f’s result type:

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| ...
| Call(eFun, eArg) ->

let tf = typ lvl env eFun
let tx = typ lvl env eArg
let tr = TypV(newTypeVar lvl)
in

unify tf (TypF(tx, tr));
tr

Implementing ML type inference 117

6.4.1 Type equation solving by unification

Unification is a process for automatically solving symbolic equations, such as

equations between types. The unification unify t1 t2 of types t1 and t2 is per-

formed as follows, depending on the form of the types:

t1 t2 Action

int int No action needed

bool bool No action needed

t11 → t12 t21 → t22 Unify t11 with t21, and unify t12 with t22

α α No action needed

α β Make α equal to β
α t2 Make α equal to t2, provided α does not occur in t2
t1 α Make α equal to t1, provided α does not occur in t1

All other cases Unification fails; the types do not match

The side condition in the third last case, that α does not occur in t2, is needed to

prevent the creation of circular or infinite types. For instance, when t2 is α → α,

unification of α and t2 must fail, because there are no finite types solving the

equation α = (α → α).
Type unification is implemented by function unify t1 t2 in file Fun/TypeInference.cs

and strictly follows the above outline. The operations above called ‘make α
equal to β’ and similar are implemented by the Union(α, β) operations on the

union-find data structure; see Section 6.4.2 below.

6.4.2 The union-find algorithm

The union-find data structure is a simple and fast way to keep track of which

objects, such as types, are equal to each other. The data structure is an acyclic

graph, each of whose nodes represents a type or type variable. The nodes are

divided into dynamically changing equivalence classes or partitions; all nodes

in an equivalence class are considered equal to each other. Each equivalence

class contains a node that is the canonical representative of the class.

The union-find data structure supports the following three operations:

• New: Create a new node that is in its own one-element equivalence class.

• Find n: Given a node n, find the node that is the canonical representative

of its equivalence class.

• Union(n1,n2): Given two nodes n1 and n2, join their equivalence classes

into one equivalence class. In other words, force the two nodes to be

equal.

118 Implementing ML type inference

The implementation of the union-find data structure is simple. Each node has

an updatable link field which is either NoLink (meaning the node is the canon-

ical representative of its equivalence class), or LinkTo n, where n is another

node in the same equivalence class. By following LinkTo links from a node

until one reaches NoLink, one can find the canonical representative of a class.

The New operation is implemented by creating a new node whose link field

has value NoLink. The Find(n) operation is implemented by following link field

references until we reach a node whose link is NoLink, that is, a canonical

representative. The Union(n1,n2) operation is implemented by Find’ing the

canonical representatives for n1 and n2, and then making one representative

LinkTo the other one.

In file Fun/TypeInference.cs, the New operation is implemented by function

newTypeVar, the Find operation is implemented by function normType, and the

Union operation is implemented by function linkVarToType.

Two optimizations make this data structure extremely fast. The Find oper-

ation can do ‘path compression’, that is, update the intermediate node links to

point directly to the canonical representative it finds. The Union operation can

do ‘union by rank’, that is create the link from one canonical representative to

another in that direction that causes the smallest increase in the distance from

nodes to canonical representatives. With these improvements, the total cost of

N operations on the data structure is almost linear in N, so each operation is

takes amortized almost constant time. The ‘almost’ part is very intriguing:

it is the inverse of the Ackermann function, that is, for practical purposes, a

constant; see [139].

6.4.3 The complexity of ML-style type inference

Thanks to clever techniques such as unification (Section 6.4.1), the union-find

data structure (Section 6.4.2), and associating scope levels with type variables

(Section 6.2.2), ML-style type inference is fast in practice. Nevertheless, it

has very high worst-case runtime complexity. It is complete for DEXPTIME,

deterministic exponential time [84, 61], which means that it can be hopelessly

slow in extreme cases.

A symptom of the problem (but far from the whole story) is that the type

scheme of a program may involve a number of type variables that is exponen-

tial in the size of the program. For instance, the inferred type of the following

F# program involves 25 = 64 different type variables, and each new declaration

p6, p7, . . . in the same style will further double the number of type variables

(try it):

let id x = x;;
let pair x y p = p x y;;

Generic types in Java and C# 119

let p1 p = pair id id p;;
let p2 p = pair p1 p1 p;;
let p3 p = pair p2 p2 p;;
let p4 p = pair p3 p3 p;;
let p5 p = pair p4 p4 p;;

However, the programs that programmers actually write apparently have rel-

atively non-complex types, so ML-style type inference is fast in practice.

6.5 Generic types in Java and C#

The original versions of the Java and C# programming languages did not have

parametric polymorphism. Since 2004, Java version 5.0 and C# version 2.0

have parametric polymorphic types (classes, interfaces, struct types, and del-

egate types) and parametric polymorphic methods, often called generic types

and generic methods. In these extended languages, classes and other types, as

well as methods, can have type parameters. In contrast to F# and ML, type

parameters must be explicit in most cases: the Java and C# compilers perform

less type inference.

Generic Java was proposed in 1998 by Bracha and others [23]. Generic C#

was proposed in 2001 by Kennedy and Syme [79, 78]. Syme later implemented

the F# language, using many ideas from Xavier Leroy’s OCaml language.

The implementation of generic types in C# is safer and more efficient than

that of Java, but required a new runtime system and extensions to the .NET

bytecode language, whereas Java 5.0 required very few changes to the Java

Virtual Machine.

Using Java 5.0 or later (C# is very similar) one can declare a generic (or

parametrized) linked list class with a type parameter T as shown in Figure 6.2.

A type instance LinkedList<Person> is equivalent to the class obtained by

replacing T by Person everywhere in the declaration of LinkedList<T>. In an

object of class LinkedList<Person>, the add method will accept arguments only

of type Person (or one of its subclasses), and the get method can return only

objects of class Person (or one of its subclasses). Thus LinkedList<T> in Java is

very similar to T list in F# and ML.

Using this implementation of LinkedList, the dynamically typed collections

example from Section 4.9.2 can become statically typed. We simply declare the

list names to be of type LinkedList<Person> so that names.add can be applied

only to expressions of type Person. This means that the third call to add in

Figure 6.3 will be rejected at compile-time. On the other hand, no cast will be

needed in the initialization of p in the last line, because the object returned by

names.get must have class Person (or one of its subclasses).

120 Generic types in Java and C#

class LinkedList<T> {
private Node<T> first, last; // Invariant: first==null iff last==null

private static class Node<T> {
public Node<T> prev, next;
public T item;

public Node(T item) { this.item = item; }

public Node(T item, Node<T> prev, Node<T> next) {
this.item = item; this.prev = prev; this.next = next;

}
}

public LinkedList() { first = last = null; }

public T get(int index) { return getNode(index).item; }

private Node<T> getNode(int n) {
Node<T> node = first;
for (int i=0; i<n; i++)
node = node.next;

return node;
}

public boolean add(T item) {
if (last == null) // and thus first = null
first = last = new Node<T>(item);

else {
Node<T> tmp = new Node<T>(item, last, null);
last.next = tmp;
last = tmp;

}
return true;

}
}

Figure 6.2: Generic LinkedList class in Java 5. The type parameter T is

the list’s element type. It can be used almost as a type in the declaration of

LinkedList.

Co-variance and contra-variance 121

LinkedList<Person> names = new LinkedList<Person>();
names.add(new Person("Kristen"));
names.add(new Person("Bjarne"));
names.add(new Integer(1998)); // Wrong, compile-time error
names.add(new Person("Anders"));
...
Person p = names.get(2); // No cast needed

Figure 6.3: Using generic LinkedList to discover type errors early.

Both Java 5.0 and C# 2.0 and later support generic methods as well. For in-

stance, in Java one may declare a method f that takes an argument x of any

type T and returns a LinkedList<T> containing that element. Note that in Java

the type parameter <T> of the method declaration precedes the return type

LinkedList<T> in the method header:

public static <T> LinkedList<T> f(T x) {
LinkedList<T> res = new LinkedList<T>();
res.add(x);
return res;

}

This is similar to the F# or ML function

let f x = [x]

which has type ’a -> ’a list.

6.6 Co-variance and contra-variance

In languages such as Java and C#, one type may be a subtype (for instance,

subclass) of another, and the question arises how subtypes and generic types

interact. If Student is a subtype of type Person, should LinkedList<Student>
then be a subtype of LinkedList<Person>?

In general it should not, because that would lead to an unsound type sys-

tem. Consider this example:

LinkedList<Student> ss = new LinkedList<Student>();
LinkedList<Person> ps = ss; // Ill-typed!
ps.add(new Person(...));
Student s0 = ss.get(0);

122 Co-variance and contra-variance

If the assignment ps = ss were allowed, then we could use method add on the

LinkedList<Person> class to add a Person object to the ps list. But ps refers

to the exact same data structure as ss, so the subsequent call to ss.get(0)
would return a Person object, which is unexpected because method get on a

LinkedList<Student> has return type Student.

So in general a generic type must be invariant in its type parameters:

LinkedList<Student> is neither a subtype nor a supertype of LinkedList<Person>.

Sometimes this is needlessly restrictive. For instance, if we have a method

PrintPeople that can print a sequence of Person objects, then invariance pre-

vents us from calling it with a sequence of Student objects:

void PrintPeople(IEnumerable<Person> ps) {
...

}
...
IEnumerable<Student> students = ...;
PrintPeople(students); // Ill-typed due to invariance

But this seems silly: surely if the method can print Person objects, then it can

also print Student objects. So here we would wish that the type IEnumerable<T>
were co-variant in its type parameter T. Then IEnumerable<Student> would be

a subtype of IEnumerable<Person> just because Student is a subtype of Person.

Conversely, if we have a method that can register a new Student in a data

structure of type LinkedList<Student>, then invariance prevents us from call-

ing that method to add the student to a data structure of type LinkedList<Person>,

although that would be completely safe:

void AddStudentToList(LinkedList<Student> ss) {
ss.add(new Student(...));

}
...
AddStudentToList(new ArrayList<Person>()); // Ill-typed due to invariance

So here we would wish that the type LinkedList<T> were contra-variant in its

type parameter T. Then LinkedList<Person> would be a subtype of LinkedList<Student>
just because Student is a subtype of Person, so we can call AddStudentToList
with a LinkedList<Person> as argument.

Java 5.0 (from 2004) and C# 4.0 (from 2010) relax this restriction in differ-

ent ways, which we discuss below.

6.6.1 Java wildcards

Using the type wildcard notation LinkedList<? extends Person> we can de-

clare that method PrintPeople accepts any linked list, so long as its item type

Co-variance and contra-variance 123

— which is what the question mark stands for — is Person or a subtype of

Person. This has several consequences. First, any item extracted from the list

can be assigned to a variable of type Person in the method body, and second,

the method can be called on a LinkedList<Student>:

void PrintPeople(LinkedList<? extends Person> ps) {
for (Person p : ps) { ... }

}
...
PrintPeople(new ArrayList<Student>());

The extends wildcard in the example provides use-site co-variance. It also

restricts the way parameter ps can be used in the method. For instance, the

call ps.add(x) would be ill-typed for all arguments x, because the only thing

we know about the item type of ps is that it is a subtype of Person.

For the second invariance problem identified above, we can use the type

wildcard notation LinkedList<? super Student> to declare that AddStudentToList
accepts any linked list, so long as its item type is Student or a supertype of

Student. This has several consequences. First, we can definitely add Student
objects to the list. Second, the method can be called on a LinkedList<Person>,

or indeed any linked list whose item type is a supertype of Student:

void AddStudentToList(LinkedList<? super Student> ss) {
ss.add(new Student());

}
...
AddStudentToList(new LinkedList<Person>());

The super wildcard in the example provides use-site contra-variance. It also

restricts the way parameter ss can be used in the method. For instance, a call

ss.get(...) cannot have type Student or Person, because the only thing we

know about the item type of ss is that it is a supertype of Student. In fact, the

only type we can find for the get function is Object, the supertype of all types.

6.6.2 C# variance declarations

In C# 4.0, one can declare that a generic interface or delegate type is co-variant

or contra-variant in a type parameter, using the modifiers ‘out’ and ‘in’ re-

spectively. Thus whereas Java provides use-site variance for all generic types,

C# 4.0 provides declaration-site variance, but only for interfaces and delegate

types.

The typical example of a generic interface that is co-variant in its type pa-

rameter T is IEnumerator<T>, which can only output T values:

124 Co-variance and contra-variance

interface IEnumerator<out T> {
T Current { get; }

}

The out modifier on the type parameter T declares that the interface is co-

variant in T, so that IEnumerator<Student> will be a subtype of IEnumerator<Person>.

Intuitively, this makes sense, because whenever we expect a generator of Person
objects, we can surely use a generator of Student objects, a special case of

Person. Formally, co-variance in T is correct because T appears only in ‘out-

put position’ in the interface, namely as return type of the Current property.

Similarly, the IEnumerable<T> interface can be co-variant in T:

interface IEnumerable<out T> {
IEnumerator<T> GetEnumerator();

}

Again T appears only in ‘output position’: it appears co-variantly in the return

type of the GetEnumerator method.

The typical example of a generic interface that is contra-variant in its type

parameter T is IComparer<T>, which can only input T values:

interface IComparer<in T> {
int Compare(T x, T y);

}

The in modifier on the type parameter T declares that the interface is contra-

variant in T, so that IComparer<Person> will be a subtype of IComparer<Student>.

Intuitively, this makes sense, because whenever we expect a comparer of Student
objects, we can surely use a comparer of Person objects, a more general case

than Student. Formally, contra-variance in T is correct because T appears only

in ‘input position’ in the interface, namely as parameter type of the Compare
method.

Co-variant and contra-variant interfaces and delegate types for C# were

discussed and type rules proposed by Emir, Kennedy, Russo and Yu in 2006

[46]. This design was adopted for C# 4.0, but the new lower-bound type pa-

rameter constraints also proposed in the same paper have apparently not been

adopted.

6.6.3 The variance mechanisms of Java and C#

As shown above, Java wildcards offer use-site variance, whereas C# interfaces

and delegate types offer declaration-site variance. It is not obvious whether

Java’s variance mechanism is easier or harder for programmers to use than

History and literature 125

C#’s variance mechanism. However, there is some evidence that C#’s mecha-

nism is better understood from the perspective of theory and implementation.

A paper by Kennedy and Pierce [80] shows that C# with variance can be type

checked efficiently, but also presents several examples of small Java programs

that crash or seriously slow down a Java compiler. For instance, Sun’s Java

compiler version 1.6.0 spends many seconds type checking this tiny program,

then throws a stack overflow exception:

class T { }
class N<Z> { }
class C<X> extends N<N<? super C<C<X>>>> {
N<? super C<T>> cast(C<T> c) { return c; }

}

Although this program is both contrived and rather incomprehensible, it is the

compiler’s job to tell us whether the program is well-typed or not, but here it

fails to do so.

6.7 History and literature

ML-style parametric polymorphism, or let-polymorphism, which generalizes

types to type schemes only at let-bindings and requires a Hindley-Milner poly-

morphism, after J.R. Hindley and Robin Milner, who discovered this idea in-

dependently of each other in 1968 and 1977.

The first type inference algorithm for ML, called algorithm W, was pre-

sented in 1982 by Luis Damas and Robin Milner [36]. Michael Schwartzbach

has written a good introduction to polymorphic type inference [123]. Peter

Hancock [72] gives another presentation.

The binding level technique for efficient type variable generalization men-

tioned in Section 6.2.2 is due to Didier Rémy [122]. Unification was invented

by Alan Robinson [120] in 1965, and is a central implementation technique

also in the Prolog language. Type variables are equated efficiently by means of

the union-find algorithm [139, Chapter 2], described also in most algorithms

textbooks, such as Cormen et al. [33, Chapter 21] or Goodrich and Tamassia

[53, Section 4.2].

6.8 Exercises

The goals of these exercises are (1) to investigate the interpreter eval for the

higher-order version of the micro-ML language (in file Fun/HigherFun.fs), and

126 Exercises

(2) to understand type ML-style type inference, including the implementation

in file Fun/TypeInference.fs.

Exercise 6.1 Download and unpack fun1.zip and fun2.zip and build the micro-

ML higher-order evaluator as described in file Fun/README point E.

Then run the evaluator on the following four programs. Is the result of the

third one as expected? Explain the result of the last one:

let add x = let f y = x+y in f end
in add 2 5 end

let add x = let f y = x+y in f end
in let addtwo = add 2

in addtwo 5 end
end

let add x = let f y = x+y in f end
in let addtwo = add 2

in let x = 77 in addtwo 5 end
end

end

let add x = let f y = x+y in f end
in add 2 end

Exercise 6.2 Add anonymous functions, similar to F#’s fun x -> ..., to the

micro-ML higher-order functional language abstract syntax:

type expr =
...

| Fun of string * expr
| ...

For instance, the expression fun x -> 2*x should parse to Fun("x", Prim("*",
CstI 2, Var "x")), and the expression let y = 22 in fun z -> z+y end should

parse to Let("y", CstI 22, Fun("z", Prim("+", Var "z", Var "y"))).

Evaluation of a Fun(...) should produce a non-recursive closure of the form

type value =
...

| Clos of string * expr * value env (* (x, body, declEnv) *)

In the empty environment the first expression above should evaluate to Clos("x",
Prim("*", CstI 2, Var "x"), []), and the second one should evaluate to Clos("z",
Prim("+", Var "z", Var "y"), [y 7→ 22]).

Extend the evaluator eval in file Fun/HigherFun.fs to interpret such anony-

mous functions.

Exercises 127

Exercise 6.3 Extend the micro-ML lexer and parser specification in Fun/FunLex.fsl
and Fun/FunPar.fsy to permit anonymous functions. The concrete syntax may

be as in F#: fun x -> expr or as in Standard ML: fn x => expr , where x is

a variable. The micro-ML examples from Exercise 6.1 can now be written in

these two alternative ways:

let add x = fun y -> x+y
in add 2 5 end

let add = fun x -> fun y -> x+y
in add 2 5 end

Exercise 6.4 This exercise concerns type rules for ML-polymorphism, as shown

in the lecture notes’ Figure 6.1.

(i) Build a type rule tree for this micro-ML program (in the let-body, the type

of f should be polymorphic – why?):

let f x = 1
in f f end

(ii) Build a type rule tree for this micro-ML program (in the let-body, f should

not be polymorphic – why?):

let f x = if x=10 then 42 else f(x+1)
in f 20 end

Exercise 6.5 Download fun2.zip and build the micro-ML higher-order type

inference as described in file Fun/README point F.

(1) Use the type inference on the micro-ML programs shown below, and report

what type the program has. Some of the type inferences will fail because the

programs are not typable in micro-ML; in those cases, explain why the program

is not typable:

let f x = 1
in f f end

let f g = g g
in f end

let f x =
let g y = y
in g false end

in f 42 end

let f x =

128 Exercises

let g y = if true then y else x
in g false end

in f 42 end

let f x =
let g y = if true then y else x
in g false end

in f true end

(2) Write micro-ML programs for which the micro-ML type inference report the

following types:

• bool -> bool

• int -> int

• int -> int -> int

• ’a -> ’b -> ’a

• ’a -> ’b -> ’b

• (’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)

• ’a -> ’b

• ’a

Remember that the type arrow (->) is right associative, so int -> int -> int
is the same as int -> (int -> int), and that the choice of type variables does

not matter, so the type scheme ’h -> ’g -> ’h is the same as a’ -> ’b -> ’a.

Exercise 6.6 Write an F# function check : expr -> bool that checks that all

variables and function names are defined when they are used, and returns true
if they are. This checker should accept the micro-ML higher-order language.

That is, in the abstract syntax Call(e1, e2) for a function call, the expression

e1 can be an arbitrary expression and need not be a variable name.

The check function needs to carry around an environment to know which

variables are bound. This environment may just be a list of the bound vari-

ables.

Exercise 6.7 Add mutually recursive function declarations in the micro-ML

higher-order functional language abstract syntax:

type expr =
...

| Letfuns of (string * string * expr) list * expr
| ...

Exercises 129

Then extend the evaluator eval in Fun/HigherFun.fs to correctly interpret such

functions. This requires a non-trivial change to the representation of closures

because two functions f and g, declared in the same must Letfuns expression,

must be able to call each other. Therefore the declaration environment, which

is part of the closure of each function, must include a mapping of the other

function to its closure. This can be implemented using recursive closures and

references.

130 Exercises

Chapter 7

Imperative languages

This chapter discusses imperative programming languages, in which the value

of a variable can be modified by assignment. We first present a naive im-

perative language where a variable denotes an updatable store cell, and then

present the environment/store model used in real imperative programming

languages. Then we show how to evaluate micro-C, a C-style imperative lan-

guage, using an interpreter, and present the concepts of expression, variable

declaration, assignment, loop, output, variable scope, lvalue and rvalue, pa-

rameter passing mechanisms, pointer, array, and pointer arithmetics.

7.1 What files are provided for this chapter

File Contents

Imp/Naive.fs naive imperative language interpreter

Imp/Parameters.cs call-by-reference parameters in C#

Imp/array.c array variables and array parameters in C

MicroC/Absyn.fs micro-C abstract syntax (Figure 7.6)

MicroC/grammar.txt informal micro-C grammar and parser specification

MicroC/CLex.fsl micro-C lexer specification

MicroC/CPar.fsy micro-C parser specification

MicroC/Parse.fs micro-C parser

MicroC/Interp.fs micro-C interpreter (Section 7.6)

MicroC/ex1.c-ex21.c micro-C example programs (Figure 7.8)

131

132 A naive imperative language

7.2 A naive imperative language

We start by considering a naive imperative language (file Imp/Naive.fs). It has

expressions as shown in Figure 7.1, and statements as shown in Figure 7.2: as-

signment, conditional statements, statement sequences, for-loops, while-loops

and a print statement.

type expr =
| CstI of int
| Var of string
| Prim of string * expr * expr

Figure 7.1: Abstract syntax for expressions in naive imperative language.

type stmt =
| Asgn of string * expr
| If of expr * stmt * stmt
| Block of stmt list
| For of string * expr * expr * stmt
| While of expr * stmt
| Print of expr

Figure 7.2: Abstract syntax for statements in naive imperative language.

Variables are introduced as needed, as in sloppy Perl programming; there

are no declarations. Unlike C/C++/Java/C#, the language has no blocks to de-

limit variable scope, only statement sequences.

For-loops are as in Pascal or Basic, not C/C++/Java/C#, so a for loop has the

form

for i = startval to endval do
stmt

where start and end values are given for the controlling variable i, and the

controlling variable cannot be changed inside the loop.

The store naively maps variable names to values; see Figure 7.3. This is

similar to a functional language, but completely unrealistic for imperative lan-

guages.

The distinction between statement and expression has been used in imper-

ative languages since the very first one, Fortran in 1956.

The purpose of executing a statement is to modify the state of the compu-

tation (by modifying the store, by producing some output, or similar). The

Environment and store 133

a 11

22

Naivestore

b

y 22

Figure 7.3: Naive store, a direct mapping of variables to values.

purpose of evaluating an expression is to compute a value. In most impera-

tive languages, the evaluation of an expression can modify the store also, by

a so-called side effect. For instance, the C/C++/Java/C# expression i++ has the

value of i, and as a side effect increments i by one.

In F# and other ML-like languages, there are no statements; state changes

are produced by expressions that have side effects and type unit, such as

printf "Hello!". Expressions can be evaluated for their side effect only, by

separating them by semicolons and enclosing them in parentheses. Executing

the sequence (printf "Hello "; printf "world!"; 42) has the side effect of

printing Hello world! on the console, and has the value 42.

In Postscript, there are no expressions, so values are computed by state-

ments (instruction sequences) that leave a result of the stack top, such as 4 5
add 6 mul.

7.3 Environment and store

Real imperative languages such as C, Pascal and Ada, and imperative object-

oriented languages such as C++, Java, C# and Ada95, have a more complex

state (or store) model than functional languages:

• An environment maps variable names (x) to store locations (0x34B2)

• An updatable store maps locations (0x34B2) to values (117).

It is useful to distinguish two kinds of values in such languages. When a vari-

able x or array element a[i] occurs as the target of an assignment statement:

x = e

134 Environment and store

11

22

StoreEnvironment

a

y

b

Figure 7.4: Environment (variable to location) and store (location to value).

or as the operand of an increment operator (in C/C++/Java/C#):

x++

or as the operand of an address operator (in C/C++/C#; see below):

&x

then we use the lvalue (‘left hand side value’) of the variable or array element.

The lvalue is the location (or address) of the variable or array element in the

store.

Otherwise, when the variable x or array element a[i] occurs in an expres-

sion such as this:

x + 7

then we use its rvalue (‘right hand side value’). The rvalue is the value stored

at the variable’s location in the store. Only expressions that have a location in

the store can have an lvalue. Thus in C/C++/Java/C# this expression makes no

sense:

(8 + 2)++

because the expression (8 + 2) has an rvalue (10) but does not have an lvalue.

In other words, the environment maps names to lvalues; the store maps

lvalues to rvalues; see Figure 7.4.

When we later study the compilation of imperative programs to machine

code (Chapter 8), we shall see that the environment exists only at compile-

time, when the code is generated, and the store exists only at run-time, when

the code is executed.

Parameter passing mechanisms 135

In all imperative languages the store is single-threaded: at most one copy

of the store needs to exist at a time. That is because we never need to look back

(for instance, by discarding all changes made to the store since a given point

in time).

7.4 Parameter passing mechanisms

In a declaration of a procedure (or function or method)

void p(int x, double y) { ... }

the x and y are called formal parameters or just parameters. In a call to a

procedure (or function or method)

p(e1, e2)

the expressions e1 and e2 are called actual parameters, or argument expres-

sions.

When executing a procedure call p(e1, e2) in an imperative language, the

values of the argument expressions must be bound to the formal parameters

x and y somehow. This so-called parameter passing can be done in several

different ways:

• Call-by-value: a copy of the argument expression’s value (rvalue) is made

in a new location, and the new location is passed to the procedure. Thus

updates to the corresponding formal parameter do not affect the actual

parameter (argument expression).

• Call-by-reference: the location (lvalue) of the argument expression is

passed to the procedure. Thus updates to the corresponding formal pa-

rameter will affect the actual parameter. Note that the actual parameter

must have an lvalue. Usually this means that it must be a variable or an

array element (or a field of an object or structure).

Call-by-reference is useful for returning multiple results from a proce-

dure. It is also useful for writing recursive functions that modify trees, so

some binary tree algorithms can be written more elegantly in languages

that support call-by-reference (including Pascal, C++ and C#) than in

Java (that does not).

• Call-by-value-return: a copy of the argument expression’s value (rvalue)

is made in a new location, and the new location is passed to the procedure.

When the procedure returns, the current value in that location is copied

back to the argument expression (if it has an lvalue).

136 Parameter passing mechanisms

Pascal, C++, C#, and Ada permit both call-by-value and call-by-reference. For-

tran (at least some versions) uses call-by-value-return.

Java, C, and most ML-like languages permit only call-by-value, but in C

(and micro-C) one can pass variable x by reference just by passing the address

&x of x and making the corresponding formal parameter xp be a pointer. Note

that Java does not copy objects and arrays when passing them as parameters,

because it passes (and copies) only references to objects and arrays [125]. When

passing an object by value in C++, the object gets copied. This is usually not

what is intended. For instance, if the object being passed is a file descriptor,

the result is unpredictable.

Here are a few examples (in C#, see file Imp/Parameters.cs) to illustrate the

difference between call-by-value and call-by-reference parameter passing.

The method swapV uses call-by-value:

static void swapV(int x, int y) {
int tmp = x; x = y; y = tmp;

}

Putting a = 11 and b = 22, and calling swapV(a, b) has no effect at all on the

values of a and b. In the call, the value 11 is copied to x, and 22 is copied to y,

and they are swapped so that x is 22 and y is 11, but that does not affect a and

b.

The method swapR uses call-by-reference:

static void swapR(ref int x, ref int y) {
int tmp = x; x = y; y = tmp;

}

Putting a = 11 and b = 22, and calling swapR(ref a, ref b) will swap the val-

ues of a and b. In the call, parameter x is made to point to the same address

as a, and y to the same as b. Then the contents of the locations pointed to by x
and y are swapped, which swaps the values of a and b also.

The method square below uses call-by-value for its i parameter and call-by-

reference for its r parameter. It computes i*i and assigns the result to r and

hence to the actual argument passed for r:

static void square(int i, ref int r) {
r = i * i;

}

After the call square(11, ref z), variable z has the value 121. Compare with

the micro-C example in file MicroC/ex5.c: it passes an int pointer r by value

instead of passing an integer variable by reference.

The C programming language 137

7.5 The C programming language

The C programming language [83], designed by Kernighan and Ritchie, USA

in the early 1970s, is widely used, and its syntax is used in C++, Java, and C#.

The C programming language descends from B (designed by Brian Kernighan

and Ken Thompson at MIT and Bell Labs 1971), which descends from BCPL

(designed by Martin Richards at Cambridge UK and MIT, 1967), which de-

scends from CPL, a research language designed by Christopher Strachey and

others (at Cambridge UK, early 1960s). The ideas behind CPL also influenced

other languages, such as Standard ML.

The primary aspects of C modelled here are functions (procedures), parame-

ter passing, arrays, pointers, and pointer arithmetics. The language presented

here has no type checker (so far) and therefore is quite close to B, which was

untyped.

7.5.1 Integers, pointers and arrays in C

A variable i of type int may be declared as follows:

int i;

This reserves storage for an integer, and introduces the name i for that storage

location. The integer is not initialized to any particular value.

A pointer p to an integer may be declared as follows:

int *p;

This reserves storage for a pointer, and introduces the name p for that storage

location. It does not reserve storage for an integer. The pointer is not initialized

to any particular value. A pointer is a store address, essentially. The integer

pointed to by p (if any) may be obtained by dereferencing the pointer:

*p

An attempt to dereference an uninitialized pointer is likely to cause a Segmen-

tation fault (or Bus error, or General protection fault), but it may instead just

return an arbitrary value, which can give nasty surprises.

A dereferenced pointer may be used as an ordinary value (an rvalue) as

well as the destination of an assignment (an lvalue):

i = *p + 2;
*p = 117;

138 The C programming language

A pointer to an integer variable i may be obtained by using the address oper-

ator (&):

p = &i;

This assignment makes *p an alias for the variable i. The dereferencing oper-

ator (*) and the address operator (&) are inverses, so *&i is the same as i, and

&*p is the same as p.

An array ia of 10 integers can be declared as follows:

int ia[10];

This reserves a block of storage with room for 10 integers, and introduces the

name ia for the storage location of the first of these integers. Thus ia is actu-

ally a pointer to an integer. The elements of the array may be accessed by the

subscript operator ia[...], so

ia[0]

refers to the location of the first integer; thus ia[0] is the same as *ia. In

general, since ia is a pointer, the subscript operator is just an abbreviation for

dereferencing in combination with so-called pointer arithmetics. Thus

ia[k]

is the same as

*(ia+k)

where (ia+k) is simply a pointer to the k’th element of the array, obtained by

adding k to the location of the first element, and clearly *(ia+k) is the contents

of that location. A strange fact is that arr[2] may just as well be written

2[arr], since the former means *(arr+2) and the latter means *(2+arr), which

is equivalent [83, Section A8.6.2]. But writing 2[arr] is very unusual and

would confuse most people.

7.5.2 Type declarations in C

In C, type declarations for pointer and array types have a tricky syntax, where

the type of a variable x surrounds the variable name:

The C programming language 139

Declaration Meaning

int x x is an integer

int *x x is a pointer to an integer

int x[10] x is an array of 10 integers

int x[10][3] x is an array of 10 arrays of 3 integers

int *x[10] x is an array of 10 pointers to integers

int *(x[10]) x is an array of 10 pointers to integers

int (*x)[10] x is a pointer to an array of 10 integers

int **x x is a pointer to a pointer to an integer

The C type syntax is so obscure that there is a standard Unix program called

cdecl to help explain it. For instance,

cdecl explain "int *x[10]"

prints

declare x as array 10 of pointer to int

By contrast,

cdecl explain "int (*x)[10]"

prints

declare x as pointer to array 10 of int

The expression syntax for pointer dereferencing and array access is consistent

with the declaration syntax, so if ipa is declared as

int *ipa[10]

then *ipa[2] means the (integer) contents of the location pointed to by element

2 of array ipa, that is, *(ipa[2]), or in pure pointer notation, *(*(ipa+2)).

Similarly, if iap is declared as

int (*iap)[10]

then (*iap)[2] is the (integer) contents of element 2 of the array pointed to by

iap, or in pure pointer notation, *((*iap)+2).

Beware that the C compiler will not complain about the expression

*iap[2]

which means something quite different, and most likely not what one intends.

It means *(*(iap+2)), that is, add 2 to the address iap, take the contents of

that location, use that contents as a location, and get its contents. This may

cause a Segmentation fault, or return arbitrary garbage.

This is one of the great risks of C: neither the type system (at compile-time)

nor the runtime system provide much protection for the programmer.

140 The micro-C language

7.6 The micro-C language

Micro-C is a small subset of the C programming language, but large enough to

illustrate notions of evaluation stack, arrays, pointer arithmetics, and so on.

Figure 7.5 shows a small program in micro-C (file MicroC/ex9.c).

void main(int i) {
int r;
fac(i, &r);
print r;

}

void fac(int n, int *res) {
print &n; // Show n’s address
if (n == 0)

*res = 1;
else {

int tmp;
fac(n-1, &tmp);
*res = tmp * n;

}
}

Figure 7.5: A micro-C program to compute and print factorial of i.

The recursive function fac computes the factorial of n and returns the result

using a pointer res to the variable r in the main function.

The abstract syntax of micro-C considerably more complex than that of the

functional languages and the naive imperative language. The added complex-

ity is caused by explicit types, the distinction between statements and expres-

sions, the richness of access expressions, and the existence of global but not lo-

cal function declarations. It is shown in Figure 7.6 and in file MicroC/Absyn.fs.

As in real C, a micro-C program is a list of top-level declarations. A top-

level declaration is either a function declarations or a variable declaration.

A function declaration (Fundec) consists of an optional return type, a function

name, a list parameters (type and parameter name), and a function body which

is a statement. A variable declaration (Vardec) consists of a type and a name.

A statement (stmt) is an if-, while-, expression-, return- or block-statement.

An expression statement e; is an expression followed by a semicolon as in

C, C++, Java and C#. A block statement is a list of statements or declarations.

All expressions have an rvalue, but only three kinds of expressions have an

The micro-C language 141

type typ =
| TypI (* Type int *)
| TypC (* Type char *)
| TypA of typ * int option (* Array type *)
| TypP of typ (* Pointer type *)

and expr =
| Access of access (* x or *p or a[e] *)
| Assign of access * expr (* x=e or *p=e or a[e]=e *)
| Addr of access (* &x or &*p or &a[e] *)
| CstI of int (* Constant *)
| Prim1 of string * expr (* Unary primitive operator *)
| Prim2 of string * expr * expr (* Binary primitive operator *)
| Andalso of expr * expr (* Sequential and *)
| Orelse of expr * expr (* Sequential or *)
| Call of string * expr list (* Function call f(...) *)

and access =
| AccVar of string (* Variable access x *)
| AccDeref of expr (* Pointer dereferencing *p *)
| AccIndex of access * expr (* Array indexing a[e] *)

and stmt =
| If of expr * stmt * stmt (* Conditional *)
| While of expr * stmt (* While loop *)
| Expr of expr (* Expression statement e; *)
| Return of expr option (* Return from method *)
| Block of stmtordec list (* Block: grouping and scope *)

and stmtordec =
| Dec of typ * string (* Local variable declaration *)
| Stmt of stmt (* A statement *)

and topdec =
| Fundec of typ option * string * (typ * string) list * stmt
| Vardec of typ * string

and program =
| Prog of topdec list

Figure 7.6: Abstract syntax of micro-C.

142 The micro-C language

lvalue: a variable x, a pointer dereferencing *p, and an array element a[e].

An expression of one of these forms may be called an access expression; such

expressions are represented by the type access in the abstract syntax.

An expression (expr) may be a variable x, a pointer dereferencing *p, or an

array element access a[e]. The value of such an expression is the rvalue of the

access expression (x or *p or a[e]).

An expression may be an assignment x=e to a variable, or an assignment

*p=e to a pointed-to cell, or an assignment a[e]=e to an array element. The

assignment uses the lvalue of the access expression (x or *p or a[e]).

An expression may be an application &a of the address operator to an ex-

pression a, which must have an lvalue and so must be an access expression.

An expression may be a constant (an integer literal or the null pointer

literal); or an application of a primitive; or a short-cut logical operator e1 && e2
or e1 || e2; or a function call.

A micro-C type is either int or char or array t[] with element type t, or

pointer t* to a value of type t.

7.6.1 Interpreting micro-C

File MicroC/Interp.fs and other files mentioned in Section 7.1 provide an in-

terpretive implementation of micro-C. The interpreter’s state is split into en-

vironment and store as described in Section 7.3. Variables must be explicitly

declared (as in C), but there is no type checking (as in B). The scope of a vari-

able extends to the end of the innermost block enclosing its declaration. In

the interpreter, the environment is used to keep track of variable scope and

the next available store location, and the store keeps track of the locations’

current values.

We do not model the return statement in micro-C functions because it rep-

resents a way to abruptly terminate the execution of a sequence of statements.

This is easily implemented by translation to a stack machine (Chapter 8), or

by using a continuation-based interpreter (Chapter 11), but it is rather cum-

bersome to encode in the direct-style interpreter in MicroC/Interp.fs.

The main functions of the direct-style micro-C interpreter are shown in

Figure 7.7.

Later we shall compile micro-C to bytecode for a stack machine (Chapter 8).

7.6.2 Example programs in micro-C

Several micro-C example programs illustrate various aspects of the language,

the interpreter (Section 7.6) and the compilers presented in later chapters. The

example programs are summarized in Figure 7.8.

The micro-C language 143

run : program -> int list -> store
Execute an entire micro-C program by initializing global variables and

then calling the program’s main function with the given arguments.

exec : stmt -> locEnv -> gloEnv -> store -> store
Execute a micro-C statement stmt in the given local and global environ-

ments and store, producing an updated store.

stmtordec : stmtordec -> locEnv -> gloEnv -> store -> locEnv * store
Execute a micro-C statement or declaration (as found in a statement

block { int x; ... }), producing an updated local environment and an

updated store.

eval : expr -> locEnv -> gloEnv -> store -> int * store
Evaluate a micro-C expression expr in the given local and global en-

vironments and store, producing a result (an integer) and an updated

store.

access : access -> locEnv -> gloEnv -> store -> address * store
Evaluate a micro-C access expression (variable x, pointer dereferencing

*p, or array indexing a[e]), producing an address (index into the store),

and an updated store.

allocate : typ * string -> locEnv -> store -> locEnv * store
Given a micro-C type and a variable name, bind the variable in the

given environments and set aside space for it in the given store, pro-

ducing an updated environment and an updated store.

Figure 7.7: Main functions of the micro-C interpreter. A locEnv is a pair of

a (local) environment and a counter indicating the next free store address. A

gloEnv is a global environment: a pair of an environment for global variables

and an environment for global functions.

144 The micro-C language

File Contents, illustration Use

ex1.c while-loop that prints the numbers n,n− 1,n− 2, . . .,1 IC
ex2.c declaring and using arrays and pointers IC
ex3.c while-loop that prints the numbers 0,1,2, . . . ,n− 1 IC
ex4.c compute and print array of factorials 0!,1!,2!, . . . ,(n− 1)! IC
ex5.c compute square, return result via pointer; nested blocks IC
ex6.c recursive factorial function; returns result via pointer IC
ex7.c infinite while-loop, followed by dead code IC
ex8.c while-loop that performs 20 million iterations IC
ex9.c recursive factorial function; returns result via pointer IC
ex10.c recursive factorial function with ordinary return value C
ex11.c find all solutions to the n-queens problem IC
ex12.c perform n tail calls C
ex13.c decide whether n is a leap year; logical ‘and’ and ‘or’ IC
ex14.c compute integer square root; globally allocated integer C
ex15.c perform n tail calls and print n,n− 1, . . . ,2,1,999999 IC
ex16.c conditional statement with empty then-branch IC
ex17.c call the Collatz function on arguments 0,1,2, . . . C
ex18.c nested conditional statements; backwards compilation IC
ex19.c conditional badly compiled by forwards compiler IC
ex20.c compilation of a logical expression depends on context IC
ex21.c the tail call optimization is unsound in micro-C IC
ex22.c leapyear function C

Figure 7.8: Example programs in micro-C; n is a command line argument.

Examples marked I can be executed by the micro-C interpreter (Section 7.6).

Examples marked C can be compiled to the micro-C stack machine (Chapter 8

and Chapter 12).

The micro-C language 145

7.6.3 Lexer specification for micro-C

The micro-C lexer specification is rather similar to those we have seen already,

for instance in Section 3.6.4. Tokens are collected from the input character

stream by the Token lexer rule, names and keywords are recognized by a single

regular expression, and an auxiliary F# function keyword is used to distinguish

keywords from names.

The major new points are:

• The treatment of comments, where micro-C has both end-line comments

(starting with // ...) and delimited comments (of the form /* ... */).

An additional lexer rule EndLineComment is used to skip all input until

the end of the current line. The () action says that the lexer must stop

processing the comment and return to the Token lexer rule when meeting

end of line or end of file, and the EndLineComment lexbuf action says that

the lexer should continue processing the comment in all other cases:

and EndLineComment = parse
| [’\n’ ’\r’] { () }
| (eof | ’\026’) { () }
| _ { EndLineComment lexbuf }

Another lexer rule Comment reads to the end of a delimited comment, and

correctly handles nested delimited comments (unlike real C). Namely, if

it encounters yet another comment start (/*), then the lexer rule calls

itself recursively. If it encounters an end of comment (*/) then it returns.

If it encounters end of file, it throws an exception, complaining about a

non-terminated comment. If it encounters end of line or any other input

character, it continues reading the comment:

and Comment = parse
| "/*" { Comment lexbuf; Comment lexbuf }
| "*/" { () }
| [’\n’ ’\r’] { Comment lexbuf }
| (eof | ’\026’) { lexerError lexbuf "Unterminated comment" }
| _ { Comment lexbuf }

• The lexer also includes machinery for lexing of C string constants, includ-

ing C-style string escapes such as "abc\tdef\nghi". This is implemented

by lexer rule String and auxiliary F# function cEscape. Lexer rule String
takes a parameter chars, which is a list of the characters collected so far,

in reverse order. When reaching the end of the string (that is, the ter-

minating " character), the character list is reversed and turned into a

string.

146 The micro-C language

A complete lexer specification for micro-C is given in file MicroC/CLex.fsl.

7.6.4 Parser specification for micro-C

The main challenges when writing a parser specification for micro-C or C are

these:

(a) In variable declarations, such as int *p and int *arr[10], the type of

the variable, here p and arr, is scattered around the variable name itself.

The type cannot be isolated syntactically from the variable name as in

Standard ML, F#, Java and C#.

(b) When parsing expressions, we distinguish access expressions such as x,

*p and a[i], which have an lvalue, from other expressions.

(c) Micro-C and C allow balanced if-statements (if (expr) stmt else stmt)

as well as unbalanced ones (if (expr) stmt), so is it ambiguous how if
(expr1) if (expr2) stmt1 else stmt2 should be parsed.

(d) Micro-C and C have a large number of prefix and infix operators, for

which associativity and precedence must be declared to avoid grammar

ambiguity.

To solve problem (a), the parsing of variable declarations, we invent the con-

cept of a variable description Vardesc and parse a declaration Type Vardesc,

that is, a type (such as int) followed by a variable description (such as *p).

Vardec:
Type Vardesc { ((fst $2) $1, snd $2) }

A Vardesc is either a name x, or a pointer asterisk *p on a Vardesc, or a Vardesc
in parentheses, or a Vardesc with array brackets arr[]:

Vardesc:
NAME { ((fun t -> t), $1) }

| TIMES Vardesc { compose1 TypP $2 }
| LPAR Vardesc RPAR { $2 }
| Vardesc LBRACK RBRACK { compose1 (fun t -> TypA(t, None)) $1 }
| Vardesc LBRACK CSTINT RBRACK { compose1 (fun t -> TypA(t, Some $3)) $1 }

The semantic actions build the typ abstract syntax for micro-C types (Fig-

ure 7.6) using a bit of functional programming.

The result of parsing a Vardec is a pair (tyfun, x) of a function and a vari-

able name. The tyfun expresses how the variable declaration’s type should be

The micro-C language 147

transformed into the declared variable’s type. For instance, in the variable dec-

laration int *p, the variable description *p will return ((fun t -> TypP t),
"p"), and the VarDec rule will apply the function to TypI, obtaining the type

TypP(TypI) for p. The compose1 function composes a given function with the

function part of a variable description; see the parser specification in CPar.fsy
for details.

To solve problem (b), we introduce a new non-terminal Access which corre-

sponds to lvalued-expressions such as x, (x), *p, *(p+2), and x[e]. The seman-

tic actions simply build abstract syntax of type access from Figure 7.6:

Access:
NAME { AccVar $1 }

| LPAR Access RPAR { $2 }
| TIMES Access { AccDeref (Access $2)}
| TIMES AtExprNotAccess { AccDeref $2 }
| Access LBRACK Expr RBRACK { AccIndex($1, $3) }

To solve problem (c), we distinguish if-else-balanced from if-else-unbalanced

statements by duplicating a small part of the grammar, using non-terminals

StmtM and StmtU. An unbalanced statement is an if-else statement whose

false-branch is an unbalanced statement, or an if-statement without else, or

a while-statement whose body is an unbalanced statement:

StmtU:
IF LPAR Expr RPAR StmtM ELSE StmtU { If($3, $5, $7) }

| IF LPAR Expr RPAR Stmt { If($3, $5, Block []) }
| WHILE LPAR Expr RPAR StmtU { While($3, $5) }

By requiring that the true-branch always is balanced, we ensure that

if (expr1) if (expr2) stmt1 else stmt2

gets parsed as

if (expr1) { if (expr2) stmt1 else stmt2 }

and not as

if (expr1) { if (expr2) stmt1 } else stmt2

To solve problem (d) we use these associativity and precedence declarations:

%right ASSIGN /* lowest precedence */
%nonassoc PRINT
%left SEQOR

148 Notes on Strachey’s Fundamental concepts

%left SEQAND
%left EQ NE
%nonassoc GT LT GE LE
%left PLUS MINUS
%left TIMES DIV MOD
%nonassoc NOT AMP
%nonassoc LBRACK /* highest precedence */

Most of this can be taken straight from a C reference book [83], but the fol-

lowing should be noted. The high precedence given to the left bracket ([) is

necessary to avoid ambiguity and parse conflicts in expressions and variable

declarations. For expressions it implies that

• the parsing of &a[2] is &(a[2]), that is the address of a[2], not (&a)[2]

• the parsing of *a[2] is *(a[2]), that is the location pointed to by a[2], not

(*a)[2]

For variable declarations, the precedence declaration implies that

• the parsing of int *a[10] is int *(a[10]), not int (*a)[10]

The low precedence given to the print keyword is necessary to avoid ambiguity

and parse conflicts in expressions with two-argument operators. It implies that

• the parsing of print 2 + 5 is print (2 + 5), not (print 2) + 5

More details on the development of the micro-C parser specification are given

in file MicroC/grammar.txt. The complete parser specification itself is in file

MicroC/CPar.fsy.

7.7 Notes on Strachey’s Fundamental concepts

Christopher Strachey’s lecture notes Fundamental Concepts in Programming

Languages [131] from the Copenhagen Summer School on Programming in

1967 were circulated in manuscript and highly influential, although they were

not formally published until 25 years after Strachey’s death. They are espe-

cially noteworthy for introducing concepts such as lvalue, rvalue, ad hoc poly-

morphism, and parametric polymorphism, that shape our ideas of program-

ming languages even today. Moreover, a number of the language constructs

discussed in the notes made their way into CPL, and hence into BCPL, B, C,

C++, Java, and C#.

Here we discuss some of the subtler points in Strachey’s notes:

Notes on Strachey’s Fundamental concepts 149

• The CPL assignment:

i := (a > b -> j,k)

naturally corresponds to this assignment in C, C++, Java, C#:

i = (a > b ? j : k)

Symmetrically, the CPL assignment:

(a > b -> j, k) := i

can be expressed in GNU C (the gcc compiler) like this:

(a > b ? j : k) = i

and it can be encoded using pointers and the dereferencing and address

operators in all versions of C and C++:

*(a > b ? &j : &k) = i

In Java, C#, and standard (ISO) C, conditional expressions cannot be

used as lvalues. In fact the GNU C compiler (gcc -c -pedantic assign.c)

says:

warning: ISO C forbids use of conditional expressions as lvalues

• The CPL definition in Strachey’s section 2.3:

let q =~ p

defines the lvalue of q to be the lvalue of p, so they are aliases. This

feature exists in C++ in the guise of an initialized reference:

int& q = p;

Probably no other language can create aliases that way, but call-by-reference

parameter passing has exactly the same effect. For instance, in C#:

void m(ref int q) { ... }
... m(ref p) ...

150 Notes on Strachey’s Fundamental concepts

When q is a formal parameter and p is the corresponding argument ex-

pression, then the lvalue of q is defined to be the lvalue of p.

• The semantic functions L and R in Strachey’s section 3.3 are applied only

to an expression ε and a store σ, but should in fact be applied also to an

environment, as in our MicroC/Interp.fs, if the details are to work out

properly.

• Note that the CPL block delimiters § and §| in Strachey’s section 3.4.3 are

the grandparents (via a BCPL and B) of C’s block delimiters { and }. The

latter are used also in C++, Java, Javascript, Perl, C#, and so on.

• The discussion in Strachey’s section 3.4.3 (of the binding mechanism for

the free variables of a function) can appear rather academic until one re-

alizes that in F# and other ML-like languages, a function closure always

stores the rvalue of free variables, whereas in Java an object stores es-

sentially the lvalue of fields that appear in a method. In Java an instance

method (non-static method) m can have as ‘free variables’ the fields of the

enclosing object, and the methods refer to those fields via the object refer-

ence this. As a consequence, subsequent assignments to the fields affect

the (r)value seen by the field references in m.

Moreover, when a Java method mInner is declared inside a local inner

class CInner inside a method mOuter, then Java requires the variables

and parameters of method mOuter referred to by mInner to be declared

final (not updatable):

class COuter {
void mOuter(final int p) {
final int q = 20;

class CInner {
void mInner() {
... p ... q ...

}
}

}
}

In reality the rvalue of these variables and parameters is passed, but

when the variables are non-updatable, there is no observable difference

between passing the lvalue and the rvalue. Thus the purpose of this

‘final’ restriction on local variables and parameters in Java is to make

Notes on Strachey’s Fundamental concepts 151

free variables from the enclosing method appear to behave the same as

free fields from the enclosing object.

C# does not have local classes, but C# 2.0 and later has anonymous meth-

ods, and in contrast to Java’s inner classes and F#’s or ML’s function

closures, these anonymous methods capture the lvalue of the enclosing

method’s local variables. Therefore an anonymous method can assign to

a captured local variable, such as sum in this method that computes the

sum of the elements of an integer array:

static int ArraySum(int[] arr) {
int sum = 0;
Iterate(arr, delegate(int x) { sum += x; });
return sum;

}

where the Iterate method applies delegate act to all items of an enumer-

able xs:

static void Iterate<T>(IEnumerable<T> xs, Action<T> act) {
foreach (T x in xs)
act(x);

}

Since an anonymous method may outlive the call to the method that cre-

ated it, such captured local variables cannot in general be allocated in

the stack, but must be allocated in an object on the heap.

• The type declaration in Strachey’s section 3.7.2 is quite cryptic, but roughly

corresponds to this declaration in F#:

type LispList =
| LAtom of atom
| LCons of Cons

and atom = { PrintName : string; PropertyList : Cons }
and Cons =

| CNil
| Cons of cons

and cons = { Car : LispList; Cdr : Cons };;

or these declarations in Java (where the Nil pointer case is implicit):

152 Exercises

abstract class LispList {}

class Cons extends LispList {
LispList Car;
Cons Cdr;

}

class Atom extends LispList {
String PrintName;
Cons PropertyList;

}

In addition, constructors and field selectors should be defined.

• Note that Strachey’s section 3.7.6 describes the C and C++ pointer deref-

erencing operator and address operator: Follow[p] is just *p, and Pointer[x]
is &x.

• The ‘load-update-pairs’ mentioned in Strachey’s sections 4.1 are called

properties in Common Lisp Object System, Visual Basic, and C#: get-

methods and set-methods.

7.8 History and literature

Many concepts in programming languages can be traced back to Strachey’s

1967 Copenhagen summer school lecture notes [131], discussed in Section 7.7.

Brian W. Kernighan and Dennis M. Ritchie wrote the authoritative book on the

C programming language [83]. The development of C is recounted by Ritchie

[119]. Various materials on the history of B (including a wonderfully short

User Manual from 1972) and C may be found from Dennis Ritchie’s home page

[118]. A modern portable implementation of BCPL — which must otherwise

be characterized as a dead language — is available from Martin Richards’s

homepage [117].

7.9 Exercises

The main goal of these exercises is to familiarize yourself with the interpreta-

tion of imperative languages, lexing and parsing of C, and the memory model

(environment and store) used by imperative languages.

Exercises 153

Exercise 7.1 Download microc.zip from the course homepage, unpack it to a

folder MicroC, and build the micro-C interpreter as explained in MicroC/README
step (A).

Run the fromFile parser on the micro-C example in source file ex1.c. In

your solution to the exercise, include the abstract syntax tree and indicate its

parts: declarations, statements, types and expressions.

Run the interpreter on some of the micro-C examples provided, such as

those in source files ex1.c and ex11.c. Note that both take an integer n as

input. The former program prints the numbers from n down to 1; the latter

finds all solutions to the n-queens problem.

Exercise 7.2 Write and run a few more micro-C programs to understand the

use of arrays, pointer arithmetics, and parameter passing. Use the micro-C

implementation in MicroC/Interp.fs and the associated lexer and parser to

run your programs, as in Exercise 7.1.

Be careful: there is no typechecking in the micro-C interpreter and nothing

prevents you from overwriting arbitrary store locations by mistake, causing

your program to produce unexpected results. (The type system of real C would

catch some of those mistakes at compile time).

(i) Write a micro-C program containing a function void arrsum(int n, int
arr[], int *sump) that computes and returns the sum of the first n ele-

ments of the given array arr. The result must be returned through the

sump pointer. The program’s main function must create an array holding

the four numbers 7, 13, 9, 8, call function arrsum on that array, and print

the result using micro-C’s non-standard print statement.

Remember that MicroC is very limited compared to actual C: You cannot

use initializers in variable declarations like "int i=0;" but must use a

declaration followed by a statement, as in "int i; i=0;" instead; there is

no for-loop (unless you implement one, see Exercise 7.3); and so on.

Also remember to initialize all variables and array elements; this doesn’t

happen automatically in micro-C or C.

(ii) Write a micro-C program containing a function void squares(int n, int
arr[]) that, given n and an array arr of length n or more fills a[i] with

i*i for i = 0, . . . ,n− 1.

Call function squares from your main function to fill an array with n
squares (where n is given as a parameter to the main function), then use

function arrsum above to compute the sum of the array’s elements, and

print the sum.

154 Exercises

(iii) Write a micro-C program containing a function void histogram(int n,
int ns[], int max, int freq[]) such that after a call to histogram, ele-

ment freq[c] equals the number of times that number c appears among

the first n elements of arr, for 0<=c<=max. You can assume that all num-

bers in ns are between 0 and max, inclusive.

For example, if your main function creates an array arr holding the seven

numbers 1 2 1 1 1 2 0 and calls histogram(7, arr, 3, freq), then after-

wards freq[0] is 1, freq[1] is 4, freq[2] is 2, and freq[3] is 0. Of course,

freq must be an array with at least four elements. [What happens if

it is not?] The array freq should be declared and allocated in the main
function, and passed to histogram function. It does not work correctly (in

micro-C or C) to stack-allocate the array in histogram and somehow re-

turn it to the main function. Your main function should print the contents

of array freq after the call.

Exercise 7.3 Extend MicroC with a for-loop, permitting for instance

for (i=0; i<100; i=i+1)
sum = sum+i;

To do this, you must modify the lexer and parser specifications in CLex.fsl
and CPar.fsy. You may also extend the micro-C abstract syntax in Absyn.fs
by defining a new statement constructor Forloop in the stmt type, and add a

suitable case to the exec function in the interpreter.

But actually, with a modest amount of cleverness (highly recommended),

you do not need to introduce special abstract syntax for for-loops, and need not

modify the interpreter at all. Namely, a for-loop of the general form

for (e1; e2; e3)
stmt

is equivalent to a block

{
e1;
while (e2) {
stmt
e3;

}
}

Hence it suffices to let the semantic action { ... } in the parser construct

abstract syntax using the existing Block, While, and Expr constructors from

the stmt type.

Exercises 155

Rewrite your programs from Exercise 7.2 to use for-loops instead of while-

loops.

Exercise 7.4 Extend the micro-C abstract syntax in MicroC/Absyn.fs with the

preincrement and predecrement operators known from C, C++, Java, and C#:

type expr =
...

| PreInc of access (* C/C++/Java/C# ++i or ++a[e] *)
| PreDec of access (* C/C++/Java/C# --i or --a[e] *)

Note that the predecrement and preincrement operators work on lvalues, that

is, variables and array elements, and more generally on any expression that

evaluates to a location.

Modify the micro-C interpreter in MicroC/Interp.fs to handle PreInc and

PreDec.

Exercise 7.5 Extend the micro-C lexer and parser to accept ++e and --e also,

and to build the corresponding abstract syntax.

Exercise 7.6 Add compound assignments += and *= and so on to micro-C, that

is, lexer, parser, abstract syntax and interpreter (eval function). Just as for

ordinary assignment, the left-hand side of a compound assignment must be an

lvalue, but it is used also as an rvalue.

Exercise 7.7 Extend the micro-C lexer and parser to accept C/C++/Java/C#

style conditional expressions

e1 ? e2 : e3

The abstract syntax for a conditional expression might be Cond(e1, e2, e3),

for which you need to change MicroC/Absyn.fs as well.

Exercise 7.8 Using parts of the abstract syntax, lexer and parser for micro-C,

write an F# program that can explain the meaning of C type declarations, in

the style of the old Unix utility cdecl. For instance, it should be possible to use

it as follows:

cdecl> explain int *arr[10]
declare arr as array 10 of pointer to int
cdecl> explain int (*arr)[10]
declare arr as pointer to array 10 of int

156 Exercises

Chapter 8

Compiling micro-C

In Chapter 2 we considered a simple stack-based abstract machine for the eval-

uation of expressions with variables and variable bindings. Here we continue

that work, and extend the abstract machine so that it can execute programs

compiled from an imperative language (micro-C). We also write a compiler from

the imperative programming language micro-C to this abstract machine. Thus

the phases of compilation and execution are:

lexing from characters to tokens

parsing from tokens to abstract syntax tree

static checks check types, check that variables are declared, . . .

code generation from abstract syntax to symbolic instructions

code emission from symbolic instructions to numeric instructions

execution of the numeric instructions by an abstract machine

8.1 What files are provided for this chapter

In addition to the micro-C files mentioned in Section 7.1, the following files are

provided:

File Contents

MicroC/Machine.fs definition of micro-C stack machine instructions

MicroC/Machine.java micro-C stack machine in Java (Section 8.2.4)

MicroC/machine.c micro-C stack machine in C (Section 8.2.5)

MicroC/Comp.fs compile micro-C to stack machine code (Section 8.4)

MicroC/prog0 example stack machine program: print number sequence

MicroC/prog1 example stack machine program: loop 20 million times

157

158 An abstract stack machine

Moreover, Section 12.2 and file MicroC/Contcomp.fs show how to compile micro-

C backwards, optimizing the generated code on the fly.

8.2 An abstract stack machine

We define a stack-based abstract machine for execution of simple imperative

programs, more precisely, micro-C programs.

8.2.1 The state of the abstract machine

The state of the abstract machine has the following components:

• a program p: an array of instructions. Each instruction is represented by

a number 0, 1, ... possibly with an operand in the next program location.

The array is indexed by the numbers (code addresses) 0, 1, ... as usual.

• a program counter pc indicating the next instruction in p to be executed

• a stack s of integers, indexed by the numbers 0, 1, ...

• a stack pointer sp, pointing at the stack top in s; the next available stack

position is s[sp+1]

• a base pointer bp, pointing into the current stack frame (or activation

record); it points at the first parameter (or variable) of the current func-

tion.

Similar state components may be found in contemporary processors, such as

those based on Intel’s x86 architecture, which has registers ESP for the stack

pointer and EBP for the base pointer.

The abstract machine might be implemented directly in hardware (as dig-

ital electronics), in firmware (as field-programmable gate arrays), or in soft-

ware (as interpreters written on some programming language). Here we do

the latter: Sections 8.2.4 and 8.2.5 present two software implementations of

the abstract machine, in Java and C.

The example abstract machine program (from file MicroC/prog0) shown be-

low prints the infinite sequence of numbers n,n+ 1,n+ 2, . . ., where n is taken

from the command line:

24 22 0 1 1 16 1

The corresponding symbolic machine code is this, because 24 = LDARGS; 22 =

PRINTI; 0 1 = CSTI 1; 1 = ADD; and 16 1 = GOTO 1 as shown in Figure 8.1:

An abstract stack machine 159

LDARGS; PRINTI; 1; ADD; GOTO 1

The program, when executed, loads the command line argument n onto the

stack top, prints it, adds 1 to it, then goes back to instruction 1 (the printi
instruction), forever.

Here is another program (in file MicroC/prog1) that loops 20 million times:

0 20000000 16 7 0 1 2 9 18 4 25

or, in symbolic machine code:

20000000; GOTO 7; 1; SUB; DUP; IFNZRO 4; STOP

The instruction at address 7 is DUP, which duplicates the stack top element be-

fore the test; the instruction at address 4 pushes the constant 1 onto the stack.

Loading and interpreting this takes less than 1.4 seconds with Sun JDK 1.6.0

HotSpot on a 1.6 GHz Intel Pentium M running Windows XP. The equivalent

micro-C program (file MicroC/ex8.c) compiled by the compiler presented in this

chapter is four times slower than the above hand-written ‘machine code’.

8.2.2 The abstract machine instruction set

The abstract machine has 26 different instructions, listed in Figure 8.1. Most

instructions are single-word instructions consisting of the instruction code only,

but some instructions take one or two or three integer arguments, representing

constants (denoted by m, n) or program addresses (denoted by a).

The execution of an instruction has an effect on the stack, on the program

counter, and on the console if the program prints something. The stack effect

of each instruction is also shown in Figure 8.1, as a transition

s1 ⇒ s2

from the stack s1 before instruction execution to the stack s2 after the instruc-

tion execution. In both cases, the stack top is on the right, and comma (,) is

used to separate stack elements.

Let us explain some of these instructions. The ‘push constant’ instruction

CSTI i pushes the integer i on the stack top. The addition instruction ADD takes

two integers i1 and i2 off the stack top, computes their sum i1 + i2, and pushes

that on the stack. The duplicate instruction DUP takes the v on the stack top,

and pushes one more copy on the stack top. The ‘load indirect’ instruction LDI
takes an integer i off the stack top, uses it as an index into the stack (where

the bottom item has index 0) and pushes the value s[i] onto the stack top. The

‘stack pointer increment’ instruction INCSP m increases the stack pointer sp by

160 An abstract stack machine

Instruction Stack before Stack after Effect

0 CSTI i s ⇒ s, i Push constant i
1 ADD s, i1, i2 ⇒ s,(i1 + i2) Add

2 SUB s, i1, i2 ⇒ s,(i1 − i2) Subtract

3 MUL s, i1, i2 ⇒ s,(i1 ∗ i2) Multiply

4 DIV s, i1, i2 ⇒ s,(i1/i2) Divide

5 MOD s, i1, i2 ⇒ s,(i1%i2) Modulo

6 EQ s, i1, i2 ⇒ s,(i1 = i2) Equality (0 or 1)

7 LT s, i1, i2 ⇒ s,(i1 < i2) Less-than (0 or 1)

8 NOT s,v ⇒ s, !v Negation (0 or 1)

9 DUP s,v ⇒ s,v,v Duplicate

10 SWAP s,v1,v2 ⇒ s,v2,v1 Swap

11 LDI s, i ⇒ s,s[i] Load indirect

12 STI s, i,v ⇒ s,v Store indirect s[i] = v
13 GETBP s ⇒ s,bp Load base ptr bp
14 GETSP s ⇒ s,sp Load stack ptr sp
15 INCSP m s ⇒ s,v1, ..,vm Grow stack (m ≥ 0)

15 INCSP m s,v1, ..,v−m ⇒ s Shrink stack (m < 0)

16 GOTO a s ⇒ s Jump to a
17 IFZERO a s,v ⇒ s Jump to a if v = 0
18 IFNZRO a s,v ⇒ s Jump to a if v 6= 0
19 CALL m a s,v1, ..,vm ⇒ s,r,bp,v1, ..,vm Call function at a
20 TCALL m n a s,r,b,u1, ..,un,v1, ..,vm ⇒ s,r,b,v1, ..,vm Tailcall function at a
21 RET m s,r,b,v1, ..,vm,v ⇒ s,v Return bp = b, pc = r
22 PRINTI s,v ⇒ s,v Print integer v
23 PRINTC s,v ⇒ s,v Print character v
24 LDARGS s ⇒ s, i1, .., in Command line args

25 STOP s ⇒ _ Halt the machine

Figure 8.1: The micro-C stack machine instructions and their ef-

fect. The instruction names (second column) are as defined in the

compiler’s MicroC/Machine.fs and in the stack machine implementations

MicroC/Machine.java and MicroC/machine.c.

An abstract stack machine 161

m, thus decreasing it if m < 0. The GOTO a instruction has no effect on the stack

but jumps to address a by changing the program counter to a. The ‘conditional

jump’ instruction IFZERO a takes a value v from the stack top, and jumps to a
if v is zero; otherwise continues at the next instruction.

The CALL m a instruction is used to invoke the micro-C function at address

a that takes m parameters. The instruction removes the m parameter values

from the stack, pushes the return address r (which is the current program

counter pc), pushes the current base pointer bp, and put the m removed pa-

rameter values back — as a result, the stack now contains a new stack frame

for the function being called; see Section 8.3. Then it jumps to address a, which

holds the first instruction of the function.

The RET m instruction is used to return from a function that has m parame-

ters; it ends a function invocation that was initiated by a CALL. The instruction

expects the return value v computed by the function to be on the stack top, with

a stack frame r,b,v1, . . . ,vm below it. It discards this stack frame and pushes the

return value v, sets the base pointer bp back to b, and jumps to the return ad-

dress r.
The TCALL tail call instruction will be explained in Section 11.7.

Some instruction sequences are equivalent to others; this fact will be used

to improve the compiler in Chapter 12. Alternatively, one could use the equiv-

alences to reduce the instruction set of the abstract machine, which would

simplify the machine but slow down the execution of programs. For instance,

instruction NOT could be simulated by the sequence 0, EQ, and each of the in-

structions IFZERO and IFNZRO can be simulated by NOT and the other one.

8.2.3 The symbolic machine code

To simplify code generation in our compilers, we define a symbolic machine

code as an F# datatype (file MicroC/Machine.fs), and also provide F# functions

to emit a list of symbolic machine instructions to a file as numeric instruction

codes. In addition, we permit the use of symbolic labels instead of absolute code

addresses. The code emitter, implemented by function code2ints, transforms

an instr list into an int list containing numeric instruction codes instead

of symbolic ones, and absolute code addresses instead of labels.

Thus the above program prog0 could be written in symbolic form as follows,

as a list of symbolic instructions:

[LDARGS; Label (Lab "L1"); PRINTI; CSTI 1; ADD; GOTO (Lab "L1")]

Note that Label is a pseudo-instruction; it serves only to indicate a position in

the bytecode and gives rise to no instruction in the numeric code:

24 22 0 1 1 16 1

162 An abstract stack machine

Abstract machines, or virtual machines, are very widely used for implement-

ing or describing programming languages, including Postscript, Forth, Visual

Basic, Java Virtual Machine, and Microsoft IL. More on that in Chapter 9.

8.2.4 The abstract machine implemented in Java

File MicroC/Machine.java contains an implementation of abstract machine as

a Java program. It is invoked like this from a command prompt:

java Machine ex1.out 5

The abstract machine reads the program as numeric instruction codes from the

given file, here ex1.out, and starts executing that file, passing any additional

arguments, here the number 5, as integer arguments to the program.

The abstract machine may also be asked to trace the execution. In this case

it will print the stack contents and the next instruction just before executing

each instruction:

java Machinetrace ex1.out 5

The abstract machine reads the program as numeric instruction codes from the

given file, here ex1.out, and starts executing that file, passing any additional

arguments, such as 5, as integers arguments to the program.

The abstract machine implementation is based on precisely the five state

components listed in Section 8.2.1 above: The program p, the program counter

pc, the evaluation stack s, the stack pointer sp, and the base pointer bp. The

core of the abstract machine is a loop that contains a switch on the next in-

struction code p[pc]. Here we show the cases for only a few instructions:

for (;;) {
switch (p[pc++]) {
case CSTI:
s[sp+1] = p[pc++]; sp++; break;

case ADD:
s[sp-1] = s[sp-1] + s[sp]; sp--; break;

case EQ:
s[sp-1] = (s[sp-1] == s[sp] ? 1 : 0); sp--; break;

case ...
case DUP:
s[sp+1] = s[sp]; sp++; break;

case LDI: // load indirect
s[sp] = s[s[sp]]; break;

case STI: // store indirect, keep value on top
s[s[sp-1]] = s[sp]; s[sp-1] = s[sp]; sp--; break;

An abstract stack machine 163

case GOTO:
pc = p[pc]; break;

case IFZERO:
pc = (s[sp--] == 0 ? p[pc] : pc+1); break;

case ...
case STOP:
return sp;

...
}

}

Basically this is an implementation of the transition rules shown in Figure 8.1.

The loop terminates when a STOP instruction is executed. The ADD and EQ in-

structions take two operands off the stack, perform an operation, and put the

result back onto the stack. In the CSTI instruction, the actual constant follows

the CSTI instruction code in the program. The LDI instruction takes the value

s[sp] at the stack top and uses it as index into the stack s[s[sp]] and puts the

result back on the stack top. A GOTO instruction is executed simply by storing

the GOTO’s target address p[pc] in the program counter register pc. A condi-

tional jump IFZERO either continues at the target address p[pc] or at the next

instruction address pc+1.

8.2.5 The abstract machine implemented in C

File MicroC/machine.c contains an alternative implementation of abstract ma-

chine as a C program. It is invoked like this from a command prompt:

./machine ex1.out 5

To trace the execution, invoked the abstract machine with option -trace:

./machine -trace ex1.out 5

The central loop and switch in this implementation of the abstract machine

are completely identical to those shown in Section 8.2.4 for the Java-based

implementation. Only the auxiliary functions, such as reading the program

from file and printing the execution trace, are different, due to the differences

between C and Java libraries.

164 The structure of the stack at runtime

8.3 The structure of the stack at runtime

Function arguments and local variables (integers, pointers and arrays) are all

allocated on the stack, and are accessed relative to the stack top (using the

stack pointer register sp). Global variables are allocated at the bottom of the

stack (low addresses) and are accessed using absolute addresses into the stack.

The stack contains

• a block of global variables, including global arrays

• a sequence of stack frames for active function calls

A stack frame or activation record for a function invocation has the following

contents:

• return address;

• the old base pointer (that is, the calling function’s base pointer);

• the values of the function’s parameters;

• local variables and intermediate results of expressions (temporary val-

ues).

The stack of frames (above the global variables) is often called the frame stack.

Figure 8.2 shows a schematic stack with global variables and two stack frames.

The old bp field of stack frame 2 points to the base of the local variables in

stack frame 1.

temps
ret old

bp local vars temps
ret old

bp local varsglobal vars addr addr

stack frame 1 stack frame 2

Figure 8.2: Stack layout at runtime.

Figure 8.3 shows a snapshot of the stack during an actual execution of the

micro-C program shown in Figure 7.5, with the argument i to main being 3.

There are no global variables, one activation record for main, and four activa-

tion records for fac, corresponding to the calls fac(3,_), fac(2,_), fac(1,_),

and fac(0,_).

Note that the offset of a local variable relative to the base pointer is the

same in every stack frame created for a given function. Thus n, res and tmp

Compiling micro-C to abstract machine code 165

old
bp

ret
addr

old
bp

ret
addr

old
bp

ret
addr

old
bp

ret
addr

old
bp

ret
addr

fac(0,_)fac(1,_)fac(2,_)fac(3,_)main(3)

0 1 2 3 4 5 6 7 8 9 10 11 12

4 3 0

13 14 15 16 17 18 19 20 21 22

i r n res tmp n res tmp n res tmp n res

19 3 79 2 79 1 79 02 6 11 16− 3 8 13 18

23

Figure 8.3: The stack after four calls to the fac function.

are always at offset 0, 1 and 2 relative to the base pointer in a stack frame for

fac.

Thus the offset of a local variable in a given function can be computed at

compile-time. The micro-C compiler records such offsets in a compile-time en-

vironment.

8.4 Compiling micro-C to abstract machine code

The compiler (in file MicroC/Comp.fs) compiles micro-C programs into sequences

of instructions for this abstract machine. The generated instruction sequence

consists of initialization code followed by code representing the bodies of com-

piled micro-C functions. The initialization code allocates global variables (those

declared outside functions), loads the program’s command line arguments (if

any) onto the stack, and then calls the program’s main function. The initial-

ization code ends with the STOP instruction, so that when the main function

returns, the bytecode interpreter stops.

The compiler works in three stages, where function cProgram performs stages

1 and 2, and function compile2file performs stage 3:

• Stage 1: Find all global variables and generate code to initialize them.

• Stage 2: Compile micro-C abstract syntax with symbolic variable and

function names to symbolic abstract machine code with numeric addresses

for variables, and symbolic labels for functions. One list of symbolic in-

structions is created for each function.

• Stage 3: Join the global initialization code lists of symbolic instructions

with symbolic labels and emit the result to a text file as numeric machine

instructions (using absolute code addresses instead of labels).

Expressions are compiled to reverse Polish notation as before, and are evalu-

ated on the stack.

The main functions of the micro-C compiler are listed in Figure 8.4.

166 Compiling micro-C to abstract machine code

cProgram : program -> instr list
Compile an entire micro-C program into an instruction sequence. The

first part of the instruction sequence will initialize global variables, call

the main function, and stop the bytecode interpreter when that function

returns. The second part of the instruction sequence consists of code for

all functions, including main.

cStmt : stmt -> varEnv -> funEnv -> instr list
Compile a micro-C statement into a sequence of instructions. The com-

pilation takes place in a compile-time environment which maps global

variables to absolute addresses in the stack (at the bottom of the stack),

and maps local variables to offsets from the base pointer of the current

stack frame. Also, a function environment maps function names to sym-

bolic labels.

cStmtOrDec : stmtordec -> varEnv -> funEnv -> varEnv * instr list
Compile a statement or declaration (as found in a statement block

{ int x; ... }) to a sequence of instructions, either for the statement

or for allocation of the declared variable (of type int or array or pointer).

Return a possibly extended environment as well as the instruction

sequence.

cExpr : expr -> varEnv -> funEnv -> instr list
Compile a micro-C expression into a sequence of instructions. The

compilation takes place in a compile-time variable environment and

a compile-time function environment. The code satisfies the net effect

principle for compilation of expressions: If the compilation (cExpr e env
fenv) of expression e returns the instruction sequence instrs, then the

execution of instrs will leave the value of expression e on the stack top

(and thus will extend the current stack frame with one element).

cAccess : access -> varEnv -> funEnv -> instr list
Compile an access (variable x, pointer dereferencing *p, or array index-

ing a[e]) into a sequence of instructions, again relative to a compile-

time environment.

cExprs : expr list -> varEnv -> funEnv -> instr list
Compile a list of expressions into a sequence of instructions.

allocate : varkind -> typ * string -> varEnv -> varEnv * instr list
Given a micro-C type (int, pointer, or array) and a variable name, bind

the variable in the compile-time environment. Return the extended

environment together with code for allocating store for the variable at

runtime. The varkind indicates whether the variable is local (to a func-

tion), or global (to the program).

Figure 8.4: Main compilation functions of the micro-C compiler. A varEnv is a

pair of a compile-time variable environment and the next available stack frame

offset. A funEnv is a compile-time function environment.

Compilation schemes for micro-C 167

8.5 Compilation schemes for micro-C

The compilation of micro-C constructs can be described schematically using

compilation schemes:

• S[[stmt]] is the result of compiling statement stmt. The S compilation

scheme is shown in Figure 8.5 and corresponds to compilation function

cStmt in the micro-C compiler.

• E[[e]] is the result of compiling expression e. The E compilation scheme

is shown in Figure 8.6 and corresponds to compilation function cExpr in

the micro-C compiler.

• A[[acc]] is the result of compiling access expression acc, such as a variable

x or pointer dereferencing *p or array indexing a[i]. The A compilation

scheme is shown in Figure 8.7 and corresponds to compilation function

cAccess in the micro-C compiler.

• D[[stmtordec]] is the result of compiling a statement or declaration stmtordec.

When given a statement, the D compilation scheme will use the S scheme

to compile it. When given a declaration, such as int x or int arr[10],

the D compilation scheme will generate code to extend the current stack

frame to hold the declared variables. The D scheme (not shown) corre-

sponds to compilation function cStmtOrDec in the micro-C compiler.

The lab1 and lab2 that appear in the compilation schemes are labels, assumed

to be fresh in each of the compilation scheme cases.

8.6 Compilation of statements

To understand the compilation schemes, consider the compilation of the state-

ment if (e) stmt1 else stmt2 in Figure 8.5. The generated machine code

will first evaluate e and leave its value on the stack top. Then the instruction

IFZERO will jump to label lab1 if that value is zero (which represents false). In

that case, the compiled code for stmt2 will be executed, as expected. In the

opposite case, when the value of e is not zero, the compiled code for stmt1 will

be executed, and then the instruction GOTO will jump to lab2, thus avoiding the

execution of stmt2.

The compiled code for while (e) body begins with a jump to label lab2. The

code at lab2 computes the condition e and leaves its value on the stack top. The

instruction IFNZRO jumps to label lab1 if that values is non-zero (true). The

code at label lab1 is the compiled body of the while-loop. After executing that

168 Compilation of expressions

code, the code compiled for expression e is executed again, and so on. This way

of compiling while-loops means that one (conditional) jump is enough for each

iteration of the loop. If we did not make the initial jump around the compiled

code, then two jumps would be needed for each iteration of the loop. Since a

loop body is usually executed many times, this initial jump is well worth its

cost.

The compiled code for an expression statement e; consists of the compiled

code for e, whose execution will leave the value of e on the stack top, followed by

the instruction INCSP -1 which will drop that value from the stack (by moving

the stack pointer down by one place).

The compilation of a return statements is shown in Figure 8.5. When the

return statement has an argument expression as in return e; the compilation

is straightforward: we generate code to evaluate e and then the instruction

RET m where m is the number of temporaries on the stack. If the correspond-

ing function call is part of an expression in which the value is used, then the

value will be on the stack top as expected. If the call is part of an expression

statement f(...); then the value is discarded by an INCSP -1 instruction or

similar, at the point of return.

In a void function, a return statement return; has no argument expression.

Also, the function may return simply by reaching the end of the function body.

This kind of return can be compiled to RET (m− 1), where m is the number of

temporary values on the stack. This has the effect of leaving a junk value on

the stack top

RET(m− 1) s,r,b,v1, ..,vm ⇒ s,v1

Note that in the extreme case where m = 0, the junk value will be the old base

pointer b, which at first seems completely wrong:

RET(−1) s,r,b ⇒ s,b

However, a void function f may be called only by an expression statement

f(...);, so this junk value is ignored and cannot be used by the calling func-

tion.

8.7 Compilation of expressions

The compilation of an expression e is an extension of the compilation of expres-

sions to postfix form discussed in Chapter 2.

A variable access x or pointer dereferencing *p or array indexing a[i] is

compiled by generating code to compute an address in the store (and leave it

Compilation of expressions 169

S[[if (e) stmt1 else stmt2]] =

E[[e]]
IFZERO lab1

S[[stmt1]]
GOTO lab2

lab1: S[[stmt2]]
lab2: ...

S[[while (e) body]] =

GOTO lab2

lab1: S[[body]]
lab2: E[[e]]

IFNZRO lab1

S[[e;]] =

E[[e]]
INCSP -1

S[[{stmtordec1, ..., stmtordecn}]] =

D[[stmtordec1]]
...

D[[stmtordecn]]
INCSP locals

S[[return;]] =

RET (locals-1)

S[[return e;]] =

E[[e]]
RET locals

Figure 8.5: Compilation schemes for micro-C statements.

170 Compilation of expressions

on the stack top), and then appending an LDI instruction to load the value at

that address on the stack top.

An assignment x = e is compiled by generating code for the access expres-

sion x, generating code for the right-hand side e, and appending a STI instruc-

tion that stores e’s value (on the stack top) at the store address computed from

x.

Integer constants and the null pointer constant are compiled to code that

pushes that constant onto the stack.

An address-of expression &acc is compiled to code that evaluates acc to an

address and simply leaves that address on the stack top (instead of dereferenc-

ing it with LDI, as in a variable access).

A unary primitive operation such as negation !e is compiled to code that

first evaluates e and then executes instruction NOT to negate that value on the

stack top.

A two-argument primitive operation such as times e1 * e2 is compiled to

code that first evaluates e1, then e2, and then executes instruction MUL to mul-

tiply the two values of the stack top, leaving the product on the stack top.

The short-cut conditional e1 && e2 is compiled to code that first evaluates

e1 and leaves its value on the stack top. Then if that value is zero (false),

it jumps to label lab1 where the value zero (false) is pushed onto the stack

again. Otherwise, if the value of e1 is non-zero (true), then e2 is evaluated and

the value of e2 is the value of the entire expression. The jump to label lab2

ensures that the CST 0 expression is not executed in this case.

The short-cut conditional e1 || e2 is dual to e1 && e2 and is compiled in

the same way, but zero has been replaced with non-zero and vice versa.

A function call f(e1, ..., en) is compiled to code that first evaluates e1,

. . . , en in order and then executes instruction CALL(n, labf) where labf is the

label of the first instruction of the compiled code for f.

Compilation of expressions 171

E[[acc]] = where acc is an access expression

A[[acc]]
LDI

E[[acc=e]] =

A[[acc]]
E[[e]]
STI

E[[i]] =

CSTI i

E[[null]] =

CSTI 0

E[[&acc]] =

A[[e]]

E[[!e1]] =

E[[e1]]
NOT

E[[e1 * e2]] =

E[[e1]]
E[[e2]]
MUL

E[[e1 && e2]] =

E[[e1]]
IFZERO lab1

E[[e2]]
GOTO lab2

lab1: CSTI 0
lab2: ...

E[[e1 || e2]] =

E[[e1]]
IFNZRO lab1

E[[e2]]
GOTO lab2

lab1: CSTI 1
lab2: ...

E[[f(e1, ..., en)]] =

E[[e1]]
...

E[[en]]
CALL(n, labf)

Figure 8.6: Compilation schemes for micro-C expressions. The net effect of the

code for an expression is to leave the expression’s value on the stack top.

172 History and literature

8.8 Compilation of access expressions

The compiled code A[[acc]] for an access expression acc must leave a store ad-

dress on the stack top. Thus if acc is a global variable x, the compiled code

simply pushes the global store address of x on the stack. If acc is a local vari-

able or parameter x, then the compiled code computes the sum of the base

pointer register bp and the variable’s offset in the stack frame.

If the access expression acc is a pointer dereferencing *e then the compiled

code simple evaluates e and leaves that value on the stack as a store address.

If the access expression is an array indexing a[i], then the compiled code

evaluates access expression a to obtain an address where the base address of

the array is stored, executes instruction LDI to load that base address, then

evaluates expression i to obtain an array index, and finally add the array base

address and the index together.

A[[x]] = when x is global at address a
CSTI a

A[[x]] = when x is local at offset a
GETBP
CSTI a
ADD

A[[*e]] =

[[e]]

A[[a[i]]] =

A[[a]]
LDI
E[[i]]
ADD

Figure 8.7: Compilation schemes for micro-C access expressions: variable x,

pointer dereferencing *p or array indexing a[i]. The net effect of the code for

an access is to leave an address on the stack top.

8.9 History and literature

TODO

Exercises 173

8.10 Exercises

The main goal of these exercises is to familiarize yourself with the compilation

of micro-C to bytecode, and the abstract machine used to execute the bytecode.

Exercise 8.1 Download microc.zip from the course homepage, unpack it to a

folder MicroC, and build the micro-C compiler as explained in MicroC/README
step (B).

(i) As a warm-up, compile one of the micro-C examples provided, such as that in

source file ex11.c, then run it using the abstract machine implemented in Java,

as described also in step (B) of the README file. When run with command line

argument 8, the program prints the 92 solutions to the eight queens problem:

how to place eight queens on a chessboard so that none of them can attack any

of the others.

(ii) Now compile the example micro-C programs imp/ex3.c and MicroC/ex5.c
using compileToFile and fromFile from ParseAndComp.fs as above.

Study the generated symbolic bytecode. Write up the bytecode in a more

structured way with labels only at the beginning of the line (as in the lecture

and the lecture notes). Write the corresponding micro-C code to the right of

the stack machine code. Note that ex5.c has a nested scope (a block { ... }
inside a function body); how is that expressed in the generated code?

Execute the compiled programs using java Machine ex3.out 10 and simi-

lar. Note that these programs require a command line argument (an integer)

when they are executed.

Trace the execution using java Machinetrace ex3.out 4, and explain the

stack contents and what goes on in each step of execution. Note that even in

MS Windows you can capture the standard output from a command prompt (in

a text file ex3trace.txt) using the Unix-style notation:

java Machinetrace ex3.out 4 > ex3trace.txt

Exercise 8.2 Compile and run the micro-C example programs you wrote in

Exercise 7.2, and check that they produce the right result. It is rather cumber-

some to fill an array with values by hand in micro-C, so the function squares
from that exercise is very handy.

Exercise 8.3 This abstract syntax for preincrement ++e and predecrement --e
was introduced in Exercise 7.4:

type expr =
...

| PreInc of access (* C/C++/Java/C# ++i or ++a[e] *)
| PreDec of access (* C/C++/Java/C# --i or --a[e] *)

174 Exercises

Modify the compiler (function cExpr) to generate code for PreInc(acc) and

PreDec(acc). To parse micro-C source programs containing these expressions,

you also need to modify the lexer and parser.

It is tempting to expand ++e to the assignment expression e = e+1, but that

would evaluate e twice, which is wrong. Namely, e may itself have a side effect,

as in ++arr[++i].

Hence e should be computed only once. For instance, ++i should compile

to something like this: <code to compute address of i>, DUP, LDI, CSTI 1, ADD,

STI, where the address of i is computed once and then duplicated.

Write a program to check that this works. If you are brave, try it on expres-

sions of the form ++arr[++i] and check that i and the elements of arr have the

correct values afterwards.

Exercise 8.4 Compile ex8.c and study the symbolic bytecode to see why it is

so much slower than the handwritten 20 million iterations loop in MicroC/prog1.

Compile MicroC/ex13.c and study the symbolic bytecode to see how loops

and conditionals interact; describe what you see.

In a later lecture we shall see an improved micro-C compiler that generates

fewer extraneous labels and jumps.

Exercise 8.5 Extend the micro-C language, the abstract syntax, the lexer, the

parser, and the compiler to implement conditional expressions of the form (e1
? e2 : e3).

The compilation of e1 ? e2 : e3 should produce code that evaluates e2 only

if e1 is true and evaluates e3 only if e1 is false. The compilation scheme should

be the same as for the conditional statement if (e1) e2 else e3, but expres-

sion e2 or expression e3 must leave its value on the stack top if evaluated , so

the entire expression e1 ? e2 : e3 leaves its value on the stack top.

Exercise 8.6 Extend the lexer, parser, abstract syntax and compiler to imple-

ment switch statements like this:

switch (month) {
case 1:
{ days = 31; }

case 2:
{ days = 28; if (y%4==0) days = 29; }

case 3:
{ days = 31; }

}

Unlike in C, there should be no fall-through from one case to the next: after

the last statement of a case, the code should jump to the end of the switch

Exercises 175

statement. The parenthesis after switch must contain an expression. The

value after a case must be an integer constant, and a case must be followed by

a statement block. A switch with n cases can be compiled using n labels, the

last of which is at the very end of the switch. For simplicity, do not implement

the break statement or the default branch.

Exercise 8.7 (Would be convenient) Write a disassembler that can display a

machine code program in a more readable way. You can write it in Java, using

a variant of the method insname from imp/Machine.java.

Exercise 8.8 Write more micro-C programs; compile and disassemble them.

For instance, write a program that contains the following function defini-

tions:

• Define a function void linsearch(int x, int len, int a[], int *res)
that searches for x in a[0..len-1]. It should return the least i for which

a[i] == x if one exists, and should return −1 if not a[i] equals x.

• Define a function void binsearch(int x, int n, int a[], int *res) that

searches for x in a sorted array a[0..n-1] using binary search. It should

return the least i for which a[i] == x if one exists, and should return −1
if no a[i] equals x.

• Define a function void swap(int *x, int *y) that swaps the values of *x
and *y.

• Define a function void sort(int n, int a[]) that sorts the array a[0..n-1]
using insertion sort. (Or use selection sort and the auxiliary function swap
developed above).

Exercise 8.9 Extend the language and compiler to accept initialized declara-

tions such as

int i = j + 32;

Doing this for local variables (inside functions) should not be too hard. For

global ones it requires more changes.

176 Exercises

Chapter 9

Real-world abstract

machines

This chapter discusses some widely used real-world abstract machines.

9.1 What files are provided for this chapter

File Contents

virtual/ex6java.java a linked list class in Java; see Figure 9.4

virtual/ex13.java a version of ex13.c in Java

virtual/ex13.cs a version of ex13.c in C#; see Figure 9.8

virtual/CircularQueue.cs a generic circular queue in C#; see Figure 9.10

virtual/Selsort.java selection sort in Java

virtual/Selsort.cs selection sort in C#

9.2 An overview of abstract machines

An abstract machine is a device, which may be implemented in software or

in hardware, for executing programs in an intermediate instruction-oriented

language. The intermediate language is often called bytecode, because the in-

struction codes are short and simple compared to the instruction set of ‘real’

machines such as the x86, PowerPC or ARM architectures. Abstract machines

are also known as virtual machines. It is common to identify an machine with

the source language it implements, although this is slightly misleading. Prime

examples are Postscript (used in millions of printers and typesetters), P-code

177

178 An overview of abstract machines

(widely used in the late 1970’es in the UCSD implementation of Pascal for mi-

crocomputers), the Java Virtual Machine, and Microsoft’s Common Language

Infrastructure. Many projects exist whose goal is to develop new abstract ma-

chines, either to be more general, or for some specific purpose.

The purpose of an abstract machine typically is to increase the portability

and safety of programs in the source language, such as Java. By compiling

Java to a single bytecode language (the JVM), one needs only a single Java

compiler, yet the Java programs can be run with no changes on different ‘real’

machine architectures and operating systems. Traditionally it is cumbersome

to develop portable software in C, say, because an int value in C may have 16,

32, 36 or 64 bits depending on which machine the program was compiled for.

The Java Virtual Machine (JVM) is an abstract machine and a set of stan-

dard libraries developed by Sun Microsystems since 1994 [92]. Java programs

are compiled to JVM bytecode to make Java programs portable across plat-

forms. There are Java Virtual Machine implementations for a wide range of

platforms, from large high-speed servers and desktop computers (Sun’s Hotspot

JVM, IBM’s J9 JVM, Oracle/BEA JRockit and others) to very compact embed-

ded systems (Sun’s KVM, Myriad’s Jbed, Google’s Dalvik for the Android oper-

ating system, and others). There are even implementations in hardware, such

as the AJ-80 and AJ-100 Java processors from aJile Systems [10].

The Common Language Infrastructure is an abstract machine and a set of

standard libraries developed by Microsoft since 1999, with very much the same

goals as Sun’s JVM. The whole platform has been standardized as by Ecma

International [45]. Microsoft’s implementation of CLI is known as the Common

Language Runtime (CLR) and is part of .NET, a large set of languages, tools,

libraries and technologies. The first version of CLI was releases in January

2002, and version 2.0 with generics was released in 2005. The subsequent

versions 3.5 (2008) and 4.0 (2010) mostly contain changes to the libraries and

the source languages (chiefly C# and VB.NET), whereas the abstract machine

bytecode remains the same as version 2.0.

The JVM was planned as an intermediate target language only for Java,

but several other languages now target the JVM, for instance the dynamically

typed Groovy, JRuby (a variant ot Ruby), Jython (a variant of Python), Clojure,

and the statically typed object/functional language Scala.

In contrast to the JVM, Microsoft’s CLI was from the outset intended as

a target language for a variety of high-level source languages, primarily C#,

VB.NET (a successor of Visual Basic 6) and JScript (a version of Javascript),

but also C++, COBOL, Haskell, Standard ML, Eiffel, F#, IronPython (a version

of Python) and IronRuby (a version of Ruby). In particular, programs written

in any of these languages are supposed to be able to interoperate, using the

common object model supported by the CLI. This has influenced the design of

The Java Virtual Machine (JVM) 179

CLI, whose bytecode language is somewhat more general than that of the JVM,

although it is still visibly slanted towards class-based, statically typed, single-

inheritance object-oriented languages such as Java and C#. Also, CLI was

designed with just-in-time compilation in mind. For this reason, CLI bytecode

instructions are not explicitly typed; the just-in-time compilation phase must

infer the types anyway, so there is no need to give them explicitly.

While the JVM has been implemented on a large number of platforms (So-

laris, Linux, MS Windows, web browsers, mobile phones, personal digital as-

sistants) from the beginning, CLI was primarily intended for MS Windows

NT/2000/XP/Vista/7 and their successors, and for Windows Compact Edition

(CE). However, the Mono project, sponsored by Novell, [102] has created an

open source implementation of CLI for many platforms, including Linux, Ma-

cOS, Windows, Apple’s iPhone, Google’s Android phone, and more.

The Parallel Virtual Machine (PVM) is a different kind of virtual machine:

it is a library for C, C++ and Fortran programs that makes a network of com-

puters look like a single (huge) computer [112]. Program tasks can easily

communicate with each other, even between different processor architectures

(x86, Sun Sparc, PowerPC, . . .) and different operating systems (Linux, MS

Windows, Solaris, HP-UX, AIX, MacOS X, . . .). The purpose is to support dis-

tributed scientific computing.

Similarly, LLVM [4] is a compiler infrastructure that offers an abstract in-

struction set and hence a uniform view of different machine architectures. It

is used as back-end in the C/C++/Objective-C compiler called Clang and as

platform for research in parallel programming. For instance, Apple uses it to

target both the iPhone (using the ARM architecture) and MacOS (using the

x86 architecture).

9.3 The Java Virtual Machine (JVM)

9.3.1 The JVM runtime state

In general, a JVM runs one or more threads concurrently, but here we shall

consider only a single thread of execution. The state of a JVM thread has the

following components:

• classes that contain methods, where methods contain bytecode;

• a heap that stores objects and arrays;

• a frame stack;

• class loaders, security managers and other components that we do not

care about here.

180 The Java Virtual Machine (JVM)

The heap is used for storing values that are created dynamically and whose

lifetimes are hard to predict. In particular, all arrays and objects (including

strings) are stored on the heap. The heap is managed by a garbage collector,

which makes sure that unused values are thrown away so that the memory

they occupy can be reused for new arrays and objects. Chapter 10 discusses

the heap and garbage collection in more detail.

The JVM frame stack is a stack of frames (also called activation records),

containing one frame for each method call that has not yet completed. For

instance, when method main has called method fac on the argument 3, which

has called itself recursively on the argument 2, and so on, the frame stack has

the form shown in Figure 9.1. Thus the stack has exactly the same shape as in

the micro-C abstract machine, see Figure 8.3.

local variables

local evaluation stack

program counter

frame for main()

frame for fac(3)

frame for fac(2)

frame for fac(1)

frame for fac(0)

Figure 9.1: JVM frame stack (left) and layout of a stack frame (right).

Each JVM stack frame has at least the following components:

• local variables for this method;

• the local evaluation stack for this method;

• the program counter (pc) for this method.

The local variables include the method’s parameters, and also the current ob-

ject reference (this) if the method is non-static. The this reference (if any) is

the first local variable, followed by the method’s parameters and the method’s

local variables. In the JVM bytecode, a local variable is named by its index;

this is essentially the local variable’s declaration number. For instance, in a

non-static method, the current object reference (this) has local variable index

0, the first method parameter has index 1, and so on. In an static method, the

first method parameter has index 0, and so on.

In the JVM the size of a value is one 32-bit word (for booleans, bytes, charac-

ters, shorts, integers, floats, references to array or object), or two words (longs

The Java Virtual Machine (JVM) 181

and doubles). A local variable holding a value of the latter kind occupies two

local variable indexes.

Only primitive type values (int, char, boolean, double, and so on) and ref-

erences can be stored in a local variable or in the local evaluation stack. All

objects and arrays are stored in the heap, but a local variable and the local

evaluation stack can of course hold a reference to a heap-allocated object or

array.

As shown in Figure 9.1, and unlike the abstract machine of Chapter 8, the

JVM keeps the expression evaluation stack separate from the local variables,

and also keeps the frames of different method invocations separate from each

other. All stack frames for a given method must have the same fixed size: the

number of local variables and the maximal depth of the local evaluation stack

must be determined in advance by the Java compiler.

The instructions of a method can operate on:

• the local variables (load variable, store variable) and the local evaluation

stack (duplicate, swap);

• static fields of classes, given a class name and a field name;

• non-static fields of objects, given an object reference and a field name;

• the elements of arrays, given an array reference and an index.

Classes (with their static fields), objects (with their non-static fields), strings,

and arrays are stored in the heap.

9.3.2 The Java Virtual Machine (JVM) bytecode

As can be seen, the JVM is a stack-based machine quite similar to the micro-C

abstract machine studied in Chapter 8. There is a large number of JVM byte-

code instructions, many of which have variants for each argument type. An

instruction name prefix indicates the argument type; see Figure 9.2. For in-

stance, addition of integers is done by instruction iadd, and addition of single-

precision floating-point numbers is done by fadd.

The main categories of JVM instructions are shown in Figure 9.3 along with

the corresponding instructions in Microsoft’s CLI.

The JVM bytecode instructions have symbolic names as indicated above,

and they have fixed numeric codes that are used in JVM class files. A class file

represents a Java class or interface, containing static and non-static field dec-

larations, and static and non-static method declarations. A JVM reads one or

more class files and executes the public static void main(String[]) method

in a designated class.

182 The Java Virtual Machine (JVM)

Prefix Type

i int, short, char, byte
b byte (in array instructions only)

c char (in array instructions only)

s short (in array instructions only)

f float
d double
a reference to array or object

Figure 9.2: JVM instruction type prefixes.

9.3.3 Java Virtual Machine (JVM) class files

When a Java program is compiled with a Java compiler such as javac or jikes,

one or more class files are produced. A class file MyClass.class describes a

single class or interface MyClass. Nested classes within MyClass are stored in

separate class files named MyClass$A, MyClass$1, and so on.

Java-based tools for working with JVM class files include BCEL [25], gnu.bytecode
[52], Javassist [28, 66], and JMangler [67]. In Chapter 14 we show how to use

the former two for runtime-code generation.

Figure 9.4 outlines a Java class declaration LinkedList, and the correspond-

ing class file is shown schematically in Figure 9.5.

The main components of a JVM class file are:

• the name and package of the class;

• the superclass, superinterfaces, and access flags (public and so on) of the

class;

• the constant pool, which contains field descriptions and method descrip-

tions, string constants, large integer constants, and so on;

• the static and non-static field declarations of the class;

• the method declarations of the class, and possibly special methods named

<init> corresponding to the constructors of the class, and a special meth-

ods named <clinit> corresponding to a static initializer block in the class;

• the attributes (such as source file name).

For each field declaration (type field_decl), the class file describes:

• the name of the field;

The Java Virtual Machine (JVM) 183

Category JVM CLI

push constant bipush, sipush, iconst, ldc,

aconst_null, . . .

ldc.i4, ldc.i8, ldnull, ldstr,

ldtoken
arithmetic iadd, isub, imul, idiv, irem,

ineg, iinc, fadd, fsub, . . .

add, sub, mul, div, rem, neg

checked

arithmetic

add.ovf, add.ovf.un, sub.ovf,

. . .

bit manipulation iand, ior, ixor, ishl, ishr, . . . and, not, or, xor, shl, shr,

shr.un
compare values ceq, cgt, cgt.un, clt, clt.un
type conversion i2b, i2c, i2s, i2f, f2i, . . . conv.i1, conv.i2, conv.r4, . . .

load local var. iload, aload, fload, . . . ldloc, ldarg
store local var. istore, astore, fstore, . . .

load array

element

iaload, baload, aaload, faload,

. . .

ldelem.i1, ldelem.i2,

ldelem.r4, . . .

store array

element

iastore, bastore, aastore,

fastore, . . .

stelem.i1, stelem.i2,

stelem.r4, . . .

load indirect ldind.i1, ldind.i2, . . .

store indirect stind.i1, stind.i2, . . .

load address ldloca, ldarga, ldelema,

ldflda, ldsflda
stack swap, pop, dup, dup_x1, . . . pop, dup
allocate array newarray, anewarray,

multianewarray, . . .

newarr

load field getfield, getstatic ldfld, ldstfld
store field putfield, putstatic stfld, stsfld
method call invokevirtual, invokestatic,

invokespecial, . . .

call, calli, callvirt

load method

pointer

ldftn, ldvirtftn

method return return, ireturn, areturn, . . . ret
jump goto br
compare to 0 and

jump

ifeq, ifne, iflt, ifle, ifgt,

ifge
brfalse, brtrue

compare values

and jump

if_icmpeq, if_icmpne, . . . beq, bge, bge.un, bgt, bgt.un,

ble, ble.un, blt, blt.un,

bne.un
switch lookupswitch, tableswitch switch
object-related new, instanceof, checkcast newobj, isinst, castclass
exceptions athrow throw, rethrow
threads monitorenter, monitorexit
try-catch-finally jsr, ret endfilter, endfinally, leave
value types box, unbox, cpobj, initobj,

ldobj, stobj, sizeof

Figure 9.3: Bytecode instructions in JVM and CLI.

184 The Java Virtual Machine (JVM)

class LinkedList extends Object {
Node first, last;

void addLast(int item) {
Node node = new Node();
node.item = item;
...

}

void printForwards() { ... }
void printBackwards() { ... }

}

Figure 9.4: Java source code for class LinkedList (file virtual/ex6java.java).

 Stack=2, Locals=3, Args_size=2

#1 Object.<init>()
#2 class Node
#3 Node.<init>()

#8 Node Node.prev

#4 int Node.item
#5 Node LinkedList.last
#6 Node LinkedList.first
#7 Node Node.next

#9 void InOut.print(int)

co
n

st
a

n
t
p

o
o

l

first (#6)
last (#5)

fie
ld

s

<init>()
void addLast(int)
void printForwards()
void printBackwards()m

e
th

o
d

s

LinkedList extends Object

header

source "ex6java.java"

class attributes

 0 new #2 <Class Node>
 3 dup
 4 invokespecial #3 <Method Node()>
 7 astore_2
 8 aload_2
 9 iload_1
 10 putfield #4 <Field int item>
 13 ...

Figure 9.5: JVM class file for class LinkedList in Figure 9.4.

The Java Virtual Machine (JVM) 185

• the type of the field;

• the modifiers (static, public, final, . . .);

• the attributes (such as source file line number).

For each method declaration (type method_decl), the class file describes:

• the name of the method;

• the signature of the method;

• the modifiers (static, public, final, . . .);

• the attributes, including

– the code for the method;

– those checked exceptions that the method is allowed to throw (taken

from the method’s throws clause in Java).

The code for a method (attribute CODE) includes:

• the maximal depth of the local evaluation stack in the stack frame for the

method — this helps the JVM allocate a stack frame of the right size for

a method call;

• the number of local variables in the method;

• the bytecode itself, as a list of JVM instructions;

• the exception handlers, that is, try-catch blocks, of the method body;

each handler (type exn_hdl) describes the bytecode range covered by the

handler, that is, the try block, the entry of the handler, that is, the catch
block, and the exception class handled by this handler;

• code attributes, such as source file line numbers (for runtime error re-

ports).

To study the contents of a class file MyClass.class, whether generated by a

Java compiler or the micro-C compiler, you can disassemble it by executing:

javap -c MyClass

To display also the size of the local evaluation stack and the number of local

variables, execute:

javap -c -verbose C

186 The Common Language Infrastructure (CLI)

9.3.4 Bytecode verification

Before a Java Virtual Machine (JVM) executes some bytecode, it will perform

so-called bytecode verification, a kind of loadtime check. The overall goal is

to improve security: the bytecode program should not be allowed to crash the

JVM or to perform illegal operations. This is especially important when execut-

ing ‘foreign’ programs, such as applets within a browser, or other downloaded

programs or plugins.

Bytecode verification checks the following things, and others, before the

code is executed:

• that all bytecode instructions work on stack operands and local variables

of the right type;

• that a method uses no more local variables than it claims to;

• that a method uses no more local stack positions than it claims to;

• that a method throws no other checked exceptions than it claims to;

• that for every point in the bytecode, the local stack has a fixed depth at

that point (and thus the local stack does not grow without bounds);

• that the execution of a method ends with a return or throw instruction

(and does not ‘fall off the end of the bytecode’);

• that execution does not try to use one half of a two-word value (a long or

double) as a one-word value (integer or reference or . . .).

This verification procedure has been patented. This is a little strange, since

the patented procedure (1) is a standard closure (fixed-point) algorithm, and

(2) the published patent does not describe the really tricky point: verification

of the so-called local subroutines.

9.4 The Common Language Infrastructure (CLI)

Documentation of Microsoft’s Common Language Infrastructure (CLI) and its

bytecode, can be found on the Microsoft Developer Network [94]. The documen-

tation is included also with the .Net Framework SDK which can be downloaded

from the same place.

The CLI implements a stack-based abstract machine very similar to the

JVM, with a heap, a frame stack, the same concept of stack frame, bytecode

verification, and so on.

The Common Language Infrastructure (CLI) 187

A single CLI stack frame contains the same information as a JVM stack

frame (Figure 9.1), and in addition has space for local allocation of structs and

arrays; see Figure 9.6.

local variables

local evaluation stack

local allocation

incoming arguments

program counter

Figure 9.6: A stack frame in Common Language Infrastructure.

The CLI’s bytecode is called Common Intermediate Language (CIL), or

sometimes MSIL, and was intended as a target language for a range of dif-

ferent source languages, not just Java/C#, and therefore differs from the JVM

in the following respects:

• CIL has a more advanced type system than that of JVM, to better sup-

port source languages that have parametric polymorphic types (generic

types), such as F# and C# 2.0 and later (see Section 9.5);

• CIL’s type system is also more complicated, as it includes several kinds

of pointer, native-size integers (that are 32 or 64 bit wide depending on

the platform), and so on;

• CIL has support for tail calls (see Section 11.2), to better support func-

tional source languages such as F#, but the runtime system may choose

to implement them just like other calls;

• CIL permits the execution of unverified code (an escape from the ‘man-

aged execution’), pointer arithmetics etc., to support more anarchic source

languages such as C and C++;

• CIL has a canonical textual representation (an assembly language), and

there is an assembler ilasm and a disassembler ildasm for this represen-

tation; the JVM has no official assembler format;

• CIL instructions are overloaded on type: there is only one add instruction,

and load-time type inference determines whether it is an int add, float
add, double add, and so on. This reflects a design decision in CIL, to sup-

port only just-in-time compilation rather than bytecode interpretation. A

just-in-time compiler will need to traverse the bytecode anyway, and can

thus infer the type of each instruction instead of just checking it.

188 The Common Language Infrastructure (CLI)

When the argument type of a CIL instruction needs to be specified explicitly, a

suffix is used; see Figure 9.7. For instance, ldc.i4 is an instruction for loading

4 byte integer constants.

Suffix Type or variant

i1 signed byte

u1 unsigned byte

i2 signed short (2 bytes)

u2 unsigned short or character (2 bytes)

i4 signed integer (4 bytes)

u4 unsigned integer (4 bytes)

i8 signed long (8 bytes)

u8 unsigned long (8 bytes)

r4 float (32 bit IEEE754 floating-point number)

r8 double (64 bit IEEE754 floating-point number)

i native size signed integer

u native size unsigned integer, or unmanaged pointer

r4result native size result for 32-bit floating-point computation

r8result native size result for 64-bit floating-point computation

o native size object reference

& native size managed pointer

s short variant of instruction (small immediate argument)

un unsigned variant of instruction

ovf overflow-detecting variant of instruction

Figure 9.7: CLI instruction types and variants (suffixes).

The main CIL instruction kinds are shown in Figure 9.3 along with the

corresponding JVM instructions. In addition, there are some unverifiable (un-

managed) CIL instructions, useful when compiling C or C++ to CIL:

• jump to method (a kind of tail call): jmp, jmpi

• block memory operations: cpblk, initblk, localloc

The CLI machine does not have the JVM’s infamous local subroutines. Instead

so-called protected blocks (those covered by catch clauses or finally clauses)

are subject to certain restrictions. One cannot jump out of or return from a

protected block; instead a special instruction called leave must be executed,

causing associated any finally blocks to be executed.

A program in C#, F#, VB.Net, and so on, such as the C# program virtual/ex13.cs
shown in Figure 9.8, is compiled to a CLI file ex13.exe.

Generic types in CLI and JVM 189

int n = int.Parse(args[0]);
int y;
y = 1889;
while (y < n) {
y = y + 1;
if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0)
InOut.PrintI(y);

}
InOut.PrintC(10);

Figure 9.8: A source program in C#. The corresponding bytecode is shown in

Figure 9.9.

Despite the ‘.exe’ suffix, the resulting file is not a classic MS Windows .exe
file, but consists of a small stub that starts the .NET CLI virtual machine, plus

the bytecode generated by the C# compiler. Such a file can be disassembled to

symbolic CIL code using

ildasm /text ex13.exe

This reveals the CIL code shown in the middle column of Figure 9.9. It is struc-

turally identical to the JVM code generated by javac for virtual/ex13.java.

9.5 Generic types in CLI and JVM

As can be seen, in many respects the CLI and JVM abstract machines are

similar, but their treatment of generic types and generic methods differs con-

siderably. Whereas the CLI supports generic types and generic methods also

at the bytecode level (since version 2 from 2005), the JVM bytecode has no no-

tion of generic types or methods. This means that generic types and methods

in Java are compiled to JVM bytecode by erasure, basically replacing each un-

constrained type parameter T as in C<T> by type Object in the bytecode, and

replacing each constrained type parameter as in C<T extends Sometype> by its

bound Sometype>. The consequences of this are explored in Section 9.5.2 below.

9.5.1 A generic class in bytecode

To illustrate the difference between the CLI’s and JVM’s implementation of

generics, consider the generic circular queue class shown in Figure 9.10.

An excerpt of the CLI bytecode for the circular queue class is shown in

Figure 9.11. One can see that class CircularQueue is generic also at the CLI

190 Generic types in CLI and JVM

JVM | CIL | Source
-----------------------------+--------------------------------+-----------

0 aload_0 | IL_0000: ldarg.0 | args
1 iconst_0 | IL_0001: ldc.i4.0 |
2 aaload | IL_0002: ldelem.ref | args[0]
3 invokestatic #2 (...) | IL_0003: call (...) | parse int
6 istore_1 | IL_0008: stloc.0 | n = ...
7 sipush 1889 | IL_0009: ldc.i4 0x761 |

10 istore_2 | IL_000e: stloc.1 | y = 1889;
11 goto 43 | IL_000f: br.s IL_002f | while (...) {
14 iload_2 | IL_0011: ldloc.1 |
15 iconst_1 | IL_0012: ldc.i4.1 |
16 iadd | IL_0013: add |
17 istore_2 | IL_0014: stloc.1 | y = y + 1;
18 iload_2 | IL_0015: ldloc.1 |
19 iconst_4 | IL_0016: ldc.i4.4 |
20 irem | IL_0017: rem |
21 ifne 31 | IL_0018: brtrue.s IL_0020 | y % 4 == 0
24 iload_2 | IL_001a: ldloc.1 |
25 bipush 100 | IL_001b: ldc.i4.s 100 |
27 irem | IL_001d: rem |
28 ifne 39 | IL_001e: brtrue.s IL_0029 | y % 100 != 0
31 iload_2 | IL_0020: ldloc.1 |
32 sipush 400 | IL_0021: ldc.i4 0x190 |
35 irem | IL_0026: rem |
36 ifne 43 | IL_0027: brtrue.s IL_002f | y % 400 == 0
39 iload_2 | IL_0029: ldloc.1 |
40 invokestatic #3 (...) | IL_002a: call (...) | print y
43 iload_2 | IL_002f: ldloc.1 |
44 iload_1 | IL_0030: ldloc.0 |
45 if_icmplt 14 | IL_0031: blt.s IL_0011 | (y < n) }
48 bipush 10 | IL_0033: ldc.i4.s 10 |
50 invokestatic #4 (...) | IL_0035: call (...) | newline
53 return | IL_003a: ret | return

Figure 9.9: Similarity of bytecode generated from Java source and the C#

source in Figure 9.8.

Generic types in CLI and JVM 191

class CircularQueue<T> {
private readonly T[] items;
private int count = 0, deqAt = 0;
...
public CircularQueue(int capacity) {
this.items = new T[capacity];

}
public T Dequeue() {
if (count > 0) {
count--;
T result = items[deqAt];
items[deqAt] = default(T);
deqAt = (deqAt+1) % items.Length;
return result;

} else
throw new ApplicationException("Queue empty");

}
public void Enqueue(T x) { ... }

}

Figure 9.10: A generic class implementing a circular queue, in C#.

bytecode level, taking type parameter T which is used in the types of the class’s

fields and its methods.

Contrast this with Figure 9.12, which shows the JVM bytecode obtained

from a Java version of the same circular queue class. There is no type parame-

ter on the class, and the methods have return type and parameter type Object,

so the class is not generic at the JVM level.

9.5.2 Consequences for Java

The absence of generic types in the JVM bytecode has some interesting conse-

quences for the Java language, not only for the JVM:

• Since type parameters are replaced by type Object in the bytecode, a

type argument in Java must be a reference type such as Double; it cannot

be a primitive type such as double. This incurs runtime wrapping and

unwrapping costs in Java.

• Since type parameters do not exist in the bytecode, in Java one cannot

reliably perform a cast (T)e to a type parameter, one cannot use a type

parameter in an instance test (e instanceof T), and one cannot perform

reflection T.class on a type parameter.

192 Generic types in CLI and JVM

.class private auto ansi beforefieldinit CircularQueue‘1<T>
extends [mscorlib]System.Object

{
.field private initonly !T[] items
...
.method public hidebysig instance !T Dequeue() cil managed { ... }
.method public hidebysig instance void Enqueue(!T x) cil managed { ... }

}

Figure 9.11: CLI bytecode, with generic types, for generic class CircularQueue
in Figure 9.10. The class takes one type parameter, hence the ‘1 suffix on the

name; the type parameter is called T; and the methods have return type and

parameter type T — in the bytecode, this is written !T.

class CircularQueue extends java.lang.Object{
...
public java.lang.Object dequeue(); ...
public void enqueue(java.lang.Object); ...

}

Figure 9.12: JVM bytecode, without generic types, for a Java version of generic

class CircularQueue in Figure 9.10. The class takes no type parameters, and

the methods have return type and parameter type Object.

Decompilers for Java and C# 193

• Since a type parameter is replaced by Object or another type bound, in

Java one cannot overload method parameters on different type instances

of a generic type. For instance, one cannot overload method put on two

type instances of CircularQueue<T>, like this:

void put(CircularQueue<Double> cqd) { ... }
void put(CircularQueue<Integer> cqd) { ... }

Namely, in the bytecode the parameter type would be just CircularQueue
in both cases, so the two methods cannot be distinguished.

• Since type parameters do not exist in the bytecode, in Java one cannot

create an array whose element type involves a type parameter, as in

arr=new T[capacity]. The reason is that when the element type of an

array is a reference type, then every assignment arr[i]=o to an array el-

ement must check that the runtime type of o is a subtype of the actual ele-

ment type with which the array was created at runtime; see Section 4.9.1.

Since the type parameter does not exist in the bytecode, it cannot be used

as actual element type, so this array element assignment check cannot

be performed. Therefore it is necessary to forbid the creation of an array

instance whose element type involves a generic type parameter. (How-

ever, it is harmless to declare a variable of generic array type, as in T[]
arr; — this does not produce an array instance).

It follows that the array creation in the constructor in Figure 9.10 would

be illegal in Java. A generic circular queue in Java would instead store

the queue’s elements in an ArrayList<T>, which is invariant in its type

parameter and therefore does not need the assignment check; see Sec-

tion 6.6.

9.6 Decompilers for Java and C#

Because of the need to perform load-time checking (‘verification’, see Section 9.3.4)

of the bytecode in JVM and .NET CLI, the compiled bytecode files contain

much so-called metadata, such as the name of classes and interfaces; the name

and type of fields; the name, return type and parameter types of methods; and

so on. For this reason, and because the Java and C# compilers generate rel-

atively straightforward bytecode, one can usually decompile the bytecode files

to obtain source programs (in Java or C#) that are very similar to the originals.

For instance, Figure 9.13 shows the result of decompiling the .NET CLI

bytecode in Figure 9.9, using the Reflector tool [121] originally developed by

194 History and literature

int num = int.Parse(args[0]);
int i = 0x761;
while (i < num) {
i++;
if ((((i % 4) == 0) && ((i % 100) != 0)) || ((i % 400) == 0)) {
InOut.PrintI(i);

}
}
InOut.PrintC(10);

Figure 9.13: The C# code obtained by decompiling the .NET CLI bytecode in

the middle column of Figure 9.9.

Lutz Roeder. The resulting C# is very similar to the original source code shown

in Figure 9.8.

There exist several decompilers for JVM and Java also, including Atanas

Neshkov’s DJ decompiler [104]. Decompilers are controversial because they

can be used to reverse engineer Java and C# software that is distributed only

in ‘compiled’ bytecode form, so they make it relatively easy to ‘steal’ algorithms

and other intellectual property. To fight this problem, people develop obfusca-

tors, which are tools that transform bytecode files to make it harder to decom-

pile them. For instance, an obfuscator may change the names of fields and

methods to keywords such as while and if, which is legal in the bytecode but

illegal in the decompiled programs. One such tool, call Dotfuscator, is included

with Visual Studio 2008.

9.7 History and literature

The book by Smith and Nair [128] gives a comprehensive account of abstract

machines and their implementation. It covers the JVM kind of virtual machine

as well as virtualization of hardware (not discussed here), as used in IBM

mainframes and Intel’s recent processors. Diehl, Hartel and Sestoft [42] give

a more overview over a range of abstract machines.

The authoritative but informal description of the JVM and JVM bytecode

is given by Lindholm and Yellin [92]. Cohen [32] and Bertelsen [19] have made

two of the many attempts at a more precise formalization of the Java Virtual

Machine. A more comprehensive effort which also relates the JVM and Java

source code, is by Stärk, Schmid, and Börger [134].

The Microsoft Common Language Infrastructure is described by Gough

[55], Lidin [89], and Stutz [133]. Microsoft’s CLI specifications and implemen-

Exercises 195

tations have been standardized by Ecma International [45].

9.8 Exercises

The main goal of these exercises is to improve understanding of the main-

stream virtual machines such as the Java Virtual Machine and the .NET Com-

mon Language Infrastructure, including their intermediate code, metadata,

and garbage collectors.

Download and unpack archive virtual.zip which contains the programs

needed in the exercises below.

Exercise 9.1 Consider the following C# method from file Selsort.cs:

public static void SelectionSort(int[] arr) {
for (int i = 0; i < arr.Length; i++) {
int least = i;
for (int j = i+1; j < arr.Length; j++)
if (arr[j] < arr[least])

least = j;
int tmp = arr[i]; arr[i] = arr[least]; arr[least] = tmp;

}
}

(i) From a Visual Studio Command Prompt, compile it using Microsoft’s C#

compiler with the optimize flag (/o), then disassemble it, saving the output to

file Selsort.il:

csc /o Selsort.cs
ildasm /text Selsort.exe > Selsort.il

Load Selsort.il into a text editor, find the declaration of method SelectionSort
and its body (bytecode), and delete everything else. Now try to understand

the purpose of each bytecode instruction. Write comments to the right of the

instructions (or between them) as you discover their purpose. Also describe

which local variables in the bytecode (local 0, 1, . . .) correspond to which vari-

ables in the source code.

If you want to see the precise description of a .NET Common Language

Infrastructure bytecode instruction such as ldc.i4.0, consult the Ecma-335

standard, find Partition III (pages 319-462) of that document, and search for

ldc. There is a link to the document near the bottom of the course homepage.

(ii) Now do the same with the corresponding Java method in file Selsort.java.

Compile it, then disassemble the Selsort class:

196 Exercises

javac Selsort.java
javap -verbose -c Selsort > Selsort.jvmbytecode

Proceed to investigate and comment Selsort.jvmbytecode as suggested above.

If you want to see the precise description of a JVM instruction such as istore_1,

open http://java.sun.com/docs/books/jvms/, click on View HTML, click on

Chapter 6 The Java Virtual Machine Instruction Set, click on the letter I at the

top of the page, and then scroll to istore_<n>. There is a link near the bottom

of the course homepage.

Hand in the two edited bytecode files with your comments.

Exercise 9.2 This exercise investigates the garbage collection impact in Mi-

crosoft .NET of using repeated string concatenation to create a long string.

This exercise also requires a Visual Studio Command Prompt.

(i) Compile the C# program StringConcatSpeed.cs and run it with count in the

program set to 30,000:

csc /o StringConcatSpeed.cs
StringConcatSpeed
(and press enter to see next result)

You will probably observe that the first computation (using a StringBuilder) is

tremendously fast compared to the second one (repeated string concatenation),

although they compute exactly the same result. The reason is that the latter

allocates a lot of temporary strings, each one slightly larger than the previous

one, and copies all the characters from the old string to the new one.

(ii) In this part, try to use the Windows Performance Monitor to observe the

.NET garbage collector’s behaviour when running StringConcatSpeed.

• In the Visual Studio Command Prompt, start perfmon.

• In the perfmon window, remove the default active performance counters

(shown in the list below the display) by clicking the ‘X’ button above the

display three times.

• Start StringConcatSpeed and let it run till it says Press return to continue....

• In the perfmon window, add a new performance counter, like this:

– press the ‘+’ button above the display, and the ‘Add Counters’ dialog

pops up;

– select Performance object to be ‘.NET CLR Memory’;

– select the counter ‘% Time in GC’;

Exercises 197

– select instance to be ‘StringConcatSpeed’ — note (***);

– press the Add button;

– close the dialog, and the ‘% Time in GC’ counter should appear in

the display.

• Press return in the Visual Studio Command Prompt to let the StringCon-

catSpeed program continue. You should now observe that a considerable

percentage of execution time (maybe 30–50 percent) is spent on garbage

collection. For most well-written applications, this should be only 0–10

percent, so the high percentage is a sign that the program is written in a

sick way.

(iii) Find another long-running C# program or application (you may well run

it from within Visual Studio) and measure the time spent in garbage collec-

tion using th perfmon as above. Note: It is very important that you attach

the performance counter to the particular process (‘instance’) that you want to

measure, in the step marked (***) above, otherwise the results will be mean-

ingless.

198 Exercises

Chapter 10

Garbage collection

Heap-allocation and garbage collection are not specific to abstract machines,

but has finally become accepted in the mainstream thanks to the Java Virtual

Machine and the Common Language Infrastructure/.NET.

10.1 What files are provided for this chapter

File Contents

ListC/Absyn.fs abstract syntax for list-C language

ListC/CLex.fsl lexer specification for list-C language

ListC/CPar.fsy parser specification for list-C language

ListC/Machine.fs definition of list-C abstract machine instructions

ListC/Comp.fs compiler for list-C language

ListC/ParseAndComp.fs parser and compiler for list-C language

ListC/listmachine.c list-C abstract machine in C, with garbage collector

10.2 Predictable lifetime and stack allocation

In the machine models for micro-C studied so far, the main storage data struc-

ture was the stack. The stack was used for storing activation records (stack

frames) holding the values of parameters and local variables, and for storing

intermediate results. An important property of the stack is that if value v1 is

pushed on the stack before value v2, then v2 is popped off the stack before v1;

last in, first out. Stack allocation is very efficient — just increment the stack

pointer to leave space for more data — and deallocation is just as efficient —

199

200 Unpredictable lifetime and heap allocation

just decrement the stack pointer so the next allocation overwrites the old data.

The possibility of stack allocation follows from the design of micro-C:

• micro-C has static (or lexical) scope rules: the binding of a variable oc-

currence x can be determined from the program text only, without taking

into account the program execution;

• micro-C has nested scopes: blocks { ... } within blocks;

• micro-C does not allow functions to be returned from functions, so there

is no need for closures;

• micro-C does not have dynamic data structures such as trees or lists,

whose life-time may be hard to predict.

Thanks to these restrictions, the lifetime of a value can be easily determined

when the value is created. In fact, the value can live no longer than any values

created before it — this makes stack-like allocation possible.

As an aside, note that in micro-C as in real C and C++, one may try to ‘break

the rules’ of stack allocation as follows: A function may allocate a variable

in its stack frame, use the address operator to obtain a pointer to the newly

allocated variable, and return that pointer to the calling function. However,

this creates a useless dangling pointer, because the stack frame is removed

when the function returns, and the pointed-to variable may be overwritten in

an unpredictable way by any subsequent function call.

10.3 Unpredictable lifetime and heap allocation

Many modern programming languages do permit the creation of values whose

lifetime cannot be determined at their point of creation. In particular, they

have functions as values, and hence need closures (Scheme, ML), they have

dynamic data structures such as lists and trees (Scheme, ML, Haskell), they

have thunks or suspensions (representing lazily evaluated values, in Haskell),

or they have objects (Simula, Java, C#).

Values with unpredictable lifetime are stored in another storage data struc-

ture, the so-called heap. Here ‘heap’ means approximately ‘disorderly collec-

tion of data’; it has nothing to do with heap in the sense ‘priority queue’, as in

algorithmics.

Data are explicitly allocated in the heap by the program, but cannot be

explictly deallocated: deallocation is done automatically by a so-called garbage

collector. A heap with automatic garbage collection is used in Lisp (1960),

Simula (1967), Scheme (1975), ML (1978), Smalltalk (1980), Haskell (1990),

Allocation in a heap 201

Java (1994), C# (1999), and most scripting languages, such as Perl and Python.

A major advantage of Java and C# over previous mainstream languages such

as Pascal, C and C++ is the use of automatic garbage collection.

In Pascal, C and C++ the user must manually and explicitly manage data

whose lifetime is unpredictable. Such data can be allocated outside the stack

using new (in Pascal or C++) or malloc (in C):

new(strbuf); Pascal
char *strbuf = new char[len+1]; C++
char *strbuf = (char*)malloc(len+1); C

but such data must be explicitly deallocated by the program using dispose (in

Pascal), delete (in C++), or free (in C):

dispose(strbuf); Pascal
delete strbuf; C++
free(strbuf); C

One would think that the programmer knows best when to deallocate his data,

but in practice, the programmer often makes grave mistakes. Either data are

deallocated too early, creating dangling pointers and causing a program crash,

or too late, and the program uses more and more space while running and must

be restarted every so often: it has a space leak. To permit local deallocation

(and also as a defence against unintended updates), C++ programmers often

copy or clone their objects before storing or passing them to other functions,

causing the program to run much slower than strictly necessary. Also, because

it is so cumbersome to allocate and deallocate data dynamically in C and C++,

there is a tendency to use statically allocated fixed-size buffers. These are

prone to buffer overflows and cause server vulnerabilities that are exploited

by Internet worms. Also, this approach prevents library functions from being

thread-safe.

10.4 Allocation in a heap

In Java and C#, every new array or object (including strings) is allocated in

the heap. Assume we have the following class declarations, where LinkedList
is the same as in Figure 9.4:

class Node {
Node next, prev;
int item;

}

202 Allocation in a heap

class LinkedList {
Node first, last;
...

}

Then calling a method m() will create a new stack frame with room for vari-

ables lst and node:

void m() {
LinkedList lst = new LinkedList();
lst.addLast(5);
lst.addLast(7);
Node node = lst.first;

}

Executing m’s method body will allocate objects in the heap and make the stack-

allocated variables refer to those objects, as shown in Figure 10.1. The figure

also shows that a field of an object may refer to other heap-allocated objects

(but never to the stack).

frames

STACK HEAP

Node

next

prev

item

Node

next

prev

item

LinkedList

first

last

5

7

lst

node
m

old
stack

Figure 10.1: Java allocates all objects in the heap (example

virtual/ex6java.java).

Similarly, in Standard ML, closures (fn x => y * x) and constructed data

such as pairs (3, true), lists [2, 3, 5, 7, 11], strings, arrays, etc. will most

likely be allocated in the heap, although Standard ML implementations have

a little more freedom to choose how and where to store objects than Java or C#

implementations have.

Garbage collection techniques 203

10.5 Garbage collection techniques

The purpose of the garbage collector is to make room for new data in the heap

by reclaiming space occupied by old data that are no longer used. There are

many different garbage collection algorithms to choose from. It is customary

to distinguish between the collector (which reclaims unused space) and the

mutator (which allocates new values and possibly updates old values). The

collector exists for the sake of the mutator, which does the real useful work. In

our case, the mutator is the abstract machine that executes the bytecode.

All garbage collection algorithms have a notion of root set. This is typically

the variables of all the active (not yet returned-from) function calls or method

calls of the program. Thus the root set consists of those references to the heap

found in the activation records on the stack and in machine registers (if any).

10.5.1 The heap and the freelist

Most garbage collectors organize the heap so that it contains allocated blocks

(objects, arrays, strings) of different sizes, mixed with unused blocks of differ-

ent sizes. Every allocated block contains a header with a size field and other

information about the block, and possibly a description of the rest of the block’s

contents.

Some garbage collectors further make sure that the unused blocks are linked

together in a so-called freelist: each unused block has a header with a size field,

and its first field contains a pointer to the next unused block on the freelist. A

pointer to the first block on the freelist is kept in a special freelist register by

the garbage collector.

A new value (object, closure, string, array, . . .) can be allocated from a

freelist by traversing the list until a large enough free block is found. If no such

block is found, a garbage collection may be initiated. If there is still no large

enough block, the heap must be extended by requesting more memory from the

operating system, or the program fails because of insufficient memory.

The main disadvantage of allocation from a freelist is that the search of

the freelist for a large enough free block may take a long time, if there are

many too-small blocks on the list. Also, the heap may become fragmented.

For instance, we may be unable to allocate a block of 36 bytes although there

are thousands of unused (but non-adjacent) 32-byte blocks on the freelist. To

reduce fragmentation one may try to find the smallest block, instead of the first

block, on the freelist that is large enough for the requested allocation, but if

there are many small free blocks that may be very slow.

The freelist approach to allocation can be improved in a number of ways,

such as keeping distinct freelists for distinct sizes of free blocks. This can speed

204 Garbage collection techniques

up allocation and reduce fragmentation, but also introduces new complexity in

deciding how many distint freelists to maintain, when to move free blocks from

one (little used) freelist to another (highly used) freelist, and so on.

10.5.2 Garbage collection by reference counting

One may implement garbage collection by associating a reference count with

each object on the heap, which counts the number of references to the object

from other objects and from the stack. Reference counting involves the follow-

ing operations:

• An object is created with reference count zero.

• When the mutator performs an assignment x = null, it must decrement

the reference count of the object previously referred to by x, if any.

• When the mutator performs an assignment x = o of an object reference

to a variable or a field, it must (1) increment the reference count of the

object o, and (2) decrement the reference count of the object previously

referred to by x, if any.

• Whenever the reference count of an object o gets decremented to zero, the

object may be deallocated (by putting it on the freelist), and the reference

counts of every object that o’s fields refer to must be decremented too.

Some of the advantages and disadvantages of reference counting are:

• Advantages: Reference counting is fairly simple to implement. Once allo-

cated, a value is never moved, which is important if a pointer to the value

has been given to external code, such as a input-output routine.

• Disadvantages: Additional memory is required to hold each object’s ref-

erence count. The incrementing, decrementing and testing of reference

counts slows down all assignments of object references. When decrement-

ing a object’s reference count to zero, the same must be done recursively

to all objects that it refers to, when can take a long time, causing a long

pause in the execution of the program. A serious problem with reference

counting is that it cannot collect cyclic object structures; after the as-

signments n=new Node(); n.next=n the reference count of the node object

will be two, and setting n=null will only bring it back to one, where it

will remain forever. In languages that support cyclic closures, this means

that useless data will just accumulate and eventually fill up all available

memory.

Garbage collection techniques 205

In addition, reference counting with a freelist suffers the weaknesses of

allocation from the freelist; see Section 10.5.1.

10.5.3 Mark-sweep collection

With mark-sweep garbage collection, the heap contains allocated objects of

different sizes, and unused blocks of different sizes. The unallocated blocks

are typically managed with a freelist; see Section 10.5.1.

Mark-sweep garbage collection is done in two phases; see Figure 10.2:

1. The mark phase: Mark all blocks that are reachable from the root set.

This can be done by first marking all those blocks pointed to from the

root, and recursively mark the unmarked blocks pointed to from marked

blocks. This works even when there are pointer cycles in the heap. The

recursive step can use a stack, but can also be done without it, at the cost

of some extra complication. After this phase all live blocks are marked.

2. The sweep phase: Go through all blocks in the heap, unmark the marked

blocks and put the unmarked blocks on the freelist, joining adjacent free

blocks into a single larger block.

����
����
����
����

���
���
���
���

���
���
���
���

��
��
��
��
�����
�����
�����
�����

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����
����

�����
�����
�����
�����

����
����
����
����fr

��
��
��
�� live

free

��
��
��

��
��
��

dead

����
����
����
����

���
���
���
���

���
���
���
���

��
��
��
��
�����
�����
�����
�����

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����
����

�����
�����
�����
�����

����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

After mark phase

fr

After sweep phase

fr

After some more allocation

fr

Figure 10.2: Mark-sweep garbage collection.

Some of the advantages and disadvantages of mark-sweep collection are:

206 Garbage collection techniques

• Advantages: Mark-sweep collection is fairly simple to implement. Once

allocated, a value is never moved, which is important if a pointer to the

value has been given to an external code, such as an input-output routine.

• Disadvantages: Whereas the mark phase will visit only the live objects,

the sweep phase must look at the entire heap, also the (potentially very

many) dead objects that are about to be collected. A complete cycle of

marking and sweeping may take much time, causing a long pause in the

execution of the program. This may be mildly irritating in an interactive

program, seriously annoying a music-streaming application, and catas-

trophic in a real-time physical control system.

In addition, mark-sweep with a freelist suffers the usual weaknesses of

allocation from the freelist; see Section 10.5.1.

Many variants of mark-sweep garbage collection are possible. It can be made

incremental, so that the mark phase consists of many short so-called slices,

separated by execution of the mutator, and similarly for the sweep phase. This

requires a few bits of extra administrative data in each heap block.

10.5.4 Two-space stop-and-copy collection

With two-space stop-and-copy garbage collection, the heap is divided into two

equally large semispaces. At any time, one semispace is called the from-space

and the other is called the to-space. After each garbage collection, the two

semispaces swap roles. There is no freelist. Instead an allocation pointer

points into the from-space; all memory from the allocation pointer to the end

of the from-space is unused.

Allocation is done in the from-space, at the point indicated by the allocation

pointer. The allocation pointer is simply incremented by the size of the block to

be allocated. If there is not enough space available, a garbage collection must

be made.

Garbage collection moves all live values from the from-space to the to-space

(initially empty). Then it sets the allocation pointer to point to the first avail-

able memory cell of the to-space, ignores whatever is in the from-space, and

swaps from-space and to-space. See Figure 10.3.

At the end of a garbage collection, the (new) from-space contains all live

values and has room for new allocations, and the (new) to-space is empty and

remains empty until the next garbage collection.

During the garbage collection, values are copied from the from-space to the

to-space as follows. Initially every from-space value reachable from the root

set is moved into the to-space (allocating from one end of the initially empty

to-space); any root set pointers to the value must be updated to point to the

Garbage collection techniques 207

���
���
���
���

��
��
��
��
�����
�����
�����
�����

���
���
���
���

���
���
���
���
�����
�����
�����
�����

���
���
���

���
���
���

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

���
���
���

���
���
���

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

����
����
����

����
����
����

After some more allocation

After swapping from/to

After copying garbage collection

from

from

from

from

to

to

to

to

Figure 10.3: Two-space stop-and-copy garbage collection.

new location. Whenever a value is moved, a forwarding pointer is stored in the

old (from-space) copy of the value. Next all values in the to-space are inspected

for pointers. If such a pointer points to a value in from-space, then that value is

inspected. If the value contains a forwarding pointer, then the pointer (stored

in a to-space value) is updated to refer to the (new) to-space address. If the

from-space value does not contain a forwarding pointer, then it is moved to the

to-space, and a forwarding pointer is stored in the old (from-space) copy of the

value.

• Advantages: No stack is needed for garbage collection, only a few point-

ers. Copying collection automatically performs compaction, that is, moves

live objects next to each other, leaving no unused holes between them.

Compaction avoids fragmentation of the heap, where the unused mem-

ory is scattered over many small holes, all of which are too small to hold

the object we want to allocate. Second, compaction improves reference

locality, possibly making the memory caches work better.

• Disadvantages: Copying collection (with two spaces) can use at most half

of the available memory space for live data. If the heap is nearly full, then

every garbage collection will copy almost all live data, but may reclaim

only very little unused memory. Thus as the heap gets full, performance

may degrade and get arbitrarily bad. A data value may be moved at

208 Garbage collection techniques

any time after its allocation, so a pointer to a value cannot be passed to

external procedures.

10.5.5 Generational garbage collection

Generational garbage collection starts from the observation that most allo-

cated values die young. Therefore it is wasteful to copy all the live, mostly old,

values in every garbage collection cycle, only to reclaim the space occupied by

some young, now dead, values.

Instead, divide the heap into several generations, numbered 1, . . . ,N. Al-

ways allocate in generation 1. When generation 1 is full, do a minor garbage

collection: promote (move) all live values from generation 1 to generation 2.

Then generation 1 is empty and new objects can be allocated into it. When

generation 2 is full, promote live values from generation 2 to generation 3, and

so on. Generation N, the last generation, may then be managed by a mark-

sweep garbage collection algorithm. A major garbage collection is a collection

that frees all unused spaces in all generations.

When there are only two generations, generation 1 is called the young gen-

eration, and generation 2 is called the old generation.

• Advantages: Generational garbage collection reclaims short-lived values

very efficiently. If desirable, it can avoid moving old data (which is im-

portant if pointers to heap-allocated data need to be passed to external

procedures).

• Disadvantages: Generational garbage collection is more complex to im-

plement. Also, it imposes a certain overhead on the mutator because of

the so-called write barrier between old and young generations. Whenever

a pointer to a young generation data object is stored in an old generation

data object, that pointer must be recorded in a separate data structure so

that the garbage collector knows all pointers into the young generation.

For instance, this may happen in a Java or C# programs when executing

an assignment such as o.f = new C(...). Thus an extra runtime check

must be performed before every assignment to a field or element of a heap-

allocated object, and extra space is needed to store those pointers. This

slows down reference assignments in Standard ML, and assignments to

object fields in Java and C#. Since functional programs perform fewer

assignments, this overhead hurts functional languages much less than

object-oriented ones.

Garbage collection techniques 209

10.5.6 Conservative garbage collection

Above we have assumed precise garbage collection, that is, that the garbage

collector can distinguish exactly between memory bit patterns that represent

references to heap objects, and memory patterns that represent other values,

such as an integer, a floating-point number, or a fragment of a string.

When one cannot distinguish exactly between heap object references and

other bit patterns, one may instead use a conservative garbage collector. A

conservative garbage collector will assume that if a bit pattern looks like a

reference then it is a reference, and the pointed-to object will survive the col-

lection. For instance, it may say that if the bit pattern looks like an address

inside the allocated heap, and the memory it points at has the proper structure

of a heap-allocated object, then it is probably a reference.

But note that some integer, representing maybe a customer number, may

look like a reference into the heap. If such an integer is mistakenly assumed

to be a reference, then some arbitrary memory data may be assumed to be a

live object, which in turn may contain references to other heap data. Hence an

innocent integer that looks like a reference may cause a memory leak: a large

amount of memory may be considered live and this might seriously increase

the memory consumption of a program. This is particularly nasty because it

is a combination of the (accidental) heap memory addresses and the program’s

current input data that cause the space leak. Hence a program may run fine

a million times, and then suddenly crash for lack of memory when given a

particular input parameter.

A conservative garbage collector cannot be compacting. When a compacting

garbage collector needs to move a block at heap address p, it must update all

references to that block. However, if it cannot distinguish exactly between a

reference p and another bit pattern (say, a customer number) that happens to

equal p, then there is a risk that the garbage collector will update the customer

number, thereby ruining the application’s data.

The garbage collectors used in implementations of functional languages

and of Java and C# are usually precise, whereas garbage collectors plug-ins for

C, C++ and Objective-C (used for programming the Apple iPhone) are usually

conservative. A particularly well-known conservative collector is the Boehm-

Demers-Weiser collector, which is freely available as a library for C and C++

[22, 21].

10.5.7 Garbage collectors used in existing systems

The Sun JDK Hotspot Java Virtual Machine version 1.3 through version 6 use

a three-generation collector [96]. The three generations are called the young,

210 Garbage collection techniques

the old, and the permanent generation. The young generation is further di-

vided into the eden and two survivor spaces. Most small objects are allocated

into the eden, whereas method code and classes, which are likely to be long-

lived are allocated in the permanent generation. A young generation collection

(or minor collection) copies from the eden to one of the survivor spaces, and

uses stop-and-copy garbage collection between the two survivor spaces. When

an object has survived several minor collections, it is moved to the old genera-

tion. A major (or full) collection is one that involves the old and the permanent

generations; by default it uses non-incremental mark-sweep collection with

compaction. Recent versions of the Sun JDK Hotspot virtual machine sup-

ports several alternative garbage collectors: the parallel collector, the parallel

compacting collector, and the concurrent mark-sweep collector [111]. Major

collections can be made incremental (resulting in shorter collection pauses)

by passing the option -Xincgc to the Java virtual machine. Some information

about the garbage collector’s activities can be observed by using option java
-verbosegc when running a Java program.

Sun JDK Hotspot JVM version 7 (ca. 2010) will contain a new garbage col-

lector, which Sun calls the Garbage-First Garbage Collector (G1) [40, 97]. It

is a parallel, generational, compacting collector, designed to exploit the paral-

lelism of multi-core machines better. Both the Sun JDK garbage collectors are

based on work by David Detlefs and Tony Printezis.

Starting from ca. 2010, IBM’s JVM uses an advanced low-latency highly

parallel server-oriented garbage collector, based on the Metronome collector

[16, 15] developed by David F. Bacon at IBM Research. The commercial version

is known as Websphere Realtime.

Microsoft’s implementation of the .NET Common Language Infrastructure

[45] (desktop and server version, not the Compact Framework) uses a garbage

collector whose small-object heap has three generations, and whose large-object

heap (for arrays and similar greater than e.g. 85 KB) uses a single generation

[60]. Small objects are allocated generation 0 of the small-object heap, and

when it is full, live objects are moved to generation 1 by stop-and-copy. When

generation 1 is full, live objects are moved to generation 2. Generation 2 is

managed by mark-sweep, with occasional compaction to avoid fragmentation.

The activity of the garbage collector over time can be observed using Windows

performance counters: Start the perfmon tool (from a command prompt), press

the (+) button, select ‘.NET CLR memory’ on the ‘Performance object’ drop-

down, and then select e.g. ‘# Gen 0 Collections’ and press ‘Add’, to get a graph

of the number of generation 0 collections performed over time.

At the time of writing (October 2009) the Mono implementation [102] of the

.NET Common Language Infrastructure still uses the Boehm-Demers-Weiser

conservative garbage collector mentioned in Section 10.5.6. However, a new

Programming with a garbage collector 211

simple generational compacting collector for Mono is being developed. It can

currently be invoked using mono -with-gc=sgen.

10.6 Programming with a garbage collector

10.6.1 Memory leaks

Recall the circular queue class in Figure 9.10. The Dequeue method erases the

dequeued item from the queue by performing the assignment items[deqAt] =
default(T). But why? The queue would work perfectly also without that extra

assignment. However, that seemingly wasteful assignment avoids a memory

leak. Consider a scenario where an 8 MB array of doubles is enqueued and

then immediately dequeued (and never used again), after which a few small

objects are put on the queue and dequeued only much later:

CircularQueue<double[]> cq = new CircularQueue<double[]>(10);
cq.Enqueue(new double[1000000]);
int n = cq.Dequeue().Length;
... enqueue five more items, and dequeue them much later ...

So long as the queue object cq is live, the array items used to implement it

will be live, and therefore everything that items refers to will be live. Hence if

the Dequeue method did not erase the dequeued item from items, the garbage

collector might be prevented from recycling the useless 8 MB double array for

a long time, needlessly increasing the program’s memory consumption.

A program that uses more memory than necessary will also be slower than

necessary because the garbage collector occasionally has to look at, and per-

haps move, the data. There are real-life programs whose running time was

reduced from 24 hours to 10 minutes just by eliminating a single memory leak.

But as the example shows, the culprit may be difficult to find: the memory leak

may hide in an innocent-looking library. For more advice, see [20, Item 6].

10.6.2 Finalizers

A finalizer is a method associated with an object that gets performed when the

garbage collector discovers that the object is dead and removes it. The purpose

of a finalizer typically is to release some resource held by the object, such as

a file handle or database handle. However, if little garbage is created, a long

time may pass from the last use of an object till the garbage collector actually

removes it and calls its finalizer. For this and other reasons, finalizers should

generally be avoided; see Bloch [20, Item 7].

212 Implementing a garbage collector in C

10.6.3 Calling the garbage collector

Most systems include a way to activate the garbage collector; for instance, on

the JVM one can call System.gc() to request a major garbage collection; in Mi-

crosoft .NET the call System.CG.Collect() does the same. A programmer may

make such requests with the noble intention of ‘helping’ the garbage collector

reclaim dead objects, but the garbage collector is usually better informed than

the programmer, and such requests therefore have disastrous performance

consequences. Don’t use those methods.

10.7 Implementing a garbage collector in C

In this section we describe in more detail a simple precise non-concurrent non-

compacting mark-sweep collector with a freelist, and the abstract machine

(mutator) that it cooperates with.

10.7.1 The list-C language

The language list-C extends micro-C from Section 7.6 with a datatype of heap-

allocated cons cells, as in the Lisp and Scheme programming languages (Sec-

tion 14.3.1). A cons cell is a pair of values, where a list-C value either is a

micro-C value (such as an integer), or a reference to a cons cell, or nil which

denotes the absence of a reference. Using cons cells, one can build lists, trees

and other data structures. The purpose of the list-C language is to allow us to

generate bytecode for the list-C machine defined in Section 10.7.2 below, and

thereby exercise the garbage collector of the list-C machine.

The list-C language has an additional type called dynamic, whose value may

be a micro-C value or a reference to a cons cell or nil. The list-C language

moreover has the following additional expressions:

• nil evaluates to a null reference, which is neither an integer nor a refer-

ence to a heap-allocated cons cell. In a conditional expression this value

is interpreted as false.

• cons(e1, e2) evaluates to a reference to a new cons cell (v1 . v2) on

the heap, whose components v1 and v2 are the values of e1 and e2. In a

conditional expression, this value is interpreted as true.

• car(e) evaluates to the first component of the cons cell referred to by e.

• cdr(e) evaluates to the second component of the cons cell referred by e.

Implementing a garbage collector in C 213

To illustrate the use of these expressions, we consider some list-C programs.

The program ListC/ex34.lc allocates a cons cell (11 . 33) containing the val-

ues 11 and 33 in the heap, and then extracts and prints these values:

void main(int n) {
dynamic c;
c = cons(11, 15+18);
print car(c);
print cdr(c);

}

The program ListC/ex30.lc, when run with argument n, creates n cons cells

of form (n . 22), (n-1 . 22), . . . , (1 . 22), and prints the first component of

each such cell:

void main(int n) {
dynamic xs;
while (n>0) {
xs = cons(n, 22);
print car(xs);
n = n - 1;

}
}

Without a garbage collector, this program will run out of memory for a suffi-

ciently large n, because each cons cell takes up some space on the heap. How-

ever, since the previous cons cell becomes unreachable (and therefore dead)

as soon as the stack-allocated variable xs is overwritten with a reference to a

new cons cell, the program can run for an arbitrarily long time with a garbage

collector (provided the heap has room for at least two cons cells).

On the other hand, even with a garbage collector, the following program

(ListC/ex31.lc) will run out of memory for a sufficiently large n:

void main(int n) {
dynamic xs;
xs = nil;
while (n>0) {
xs = cons(n,xs);
n = n - 1;

}
}

The reason is that this program creates a list of all the cons cells it creates,

where the second field of each cons cell (except the first one) contains a ref-

erence to the previously allocated cons cell. So all the cons cells will remain

214 Implementing a garbage collector in C

reachable from the stack-allocated variable xs and therefore live, so the garbage

collector cannot collect and recycle them.

One can print the contents of such a list of cons cells using this list-C func-

tion:

void printlist(dynamic xs) {
while (xs) {
print car(xs);
xs = cdr(xs);

}
}

Calling it as printlist(xs) after the while-loop above would print 1 2 ... n.

A few more functions for manipulating lists of cons cells can be found in file

ListC/ex33.lc. Function makelist(n) creates a list like F#’s [1; 2; ...; n]:

dynamic makelist(int n) {
dynamic res;
res = nil;
while (n>0) {
res = cons(n, res);
n = n - 1;

}
return res;

}

List-C function sumlist(xs) takes such a list and computes the sum of its ele-

ments:

int sumlist(dynamic xs) {
int res;
res = 0;
while (xs) {
res = res + car(xs);
xs = cdr(xs);

}
return res;

}

List-C function append(xs,ys) takes two lists of cons cells and returns a new

list that is the concatenation of xs and ys. Note that it creates as many new

cons cells as there are in list xs:

dynamic append(dynamic xs, dynamic ys) {
if (xs)

Implementing a garbage collector in C 215

return cons(car(xs), append(cdr(xs), ys));
else
return ys;

}

List-C function reverse(xs) returns a new list that is the reverse of xs. Note

that it creates as many new cons cells as there are in list xs:

dynamic reverse(dynamic xs) {
dynamic res;
res = nil;
while (xs) {
res = cons(car(xs), res);
xs = cdr(xs);

}
return res;

}

The list-C language is implemented by the F# source files in directory ListC/,

which are basically small variations over those of micro-C. In particular, file

ListC/ListCC.fs implements a command line compiler for list-C, which can be

used as follows:

C:\>ListCC ex30.lc
ITU list-C compiler version 0.0.0.1 of 2009-10-27
Compiling ex30.lc to ex30.out
C:\>listmachine ex30.out 334
334 333 332 ...

The list-C machine, that can be used to run compiled list-C programs, is de-

scribed below.

10.7.2 The list-C machine

The garbage collector must cooperate with the abstract machine (also called

the mutator, see the beginning of Section 10.5) whose memory it manages.

Here we present the list-C machine, a variant of the micro-C abstract machine

from Section 8.2. In addition to the stack, stack pointer, base pointer, program

and program counter of that machine, the extended machine has a heap that

may contain cons cells, where each cons cell has two fields, which are called

‘car’ and ‘cdr’ for historical reasons.

The extended machine has instructions for loading a null reference, for al-

locating a new cons cell in the heap, and for reading and writing the two fields

of a cons cell, as shown in Figure 10.4. A partial implementation of the list-C

machine, in the real C programming language, is in file ListC/listmachine.c.

216 Implementing a garbage collector in C

Instr St before St after Effect

26 NIL s ⇒ s,nil Load nil reference

27 CONS s,v1,v2 ⇒ s, p Create cons cell p 7→ (v1,v2) in heap

28 CAR s, p ⇒ s,v1 Component 1 of p 7→ (v1,v2) in heap

29 CDR s, p ⇒ s,v2 Component 2 of p 7→ (v1,v2) in heap

30 SETCAR s, p,v ⇒ s Set component 1 of p 7→ _ in heap

31 SETCDR s, p,v ⇒ s Set component 2 of p 7→ _ in heap

Figure 10.4: The list-C machine instructions for heap manipulation. These are

extensions to the micro-C stack machine shown in Figure 8.1.

10.7.3 Distinguishing references from integers

The list-C machine’s collector assumes that there is only one primitive datatype,

namely 31-bit integers, and that references point only to word-aligned ad-

dresses, which are multiples of 4. If we represent a 31-bit abstract machine

integer i as the 32-bit C integer (i<<1)|1, the garbage collector can easily dis-

tinguish an integer (whose least significant bit is 1) from a reference (whose

least significant bit is 0). In essence, we tag all abstract machine integers with

the 1 bit.

The are a few disadvantages to this approach: First, we lose one bit of range

from integers so the range becomes roughly minus one billion to plus one bil-

lion instead of minus two billion to plus two billion. Second, all operations

on abstract machine integers become more complicated because the operands

must be untagged before an operation and the result tagged afterwards, which

slows down the machine. Third, the abstract machine must have separate

arithmetic operations for integers (tagged) and references (untagged), in con-

trast to the micro-C abstract machine described in Section 8.2.4. Nevertheless,

this style of garbage collector has been used for many years, in Standard ML

of New Jersey, Moscow ML and OCaml. Gudeman [58] discusses various ap-

proaches to maintaining such runtime type information in dynamically typed

languages.

The tagging is easily performed using a couple of C macros:

#define IsInt(v) (((v)&1)==1)
#define Tag(v) (((v)<<1)|1)
#define Untag(v) ((v)>>1)

10.7.4 Memory structures in the garbage collector

The heap contains blocks, all of which have a header word and one or more

additional words.

Implementing a garbage collector in C 217

A cons cell consists of three 32-bit words, namely:

• A block header ttttttttnnnnnnnnnnnnnnnnnnnnnngg that contains 8 tag

bits (t), 22 length bits (n) and 2 garbage collection bits g. For a cons

cell the tag bits will always be 00000000 and the length bits will be

00. . . 0010, indicating that the cons cell has two words (in addition to

the header word). The garbage collection bits gg will be interpreted as

colors: 00 means white, 01 means grey, 10 means black, and 11 means

blue.

• A first field, called the ‘car’ field, which can hold any abstract machine

value.

• A second field, called the ‘cdr’ field, which can hold any abstract machine

value.

The garbage collector maintains a freelist as described in Section 10.5.1. A

block on the freelist consists of at least two words, namely:

• A block header ttttttttnnnnnnnnnnnnnnnnnnnnnngg exactly as for a cons

cell. In a free cell the tag bits do not matter, whereas the length bits

indicate the number N of words in the free block in addition to the header

word, and the garbage collection bits must be 11 (blue).

• A field that either is all zeroes, meaning that this is the last block on the

freelist, or contains a pointer to the next block on the freelist.

• Further N − 1 words that belong to this free block.

Again, it is convenient to define some C macros to access the different parts of

a block header:

#define BlockTag(hdr) ((hdr)>>24)
#define Length(hdr) (((hdr)>>2)&0x003FFFFF)
#define Color(hdr) ((hdr)&3)

Let us further define macro constants for the colors and macro Paint(hdr,color)
to create a new header word, only with a different color:

#define White 0
#define Grey 1
#define Black 2
#define Blue 3
#define Paint(hdr, color) (((hdr)&(~3))|(color))

Then we can program parts of the garbage collector quite neatly, like this:

if (Color(sweep[0])==Black) // Make live block white
sweep[0] = Paint(sweep[0], White);

218 Implementing a garbage collector in C

10.7.5 Actions of the garbage collector

When the mutator asks the garbage collector for a new object (a block), the

garbage collector inspects the freelist register. If it is non-null, the freelist is

traversed to find the first free block that is large enough for the new object.

If that free block is of exactly the right size, the freelist register is updated to

point to the free block’s successor; otherwise the allocated object is cut out of

the free block. In case the free block is one word larger than the new object,

this may produce an orphan word that is neither in use as an object nor on the

freelist. An orphan must be blue to prevent the sweep phase from putting it

on the freelist.

If no sufficiently large object is found, then a garbage collection is per-

formed; see below. If, after the garbage collection, the freelist is still empty,

then the abstract machine has run out of memory and stops with an error

message.

A garbage collection is performed in two phases, as described in Section 10.5.3.

Before a garbage collection, all blocks in the heap must be white or blue.

• The mark phase traverses the mutator’s stack to find all references into

the heap. A value in the stack is either (1) a tagged integer (perhaps

representing a return address, an old base pointer value, or an array

address in the stack), or (2) a heap reference.

In case (2), when we encounter a heap reference to a white block, we

mark it black, and recursively process all the block’s words in the same

way.

After the mark phase, every block in the heap is either black because it is

reachable from the stack by a sequence of references, white because it is

not reachable from the mutator stack, or blue because it is on the freelist

(but was too small to satisfy the most recent allocation request).

• The sweep phase visits all blocks in the heap. If a block is white, it is

painted blue and added to the freelist. If the block is black, then its color

is reset to white.

Hence after the sweep phase, the freelist contains all (and only) blocks

that are not reachable from the stack. Moreover, all blocks in the heap

are white, except those on the freelist, which are blue.

The mark phase as described above may be implemented by a recursive C func-

tion that traverses the block graph depth-first. However, if the heap contains

a deep data structure, say, a list with 10,000 elements, then the mark phase

performs recursive calls to a depth of 10,000 which uses a lot of C stack space.

This is unacceptable in practice, so the following may be used instead:

History and literature 219

• The mark phase traverses the mutator’s stack to find all references into

the heap. When it encounters a heap reference to a white block, its paints

the block grey.

When the stack has been traversed, all blocks directly reachable from the

stack are grey. Then we traverse the heap, and whenever we find a grey

block, we mark the block itself black, and then look at the words in the

block. If a field contains a reference to a white block, we make that block

grey (but do not process it recursively). We traverse the heap repeatedly

this way until no grey blocks remain.

At this point, every block in the heap is either black because it is reach-

able from the stack by a sequence of references, or white because it is not

reachable from the mutator stack, or blue because it is on the freelist.

The sweep phase is the same as before.

This version of the mark phase requires no recursive calls and hence no C

stack, but it may require many traversals of the heap. The extra traversals

can be reduced by maintaining a ‘grey set’ of references to grey blocks, and a

‘mark’ pointer into the heap, with the invariant that all grey blocks below the

‘mark’ pointer are also in the grey set. Then we first process the references in

the grey set, and only if that set becomes empty we process the blocks after the

‘mark’ pointer. The grey set can be represented in a (small) fixed size array of

references, but then we run the risk of not being able to maintain the invariant

because the array overflows. In that case we must reset the ‘mark’ pointer to

the beginning of the heap and perform at least one more traversal of the heap

to look for grey blocks. When the grey set array is big enough, and the heap

does not contain deeply nested data structures, a single traversal of the heap

will suffice.

10.8 History and literature

Mark-sweep collection was invented for Lisp by John McCarthy in 1960. Two-

space copying garbage collection was proposed by C.J. Cheney in 1970 [27].

Generational garbage collection was proposed by Henry Lieberman and Carl

Hewitt at MIT [90]. The terms collector and mutator are due to Dijkstra et

al. The list-C garbage collector outlined in Sections 10.7.3 through 10.7.5 owes

much to the generational and incremental mark-sweep garbage collector for

Caml Light developed by Damien Doligez at INRIA, France.

Even though garbage collectors have been used for five decades, it remains

a very active research area, for at least three reasons: First, new hardware

220 Exercises

(multicore processors, shared memory, cache strategies) offer new technolog-

ical opportunities. Second, new programming languages (functional, object-

oriented and mixtures of these) put different demands on garbage collectors.

Third, new kinds of applications expect lower latency and less runtime over-

head from the garbage collector. Twenty years ago, nobody could dream of

managing 5000 MB of mixed-size data by a garbage collector in a server ap-

plication, such as video on demand, that must offer guaranteed fast response

times and run without interruption for months.

Two comprehensive but somewhat dated surveys of garbage collection tech-

niques are given by Paul Wilson [146], and by Richard Jones and Rafael Lins

[71]. Jones also maintains the most comprehensive bibliography on garbage

collection [70].

10.9 Exercises

The goal of these exercises is to get hands-on experience with a low-level C

implementation of some simple garbage collectors.

Unpack archive listc.zip, whose file listmachine.c in contains the ab-

stract machine implementation described in this chapter, complete with in-

struction execution, initialization of the heap, and allocation of cons cell in the

heap. However, garbage collection is not implemented:

void collect(int s[], int sp) {
// Garbage collection not implemented

}

Therefore running listmachine ex30.out 1000 will fail with the message Out
of memory because everything the program (ex30.out from Section 10.7.1) al-

locates in the heap will remain there forever.

Exercise 10.1 To understand how the abstract machine and the garbage col-

lector work and how they collaborate, answer these questions:

(i) Write 3-10 line descriptions of how the abstract machine executes each of

the following instructions:

• ADD, which adds two integers.

• CSTI i, which pushes integer constant i.

• NIL, which pushes a nil reference. What is the difference between NIL
and CSTI 0?

• IFZERO, which tests whether an integer is zero, or a reference is nil.

Exercises 221

• CONS

• CAR

(ii) Describe the result of applying each of the C macros Length(hdr), Color(hdr),

Paint(hdr,color) to a block header whose 32 bits are ttttttttnnnnnnnnnnnnnnnnnnnnnngg
as described in the source code comments.

(iii) When does the abstract machine (instruction interpretation loop) call the

allocate(...) function? Is there any other interaction between the abstract

machine and the garbage collector?

(iv) In what situation will the garbage collector’s collect(...) function be

called?

Exercise 10.2 Add a simple mark-sweep garbage collector to listmachine.c,

like this:

void collect(int s[], int sp) {
markPhase(s, sp);
sweepPhase();

}

Your markPhase function should scan the abstract machine stack s[0..sp] and

call an auxiliary function mark(word* block) on each non-nil heap reference in

the stack, to mark live blocks in the heap. Function mark(word* block) should

recursively mark everything reachable from the block.

The sweepPhase function should scan the entire heap, put white blocks on

the freelist, and paint black blocks white. It should ignore blue blocks; they

are either already on the freelist or they are orphan blocks which are neither

used for data nor on the freelist, because they consist only of a block header, so

there is no way to link them into the freelist.

This may sound complicated, but the complete solution takes less than 30

lines of C code.

Running listmachine ex30.out 1000 should now work, also for arguments

that are much larger than 1000.

Remember that the listmachine has a tracing mode listmachine -trace
ex30.out 4 so you can see what the stack state was when your garbage collec-

tor crashed.

Also, calling the heapStatistics() function in listmachine.c performs some

checking of the heap’s consistency and reports some statistics on the number

of used and free blocks and so on. It may be informative to call it before and

after garbage collection, and between the mark and sweep phases.

222 Exercises

Exercise 10.3 Improve the sweep phase so that it joins adjacent dead blocks

into a single dead block. More precisely, when sweep finds a white (dead) block

of length n at address p, it checks whether there is also a white block at address

p+ 1+ n, and if so join them into one block.

Exercise 10.4 Further improve the sweep phase so that it can join any num-

ber of adjacent dead blocks in to a single dead block. This is important to avoid

fragmentation when allocated blocks may be of different sizes.

Exercise 10.5 Change the mark phase function so that it does not use recur-

sion. Namely, the mark function may overflow the C stack when it attempts to

mark a deep data structure in the heap, such as a long list created from cons

cells.

Instead the mark phase must (A) paint grey all blocks that are directly

reachable from the stack. Then (B) it should traverse the heap and whenever

it finds a grey block b, paint it black, and then paint grey all white blocks that

are reachable from b. The heap traversal must be repeated until there are no

more grey blocks in the heap.

So color grey means ‘this block is live, but the blocks it directly refers to

may not have been painted yet’, and color black means ‘this block is live, and

all the blocks it directly refers to have been painted grey (or even black)’.

Exercise 10.6 Replace the freelist and the mark-sweep garbage collector with

a two-space stop-and-copy garbage collector.

The initheap(...) function must allocate two heap-spaces (that is, twice

as much memory as before), and there must be must be two heap pointers,

heapFrom and heapTo, corresponding to the two half-spaces of the heap, and

two after-heap pointers afterFrom and afterTo.

That is, the freelist pointer no longer points to a list of unused blocks, but

to the first unused word in from-space. All words from that one until (but not

including) afterFrom are unused. The allocate(...) function can therefore be

much simpler: it just allocates the requested block in from-space, starting at

freelist and ending at freelist+length, like this:

word* allocate(unsigned int tag, unsigned int length, int s[], int sp) {
int attempt = 1;
do {
word* newBlock = freelist;
freelist += length + 1;
if (freelist <= afterFrom) {

newBlock[0] = mkheader(tag, length, White);
return newBlock;

}

Exercises 223

// No free space, do a garbage collection and try again
if (attempt==1)
collect(s, sp);

} while (attempt++ == 1);
printf("Out of memory\n");
exit(1);

}

When there is no longer enough available space between the freelist alloca-

tion pointer and the end of from-space, a garbage collection will be performed.

The markPhase and sweepPhase functions are no longer needed. Instead the

garbage collector calls a new function copyFromTo(int[] s, int sp) that must

copy all live blocks from from-space to to-space. After all live blocks have been

copied, we must swap the heapFrom and heapTo pointers (and the afterFrom and

afterTo pointers) so that the next allocations happen in the new from-space.

Right after the garbage collection, the freelist pointer must point to the first

unused word in the new from-space.

Your copyFromTo(int[] s, int sp) function must take the following prob-

lems into account:

• Function copyFromTo must not only copy a live block at address from from-

space to to-space, it must also update all references that point to that

block.

• Function copyFromTo must copy each live block exactly once, otherwise it

might duplicate some data structures and lose sharing, as in this case:

xs = cons(11, 22);
ys = cons(xs, xs);

where the heap should contain a single copy of the cons cell (11 . 22)
referred to by xs, both before and after the garbage collection.

This will also handle the case where the heap contains a cyclic data structure;

the copyFromTo function should not attempt to unfold that cyclic structure to

an infinite one.

Hence function copyFromTo must be able to recognize when it has already

copied a block from from-space to to-space.

The following simple approach should work: When all parts of a block has

been copied from address oldB in from-space to address newB in to-space, the

first word oldB[1] in from-space is overwritten by the new address newB; this

is called a forwarding pointer. Since from-space and to-space do not overlap,

we know that a given block oldB in from-space has been copied to to-space

224 Exercises

precisely when its first field oldB[1] contains a pointer into to-space; that is,

when this condition holds:

oldB[1]!= 0 && !IsInt(oldB[1]) && inToHeap(oldB[1])

An implementation of copyFromTo could use a recursive auxiliary function

word* copy(word* block)

that copies the indicated block from from-space to to-space, and in any case

returns the new to-space address of that block. If the block has already been

copied, it just returns the forwarding address obtained from block[1]. If the

block has not been copied, function copy claims space for it in to-space, copies

all length+1 words (including header) from from-space to to-space, sets block[1]
to the new address, and recursively processes and updates the block’s fields in

to-space.

Function copyFromTo(s, sp) makes the initial calls to copy by scanning the

abstract machine stack s[0..sp], updating each stack entry that refers to a

heap block so that it will refer to the copy of the block in to-space.

Exercise 10.7 Improve your stop-and-copy collector from the previous exer-

cise, to avoid recursion in the copy function (which may overflow the C stack,

just like the recursive mark function). One can simple remove the recursive

calls from the copy function, and introduce an iterative scan of the to-space.

Maintain a scan-pointer in to-space, with the following invariant: every

block field toHeap[i] below the scan-pointer refers into to-space; that is, (1)

the block in from-space that toHeap[i] originally referred to has been copied

to to-space, and (2) the reference at toHeap[i] has been updated to refer to the

new location of that block. The scan-pointer can make one pass through the

to-space; when it catches up with the allocation pointer, the copying from from-

space to to-space is complete. No recursion is needed, and no extra memory.

Chapter 11

Continuations

This chapter introduces the concept of continuation, which helps understand

such notions as tail call, exceptions and exception handling, execution stack,

and backtracking.

Basically, a continuation is an explicit representation of ‘the rest of the com-

putation’, what will happen next. Usually this is implicit in a program: after

executing one statement, the computation will continue with the next state-

ment; when returning from a method, the computation will continue where

the method was called. Making the continuation explicit has the advantage

that we can ignore it (and so model abnormal termination), and that we can

have more than one (and so model exception handling and backtracking).

11.1 What files are provided for this chapter

File Contents

Cont/Contfun.fs a first-order functional language with exceptions

Cont/Contimp.fs a naive imperative language with exceptions

Cont/Icon.fs micro-Icon, a language with backtracking

Cont/Factorial.java factorial in continuation-style, in Java

Cont/testlongjmp.c demonstrating setjmp and longjmp in C

225

226 Tail-calls and tail-recursive functions

11.2 Tail-calls and tail-recursive functions

11.2.1 A recursive but not tail-recursive function

A recursive function is one that may call itself. For instance, the factorial func-

tion n! = 1 ·2 · · ·n may be implemented by a recursive function facr as follows:

let rec facr n =
if n=0 then 1 else n * facr(n-1);;

A function call is a tail call if it is the last action of the calling function. For

instance, the call from f to itself here is a tail call:

let rec f n = if n=0 then 17 else f(n-1);;

and the call from f to g here is a tail call:

let rec f n = if n=0 then g 8 else f(n-1)

The recursive call from facr to itself (above) is not a tail call. When evaluating

the else-branch

n * facr(n-1)

we must first compute facr(n-1), and when we are finished with that and have

obtained a result v, then we must compute n * v and return to the caller. Thus

the call facr(n-1) is not the last action of facr; after the call there is still some

work to be done (namely the multiplication by n).

The evaluation of facr 3 requires a certain amount of stack space to re-

member then outstanding multiplications by n:

facr 3
⇒ 3 * facr 2
⇒ 3 * (2 * facr 1)
⇒ 3 * (2 * (1 * facr 0))
⇒ 3 * (2 * (1 * 1))
⇒ 3 * (2 * 1)
⇒ 3 * 2
⇒ 6

Remembering the ‘work still to be done’ after the call requires some space, and

therefore a computation of facr(N) requires space proportional to N. This could

be seen clearly already in Figure 8.3.

Tail-calls and tail-recursive functions 227

11.2.2 A tail-recursive function

On the other hand, consider this alternative definition of factorial:

let rec faci n r =
if n=0 then r else faci (n-1) (r * n);;

An additional parameter r has been introduced to hold the result of the com-

putation, with the intention that faci n 1 equals facr n for all non-negative n.

The parameter r is called an accumulating parameter because the parameter

gradually builds up the result of the function.

The recursive call faci (n-1) (r * n) to faci is a tail-call, and the function

is said to be tail-recursive or iterative. There is no ‘work still to be done’ after

the recursive call, as shown by this computation of faci 3 1:

faci 3 1
⇒ faci 2 3
⇒ faci 1 6
⇒ faci 0 6
⇒ 6

Indeed, most implementations of functional languages, including F#, execute

tail-calls in constant space.

Most implementations of imperative and object-oriented languages (C, C++,

Java, C#, ...) do not care to implement tail calls in constant space. Thus the

equivalent C or Java or C# method declaration:

static int faci(int n, int r) {
if (n == 0)
return r;

else
return faci(n-1, r * n);

}

would most likely not execute in constant space. This could be seen clearly in

Figure 8.3, which shows the stack for the execution of recursive factorial in

micro-C.

Imperative languages do not have to care as much about performing tail

calls in constant space because they provide for- and while-loops to express

iterative computations in a natural way. Thus the function faci would be ex-

pressed more naturally like this:

static int faci(int n) {
int r = 1;

228 Tail-calls and tail-recursive functions

while (n != 0) {
r = n * r; n = n - 1;

}
return r;

}

11.2.3 Which calls are tail calls?

A call is a tail call if it is the last action of the containing function. But what

does ‘last action’ mean? Let us consider the small eager (call-by-value) func-

tional language from Chapter 4, and let us define systematically the notion of

tail position. The idea is that call in tail position is a tail call.

The function body as a whole is in tail position. If we assume that an ex-

pression e is in tail position, then some of e’s subexpressions will be in tail

position too, as shown in Figure 11.1.

Expression e Status of subexpressions

let x = er in eb end eb is in tail position, er is not

e1 + e2 neither e1 nor e2 is in tail position

if e1 then e2 else e3 e2 and e3 are in tail position, e1 is not

let f x = er in eb end eb is in tail position, er is not

f e e is not in tail position

Figure 11.1: Which subexpressions of e are in tail position.

If an expression is not in tail position, then none of its subexpressions are in

tail position. A tail call is a call in tail position. Thus all the calls to g below

are tail calls, whereas those to h are not:

g 1
g(h 1)
h 1 + h 2
if 1=2 then g 3 else g(h 4)
let x = h 1 in g x end
let x = h 1 in if x=2 then g x else g 3 end
let x = h 1 in g(if x=2 then h x else h 3) end
let x = h 1 in let y = h 2 in g(x + y) end end

Continuations and continuation-passing style 229

11.3 Continuations and continuation-passing style

A continuation k is an explicit representation of ‘the rest of the computation’,

typically in the form of a function from the value of the current expression to

the result of the entire computation.

A function in continuation-passing style (CPS) takes an extra argument, the

continuation k, which ‘decides what will happen to the result of the function’.

11.3.1 Writing a function in continuation-passing style

To see a concrete function in continuation-passing style, consider again the

recursive factorial function facr:

let rec facr n =
if n=0 then 1 else n * facr(n-1);;

To write this function in continuation-passing style, we give it a continuation

parameter k:

let rec facc n k =
if n=0 then ?? else ??

Usually the then-branch would just return 1. In continuation-passing style,

it should not return but instead give the result 1 to the continuation k, so it

should be:

let rec facc n k =
if n=0 then k 1 else ??

Now consider the else-branch:

n * facr(n-1)

The continuation for the else-branch n * facr(n-1) is the same as that for the

call facc n k to facc, that is, k. But what is the continuation for the subex-

pression facr(n-1)? That continuation must be a function that accepts the

result v of facr(n-1), computes n * v, and then passes the result to k. Thus

the continuation of the recursive call can be expressed like this:

fun v -> k(n * v)

so this is the factorial function in continuation-passing style:

let rec facc n k =
if n=0 then k 1 else facc (n-1) (fun v -> k(n * v));;

230 Continuations and continuation-passing style

If we define the identity function id : ’a -> ’a by

let id = fun v -> v;;

then it holds that facr n equals facc n id) for all non-negative n.

Note that the resulting function facc is tail-recursive; in fact this will al-

ways be the case. This does not mean that the function now magically will run

in constant space where previously it did not: the continuations will have to be

created and stored until they are applied.

Continuations were invented (or discovered?) independently by a number

of people around 1970 [115]. The name is due to Christopher Wadsworth, a

student of Christopher Strachey, whose 1967 Fundamental Concepts we dis-

cussed in Section 7.7.

11.3.2 Continuations and accumulating parameters

Sometimes one can represent the action of the continuation very compactly,

by a non-function, to obtain a constant-space tail-recursive function where the

continuation has been replaced by an accumulating parameter.

For instance, in the case of facc, all a continuation ever does is to multiply

its argument v by some number m. Too see this, observe that the initial identity

continuation fun v -> v is equivalent to fun v -> 1 * v, which multiplies its

argument v by 1. Inductively, if we assume that continuation k can be written

as fun u -> m * u for some m, then the new continuation fun v -> k(n * v)
can be written as fun v -> m * (n * v) which is the same as fun v -> (m *
n) * v.

Thereby we have proven that any continuation k of facc can be written as

fun u -> r * u. So why not simply represent the continuation by the number

r? Then, instead of calling k, we should just multiply its argument by r. If we

rewrite facc n k systematically in this way, we obtain, perhaps to our surprise,

the iterative faci function shown in Section 11.2.2:

let rec faci n r =
if n=0 then r else faci (n-1) (r * n);;

Also, faci should be called initially with r=1, since 1 represents the identity

continuation fun v -> v. Things do not always work out as neatly, though.

Although every recursive function can be transformed into a tail-recursive one

(and hence into a loop), the continuation may not be representable as a simple

value such as a number.

Interpreters in continuation-passing style 231

11.3.3 The CPS transformation

There is a systematic transformation which can transform any expression or

function into continuation-passing style (CPS). The transformation (for eager

or call-by-value languages) is easily expressed for the pure untyped lambda

calculus (Section 5.6) because it has only three different syntactic constructs:

variable x, function λx.e, and function application e1 e2. Let [e] denote the CPS-

transformation of the expression e. Then:

[x] is λk.k x
[λx.e] is λk.k (λx.[e])
[e1 e2] is λk.[e1] (λm.[e2] (λn.mnk))

It is somewhat more cumbersome to express the CPS transformation for F# or

even for our higher-order functional example language from Chapter 5.

11.4 Interpreters in continuation-passing style

The interpreters we have considered in this course have been written as F#

functions, and therefore they too can be rewritten in continuation-passing

style.

When an interpreter for a functional language is written in continuation-

passing style, a continuation is a function from the value of an expression

to the ‘answer’ or ‘final result’ of the entire computation of the interpreted

program.

When an interpreter for an imperative language is written in continuation-

passing style, a continuation is a function from a store (created by the execu-

tion of a statement) to the ‘answer’ (the ‘final store’) produced by the entire

computation.

In itself, rewriting the interpreter (eval or exec function) in continuation-

passing style achieves nothing. The big advantage is that by making ‘the rest

of the computation’ explicit as a continuation, the interpreter is free to ignore

the continuation and return a different kind of ‘answer’. This is useful for

modelling the throwing of exceptions and similar abnormal termination.

11.4.1 A continuation-based functional interpreter

We now consider our simple functional language from Chapter 4 and extend it

with exceptions. The language now also have an expression of the form:

Raise exn

232 Interpreters in continuation-passing style

that raises exception exn, and an expression

TryWith (e1, exn, e2)

that evaluates e1 and returns its value if e1 does not raise any exception; if e1
raises exception exn, then it evaluates e2; and if e1 raises another exception

exn’, then the entire expression raises that exception.

The expression Raise exn corresponds to the F# expression raise exn, see

Section A.8, which is similar to the Java statement

throw exn;

The expression TryWith(e1, exn, e2) corresponds to the F# expression try e1
with exn -> e2 which is similar to the Java statement

try { e1 }
catch (exn) { e2 }

The abstract syntax of our small functional language is extended as follows:

type exn =
| Exn of string

type expr =
| ...
| Raise of exn
| TryWith of expr * exn * expr

For now we consider only the raising of exceptions. In an interpreter for this

language, a continuation may be a function cont : int -> answer where type

answer is defined as follows:

type answer =
| Result of int
| Abort of string

The continuation cont is called the normal (or success) continuation. It is

passed to the evaluation function coEval1, which must apply the continua-

tion to any normal result it produces. But when coEval1 evaluates Raise exn
it may just ignore the continuation, and return Abort s where s is some mes-

sage derived from exn. This way we can model abnormal termination of the

interpreted object language program:

Interpreters in continuation-passing style 233

let rec coEval1 (e : expr) (env : value env) (cont : int -> answer) : answer =
match e with
| CstI i -> cont i
| CstB b -> cont (if b then 1 else 0)
| Var x ->

match lookup env x with
| Int i -> cont i
| _ -> Abort "coEval1 Var"

| ...
| Raise (Exn s) -> Abort s

This allows the interpreted object language program to raise exceptions with-

out using exceptions in the interpreter (the meta language).

To allow object language programs to also catch exceptions, not only raise

them, we add yet another continuation argument econt to the interpreter,

called the error (or failure) continuation. The error continuation expects to

receive an exception value, and will look at the value to decide what action to

take: catch the exception, or pass it to an older failure continuation.

More precisely, to evaluate TryWith(e1, exn, e2) the interpreter will cre-

ate a new error continuation econt1. If the evaluation of e1 does not throw an

exception, then the normal continuation will be called as usual and the error

continuation will be ignored. However, if evaluation of e1 throws an exception

exn1, then the new error continuation will be called and will look at exn1, and

if it matches exn, then it will evaluate e2; otherwise it will pass exn1 to the

outer error continuation econt, thus propagating the exception:

let rec coEval2 (e : expr) (env : vfenv)
(cont : int -> answer) (econt : exn -> answer) : answer =

match e with
| CstI i -> cont i
| CstB b -> cont (if b then 1 else 0)
| ...
| Raise exn -> econt exn
| TryWith (e1, exn, e2) ->

let econt1 thrown =
if thrown = exn then coEval2 e2 env cont econt

else econt thrown
in coEval2 e1 env cont econt1

File Cont/Contfun.fs gives all details of the two continuation-passing inter-

preters coEval1 and coEval2 for a functional language. The former implements

a language where exceptions can be thrown but not caught, and the latter im-

plements a language where exceptions can be thrown as well as caught.

234 Interpreters in continuation-passing style

11.4.2 Tail position and continuation-based interpreters

Note that expressions in tail positions are exactly those that are interpreted

with the same continuations as the enclosing expression. Consider for instance

the evaluation of a let-binding:

let rec coEval1 (e : expr) (env : vfenv) (cont : int -> answer) : answer =
match e with

| ...
| Let(x, eRhs, letBody) ->
coEval1 eRhs env (fun xVal ->

let bodyEnv = (x, Int xVal) :: env
in coEval1 letBody bodyEnv cont)

| ...

Here the let-body letBody is in tail position and is evaluated with the same

continuation cont as the entire let-expression. Conversely, the right-hand

side eRhs is not in tail position and is evaluated with a different continuation,

namely (fun xVal -> ...).

This is no coincidence: a subexpression has the same continuation as the

enclosing expression exactly when evaluation of the subexpression is the last

action of the enclosing expression.

11.4.3 A continuation-based imperative interpreter

An imperative language with exceptions, a throw statement and a try-catch

statement (as in C++, Java, and C#) can be modelled using continuations in

much the same way as the functional language. Let the abstract syntax be an

extension of the naive imperative language from Section 7.2:

type stmt =
| ...
| Throw of exn
| TryCatch of stmt * exn * stmt

An interpreter that implements throw and try-catch must take a normal con-

tinuation cont as well as an error continuation econt. The error continuation

must take two arguments: an exception and the store that exists when the

exception is thrown.

Usually the interpreter applies cont to the store resulting from some com-

mand, but when executing a throw statement it applies econt to the exception

and the store. When executing a try-catch block the interpreter creates a new

error continuation econt1; if called, that error continuation decides whether it

will handle the exception exn1 given to it and execute the handler body stmt2,

Interpreters in continuation-passing style 235

or pass the exception to the outer error continuation, thus propagating the

exception:

let rec coExec2 stmt (store : naivestore)
(cont : naivestore -> answer)
(econt : exn * naivestore -> answer) : answer =

match stmt with
| Asgn(x, e) ->

cont (setSto store (x, eval e store))
| If(e1, stmt1, stmt2) ->

if eval e1 store <> 0 then
coExec2 stmt1 store cont econt

else
coExec2 stmt2 store cont econt

| ...
| Throw exn ->

econt(exn, store)
| TryCatch(stmt1, exn, stmt2) ->

let econt1 (exn1, sto1) =
if exn1 = exn then coExec2 stmt2 sto1 cont econt

else econt (exn1, sto1)
in coExec2 stmt1 store cont econt1

In summary, the execution of a statement stmt by coExec2

coExec2 stmt store cont econt

can terminate in two ways:

• If the statement stmt terminates normally, without throwing an excep-

tion, then its execution ends with calling the normal continuation cont
on a new store sto1; it evaluates cont sto1.

• Otherwise, if the execution of stmt throws an exception exn1, then its

execution ends with calling the error continuation econt on exn1 and a

new store sto1; it evaluates econt (exn1, sto1). Any handling of the

exception is left to econt.

File Cont/Contimp.fs shows two continuation-passing interpreters for an im-

perative language, coExec1 and coExec2. The former implements (non-catchable)

exceptions using a single (normal) continuation, and the latter implements

throwable and catchable exceptions using two continuations: one for computa-

tions that terminate normally, and one for computations that throw an excep-

tion.

236 Exception handling in a stack machine

Note that only statements, not expressions, can throw an exception in the

imperative language modelled here. If expressions could throw exceptions,

then the expression evaluator eval would have to be written in continuation-

passing style too, and would have to take two continuation arguments: a nor-

mal continuation of type value -> answer and an error continuation of type exn
-> answer. Provided that an expression can have no side effects on the store,

we can omit the store parameter to these expression continuations, because

we can build the store into the continuation. The statement interpreter would

have to pass suitable continuations to the expression interpreter; for instance

when executing an assignment statement:

let rec coExec2 stmt (store : naivestore)
(cont : naivestore -> answer)
(econt : exn * naivestore -> answer) : answer =

match stmt with
| Asgn(x, e) ->
eval e store (fun xval -> cont (setSto store (x, xval)))

(fun exn -> econt (exn, store))
| ...

11.5 The frame stack and continuations

As shown in Chapter 8, a micro-C program can be compiled to instructions

that are subsequently executed by an abstract stack machine. In the abstract

machine, the frame stack represents the (normal) continuation for the function

call currently being executed. Namely, the return address in the top-most stack

frame says what instructions the continuation must execute, and the stack

frames below it provides values for the variables used by those instructions

(the continuation’s free variables, actually).

11.6 Exception handling in a stack machine

How could we represent an error continuation for exception handling in the

stack machine? One approach is to store exception handler descriptions in the

evaluation stack and introduce an additional exception handler register hr.

The exception handler register hr is the index (in the stack) of the most recent

exception handler description, or −1 if there is no exception handler. For this

discussion, let us assume that an exception is represented simply by an integer

(rather than an object as in Java or C#, or a value of the special type exn as in

F#).

Exception handling in a stack machine 237

An exception handler description (in the stack) has three parts:

• the identity exc of the exception that this handler handles;

• the address a of the associated handler block, that is, the code of the catch

block;

• a pointer to the previous exception handler description (further down in

the stack), or −1 if there is no previous exception handler.

Thus the exception handler descriptions in the stack form a list with the most

recent exception handler first, pointed to by hr. Older exception handler de-

scriptions are found by following the pointer to the previous exception handler.

This list can be thought of as a stack representing the error continuation; this

stack is simply merged into the usual evaluation stack.

A try-catch block

try stmt1
catch (exc) stmt2

is compiled to the following code

push exception handler (exc, code address for stmt2, hr)
code for stmt1
pop exception handler

L: ...

The code for stmt2 must end with GOTO L where L is a label following the code

for popping the exception handler description.

The execution of

throw exc

must look through the chain of exception handlers in the stack until it finds

one that will handle the thrown exception exc. If it does find such a handler

(exc, a, h) it will pop the evaluation stack down to the point just below that

handler, set hr to h and set pc to a, thus executing the code for the associated

exception handler (catch clause) at address a. The popping of the evaluation

stack may mean that many stack frames for unfinished function calls (above

the exception handler) will be thrown away, and execution will continue in the

function that declared the exception handler (the try-catch block), as desired.

Thus we could implement exceptions in the micro-C stack machine (Fig-

ure 8.1) by adding instructions PUSHHDLR, POPHDLR, and THROW for pushing a

handler, popping a handler, and throwing an exception, respectively. These

additional instructions for pushing, popping and invoking handlers are shown

in Figure 11.2.

The instructions should work as follows:

238 Continuations and tail calls

Instruction Stack before After Effect

PUSHHDLR exc a s ⇒ s,exc,a,hr Push handler

POPHDLR s,exc,a,h ⇒ s Pop handler

THROW exc s1,exc,a,h,s2 ⇒ s1 Handler found; go to a
THROW exc s ⇒ _ No handler found; abort

Figure 11.2: Exception handling in the micro-C stack machine (see text).

• Instruction PUSHHDLR exc a pushes the handled exception name exc, the

handler address a and the old handler register hr, and also sets the han-

dler register hr to the address of exc in the stack.

• Instruction POPHDLR pops all three components (exc, a, and h) of the excep-

tion handler description from the stack, and resets the handler register

hr to h.

• Instruction THROW exc, which corresponds to executing the statement throw
exc, searches for an appropriate exception handler on the stack, starting

from the handler that hr points to:

while (hr != -1 && s[hr] != exc)
hr = s[hr+2]; // Try the next exception handler

if (hr != -1) { // Found a handler for exception exc
pc = s[hr+1]; // execute the associated handler code (a)
hr = s[hr+2]; // with current handler being hr
sp = hr-1; // after popping all frames above handler

} else {
print "uncaught exception";
stop machine;

}

Either it finds a handler for the thrown exception (hr!=-1) and executes

that handler, or the exception propagates to the bottom of the stack and

the program aborts.

11.7 Continuations and tail calls

If a function call is in tail position, then the continuation cont of the call is the

same as the continuation of the entire enclosing function body. Moreover, the

called function’s body is evaluated in the same continuation as the function

call. Hence the continuation of a tail-called function’s body is the same as that

of the calling function’s body:

Callcc: call with current continuation 239

let rec coEval1 (e : expr) (env : value env) (cont : int -> answer) : answer =
match e with
| ...
| Call(f, eArg) ->
let fClosure = lookup env f
in match fClosure with

| Closure (f, x, fBody, fDeclEnv) ->
coEval1 eArg env

(fun xVal ->
let fBodyEnv = (x, Int xVal) :: (f, fClosure) :: fDeclEnv
in coEval1 fBody fBodyEnv cont)

| _ -> Abort "eval Call: not a function"

In Chapter 12 we shall see how one can compile micro-C tail calls so that

a function can an arbitrary number of tail-recursive calls in constant space

(example MicroC/ex12.c):

int f(int n) {
if (n)
return f(n-1);

else
return 17;

}

The trick is to discard f’s old stack frame, which contains the values of its local

variables and parameters, such as n, and replace it by the called function’s new

stack frame. Only the return address and the old base pointer must be retained

from f’s old stack frame. It is admissible to throw away f’s local variables and

parameters because there is no way they could be used after the recursive call

has returned (the call is the last action of f).

This works also when one function f calls another function g by a tail call:

then f’s old stack frame is discarded (except for the return address and the old

base pointer), and is replaced by g’s new stack frame. Our stack machine has

a special instruction for tail calls:

TCALL m n a

that discards n old variables from the stack frame, pushes m new arguments,

and executes the code at address a. It does not push a return address or adjust

the base pointer, so basically a TCALL is a specialized kind of jump (GOTO).

11.8 Callcc: call with current continuation

(Skip this if you like) In some languages, notably Scheme and the New Jersey

implementation of Standard ML (SML/NJ), one can capture the current evalu-

240 Continuations and backtracking

ation’s continuation k. In SML/NJ, the continuation is captured using callcc,

and reactivated using throw:

callcc (fn k => ... throw k e ...)

In Scheme, use call-with-current-continuation instead of callcc, and simply

apply the captured continuation k as any other function:

(call-with-current-continuation (lambda (k) ... (k e) ...))

This can be exploited in powerful but often rather mysterious programming

tricks. For example, in SML/NJ:

open SMLofNJ.Cont;
1 + callcc (fn k => 2 + 5) evaluates to 1 + (2 + 5)
1 + callcc (fn k => 2 + throw k 5) evaluates to 1 + 5

In both of the two latter lines, the continuation captured as k is the continua-

tion that says ‘add 1 to my argument’. The corresponding examples in Scheme

work precisely the same way:

(+ 1 (call-with-current-continuation (lambda (k) (+ 2 5))))
(+ 1 (call-with-current-continuation (lambda (k) (+ 2 (k 5)))))

In a sense, the classic setjmp function in C captures the current continuation

(like callcc) and the corresponding function longjmp reactivates it (like throw).

This is useful for implementing a kind of exception handling in C programs,

but C’s notion of continuation is much weaker than that of Scheme or SML/NJ.

In fact, the C implementation of setjmp just stores the current machine reg-

isters, including the stack pointer, in a structure. Applying longjmp to that

structure will restore the machine registers, including the stack pointer. The

effect is that program execution continues at the point where setjmp was called

— exactly as in the SML/NJ and Scheme examples above.

However, when the function that called setjmp returns, the stack will be

truncated below the point at which the stored stack pointer points. Calling

longjmp after this has happened may have strange effects (most likely the

program crashes), since the restored stack pointer now points into a part of

memory where there is no longer any stack, or where possibly a completely

unrelated stack frame has been stored.

11.9 Continuations and backtracking

Some programming languages support backtracking: When a subexpression

produces a result v that later turns out to be inadequate, the computation may

Continuations and backtracking 241

backtrack to that subexpression to ask for a new result v′ that may be more

adequate.

Continuations can be used to implement backtracking. To see this, we

shall study a small subset of the Icon language, a language for so-called goal-

directed computation [57]. The logic programming language Prolog also com-

putes using backtracking.

11.9.1 Expressions in Icon

In the language Icon, the evaluation of an expression may fail, producing no

result, or succeed, producing a result. Because of backtracking, it may succeed

multiple times. The result sequence of an expression is the sequence of results

it may produce. This sequence is empty if the expression fails.

Figure 11.3 shows some typical expressions in Icon, their result sequence,

and their side effect. A simple constant i succeeds once, producing the inte-

ger i. As in most other languages, an expression may have a side effect. In

particular, the expression write(e) succeeds with the result of e every time e
succeeds, and as a side effect prints the result of e.

Expression Result seq. Output Comment

5 5 Integer constant

write 5 5 5 Integer constant

(1 to 3) 1 2 3 Range

write (1 to 3) 1 2 3 1 Print as side effect

every(write (1 to 3)) 〈empty〉 1 2 3 Force all results

(1 to 0) 〈empty〉 Empty range

&fail 〈empty〉 Fails

(1 to 3) + (4 to 5) 5 6 6 7 7 8 All combinations

3 < 4 4 Comparison succeeds

4 < 3 〈empty〉 Comparison fails

3 < (1 to 5) 4 5 Succeeds twice

(1 to 3) | (4 to 5) 1 2 3 4 5 Left, then right

(1 to 3) & (4 to 5) 4 5 4 5 4 5 Right for every left

(1 to 3) ; (4 to 5) 4 5 Don’t backtrack

(1 to 0) ; (4 to 5) 4 5 Don’t backtrack

Figure 11.3: Example expressions in the Icon language.

The operator every(e) forces e to produce it complete result sequence, and

then every(e) fails. This is useful only if e has a side effect.

An expression such as (1 to 3) is called a generator because it produces a

sequence of results. An ordinary arithmetic operator, such as e1 + e2, succeeds

242 Continuations and backtracking

once for every combination v1 + v2 of the results v1 of e1 and the results v2 of

e2. A comparison operator e1 < e2 does not return a Boolean result. Instead

it succeeds once for every combination of the results v1 of e1 and the results v2

of e2. When it succeeds, it value is v2.

The operator (e1 | e2) produces the result sequence of e1, then that of e2.

It therefore behaves like sequential logical ‘or’ (||) in C/C++/Java/C#.

The operator (e1 & e2) produces the result sequence of e2, for every result

of e1. It therefore behaves like sequential logical ‘and’ (&&) in C/C++/Java/C#.

The operator (e1 ; e2) evaluates e1 once, and regardless whether it suc-

ceeds or fails, then produces the result sequence of e2. Once it has started

evaluating e2 it never backtracks to e1 again.

The conditional expression if e1 then e2 else e3 evaluates e1, and if that

succeeds, it evaluates e2; otherwise e3. Once it has started evaluating e2 or e3,

it never backtracks to e1 again.

11.9.2 Using continuations to implement backtracking

Backtracking as in Icon can be implemented using two continuations [59]:

• A failure continuation fcont : unit -> answer

• A success continuation cont : int -> fcont -> answer

The success continuation’s failure continuation argument is used for back-

tracking: go back and ask for more results.

The failure continuation may also be called a backtracking continuation

or a resumption. It is used by an expression to ‘ask for more results’ from a

subexpression, by backtracking into the subexpression, resuming the subex-

pression’s evaluation.

Figure 11.4 shows an interpreter (from file Cont/Icon.fs) for variable-free

Icon expressions. The interpreter uses two continuations, cont for success and

econt for failure, or backtracking.

The evaluation of an integer constant i succeeds once only, and therefore

simply calls the success continuation on i and the given failure continuation.

The evaluation of write(e) evaluates e with a success continuation that

grabs the value v of e, prints it, and calls the success continuation on v and on

e’s failure continuation econt1. Thus backtracking into write(e) will backtrack

into e, printing also the subsequent results of e.

An ordinary arithmetic operator such as e1 + e2 will evaluate e1 with a

success continuation that evaluates e2 with a success continuation that adds

the results v1 and v2 and calls the original success continuation on the sum,

and on the failure continuation econt2 of e2. Thus backtracking into e1 + e2

Continuations and backtracking 243

let rec eval (e : expr) (cont : cont) (econt : econt) =
match e with
| CstI i -> cont (Int i) econt
| CstS s -> cont (Str s) econt
| FromTo(i1, i2) ->
let rec loop i =

if i <= i2 then
cont (Int i) (fun () -> loop (i+1))

else
econt ()

loop i1
| Write e ->
eval e (fun v -> fun econt1 -> (write v; cont v econt1)) econt

| If(e1, e2, e3) ->
eval e1 (fun _ -> fun _ -> eval e2 cont econt)

(fun () -> eval e3 cont econt)
| Prim(ope, e1, e2) ->
eval e1 (fun v1 -> fun econt1 ->

eval e2 (fun v2 -> fun econt2 ->
match (ope, v1, v2) with
| ("+", Int i1, Int i2) ->

cont (Int(i1+i2)) econt2
| ("*", Int i1, Int i2) ->

cont (Int(i1*i2)) econt2
| ("<", Int i1, Int i2) ->

if i1<i2 then
cont (Int i2) econt2

else
econt2 ()

| _ -> Str "unknown prim2")
econt1)

econt
| And(e1, e2) ->
eval e1 (fun _ -> fun econt1 -> eval e2 cont econt1) econt

| Or(e1, e2) ->
eval e1 cont (fun () -> eval e2 cont econt)

| Seq(e1, e2) ->
eval e1 (fun _ -> fun econt1 -> eval e2 cont econt)

(fun () -> eval e2 cont econt)
| Every e ->
eval e (fun _ -> fun econt1 -> econt1 ())

(fun () -> cont (Int 0) econt)
| Fail -> econt ()

Figure 11.4: Micro-Icon expression evaluation with backtracking.

244 History and literature

will backtrack into e2. Since e2 was evaluated with e1’s econt1 as failure con-

tinuation, failure of e2 will further backtrack into e1, thus producing all com-

binations of their results.

The less-than operator e1 < e2 evaluates e1 and e2 as above, and succeeds

(calls the success continuation) if v1 is less than v2, else fails (calls the failure

continuation of e2).

The (e1 | e2) expression evaluates e1 with the original success continua-

tion and with a failure continuation that evaluates e2 with the original con-

tinuations. Hence if e1 succeeds (is true) we pass its result to the context;

if e1 fails (is false) we evaluate e2. Subsequent backtracking into (e1 | e2)
will backtrack into e1, and if e1 fails, then into e2, producing first the result

sequence of e1, then that of e2.

The expression (e1 & e2) is the dual. It evaluates e1 with a success con-

tinuation that ignores e1’s result and then evaluates e2 with the original suc-

cess continuation and e1’s failure continuation. Subsequent backtracking into

(e1 & e2) will backtrack into e2, and when that fails, into e1, producing the

result sequence of e2 for every result of e1.

Note the difference to (e1 ; e2) which evaluates e1 with success and fail-

ure continuations that behave the same. Both ignore e1’s result (if any) and

then evaluate e2 with the original continuations. Subsequent backtracking

into (e1 ; e2) will backtrack into e2, but not into e1, because the failure con-

tinuation (possibly) produced by e1 gets ignored; we say that expression e1 is

bounded when it appears to the left of the sequential composition “;” [57, page

90].

The conditional expression if (e1) then e2 else e3 is similar, but evalu-

ates e2 in the success continuation and e3 in the failure continuation. Again

the failure continuation (possibly) produced by e1 gets ignored, so there is no

backtracking into e1; that is, e1 is bounded when it appears as the condition of

if.

The expression &fail simply fails, by calling the failure continuation.

11.10 History and literature

Reynolds [116] shows how to use continuation-passing style in interpreters to

make the object language evaluation order independent of the meta-language

evaluation order (eager, lazy, left-to-right, or right-to-left).

Strachey and Wadsworth [132] present the use of continuations in the de-

scription (‘mathematical semantics’) of programming language constructs that

disrupt the normal flow of computation, such as jumps (goto) and return from

subroutines.

Exercises 245

The original CPS transformations were discovered independently by Fis-

cher [49] and Plotkin [110]. Danvy and Filinski [37] gave a lucid analysis and

some improvements of the transformation.

In 1993, Reynolds [115] looks back on the many times continuations were

discovered (or invented).

Guy Steele [129] shows that if functions (lambda abstractions) and func-

tion calls are implemented properly, via continuation-passing style, then all

other constructs can be implemented efficiently in terms of these. This idea

was realized by Steele in the Rabbit compiler for Scheme [130], the first com-

piler to use continuation-passing style, giving a breakthrough in efficiency of

functional language implementations. Guy Steele is a co-designer of the Java

programming language.

Andrew Appel [11] describes the design of the Standard ML of New Jersey

(SML/NJ) compiler which initially transforms the entire program into conti-

nuation-passing style, as suggested by Steele.

The complete text of Griswold and Griswold’s 1996 book on the Icon pro-

gramming language is available for free [57].

11.11 Exercises

The main goal of these exercises is to master the somewhat mind-bending no-

tion of continuation. But remember that a continuation is just something —

usually a function — that represents the rest of a computation.

Exercise 11.1 (i) Write a continuation-passing (CPS) version lenc : int list
-> (int -> int) -> int of the list length function len:

let rec len xs =
match xs with
| [] -> 0
| x::xr -> 1 + len xr;;

The resulting function may be called as lenc xs id, where let id = fun v ->
v is the identity function.

(ii) What happens if you call it as lenc xs (fun v -> 2*v) instead?

(iii) Write also a tail-recursive version leni : int list -> int -> int of the

length function, whose second parameter is an accumulating parameter, and

which should be called as leni xs 0. What is the relation between lenc and

leni?

Exercise 11.2 (i) Write a continuation-passing version revc : ’a list -> (’a
list -> ’a list) -> ’a list of the list reversal function rev:

246 Exercises

let rec rev xs =
match xs with
| [] -> []
| x::xr -> rev xr @ [x];;

The resulting function may be called as revc xs id, where let id = fun v ->
v is the identity function.

(ii) What happens if you call it as revc xs (fun v -> v @ v) instead?

(iii) Write also a tail-recursive reversal function revi : ’a list -> ’a list
-> ’a list, whose second parameter is an accumulating parameter, and which

should be called as revi xs [].

Exercise 11.3 Write a continuation-passing version prodc : int list -> (int
-> int) -> int of the list product function prod:

let rec prod xs =
match xs with
| [] -> 1
| x::xr -> x * prod xr;;

Exercise 11.4 Optimize the CPS version of the prod function above. It could

terminate as soon as it encounters a zero in the list (because any list contain-

ing a zero will have product zero). Write a tail-recursive version of the prod
function that also terminates as soon as it encounters a zero in the list.

Exercise 11.5 Write more examples using exceptions and exception handling

in the small functional and imperative languages implemented in Cont/Contfun.fs
and Cont/Contimp.fs, and run them using the given interpreters.

Exercise 11.6 What statements are in tail position in the simple imperative

language implemented by coExec1 in file Cont/Contimp.fs? Intuitively, the last

statement in a statement block { ... } is in tail position provided the entire

block is. Can you argue that this is actually the case, looking at the interpreter

coExec1?

Exercise 11.7 The coExec1 version of the imperative language interpreter in

file Cont/Contimp.fs supports a statement Throw to throw an exception. This

Throw statement is similar to throw in Java. Add an expression EThrow to

the expression abstract syntax to permit throwing exceptions also inside an

expression, as in F#’s fail expression. You will need to rewrite the expres-

sion interpreter eval in continuation-passing style; for instance, it must take a

continuation as an additional argument. Consequently, you must also modify

coExec1 so that every call to eval has a continuation argument.

Exercises 247

The return type of your new expression interpreter should be answer as

for coExec1, and it should take a normal continuation of type (int -> answer)

as argument, where answer is the exact same type used in the coExec1 state-

ment interpreter. (Like coExec1, your new expression interpreter need not

take an error continuation, because we do not intend to implement exception

handling.)

Your interpreter should be able to execute run1 ex4 and run1 ex5 where

let ex4 =
Block[If(EThrow (Exn "Foo"), Block[], Block[])];;

let ex5 =
While(EThrow (Exn "Foo"), Block[]);;

Exercise 11.8 The micro-Icon expression (2 * (1 to 4)) succeeds four times,

with the values 2 4 6 8. This can be shown by evaluating

open Icon;;
run (Every(Write(Prim("*", CstI 2, FromTo(1, 4)))));;

using the interpreter in Cont/Icon.fs and the abstract syntax Prim("*", CstI
2, FromTo(1, 4)) instead of the concrete syntax (2 * (1 to 4)). We must use

abstract syntax because we have not written lexer and parser specification for

micro-Icon. A number of examples in abstract syntax are given at the end of

the Cont/Icon.fs source file.

(i) Write an expression that produces and prints the values 3 5 7 9. Write an

expression that produces and prints the values 21 22 31 32 41 42.

(ii) The micro-Icon language (like real Icon) has no Boolean values. Instead,

failure is used to mean false, and success means true. For instance, the less-

than comparison operator (<) behaves as follows: 3 < 2 fails, and 3 < 4 suc-

ceeds (once) with the value 4. Similarly, thanks to backtracking, 3 < (1 to 5)
succeeds twice, giving the values 4 and 5. Use this to write an expression that

prints the least multiple of 7 that is greater than 50.

(iii) Extend the abstract syntax with unary (one-argument) primitive func-

tions, like this:

type expr =
| ...
| Prim1 of string * expr

Extend the interpreter eval to handle such unary primitives, and define two

such primitives: (a) define a primitive "sqr" that computes the square x · x of

its argument x; (b) define a primitive "even" that fails if its argument is odd,

and succeeds if it is even (producing the argument as result). For instance,

248 Exercises

square(3 to 6) should succeed four times, with the results 9 16 25 36, and

even(1 to 7) should succeed three times with the results 2 4 6.

(iv) Define a unary primitive "multiples" that succeeds infinitely many times,

producing all multiples of its argument. For instance, multiples(3) should

produce 3, 6, 9, Note that multiples(3 to 4) would produce multiples of

3 forever, and would never backtrack to the subexpression (3 to 4) to begin

producing multiples of 4.

Exercise 11.9 Write lexer and parser specifications for micro-Icon so Exer-

cise 11.8 above could be solved using concrete syntax.

Exercise 11.10 (For adventurous Java hackers:) Implement a class-based ab-

stract syntax and an interpreter for a backtracking Icon-style language sub-

set, in the spirit of Cont/Icon.fs, but do it in C# or Java. If you use Java, you

can draw some inspiration from method facc in Cont/Factorial.java. With

C#, you should use lambda expressions (v => v * 2) or anonymous delegates

(delegate(int v) { return v * 2; }).

In any case, the result will probably appear rather incomprehensible, and

could be used to impress people in the Friday Scrollbar. Nevertheless, it should

not be too hard to write if you take a systematic approach.

Exercise 11.11 Implement a functional language with backtracking (as in

Prolog), so that Choose(e1, e2) returns the value of e1 if its evalution suc-

ceeds, otherwise the value of e2. Also, extend the language with an expression

Reject whose evaluation fails:

datatype expr =
...

| ThisOrThat of expr * expr
| Reject

To trace the execution of the interpreter, you can make it print the value of all

variables accessed.

Exercise 11.12 (Project) Implement a subset of the language Icon. This in-

volves deciding on the subset, writing lexer and parser specifications, and writ-

ing an extended interpreter in the style of Cont/Icon.fs. The interpreter must

at least handle assignable variables.

Exercise 11.13 (Project) Write a program to transform programs into continuation-

passing style, using the Danvy and Filinski 1992 presentation (which distin-

guishes between administrative redexes and other redexes).

Exercises 249

Exercise 11.14 (Somewhat hairy project) Extend a higher order functional

language with the ability to capture the current (success) continuation, and to

apply it. See papers by Danvy, Malmkjær, and Filinski. It would be a good idea

to experiment with call-with-current-continuation in Scheme first.

250 Exercises

Chapter 12

A locally optimizing

compiler

In this chapter we shall see that thinking in continuations is beneficial also

when compiling micro-C to stack machine code. Generating stack machine

code backwards may seem silly, but it enables the compiler to inspect the code

that will consume the result of the code being generated. This permits the

compiler to perform many optimizations (code improvement) easily.

12.1 What files are provided for this chapter

In addition to the micro-C files mentioned in Section 7.1, the following file is

provided:

File Contents

MicroC/Contcomp.fs compile micro-C backwards

12.2 Generating optimized code backwards

In Chapter 8 we compiled micro-C programs to abstract machine code for a

stack machine, but the code quality was poor, with many jumps to jumps, ad-

dition of zero, tests of constants, and so on.

Here we present a simple optimizing compiler that optimizes the code on

the fly, while generating it. The compiler does not rely on advanced program

analysis or program transformation. Instead it combines local optimizations

(so-called peephole optimizations) with backwards code generation.

251

252 Backwards compilation functions

In backwards code generation, one uses a ‘compile-time continuation’ to

represent the instructions following the code currently being generated. The

compile-time continuation is simply a list of the instructions that will follow

the current one. At run-time, those instructions represent the continuation of

the code currently being generated: that continuation will consume any result

produced (on the stack) by the current code.

Using this approach, a one-pass compiler:

• can optimize the compilation of logical connectives (such as !, && and ||)

into efficient control flow code;

• can generate code for a logical expression e1 && e2 that is adapted to its

context of use:

– will the logical expression’s value be bound to a variable:

b = e1 && e2

– or will be used as the condition in an if- or while-statement:

if (e1 && e2) ...;

• can avoid generating jumps to jumps in most cases;

• can eliminate some dead code (instructions that cannot be executed);

• can recognize tail calls and compile them as jumps (instruction TCALL)

instead of proper function calls (instruction CALL), so that a tail-recursive

function will execute in constant space.

Such optimizations might be called backwards optimizations: they exploit in-

formation about the ‘future’ of an expression: the use of its value. Forwards

optimizations, on the other hand, would exploit information about the ‘past’ of

an expression: its value. A forwards optimization may for instance exploit that

a variable has a particular constant value, and use that value to simplify ex-

pressions in which the variable is used (constant propagation). This is possible

only to a very limited extent in backwards code generation.

12.3 Backwards compilation functions

In the old forwards compiler from Chapter 8, the compilation function cExpr
for micro-C expressions had the type

cExpr : expr -> varEnv -> funEnv -> instr list

Backwards compilation functions 253

In the backwards compiler, it has this type instead:

cExpr : expr -> varEnv -> funEnv -> instr list -> instr list

The only change is that an additional argument of type instr list, that is,

list of instructions, has been added; this is the code continuation C. All other

compilation functions (cStmt, cAccess, cExprs, and so on, listed in Figure 8.4)

are modified similarly.

To see how the code continuation is used, consider the compilation of sim-

ple expressions such as constants CstI i and unary (one-argument) primitives

Prim1("!", e1).

In the old forwards compiler, code fragments are generated as instruction

lists and are concatenated together using the append operator (@):

and cExpr (e : expr) (varEnv : varEnv) (funEnv : funEnv) : instr list =
match e with
| ...
| CstI i -> [CSTI i]
| Prim1(ope, e1) ->

cExpr e1 varEnv funEnv
@ (match ope with

| "!" -> [NOT]
| "printi" -> [PRINTI]
| "printc" -> [PRINTC]
| _ -> raise (Failure "unknown primitive 1"))

| ...

For instance, the expression !false, which is Prim1("!", CstI 0) in abstract

syntax, is compiled to [CSTI 0] @ [NOT], that is, [CSTI 0; NOT].

In a backwards (continuation-based) compiler, the corresponding compiler

fragment would look like this:

and cExpr (e : expr) varEnv funEnv (C : instr list) : instr list =
match e with
| ...
| CstI i -> CSTI i :: C
| Prim1(ope, e1) ->

cExpr e1 varEnv funEnv
(match ope with

| "!" -> addNOT C
| "printi" -> PRINTI :: C
| "printc" -> PRINTC :: C
| _ -> failwith "unknown primitive 1")

| ...

254 Backwards compilation functions

So the new instructions generated are simply stuck onto the front of the code C
already generated. This in itself achieves nothing, except that it avoids using

the append function @ on the generated instruction lists, which can be costly.

The code generated for !false is CSTI 0 :: [NOT] with is [CSTI 0; NOT] as

before.

12.3.1 Optimizing expression code while generating it

Now that the code continuation C is available, we can use it to optimize (im-

prove) the generated code. For instance, when the first instruction in C (which

is the next instruction to be executed at run-time) is NOT, then there is no point

in generating the instruction CSTI 0; the NOT will immediately turn the zero

into a one. Instead we should generate the constant CSTI 1, and throw away

the NOT instruction. We can easily modify the expression compiler cExpr to

recognize such special situations, and generate optimized code:

and cExpr (e : expr) varEnv funEnv (C : instr list) : instr list =
match e with

| ...
| CstI i -> match (i, C) with

| (0, NOT :: C1) -> CSTI 1 :: C1
| (_, NOT :: C1) -> CSTI 0 :: C1
| _ -> CSTI i :: C)

| ...

With this scheme, the code generated for !false will be [CSTI 1], which is

shorter and faster.

In practice, we introduce an auxiliary function addCST to take care of these

optimizations, both to avoid cluttering up the main functions, and because

constants (CSTI) are generated in several places in the compiler:

and cExpr (e : expr) varEnv funEnv (C : instr list) : instr list =
match e with

| ...
| CstI i -> addCST i C
| ...

The addCST function is defined by straightforward pattern matching:

let rec addCST i C =
match (i, C) with

| (0, ADD :: C1) -> C1
| (0, SUB :: C1) -> C1
| (0, NOT :: C1) -> addCST 1 C1

Backwards compilation functions 255

| (_, NOT :: C1) -> addCST 0 C1
| (1, MUL :: C1) -> C1
| (1, DIV :: C1) -> C1
| (0, EQ :: C1) -> addNOT C1
| (_, INCSP m :: C1) -> if m < 0 then addINCSP (m+1) C1

else CSTI i :: C
| (0, IFZERO lab :: C1) -> addGOTO lab C1
| (_, IFZERO lab :: C1) -> C1
| (0, IFNZRO lab :: C1) -> C1
| (_, IFNZRO lab :: C1) -> addGOTO lab C1
| _ -> CSTI i :: C

Note in particular that instead of generating [CSTI 0; IFZERO lab] this will

generate an unconditional jump [GOTO lab]. This optimization turns out to be

very useful in conjunction with other optimizations.

The auxiliary functions addNOT, addINCSP, and addGOTO generate NOT, INCSP,

and GOTO instructions, inspecting the code continuation C to optimize the code

if possible.

An attractive property of these local optimizations is that one can easily

see that they are correct. Their correctness depends only on some simple code

equivalences for the abstract stack machine, which are quite easily proven by

considering the state transitions of the abstract machine shown in Figure 8.1.

Concretely, the function addCST above embodies these instruction sequence

equivalences:

0, EQ has the same meaning as NOT
0, ADD has the same meaning as 〈empty〉
0, SUB has the same meaning as 〈empty〉
0, NOT has the same meaning as 1
n, NOT has the same meaning as 0 when n 6= 0
1, MUL has the same meaning as 〈empty〉
1, DIV has the same meaning as 〈empty〉

n, INCSP m has the same meaning as INCSP (m+ 1) when m < 0
0, IFZERO a has the same meaning as GOTO a
n, IFZERO a has the same meaning as 〈empty〉 when n 6= 0
0, IFNZRO a has the same meaning as 〈empty〉
n, IFNZRO a has the same meaning as GOTO a when n 6= 0

Additional equivalences are used in other optimizing code-generating func-

tions (addNOT, makeINCSP, addINCSP, addGOTO):

256 Backwards compilation functions

NOT, NOT has the same meaning as 〈empty〉 (see Note)

NOT, IFZERO a has the same meaning as IFNZRO a
NOT, IFNZRO a has the same meaning as IFZERO a

INCSP 0 has the same meaning as 〈empty〉
INCSP m1, INCSP m2 has the same meaning as INCSP (m1 +m2)

INCSP m1, RET m2 has the same meaning as RET (m2 −m1)

Note: The NOT, NOT equivalence holds when the resulting value is used as a

boolean value: that is, when no distinction is made between 1 and other non-

zero values. The code generated by our compiler satisfies this requirement, so

it is safe to use the optimization.

12.3.2 The old compilation of jumps

To see how the code continuation is used when optimizing jumps (instructions

GOTO, IFZERO, IFNZRO), consider the compilation of a conditional statement:

if (e) stmt1 else stmt2

The old forwards compiler (file MicroC/Comp.fs) used this compilation scheme:

let labelse = newLabel()
let labend = newLabel()
in cExpr e varEnv funEnv @ [IFZERO labelse]

@ cStmt stmt1 varEnv funEnv @ [GOTO labend]
@ [Label labelse] @ cStmt stmt2 varEnv funEnv
@ [Label labend]

The above compiler fragment generates various code pieces (instruction lists)

and concatenates them to form code such as this:

<e> IFZERO L1
<stmt1> GOTO L2

L1: <stmt2>
L2:

where <e> denotes the code generated for expression e, and similarly for the

statements.

A plain backwards compiler would generate exactly the same code, but do it

backwards, by sticking new instructions in front of the instruction list C, that

is, the compile-time continuation:

let labelse = newLabel()
let labend = newLabel()

Backwards compilation functions 257

in cExpr e varEnv funEnv (IFZERO labelse
:: cStmt stmt1 varEnv funEnv

(GOTO labend :: Label labelse
:: cStmt stmt2 varEnv funEnv (Label labend :: C)))

12.3.3 Optimizing a jump while generating it

The continuation-based compiler fragment above unconditionally generates

new labels and jumps. But if the instruction after the if-statement is GOTO
L3, then it would wastefully generate a jump to a jump:

<e> IFZERO L1
<stmt1> GOTO L2

L1: <stmt2>
L2: GOTO L3

One should much rather generate GOTO L3 than the GOTO L2 which leads di-

rectly to a new jump. (Jumps slow down pipelined processors considerably be-

cause they cause instruction pipeline stalls. So-called branch prediction logic

in modern processors mitigates this effect to some degree, but still it is bet-

ter to avoid excess jumps.) Thus instead of mindlessly generating a new label

labend and a GOTO, we call an auxiliary function makeJump that checks whether

the first instruction of the code continuation C is a GOTO (or a return RET or a

label) and generates a suitable jump instruction jumpend, adding a label to C if

necessary, giving C1:

let (jumpend, C1) = makeJump C

The makeJump function is easily written using pattern matching. If C begins

with a return instruction RET (possibly below a label), then jumpend is RET; if

C begins with label lab or GOTO lab, then jumpend is GOTO lab; otherwise, we

invent a new label lab and then jumpend is GOTO lab:

let makeJump C : instr * instr list =
match C with
| RET m :: _ -> (RET m, C)
| Label lab :: RET m :: _ -> (RET m, C)
| Label lab :: _ -> (GOTO lab, C)
| GOTO lab :: _ -> (GOTO lab, C)
| _ -> let lab = newLabel()

in (GOTO lab, Label lab :: C)

Similarly, we need to stick a label in front of <stmt2> above only if there is no

label (or GOTO) already, so we use a function addLabel to return a label labelse,

possibly sticking it in front of <stmt2>:

258 Backwards compilation functions

let (labelse, C2) = addLabel (cStmt stmt2 varEnv funEnv C1)

Note that C1 (that is, C possibly preceded by a label) is the code continuation of

stmt2.

The function addLabel uses pattern matching on the code continuation C to

decide whether a label needs to be added. If C begins with a GOTO lab or label

lab, we can just reuse lab; otherwise we must invent a new label:

let addLabel C : label * instr list =
match C with

| Label lab :: _ -> (lab, C)
| GOTO lab :: _ -> (lab, C)
| _ -> let lab = newLabel()

in (lab, Label lab :: C)

Finally, when compiling an if-statement with no else-branch:

if (e)
stmt

we do not want to get code like this, with a jump to the next instruction:

<e> IFZERO L1
<stmt1> GOTO L2

L1:
L2:

to avoid this, we introduce a function addJump which recognizes this situation

and avoids generating the GOTO.

Putting everything together, we have this optimizing compilation scheme

for an if-statement If(e, stmt1, stmt2):

let (jumpend, C1) = makeJump C
let (labelse, C2) = addLabel (cStmt stmt2 varEnv funEnv C1)
in cExpr e varEnv funEnv (IFZERO labelse

:: cStmt stmt1 varEnv funEnv (addJump jumpend C2))

This gives a flavour of the optimizations performed for if-statements. Below

we show how additional optimizations for constants improve the compilation

of logical expressions.

Backwards compilation functions 259

12.3.4 Optimizing logical expression code

As in the old forwards compiler (file MicroC/Comp.fs) logical non-strict con-

nectives such as && and || are compiled to conditional jumps, not to special

instructions that manipulate boolean values.

Consider the example program in file MicroC/ex13.c. It prints the leap

years between 1890 and the year n entered on the command line:

void main(int n) {
int y;
y = 1889;
while (y < n) {
y = y + 1;
if (y % 4 == 0 && y % 100 != 0 || y % 400 == 0)
print y;

}
}

The non-optimizing forwards compiler generates this code for the while-loop:

GOTO L3
L2: GETBP; 1; ADD; GETBP; 1; ADD; LDI; 1; ADD; STI; INCSP -1; y=y+1

GETBP; 1; ADD; LDI; 4; MOD; 0; EQ; IFZERO L9; y%4==0
GETBP; 1; ADD; LDI; 100; MOD; 0; EQ; NOT; GOTO L8; y%100!=0

L9: 0;
L8: IFNZRO L7; GETBP; 1; ADD; LDI; 400; MOD; 0; EQ; GOTO L6; y%400==0
L7: 1;
L6: IFZERO L4; GETBP; 1; ADD; LDI; PRINTI; INCSP -1; GOTO L5; print y
L4: INCSP 0;
L5: INCSP 0;
L3: GETBP; 1; ADD; LDI; GETBP; 0; ADD; LDI; LT; IFNZRO L2; y<n

The above code has many deficiencies:

• an occurrence of 0; ADD could be deleted, because x+ 0 equals x

• INCSP 0 could be deleted (twice)

• two occurrences of 0; EQ could be replaced by NOT, or the subsequent test

could be inverted

• if L9 is reached, the jump to L7 at L8 will not be taken; so instead of going

to L9 one could go straight to the code following IFNZRO L7

• similarly, if L7 is reached, the jump to L4 at L6 will not be taken; so instead

of going to L7 one could go straight to the code following IFZERO L4

260 Backwards compilation functions

• instead of executing GOTO L8 followed by IFNZRO L7 one could execute

IFNZRO L7 right away.

The optimizing backwards compiler solves all those problems, and generates

this code:

GOTO L3;
L2: GETBP; 1; ADD; GETBP; 1; ADD; LDI; 1; ADD; STI; INCSP -1; y=y+1

GETBP; 1; ADD; LDI; 4; MOD; IFNZRO L5; y%4==0
GETBP; 1; ADD; LDI; 100; MOD; IFNZRO L4; y%100!=0

L5: GETBP; 1; ADD; LDI; 400; MOD; IFNZRO L3; y%400==0
L4: GETBP; 1; ADD; LDI; PRINTI; INCSP -1; print y
L3: GETBP; 1; ADD; LDI; GETBP; LDI; LT; IFNZRO L2; y<n

To see that the compilation of a logical expression adapts itself to the con-

text of use, contrast this with the compilation of the function leapyear (file

MicroC/ex22.c):

int leapyear(int y) {
return y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

}

which returns the value of the logical expression instead of using it in a condi-

tional:

L2: GETBP; LDI; 4; MOD; IFNZRO L6; y%4==0
GETBP; LDI; 100; MOD; IFNZRO L5; y%100!=0

L6: GETBP; LDI; 400; MOD; NOT; RET 1; y%400==0
L5: 1; RET 1 true

The code between L2 and L6 is essentially the same as before, but the code

following L6 is different: it leaves a (boolean) value on the stack top and returns

from the function.

12.3.5 Eliminating dead code

Instructions that cannot be executed are called dead code. For instance, the

instructions immediately after an unconditional jump (GOTO or RET) cannot be

executed, unless they are preceded by a label. We can eliminate dead code

by throwing away all instructions after an unconditional jump, up to the first

label after that instruction (function deadcode). This means that instructions

following an infinite loop are thrown away (file MicroC/ex7.c):

Backwards compilation functions 261

while (1) {
i = i + 1;

}
print 999999;

The following code is generated for the loop:

L2: GETBP; GETBP; LDI; 1; ADD; STI; INCSP -1; GOTO L2

where the statement print 999999 has been thrown away, and the loop condi-

tional has been turned into an unconditional GOTO.

12.3.6 Optimizing tail calls

As we have seen before, a tail call f(...) occurring in function g is a call that

is the last action of the calling function g. That is, when the called function f
returns, function g will do nothing more before it too returns.

In code for the abstract stack machine from Section 8.2, a tail call can be

recognized as a call to f that is immediately followed by a return from g: a CALL
instruction followed by a RET instruction. For example, consider this program

with a tail call from main to main (file MicroC/ex12.c):

int main(int n) {
if (n)
return main(n-1);

else
return 17;

}

The code generated by the old forwards compiler is

L1: GETBP; 0; ADD; LDI; IFZERO L2; if (n)
GETBP; 0; ADD; LDI; 1; SUB; CALL (1,L1); RET 1; GOTO L3; main(n-1)

L2: 17; RET 1; 17
L3: INCSP 0; RET 0

The tail call is apparent as CALL(1, L1); RET. Moreover, the GOTO L3 and the

code following label L3 are unreachable: those code fragments cannot be exe-

cuted, but that’s less important.

When function f is called by a tail call in g:

void g(...) {
... f(...) ...

}

262 Backwards compilation functions

CALL f

RET

RET

TCALL f

RET

ret
addr

old
etc

g’s vars ret
addr

old ret
addr

oldf’s vars
etc

f’s vars
etc

Tail call and one returnOrdinary call and two returns

(from f) (from f)

(from g)

ret
addr

old
etc

g’s vars

ret
addr

old
etc

g’s vars

ret
addr

old
etc

g’s vars
bp1

bp1

bp1

bp2

bp1

bp1

Figure 12.1: Example replacement of a call and a return by a tail call.

then if the call to f ever returns to g, it is necessarily because of a RET instruc-

tion in f, so two RET instructions will be executed in sequence:

CALL m f; ... RET k; RET n

The tail call instruction TCALL of our stack machine has been designed so that

the above sequence of executed instructions is equivalent to this sequence of

instructions:

TCALL m n f; ... RET k

This equivalence is illustrated by an example in Figure 12.1. More formally,

Figure 12.2 uses the stack machine rules to show that the equivalence holds

between two sequences of executed instructions:

CALL m f; ...RET k; RET n ≡ TCALL m n f; ...; RET k

provided function f at address a transforms s,r2,b2,v1, . . . ,vm into s,r2,b2,w1, . . . ,wk,v
without using the lower part s of the stack at all.

The new continuation-based compiler uses an auxiliary function makeCall
to recognize tail calls:

let makeCall m lab C : instr list =
match C with

| RET n :: C1 -> TCALL(m, n, lab) :: C1
| Label _ :: RET n :: _ -> TCALL(m, n, lab) :: C
| _ -> CALL(m, lab) :: C

It will compile the above example function main to the following abstract ma-

chine code, in which the recursive call to main has been recognized as a tail call

and has been compiled as a TCALL:

Backwards compilation functions 263

Stack Action

Ordinary call and two returns

s,r1,bp1,u1, ..,un,v1, ..,vm CALL m f (at address r2 − 1)

⇒ s,r1,bp1,u1, ..,un,r2,bp2,v1, ..,vm code in the body of f
⇒ s,r1,bp1,u1, ..,un,r2,bp2,w1, ..,wk,v RET k
⇒ s,r1,bp1,u1, ..,un,v RET n (at address r2)

⇒ s,v
Tail call and one return

s,r1,bp1,u1, ..,un,v1, ..,vm TCALL m n f (at r2 − 1)

⇒ s,r1,bp1,v1, ..,vm code in the body of f
⇒ s,r1,bp1,w1, ..,wk,v RET k
⇒ s,v

Figure 12.2: A tail call is equivalent to a call followed by return.

L1: GETBP; LDI; IFZERO L2; if (n)
GETBP; LDI; 1; SUB; TCALL (1,1,"L1"); main(n-1)

L2: 17; RET 1 17

Note that the compiler will recognize a tail call only if it is immediately fol-

lowed by a RET. Thus a tail call inside an if-statement (file MicroC/ex15.c),

like this one:

void main(int n) {
if (n!=0) {
print n;
main(n-1);

} else
print 999999;

}

is optimized to use the TCALL instruction only if the compiler never generates

a GOTO to a RET, but directly generates a RET. Therefore the makeJump optimiza-

tions made by our continuation-based compiler are important also for efficient

implementation of tail calls.

In general, it would be unsound to implement tail calls in C and micro-C

by removing the calling function’s stack frame and replacing it by the called

function’s stack frame. In C, an array allocated in a function g can be used also

in a function f called by g, as in this program:

void g() {
int a[10];
a[1] = 117;

264 Backwards compilation functions

f(1, a);
}

void f(int i, int a[]) {
print a[i];

}

However, that would not work if g’s stack frame, which contains the a array,

were removed and replaced by f’s stack frame. Most likely, the contents of

array cell a[1] would be overwritten, and f would print some nonsense. The

same problem appears if the calling function passes a pointer that point inside

its stack frame to a called function. Note that in Java, in which no array is

ever allocated on the stack, and pointers into the stack cannot be created, this

problem does not appear. On the other hand, C# has similar problems as C in

this respect.

To be on the safe side, a compiler should make the tail call optimization only

if the calling function does not pass any pointers or array addresses to the func-

tion called by a tail call. The continuation-based compiler in MicroC/Contcomp.fs
performs this unsound optimization anyway, to show what impact it has. See

micro-C example MicroC/ex21.c.

12.3.7 Remaining deficiencies of the generated code

There are still some problems with the code generated for conditional state-

ments. For instance, compilation of this statement (file MicroC/ex16.c):

if (n)
{ }

else
print 1111;

print 2222;

generates this machine code:

L1: GETBP; LDI; IFZERO L3;
GOTO L2;

L3: CSTI 1111; PRINTI; INCSP -1;
L2: CSTI 2222; PRINTI; RET 1

which could be optimized by inverting IFZERO L3 to IFNZRO L2 and deleting

the GOTO L2. Similarly, the code generated for certain trivial while-loops is

unsatisfactory. We might like the code generated for

Other optimizations 265

void main(int n) {
print 1111;
while (false) {
print 2222;

}
print 3333;

}

to consist only of the print 1111 and print 3333 statements, leaving out the

while-loop completely, since its body will never be executed anyway. Currently,

this is not ensured by the compiler. This is not a serious problem: some un-

reachable code is generated, but it does not slow down the program execution.

12.4 Other optimizations

There are many other kinds of optimizations that an optimizing compiler might

perform, but that are not performed by our simple compiler:

• Constant propagation: if a variable x is set to a constant value, such as

17, and never modified, then every use of x can be replaced by the use of

the constant 17. This may enable further optimizations if the variable is

used in expressions such as

x * 3 + 1

• Common subexpression elimination: if the same (complex) expression is

evaluated twice with the same values of all variables, then one could

instead evaluate it once, store the result (in a variable or on the stack

top), and reuse it. Common subexpressions frequently occur behind the

scenes. For instance, the assignment

a[i] = a[i] + 1;

is compiled to

GETBP; aoffset; ADD; LDI; GETBP; ioffset; ADD; LDI; ADD;
GETBP; aoffset; ADD; LDI; GETBP; ioffset; ADD; LDI; ADD; LDI;
1; ADD; STI

where the address (lvalue) of the array indexing a[i] is evaluated twice.

It might be better to compute it once, and store it in the stack. However,

266 A command line compiler for micro-C

the address to be reused is typically buried under some other stack ele-

ments, and our simple stack machine has no instruction to duplicate an

element some way down the stack (similar to the JVM’s dup_x1 instruc-

tion).

• Loop invariant computations: If an expression inside a loop (for, while)

does not depend on any variables modified by execution of the loop body,

then the expression may be computed outside the loop (unless evaluation

of the expression has a side effect, in which case it must be evaluated

inside the loop). For instance, in

while (...) {
a[i] = ...

}

part of the array indexing a[i] is loop invariant, namely the computation

of the array base address:

GETBP; aoffset; ADD; LDI

so this could be computed once and for all before the loop.

• Dead code elimination: if the value of a variable or expression is never

used, then the variable or expression may be removed (unless evaluation

of the expression has side effects, in which case the expression must be

preserved).

12.5 A command line compiler for micro-C

So far we have run the micro-C compiler inside an F# interactive session. Here

we shall wrap it as an .exe file that can be invoked from the command line.

The compiler gets the name of the micro-C source file (say, ex11.c) from the

command line arguments, reads, parses and compiles the contents of that file,

and writes the output to file ex11.out:

let args = System.Environment.GetCommandLineArgs()
let _ = printf "ITU micro-C backwards compiler version 0.0.0.2 of 2010-01-07\n";;
let _ =

if args.Length > 1 then
let source = args.[1]
let stem = if source.EndsWith(".c") then source.Substring(0,source.Length-2)

else source

History and literature 267

let target = stem + ".out"
in printf "Compiling %s to %s\n" source target;

try ignore (Contcomp.contCompileToFile (Parse.fromFile source) target)
with Failure msg -> printf "ERROR: %s\n" msg

else
printf "Usage: microcc <source file>\n";;

We build the micro-C compiler using the F# compiler fsc, like this:

fsc -r FSharp.PowerPack.dll Absyn.fs CPar.fs CLex.fs Parse.fs \
Machine.fs Contcomp.fs MicroCC.fs -o microcc.exe

The micro-C compiler is called microcc in analogy with gcc (Gnu C), javac
(Java), csc (C#) and other command line compilers. To compile micro-C file

ex11.c, we use it as follows:

C:\>microcc.exe ex11.c
ITU micro-C backwards compiler version 0.0.0.2 of 2010-01-07
Compiling ex11.c to ex11.out

12.6 History and literature

The influential programming language textbook by Abelson, Sussman and

Sussman [6] hints at the possibility of optimization on the fly in a continuation-

based compiler. Xavier Leroy’s 1990 report [88] describes optimizing back-

wards code generation for an abstract machine. This is essentially the machine

and code generation technique used in Caml Light, OCaml, and Moscow ML.

The same idea is used in Mads Tofte’s 1990 Nsukka lecture notes [141], but

the representation of the code continuation given there is more complicated

and provides fewer opportunities for optimization.

The idea of generating code backwards is probably much older than any of

these references.

12.7 Exercises

The main goal of these exercises is to realize that the bytecode generated by

micro-C compilers can be improved, and to see how the backwards (continuation-

based) micro-C compiler can be modified to achieve further improvements in

the bytecode.

Exercise 12.1 The continuation-based micro-C compiler (file MicroC/Contcomp.fs)

still generates clumsy code in some cases. For instance, the statement (file

MicroC/ex16.c):

268 Exercises

if (n)
{ }

else
print 1111;

print 2222;

is compiled to this machine code:

GETBP; LDI; IFZERO L3;
GOTO L2;

L3: CSTI 1111; PRINTI; INCSP -1;
L2: CSTI 2222; PRINTI; RET 1

which could be optimized to this by inverting the conditional jump and deleting

the GOTO L2 instruction:

GETBP; LDI; IFNZRO L2;
L3: CSTI 1111; PRINTI; INCSP -1;
L2: CSTI 2222; PRINTI; RET 1

Improve the compiler to recognize this situation. It must recognize that it is

about to generate code of this form:

IFZERO L3; GOTO L2; Label L3;

where the conditional jump jumps over an unconditional jump. Instead it

should generate code such as this:

IFNZRO L2; Label L3;

Define a new auxiliary function addIFZERO lab3 C which tests whether C has

the structure show above. In the code generation for If(e,s1,s2) in cStmt, in-

stead of doing IFZERO labelse :: ... you must call addIFZERO labelse (...).

In fact, everywhere in the compiler where you would previously just cons

IFZERO lab onto someting, you might call addIFZERO instead to make sure the

code gets optimized.

A similar optimization can be made for IFNZRO L3; GOTO L2; Label L3. This

is done in much the same way.

Exercise 12.2 Improve code generation in the continuation-based micro-C com-

piler so that a less-than comparison with constant arguments is compiled to its

truth value. For instance, 11 < 22 should compile to the same code as true, and

22 < 11 should compile to the same code as false. This can be done by a small

extension of the addCST function in MicroC/Contcomp.fs.

Exercises 269

Further improve the code generation so that all comparisons with constant

arguments are compiled to the same code as true (e.g. 11 <= 22 and 11 != 22
and 22 > 11 and 22 >= 11) or false.

Check that if (11 <= 22) print 33; compiles to code that unconditionally

executes print 33 without performing any test or jump.

Exercise 12.3 Extend the micro-C abstract syntax (file MicroC/Absyn.fs) with

conditional expressionsCond(e1, e2, e3), corresponding to the C/C++/Java/C#

concrete syntax:

e1 ? e2 : e3

The expression Cond(e1, e2, e3) must evaluate e1, and if the result is non-

zero, must evaluate e2, otherwise e3. (If you want to extend also the lexer and

parser to accept this new syntax, then note that ? and : are right associative;

but implementing them in the lexer and parser is not strictly necessary for this

exercise).

Schematically, the conditional expression should be compiled to the code

shown below:

<e1>
IFZERO L1
<e2>
GOTO L2

L1: <e3>
L2:

Extend the continuation-based micro-C compiler (file MicroC/Contcomp.fs) to

compile conditional expressions to stack machine code. Your compiler should

optimize code while generating it. Check that your compiler compiles the fol-

lowing two examples to code that works properly:

true ? 1111 : 2222 false ? 1111 : 2222

The abstract syntax for the first expression is Cond(Cst(CstI 1), Cst(CstI
1111), Cst(CstI 2222)). Unless you have implemented conditional expres-

sions (e1 ? e2 : e3) in the lexer and parser, the simplest way to experiment

with this is to invoke the cExpr expression compilation function directly, like

this, where the two first [] represent empty environments, and the last one is

an empty list of instructions:

cExpr (Cond(Cst(CstI 1), Cst(CstI 1111), Cst(CstI 2222)))
([], 0) [] [];

270 Exercises

Do not waste too much effort trying to get your compiler to optimize away

everything that is not needed. This seems impossible without traversing and

modifying already generated code.

Exercise 12.4 The compilation of the short-cut logical operators (&&) and (||)

in Contcomp.fs is rather complicated. After Exercise 12.3 one can implement

them in a somewhat simpler way, using these equivalences:

e1 && e2 is equivalent to (e1 ? e2 : 0)
e1 || e2 is equivalent to (e1 ? 1 : e2)

Implement the sequential logical operators (&& and ||) this way in your ex-

tended compiler from Exercise 12.3. You should change the parser specifi-

cation in CPar.fsy to build Cond(...) expressions instead of Andalso(...) or

Orelse(...). Test this approach on file MicroC/ex13.c and possibly other ex-

amples. How does the code quality compare to the existing complicated compi-

lation of && and ||?

Exercise 12.5 Improve the compilation of assignment expressions that are

really just increment operations, such as these

i = i + 1
a[i] = a[i] + 1

It is easiest to recognize such cases in the abstract syntax, not by looking at

the code continuation.

Exercise 12.6 Try to make sense of the code generated by the continuation-

based compiler for the n-queens program in file MicroC/ex11.c. Draw a flowchart

of the compiled program: start and end of each jump.

Exercise 12.7 Implement a post-optimizer for stack machine symbolic code

as generated by the micro-C compilers. This should be a function:

optimize : instr list -> instr list

where instr is defined in MicroC/Machine.fs. The idea is that optimize should

improve the code using the local bytecode equivalences shown in the lecture.

Also, it may delete code that is unreachable (code that cannot be executed).

Function optimize should be correct: the code it produces must behave the

same as the original code, when executed on the stack machine in MicroC/Machine.java.

The function would have to make two passes over the code. In the first pass

it computes a set of all reachable labels. A label, and the instructions following

it, is reachable if (1) it can be reached from the beginning of the code, or (2)

Exercises 271

there is a jump or call (GOTO, IFZERO, IFNZRO, CALL, TCALL) to it from a reachable

instruction.

In the second pass it can go through the instruction sequences at reachable

labels only, and simplify them using the bytecode equivalences.

Note that simplification of [CSTI 1; IFZERO L1] may cause label L1 to be

recognized as unreachable. Also, deletion of the code labelled L1 in [CST 0;
GOTO L2; Label L1; ...; Label L2; ADD] may enable further local simplifica-

tions. Hence the computation of reachable labels and simplification of code

may have to be repeated until no more simplifications can be made.

272 Exercises

Chapter 13

Reflection

This chapter describes reflection in the Java and C# programming languages.

Reflection permits a running program to inspect and manipulate the classes,

methods, fields and so on that make up the program. For instance, the program

may obtain a list of all methods in a class, or all those methods whose names

begin with the string "test". A method description mo thus obtained may be

called using a reflective method call such as mo.invoke(...). Similarly, a class

description obtained this way may be used to create an object of the class.

13.1 What files are provided for this chapter

A number of example programs (in Java and C#) are used to illustrate runtime

reflection:

Java example C# example Contents

rtcg/Reflect0.java rtcg/Reflect0.cs get types reflectively

rtcg/Reflect1.java rtcg/Reflect1.cs call method reflectively

rtcg/Reflect2.java rtcg/Reflect2.cs call methods reflectively

rtcg/Reflect3.java rtcg/Reflect3.cs measure reflective call speed

The example Reflect0.java (and Reflect0.cs) shows that for every type,

and in particular, for every class, there is an object representing that type.

The object has class java.lang.Class in Java (and class System.Type in C#).

The example Reflect1.java (and Reflect1.cs) shows how the object co cor-

responding to a class can be used to obtain an object mo representing a public

method from that class:

import java.lang.reflect.*; // Method

273

274 What files are provided for this chapter

class Reflect1 {
public static void main(String[] args)
throws NoSuchMethodException, IllegalAccessException,

InvocationTargetException {
Class<Reflect1> co = Reflect1.class; // Get Reflect1 class
Method mo = co.getMethod("Foo", new Class[] {}); // Get Foo() method
mo.invoke(null, new Object[] { }); // Call it

}

public static void Foo() {
System.out.println("Foo was called");

}
}

The mo object has class Method in Java (and class MethodInfo in C#); see also

Figure 13.1. Objects representing fields and constructors can be obtained simi-

larly. The example also shows how the object mo can be used to call (invoke) the

method Foo represented by mo. In general, the arguments to a method called

by reflection must be passed in an array of Objects, so values of primitive type

must be boxed (wrapped as objects), and an array must be allocated to hold the

argument values. Similarly, the result of the method is returned as an object,

which must then be unboxed (unwrapped) if it is a primitive type value.

The example Reflect2.java (and Reflect2.cs) shows one way to find meth-

ods that satisfy particular criteria. In this case all methods of a class are ob-

tained, and every method that is static and whose name begins with the string

"Test" is invoked with an empty argument list (this will cause a runtime error

if the method does require arguments):

Method[] mos = co.getMethods();
System.out.println("These static methods are available:");
for (int i=0; i<mos.length; i++)
if (Modifier.isStatic(mos[i].getModifiers()))
System.out.println(mos[i].getName());

System.out.println();
System.out.println("Calling static methods whose names start with Test:");
for (int i=0; i<mos.length; i++)
if (Modifier.isStatic(mos[i].getModifiers())

&& mos[i].getName().indexOf("Test") == 0)
mos[i].invoke(null, new Object[] {});

Reflection mechanisms in Java and C# 275

13.2 Reflection mechanisms in Java and C#

The Java and C# reflection mechanisms are remarkably similar, as shown in

Figure 13.1. In relation to reflection on generic types and methods the mech-

anisms differ considerably, though, because the CLI/.NET runtime system un-

derlying C# supports generic types at runtime, and the Java Virtual Machine

does not; see also Section 9.5.

Java C#

Class decription java.lang.Class System.Type
Class object for class C C.class typeof(C)
One method in class co co.getMethod(...) co.GetMethod(...)
Public methods in co co.getMethods() co.GetMethods()
One field in class co co.getField(...) co.GetField(...)
Public fields in co co.getFields() co.GetFields(...)
One constructor in co co.getConstructor(...) co.GetConstructor(...)
Public constructors in co co.getConstructors() co.GetConstructors()
Reflection API java.lang.reflect System.Reflection
Method description Method MethodInfo
Field description Field FieldInfo
Constructor description Constructor ConstructorInfo
Call method mo.invoke(...) mo.Invoke(...)
Get field’s value fo.get(...) fo.GetValue(...)
Set field’s value fo.set(...) fo.SetValue(...)
Call constructor cco.newInstance(...) cco.Invoke(...)
Is generic type definition co is ParameterizedType mo.IsGenericTypeDefinition
Is generic type instance (not possible) co.IsGenericType
Is a type parameter co is TypeVariable co.IsGenericParameter
Get type parameters co.getTypeParameters() co.GetGenericArguments()
Get type arguments po.getActualTypeArguments() co.GetGenericArguments()
Create type instance (not possible) co.MakeGenericType(...)
Is generic mth definition (not possible) co.IsGenericMethodDefinition
Is generic mth instance (not possible) mo.IsGenericMethod
Get type parameters mo.getTypeParameters() mo.GetGenericArguments()
Get type arguments (not possible) mo.GetGenericArguments()
Create method instance (not possible) mo.MakeGenericMethod(...)

Figure 13.1: Java and C# reflection mechanisms. Here co represents a class or

type, mo a method, fo a field, and cco a constructor.

Reflective method calls and field accesses provide extra flexibility by allow-

ing a program to perform some ‘introspection’. For instance, one can write a

276 History and literature

general test framework that uses reflection to call those methods of a given

class C whose names begin with the string "Test"; see rtcg/Reflect2.java.

This is how the unit testing frameworks jUnit and nUnit are implemented.

Basically, the added flexibility of reflection derives from its ability to post-

pone some program decisions (which methods to call, and so on) till execution

time.

Reflection has some drawbacks, too:

• types are checked only at runtime, so some compile-time type safety is

lost;

• reflective method calls, field accesses, etc. are much slower than ordinary

compiled method calls, field accesses, etc.

Reflective method calls are inefficient because of the required wrapping of

arguments as Object arrays, and because access checks and so on must be

performed at runtime. In a highly optimizing virtual machine Sun’s HotSpot

JVM 1.6.0, a reflective method call is typically slower than a static or virtual

method call by a factor of approximately 13. Moreover, if the class containing

the method is not public, additional runtime checks for method accessibility

make the reflective call slower by a further factor of 5. The slowdown caused

by reflection seems to be even more dramatic in Microsoft’s CLI/.NET imple-

mentation (version 3.5), where a reflective call to a static method is 195–250

times slower than a normal call.

In C# the argument wrapping, result unwrapping, and access checks costs

can be reduced by turning a MethodInfo object into a C# delegate. Calling the

delegate is more than 30 times faster than a reflective method call, because

method lookup, type checks and access checks are performed once and for all

when the delegate is created, not at every call to it. Java does not provide an

out-of-the-box mechanism with the same efficiency, but a similar effect can be

obtained by defining a suitable interface and using runtime code generation as

shown in Section 14.8.

13.3 History and literature

A reflection mechanism has been available in Lisp since 1960 in the form of

fexprs. Brian Cantwell Smith introduced a ‘reflective tower’ as the concept of

an infinite tower of Lisp interpreters, one interpreter executing the code of the

interpreter below it [127].

Friedman and Wand [50] gave a simpler, more concrete version of Smith’s

ideas. Furthermore, they introduced a distinction between reification and re-

History and literature 277

flection: ‘We will use the term reification to mean the conversion of an inter-

preter component into an object which the program can manipulate. One can

think of this transformation as converting a program (i.e. the expression being

evaluated) into data. We will use the term reflection to mean the operation of

taking a program-manipulable value and installing it as a component in the in-

terpreter. This is thus a transformation from data to program.’ As can be seen,

these definitions do not agree entirely with the meaning of reflection in Java

and C#. Friedman and Wand’s notion reification seems similar to reflection in

Java and C#, whereas their notion of reflection seems related to runtime code

generation, the subject of the next chapter.

Danvy and Malmkjær presented a simpler reflective tower [38].

278 History and literature

Chapter 14

Runtime code generation

Program specialization generates code that is specialized to particular values

of one or more input parameters. Runtime code generation may be used to

perform program specialization at runtime. Properly used, this can lead to

considerable speedups.

Both Java/JVM and C#/CLI support runtime code generation. In C#/CLI

runtime code generation is supported through the .Net Framework (see Sec-

tion 14.4). In Java/JVM one can use third-party libraries to generate bytecode

at runtime and use a Java class loader to dynamically load this code. In both

cases the generated code can be executed via reflection (Chapter 13), or more

efficiently via delegate calls in C# and interface method calls in Java.

14.1 What files are provided for this chapter

Java example C# example Contents

rtcg/Power.java rtcg/Power.cs specialize power function as source

rtcg/RTCG1D.cs generate argumentless method

rtcg/RTCG2.java rtcg/RTCG2D.cs generate method with argument

rtcg/RTCG3.java rtcg/RTCG3D.cs generate methods with loops

rtcg/RTCG4.java rtcg/RTCG4D.cs generate specialized power function

rtcg/RTCG5D.cs generate fast polynomial evaluator

rtcg/RTCG6D.cs generate fast expression evaluator

rtcg/RTCG7.java rtcg/RTCG7D.cs measure code generation time

rtcg/RTCG8.java rtcg/RTCG8D.cs generate sparse matrix multiplier

In addition there are some supporting Java interfaces: rtcg/IMyInterface.java,

rtcg/Int2Int.java, and rtcg/ISparseMult.java.

279

280 Program specialization

A large example of runtime code generation in C# can be found in the .Net

Framework implementation of regular expression matching. The source code

can be studied in Microsoft’s ‘shared source’ release of CLI [95], in file

sscli/fx/src/regex/system/text/regularexpressions/regexcompiler.cs.

14.2 Program specialization

Consider a Java method Power(n, x) which computes xn, that is, x raised to

the n’th power:

public static double Power(int n, double x) {
double p;
p = 1;
while (n > 0) {
if (n % 2 == 0)

{ x = x * x; n = n / 2; }
else

{ p = p * x; n = n - 1; }
}
return p;

}

The two branches of the if statement in Power rely on these equalities, for n
even (n = 2m) and n odd (n = 2m+ 1):

x2m = (x2)m

x2m+1 = x2m · x

Assume now that the value of parameter n is known, whereas the value of x
is not. Then one can perform the tests in while and if, and one can perform

other computations that depend on n only. However, one cannot perform any

computations that depend on x. Instead one could generate code that will per-

form those computations at a later point, when x is known. That code can be

packaged as a method Power_5(double x) which will compute x5 when called

on x. Specializing, or partially evaluating, Power for n being 5 might generate

this specialized method:

static double Power_5(double x) {
double p;
p = 1;
p = p * x;
x = x * x;
x = x * x;

Program specialization 281

p = p * x;
return p;

}

One can quite easily write a method PowerTextGen(int n), which for a given n
will generate a version Power_n of Power that is specialized for the given value

of n. Such a generator is called a generating extension for Power, and could be

written like this:

public static void PowerTextGen(int n) {
System.out.println("static double Power_" + n + "(double x) {");
System.out.println(" double p;");
System.out.println(" p = 1;");
while (n > 0) {
if (n % 2 == 0) {
System.out.println(" x = x * x;");
n = n / 2;

} else {
System.out.println(" p = p * x;");
n = n - 1;

}
}
System.out.println(" return p;");
System.out.println("}");

}

In fact, calling PowerTextGen(5) will produce exactly the method Power_5 shown

above.

Note the close structural similarity between Power and PowerTextGen. It

arises because PowerTextGen is obtained from Power by classifying those parts

of Power depending only on n as static (to be executed early), and those parts

depending on x as dynamic (to be executed late). The PowerTextGen method

simply executes the static parts and generates code for the dynamic parts.

The classification of program code and variables into static and dynamic may

be performed by a so-called binding-time analysis. Binding-time analysis is

an important step in automatic program specialization, also known as partial

evaluation [69, 100].

However, generating a specialized program in the form of Java or C# source

code is suitable only when the value of n is known well in advance of runtime.

Namely, the generated specialized program must compiled, which is quite re-

source demanding. This precludes program specialization at runtime, when it

is more likely that the value of variables such as n are available for program

specialization.

282 Quasiquote and two-level languages

14.3 Quasiquote and two-level languages

Before we embark on runtime bytecode generation in section 14.4, we shall

first see how easy runtime code generation can be when the language has ad-

equate facilities for it.

14.3.1 The Scheme programming language

In the dynamically typed functional language Scheme [77, 135], it is partic-

ularly easy to express program generation, thanks to two factors: It is easy

to write Scheme program fragments in abstract syntax within Scheme itself,

and the so-called quasiquotation mechanism is ideal for writing programs that

generate other programs.

The Scheme syntax is particularly simple. Consider the function f that

computes x times 3 plus 7, which would be written like this in F#:

let f x = x * 3 + 7

would look like this in Scheme:

(define (f x) (+ (* x 3) 7))

Thus the Scheme keyword define introduces a definition, f is the name of the

defined function, x is its parameter, and (+ (* x 3) 7) is the function body.

Any program in Scheme is written as a list of nested lists, each list having a

keyword or operator as its first element. Thus the function declaration is a list

with three elements, where the second element is a list (f x) of the names of

the function and its parameters. The third element of the function declaration

is the function body, which in this case is the arithmetic expression (+ (* x 3)
7). In Scheme, all expressions, including arithmetic expressions, are written

in prefix notation, with the operator before the operands.

To define the function f, start a Scheme system such as scm [65] and type

in the function definition. The function gets defined inside the Scheme system,

and the value #<unspecified> is returned:

> (define (f x) (+ (* x 3) 7))
#<unspecified>

The user’s entry is written after the prompt (>), and the system’s response

is written on the next line. To apply function f to the argument 10, write a

function application, which is a list with the function as operator and 10 as

sole argument:

Quasiquote and two-level languages 283

> (f 10)
37

In Scheme, a list of constants such as 11 22 33 is written ’(11 22 33) where

the quote operator (’) denotes a constant. The define keyword is used for

functions as well as variables, so we bind variable cs to the list 11 22 33 as

follows:

> (define cs ’(11 22 33))
#<unspecified>

The car function returns the head, or first element, of a list:

> (car cs)
11

The cdr function returns the tail, or all elements but the first one:

> (cdr cs)
(22 33)

The null? function tests whether a list is empty; the symbol #f obviously

means false:

> (null? cs)
#f

The list function is used to construct a list from general expressions:

> (list (car (cdr cs)) ’11 (+ 3 30))
(22 11 33)

Scheme’s conditional expression (if e1 e2 e3) corresponds to if e1 then e2
else e3 in F#, and to e1 ? e2 : e3 in Java or C#.

14.3.2 Recursive functions in Scheme

The Scheme analog of the Java Power function shown at the beginning of sec-

tion 14.2 can be defined like this, using an auxiliary function sqr to compute

x2:

(define (sqr x) (* x x))
(define (powr n x)
(if (> n 0)

(if (eq? (remainder n 2) 0)

284 Quasiquote and two-level languages

(sqr (powr (/ n 2) x))
(* x (powr (- n 1) x))
)

1)
)

The remainder function computes the integer remainder from division, and the

operators (>), (/) and (-) compute greater-than, division and subtraction. Then

we can compute 210 and 397 like this:

> (powr 10 2)
1024
> (powr 97 3)
19088056323407827075424486287615602692670648963

Suppose we want to compute the value of a polynomial:

p(x) = cs[0]+ cs[1] · x+ cs[2] · x2+ · · ·+ cs[n] · xn

for a given coefficient array cs. This can be done conveniently using Horner’s

rule:

p(x) = cs[0]+ x · (cs[1]+ x · (. . .(cs[n]+ 0) . . .))

A recursive function to evaluate a polynomial with coefficient list cs at a given

point x can be written as follows:

(define (poly cs x)
(if (null? cs)

0
(+ (car cs) (* x (poly (cdr cs) x)))

))

Let’s compute 11+ 22x+ 33x2 for x = 10:

> (poly cs 10)
3531

14.3.3 Quote and eval in Scheme

Note the subtle difference between (+ 2 3), which is an expression whose

value is 5, and ’(+ 2 3), which is a constant whose value is the three-element

list containing the plus symbol (+), the constant 2, and the constant 3:

Quasiquote and two-level languages 285

> (+ 2 3)
5
> ’(+ 2 3)
(+ 2 3)

Function eval takes as argument a list that has the form of an expression, and

evaluates that expression; in a sense, eval is an inverse of quote:

> (eval ’(+ 2 3))
5

This works also if the expression-like list contains a free variable:

> (define myexpr ’(+ (* x 3) 7))
#<unspecified>
> myexpr
(+ (* x 3) 7)
> (define x 10)
#<unspecified>
> (eval myexpr)
37

Using eval on a list that has the form of a function declaration, will define the

function inside the Scheme system. The following defines f to be the function

that adds 10 to its argument:

> (eval ’(define (f x) (+ x 10)))
#<unspecified>
> (f 7)
17

Using a combination of the list function and the quote (’) operator one can

write programs that construct new functions, and then define them using eval.

This provides a way to do runtime code generation in Scheme.

14.3.4 Backquote and comma in Scheme

It quickly becomes rather cumbersome to use list and quote to construct new

expressions and function declarations. Instead, one can use the backquote op-

erator (‘), also called quasiquote, and the comma operator (,), also called the

unquote operator. The backquote operator (‘) works the same as the quote op-

erator (’), excapt that inside a backquoted expression, one can use the comma

operator (,) to insert the value of a computed expression.

For example, let us define e to be the list (+ 3 x), and then try to use un-

quote e both inside an ordinary quoted list and inside a backquoted list:

286 Quasiquote and two-level languages

> (define e ’(* x 3))
#<unspecified>
> ’(+ ,e 7)
(+ (unquote e) 7)
> ‘(+ ,e 7)
(+ (* x 3) 7)

The effect of using unquote e inside a backquoted list is to insert the value of

variable e at that point in the list. This is precisely equivalent to an expression

using the list function and quoted expressions:

> (list ’+ e ’7)
(+ (* x 3) 7)

In fact, the unquoted expression need not be a variable such as e, but can

be any expression which may even contain further backquotes and commas.

For instance, we can define a function addsqrgen which, given an argument y,

returns a declaration of function f that takes an argument x and returns x+y2:

> (define (addsqrgen y) ‘(define (f x) (+ x ,(* y y))))
#<unspecified>

Applying addsqrgen to 7 returns declaration of a function f that adds 49 to its

argument:

> (addsqrgen 7)
(define (f x) (+ x 49))

If we use eval on the resulting list, the function f becomes defined and can be

used subsequently:

> (eval (addsqrgen 7))
#<unspecified>
> (f 100)
149

14.3.5 Program generation with backquote and comma

Using Scheme’s backquote and comma notation, one can easily write a gener-

ating extension for the functions poly and powr shown in section 14.3.2.

A generating extension for poly is a function that, given a list cs of coeffi-

cients for a polynomial, produces an expression with a free variable x. If this

expression is evaluated with x bound to a number, then it computes the value

of the polynomial for that value of x. A generating extension polygen for poly
can be defined like this using backquote and comma:

Quasiquote and two-level languages 287

(define (polygen cs)
(if (null? cs)

‘0
‘(+ ,(car cs) (* x ,(polygen (cdr cs))))))

For instance, building the expression to compute polynomial 11+22x+33x2 can

be done as follows:

> (polygen ’(11 22 33))
(+ 11 (* x (+ 22 (* x (+ 33 (* x 0))))))

The resulting Scheme list corresponds to the expression 11+ x · (22+ x · (33+ x ·
0)), which has the same value as 11+ 22x+ 33x2. We can bind x and evaluate

the expression to see that this works:

> (define x 10)
#<unspecified>
> (eval (polygen ’(11 22 33)))
3531

A generating extension for powr is a function that, given a value for n, produces

an expression with a free variable x. If this expression is evaluated, then it

computes x to the n’th power.

(define (powrgen n)
(if (> n 0)

(if (eq? (remainder n 2) 0)
‘(sqr ,(powrgen (/ n 2)))
‘(* x ,(powrgen (- n 1)))
)

‘1)
)

For example:

> (powrgen 97)
(* x (sqr (sqr (sqr (sqr (sqr (* x (sqr (* x 1)))))))))

This Scheme list corresponds to the expression x ·((((((x ·(x ·1)2)2)2)2)2)2), which

has the same value as x97. We can use eval, backquote and comma to define a

function powreval that computes x97 for any x, and then check that it works:

> (eval ‘(define (powreval x) ,(powrgen 97)))
#<unspecified>
> (powreval 3)
19088056323407827075424486287615602692670648963

288 Quasiquote and two-level languages

14.3.6 Two-level languages and binding-times

The generating extensions shown above may seem very ingenious, but in fact

backquotes and commas can be inserted in a fairly systematic way, by analysing

the binding times of variables and expressions. What one obtains is a two-level

language or metaprogramming language, in which one can write both static

(or early) code and dynamic (or late) code. Recall from section 14.2 that static

code will be executed as usual, whereas dynamic code will be generated rather

than executed. Consider again the poly example:

(define (poly cs x)
(if (null? cs)

0
(+ (car cs) (* x (poly (cdr cs) x)))

))

As above, assume that parameter cs is static and that x is dynamic. We classify

computations as static or dynamic, marking the dynamic code by underlining.

For instance, the condition (null? cs) in the if expression can be static be-

cause cs is static. The second branch of the if expression must be dynamic

because it depends on dynamic parameter x, whereas the 0 in first branch

could be static, but is made dynamic since the second branch is:

(define (poly cs x)
(if (null? cs)

0
(+ (car cs) (* x (poly (cdr cs) x)))

))

The structure of the above annotated program is as follows. The static if ex-

pression has two dynamic branches. The second branch consists of a dynamic

addition operator with a static first operand (car cs) and a dynamic second

operand, which is a dynamic multiplication applied to dynamic operand x and

a static call to function poly.

A static function call is one that will be ‘unfolded’, that is, will be replaced

with whatever it computes. The result of a static function call is not necessarily

static, that is, available as a value early; the function call may generate a new

program fragment such as (+ 33 (* x 0)) rather than a value such as 33.

To obtain a generating extension from the annotated program, we put a

backquote on dynamic code that appears in static context, and put a comma on

static code that appears in a dynamic context. Also, we may delete parameter

x because it is dynamic and does not change at all in the recursive calls:

Quasiquote and two-level languages 289

(define (polygen cs)
(if (null? cs)

‘0
‘(+ ,(car cs) (* x ,(polygen (cdr cs))))

))

Subjecting the powr example to the same treatment, we find that everything is

static except the branches of the inner if:

(define (powr n x)
(if (> n 0)

(if (eq? (remainder n 2) 0)
(sqr (powr (/ n 2) x))
(* x (powr (- n 1) x))
)

1
)

)

and hence, using backquote and comma:

(define (powrgen n)
(if (> n 0)

(if (eq? (remainder n 2) 0)
‘(sqr ,(powrgen (/ n 2)))
‘(* x ,(powrgen (- n 1)))
)

‘1)
)

14.3.7 Two-level languages and quasiquote

DynJava is an extension of the Java programming language with facilities for

program generation [108], essentially a two-level language. In DynJava, code

to be generated is prefixed with backquote (‘) exactly as in Scheme. Inside

backquoted code one can use the dollar sign ($) to insert the value of variables;

this is a restricted version of Scheme’s comma or unquote operator. For in-

stance, a generating extension for evaluation of polynomials can be written as

follows in DynJava:

‘{ double res = 0.0; }
for (int i=cs.length-1; i>=0; i--)
‘{ res = res * x + $cs[i]; }

‘{ return res; }

First the backquoted statement ‘{ double res = 0.0; } causes a declaration

of res to be generated, then the for loop is executed and generates an assign-

290 Runtime code generation using C#

ments to res for each element of cs, and finally a return statement is gener-

ated.

There are a number of academic tools for program generation with the same

goals as DynJava, notably SafeGen [63], Genoupe [43] and Jumbo [76] for Java,

and Metaphor [105] for C#. None of these can be considered quite ready for

industrial use.

In the remainder of this chapter we shall generate specialized programs

not in source form, but in bytecode form, using runtime code generation.

14.4 Runtime code generation using C#

The C# language and the .Net Common Language Infrastructure (CLI) support

runtime code generation through the namespace System.Reflection.Emit. It

seems to be a conscious design choice in CLI to make runtime code generation

fairly easy and efficient.

In Section 14.4.1 we outline how to generate, at runtime, a new method

MyMethod, and how to call the resulting method. Then Sections 14.4.2 through 14.4.6

show several examples that generate the body of such a method.

14.4.1 CLI runtime code generation of dynamic method

This subsection shows how to generate a so-called dynamic method at runtime.

Our goal is to generate a method MyMethod, as if it were declared like this:

public static double MyMethod(double x) {
... generated method body ...

}

Despite the name, the generation of a ‘dynamic method’ actually adds a new

static (non-instance) method to an existing CLI module. To call the generated

method, we need a delegate type compatible with it. For this can either use

a specific non-generic delegate type such as D2D that describes a delegate that

takes as argument a double and returns a double:

public delegate double D2D(double x);

Or, since C# 3.5, we can use a type instance of the generic delegate type

Func<...>; in this particular case:

Func<double,double>

Runtime code generation using C# 291

The steps required to generate and call the dynamic method are outlined in

Figure 14.1; the full example code is in file rtcg/RTCG2D.cs. First an object

of type DynamicMethod from namespace System.Reflection.Emit is created. In

this example, it describes a static method MyMethod that has return type double
and a single parameter of type double, and belongs to the CLI module that

contains the String type (the latter is not important).

// (1) Create a DynamicMethod and obtain an ILGenerator from it:
DynamicMethod methodBuilder =
new DynamicMethod("MyMethod", // Method name

typeof(double), // Return type
new Type[] { typeof(double) }, // Argument types
typeof(String).Module); // Containing module

ILGenerator ilg = methodBuilder.GetILGenerator();
// (2) ... use ilg to generate the body of MyMethod (see later) ...
// (3) Call the newly generated method:
D2D mymethod = (D2D)methodBuilder.CreateDelegate(typeof(D2D));
double res = mymethod(5);

Figure 14.1: (1) Create a dynamic method, (2) generate its body, and (3) call

the method through a delegate. Step (2) is detailed in Section 14.4.2.

14.4.2 Generating and calling a simple method

For illustration, let us generate the body of a simple method MyMethod in MyClass:

public virtual double MyMethod(double x) {
System.Console.WriteLine("MyClass.MyMethod() was called");
return x + 2.1;

}

We do this by implementing step (2) in Figure 14.1 as follows, using the CIL

bytecode generator ilg created in those figures to generate bytecode:

ilg.EmitWriteLine("MyMethod() was called");
ilg.Emit(OpCodes.Ldarg_0);
ilg.Emit(OpCodes.Ldc_R8, 2.1);
ilg.Emit(OpCodes.Add);
ilg.Emit(OpCodes.Ret);

The first line generates bytecode to print a message. The second line loads the

value of the newly generated method’s first parameter; this is argument num-

ber 0 because the method is static. The third line pushes the double constant

292 Runtime code generation using C#

2.1, the fourth line adds the former two values, and the Ret instruction returns

the result.

The full example is from file rtcg/RTCG2D.cs, in which the newly generated

method is called in two ways:

• The generated method may be called by reflection on the DynamicMethod
object:

res = (double)methodBuilder.Invoke(null, new object[] { 6 });

• The generated method may be wrapped as a delegate and called by a

delegate call, as already shown in Figure 14.1:

D2D mm = (D2D)methodBuilder.CreateDelegate(typeof(D2D));
res = mm(7);

This is faster than a reflective call, because it avoids runtime access

checks, and wrapping of arguments and unwrapping of results.

14.4.3 Speed of code generated at runtime

The example rtcg/RTCG3D.cs generates three different versions of a method

containing a simple loop, to be executed one billion times:

public static void MyMethod(int x) {
do {
x--;

} while (x != 0);
}

The purpose of this example is to compare the speed of bytecode generated at

runtime with the speed of ordinary compiled C# code, and to see how bytecode

style affects the speed. The results, summarized in Section 14.7, show that

bytecode generated at runtime is as fast as ordinary compiled code.

A bytecode loop can be generated by defining a label start to mark a posi-

tion in the CIL code stream, and subsequently using the label in a conditional

branch instruction:

Label start = ilg.DefineLabel();
ilg.MarkLabel(start); // start:
ilg.Emit(OpCodes.Ldarg_0); // push x
ilg.Emit(OpCodes.Ldc_I4_1); // push 1
ilg.Emit(OpCodes.Sub); // substract

Runtime code generation using C# 293

ilg.Emit(OpCodes.Starg_S, 0); // store (x-1) in x
ilg.Emit(OpCodes.Ldarg_0); // push x
ilg.Emit(OpCodes.Brtrue, start); // if non-zero, go to start
ilg.Emit(OpCodes.Ret); // return

Above, the loop counter is kept in the method’s argument 0, but the loop

counter might be kept on the stack top instead:

Label start = ilg.DefineLabel();
ilg.Emit(OpCodes.Ldarg_0); // push x
ilg.MarkLabel(start); // start:
ilg.Emit(OpCodes.Ldc_I4_1); // push 1
ilg.Emit(OpCodes.Sub); // subtract 1
ilg.Emit(OpCodes.Dup); // duplicate stack top
ilg.Emit(OpCodes.Brtrue, start); // if non-zero go to start
ilg.Emit(OpCodes.Pop); // pop x
ilg.Emit(OpCodes.Ret); // return

This code is functionally equivalent to the previous version, but apparently this

use of the CLI stack prevents the just-in-time code generator from generating

machine code that uses the x86 registers efficiently; so this is more than 50 %

slower in both the Microsoft and Mono implementations.

Also, one might try to keep the loop counter in local variable 0 instead of

argument 0. This makes no difference relative to the first version in the Mi-

crosoft implementation, but gives some speedup in the Mono 1.1.9 implemen-

tation provided option optimize=all is used.

14.4.4 Example: specializing the power function

For a potentially more useful case, consider again the Power(n, x) method

from Section 14.2, which raises x to the n’th power. We define again a gen-

erating extension PowerGen for Power, but instead of generating Java or C# or

Scheme source code, we shall generate bytecode, at runtime. This is imple-

mented by file rtcg/RTCG4D.cs.

A call PowerGen(n) generates CIL code that will efficiently compute x to the

n’th power, for any value of x. As in Sections 14.2 and 14.3.5, the bytecode

generated by PowerGen contains no loops, no tests, and no computations on n;

they have been performed during code generation. Even for moderate values

of n (such as 16), the specialized code is therefore faster than the general code.

The PowerGen bytecode generator looks like this:

public static void PowerGen(ILGenerator ilg, int n) {
ilg.DeclareLocal(typeof(int)); // p is local_0, x is arg_1
ilg.Emit(OpCodes.Ldc_I4_1);

294 Runtime code generation using C#

ilg.Emit(OpCodes.Stloc_0); // p = 1;
while (n > 0) {
if (n % 2 == 0) {

ilg.Emit(OpCodes.Ldarg_1); // x is arg_1
ilg.Emit(OpCodes.Ldarg_1);
ilg.Emit(OpCodes.Mul);
ilg.Emit(OpCodes.Starg_S, 1); // x = x * x
n = n / 2;

} else {
ilg.Emit(OpCodes.Ldloc_0);
ilg.Emit(OpCodes.Ldarg_1);
ilg.Emit(OpCodes.Mul);
ilg.Emit(OpCodes.Stloc_0); // p = p * x;
n = n - 1;

}
}
ilg.Emit(OpCodes.Ldloc_0);
ilg.Emit(OpCodes.Ret); // return p;

}

This generator is somewhat more verbose than PowerTextGen in Section 14.2

but has exactly the same structure. This shows there is nothing inherently

mysterious about runtime bytecode generation. It is just a question of skipping

the source code generation and the compiler, and going straight to the virtual

machine’s bytecode.

14.4.5 Example: compiled polynomial evaluation

Example rtcg/RTCG5D.cs shows the C# code to generate specialized evaluators

for a polynomial with coefficients cs, using Horner’s rule as in Section 14.3.5:

p(x) = cs[0]+ x · (cs[1]+ x · (. . .(cs[n]+ 0) . . .))

Method Poly(cs, x) evaluates the polynomial at x:

public static double Poly(double[] cs, double x) {
double res = 0.0;
for (int i=cs.Length-1; i>=0; i--)
res = res * x + cs[i];

return res;
}

Method PolyGen generates, at runtime, a specialized version of Poly for a given

coefficient array cs.

JVM runtime code generation (gnu.bytecode) 295

public static void PolyGen(ILGenerator ilg, double[] cs) { // x is arg_1
ilg.Emit(OpCodes.Ldc_R8, 0.0); // push res = 0.0 on stack
for (int i=cs.Length-1; i>=0; i--) {
ilg.Emit(OpCodes.Ldarg_1); // load x
ilg.Emit(OpCodes.Mul); // compute res * x
if (cs[i] != 0.0) {
ilg.Emit(OpCodes.Ldc_R8, cs[i]); // load cs[i]
ilg.Emit(OpCodes.Add); // compute x * res + cs[i]

}
}
ilg.Emit(OpCodes.Ret); // return res;

}

Again the generated code contains no loops, tests, or array indexing. The eval-

uation can be performed solely on the stack, accessing only the argument x,

and pushing the coefficients as literal constants. The specialized code may be

twice as fast as the general one even for rather polynomials of degree only 8,

say, and may be much faster when there are many zero coefficients.

14.4.6 Example: compiled expression evaluation

Example rtcg/RTCG6D.cs presents a rudimentary abstract syntax for expres-

sions in one variable, as may be found in a program to interactively draw

graphs or compute zeroes of functions etc. The abstract syntax permits calls

to static methods in class System.Math. An expression in abstract syntax (sub-

class of abstract class Expr) has two methods:

• method double Eval(double x) to compute the value of the expression as

a function of x, essentially by interpreting the abstract syntax;

• method void Gen(ILGenerator ilg) to generate CIL code for the expres-

sion.

Even for small expressions the generated code is three times faster than the

general interpretive evaluation by Eval.

14.5 JVM runtime code generation (gnu.bytecode)

Here we show the necessary setup for generating a Java class MyClass con-

taining a method MyMethod, using the gnu.bytecode package [52]. First we use

reflection to create a named public class MyClass with superclass Object, and

make the class implement an interface that describes the method MyMethod we

want to generate. The full details of this example are in file rtcg/RTCG2.java.

296 JVM runtime code generation (gnu.bytecode)

// (1) Create class and method:
ClassType co = new ClassType("MyClass");
co.setSuper("java.lang.Object");
co.setModifiers(Access.PUBLIC);
co.setInterfaces(new ClassType[] { new ClassType("IMyInterface") });
... (1*) generate a constructor in class MyClass ...
Method mo = co.addMethod("MyMethod");
mo.setSignature("(D)D");
mo.setModifiers(Access.PUBLIC);
mo.initCode();
CodeAttr jvmg = mo.getCode();
... (2) use jvmg to generate the body of method MyClass.MyMethod ...
// (3) Load class, create instance, and call generated method:
byte[] classFile = co.writeToArray();
Class ty = new ArrayClassLoader().loadClass("MyClass", classFile);
Object obj = ty.newInstance();
IMyInterface myObj = (IMyInterface)obj;
double res = myObj.MyMethod(5);

Figure 14.2: Setup for RTCG with Java and gnu.bytecode: (1) Create class and

method; (2) generate method body; and (3) create class and call method. Step

(1*) is detailed in Figure 14.3.

JVM runtime code generation (BCEL) 297

An argumentless constructor is added to class MyClass in step (1*) of Fig-

ure 14.2 by adding a method with the special name <init>. The constructor

simply calls the superclass constructor, using an invokespecial instruction, as

shown in Figure 14.3.

Then a method with given signature and access modifiers, represented by

method object mo, is added to the class in step (2) of Figure 14.2), and a code

generator jvmg is obtained for the method and is used to generate the method’s

body.

Once the constructor and the method have been generated, in step (3) of

Figure 14.2 a representation of the class is written to a byte array and loaded

into the JVM using a class loader. This produces a class reference ty that

represents the new class MyClass.

Finally, to call the newly generated method, an instance obj of the class

is created and cast to the interface describing the generated method, and then

the method in the object myObj is called using an interface call myObj.MyMethod(5).

14.6 JVM runtime code generation (BCEL)

The Bytecode Engineering Library BCEL [25] is another third-party Java li-

brary that can be used for runtime code generation. Here we outline the nec-

essary setup for code generation with BCEL.

One must create a class generator cg, specifying superclass, access modi-

fiers and a constant pool cp (Section 9.3) for the generated class, and an inter-

face describing the generated method. Then one must generate a constructor

for the class, and generate the method, as outlined in Figure 14.4.

An argumentless constructor is added to class MyClass (step 1 in Figure 14.4)

by adding a method with the special name <init>. The constructor should just

call the superclass constructor, as shown in Figure 14.5.

Step 2 in Figure 14.4 generates the body of the method. Then step 3 writes

a representation clazz of the class to a byte array, loads it into the JVM using a

class loader, creates an instance of the class and casts it to the interface. Then

the generated method can be called by an interface call as in Section 14.5.

Example files rtcg/RTCG4B.java and rtcg/RTCG7B.java contain other complete

examples using the BCEL bytecode toolkit.

14.7 Speed of code and of code generation

Figures 14.6 and 14.7 compare the speed of the generated code, and the speed

of code generation, for three JVM implementations, Microsoft’s CLR, and the

Mono implementation. Experiments were made (around 2004) under Linux,

298 Speed of code and of code generation

Method initMethod =
co.addMethod("<init>", new Type[] {}, Type.void_type, 0);

initMethod.setModifiers(Access.PUBLIC);
initMethod.initCode();
CodeAttr jvmg = initMethod.getCode();
Scope scope = initMethod.pushScope();
Variable thisVar = scope.addVariable(jvmg, co, "this");
jvmg.emitLoad(thisVar);
jvmg.emitInvokeSpecial(ClassType.make("java.lang.Object")

.getMethod("<init>", new Type[] {}));
initMethod.popScope();
jvmg.emitReturn();

Figure 14.3: Generating a constructor at (1*) in Figure 14.2.

// (1) Create class and method:
ClassGen cg = new ClassGen("MyClass", "java.lang.Object",

"<generated>",
Constants.ACC_PUBLIC | Constants.ACC_SUPER,
new String[] { "IMyInterface" });

ConstantPoolGen cp = cg.getConstantPool();
InstructionFactory factory = new InstructionFactory(cg);
... (1*) generate a constructor in class MyClass ...
InstructionList il = new InstructionList();
MethodGen mg = new MethodGen(Constants.ACC_PUBLIC,

Type.DOUBLE, new Type[] { Type.DOUBLE },
new String[] { "x" },
"MyMethod", "MyClass", il, cp);

... (2) use il to generate the body of method MyClass.MyMethod ...
mg.setMaxStack();
cg.addMethod(mg.getMethod());
// (3) Load class, create instance, and call generated method:
JavaClass clazz = cg.getJavaClass();
byte[] classFile = clazz.getBytes();
Class ty = new ArrayClassLoader().loadClass("MyClass", classFile);
Object obj = ty.newInstance();
IMyInterface myObj = (IMyInterface)obj;
double res = myObj.MyMethod(5);

Figure 14.4: Setup for RTCG in Java with BCEL: (1) Create class and method;

(2) generate method body; and (3) create class and call method. Step (1*) is

detailed in Figure 14.4.

Efficient reflective method calls in Java 299

with Sun Hotspot 1.5.0, IBM J2RE 1.4.2 [41], Mono 1.1.9 with option optimize=all[102],

gcc 3.3.5 and GNU Lightning 1.2 [91] under Linux, and Microsoft CLR 2.0 beta

under Windows 2000 under VmWare 4.5.2.

Sun’s Hotspot Client VM performs approximately 400 million iterations per

second, and the IBM JVM performs nearly twice as many. In both cases this

is as fast as bytecode compiled from Java source, and in case of the IBM JVM,

even as fast as machine code compiled from C (optimized with -O2). This shows

that bytecode generated at runtime carries no inherent speed penalty com-

pared to code compiled from Java programs. The Sun Hotspot Server VM op-

timizes more aggressively and removes the entire loop because its results are

never used. These measurements were made with example rtcg/RTCG3D.cs
from Section 14.4.3 and example rtcg/RTCG3.java.

On the same platform, straight-line JVM bytecode can be generated at a

rate of about a million bytecode instructions per second with Sun HotSpot

Client VM and approximately half that with the Sun Hotspot Server JVM or

the IBM JVM, when using the gnu.bytecode package [52]. Code generation

with BCEL package [25] seems to be only half as fast as with gnu.bytecode. The

code generation time includes the time taken by the just-in-time compiler to

generate machine code. These measurements were made with rtcg/RTCG7D.cs,

rtcg/RTCG7.java and rtcg/RTCG7B.java.

14.8 Efficient reflective method calls in Java

Reflective method calls in Java are slow because of the need to wrap primitive

type arguments (int and so on) as objects and to unwrap primitive type results.

In contrast to C#, a reflective method handle mo, which is an object of class

java.lang.reflect.Method, cannot be wrapped as a delegate.

However, using runtime code generation one can obtain a similar effect, by

creating from mo an object of a class that has a method of the correct compile-

time type.

More precisely, assume we have a Method object mo that represents a method

with signature (R)(T1,...,Tn). Then we want to dynamically create an object

oi whose class implements a compiled interface OI which describes a method

R m(T1,...,Tn) corresponding to mo. Moreover, the creation of oi must check,

once and for all, that the type R m(T1,...,Tn) for m given by OI actually matches

the type described by the Method object mo, and that all access restrictions — no

access to private methods, and so on — are respected, so that this need not be

checked at every invocation of oi.m(...). Also, any primitive type arguments

passed to oi.m(...) must be passed straight on to the method underlying mo,

without any boxing or unboxing operations.

300 Efficient reflective method calls in Java

InstructionFactory factory = new InstructionFactory(cg);
InstructionList ilc = new InstructionList();
MethodGen mgc = new MethodGen(Constants.ACC_PUBLIC,

Type.VOID, new Type[] { }, new String[] { },
"<init>", "MyClass",
ilc, cp);

ilc.append(factory.createLoad(Type.OBJECT, 0));
ilc.append(factory.createInvoke("java.lang.Object", "<init>",

Type.VOID, new Type[] { },
Constants.INVOKESPECIAL));

ilc.append(new RETURN());
mgc.setMaxStack();
cg.addMethod(mgc.getMethod());

Figure 14.5: Generating a constructor at (1*) in Figure 14.4.

Sun HotSpot IBM MS Mono C gcc

Client Server JVM CLR CLI gnulig’n

Compiled loop (106/s) 392 ∞ 781 775 775 781

Generated loop (106/s) 392 ∞ 781 775 775 515

Code generation (103/s) 1000 450 500 700 350 >50000

Figure 14.6: Speed of simple loop, and of code generation; 1.6 GHz Pentium M.

Sun HotSpot IBM MS Mono C gcc

Client Server JVM CLR CLI gnulig’n

Compiled loop (106/s) 875 ∞ 1770 2220 1727 1818

Generated loop (106/s) 875 ∞ 2150 2220 1755 1818

Code generation (103/s) 1030 440 550 833 475 >50000

Figure 14.7: Speed of simple loop, and of code generation; 2.8 GHz Pentium 4.

Applications of runtime code generation 301

In this way we obtain an object that is rather similar to a delegate, in Java.

Not surprisingly, this implementation of delegate creation in Java is approxi-

mately 100 times slower than the built-in delegate creation in Microsoft’s CLR.

Experiments indicate that a Java ‘delegate’ created in this way must be called

approximately 2,000 times before the cost of creating the delegate class and

the delegate object has been recovered.

14.9 Applications of runtime code generation

General application areas of runtime code generation include:

• unrolling of recursion and loops, and inlining of constants, as in the Power
example, the polynomials examples, or vector dot product computation;

• removal of interpretive overhead, as in the MS .Net Framework regular

expression matcher;

Concrete example applications of runtime code generation:

• generation of efficient code for expressions or functions entered by a user

at runtime, for instance in a function graph drawing program (rtcg/RTCG6D.cs);

• fast raytracing algorithms for a given scene;

• specialized sorting routines with inlining of the comparison predicates, or

compiling different comparison predicates dependent on the type or order

of elements being sorted; see the record comparison example in [81];

• training neural networks of a given network topology;

• the bitblt example from [81];

• fast customized serialization and deserialization methods for a given class

[140];

• fast multiplication of sparse matrices (rtcg/RTCG8D.cs and rtcg/RTCG8.java).

14.10 History and literature

The Scheme programming language was defined by Guy L. Steele in 1975, and

is strongly inspired by Lisp but has static scope. Much innovation in this area

takes place in Racket [5] (formerly PLT Scheme), a framework for a number of

Scheme-like languages. Another related language is Dylan [3].

302 History and literature

Program generators have been used for decades, mostly in the form of gen-

erators of programs in source text which are then compiled by an ordinary

compiler. Recent examples include Velocity [144] and XDoclet [147], which

are widely used, for instance to generate skeleton Java classes from database

schemas or data descriptions in XML.

Quasiquotation was used by the linguist V.v.O. Quine around 1940, and

introduced in the Lisp programming language before 1980. Alan Bawden [18]

explains the use and history of quasiquotation (backquote and comma) in Lisp

and Scheme.

David Keppel, Susan J. Eggers and Robert R. Henry argue in a series of

technical reports that runtime code generation is useful [81, 82]. The reports

require some understanding of processor architecture. Later work in the same

group led to the DyC system for runtime code generation in C [14, 56].

Bytecode generation tools for Java include gnu.bytecode [52], developed for

Kawa, a JVM-based implementation of Scheme, and the Bytecode Engineering

Library (BCEL) [25], formerly called JavaClass, which seems to be used in

several projects.

Tools for runtime code generation in C, called ’C or tick-C, have been devel-

oped by Dawson R. Engler and others [47, 48]. Their portable Vcode system

is fast; it generates code using approximately 10 instructions per generated

instruction.

The staging of computations implied by runtime code generation is closely

related to staging transformations [74]. Automatic staging and specialization

of programs in the subject of partial evaluation and program specialization.

Partial evaluation was proposed by Futamura in 1970. It received much

attention in Japan, Russia and Sweden in the 1970’es, and worldwide attention

since the mid-1980’es. The monograph by Jones, Gomard and Sestoft [69] and

the encyclopedia paper [100] provide an overview of this area, many examples,

and references to the literature.

Indeed, partial evaluation provided the original inspiration for Nielson and

Nielson’s [106] detailed formal study of two-level functional languages. Danvy

and Filinski used the concept of a two-level language in their study and im-

provement of the CPS transformation [37].

Antonio Cisternino and Andrew Kennedy have developed a library for C#

that considerably simplifies runtime generation of CIL code [31, 12, 30].

Implementations of two-level languages, or metaprogramming languages,

include Sheard and Taha’s MetaML [138], Oiwa’s DynJava [108], Calcagno

and Taha’s MetaOCaml [26], based on OCaml, and finally Draheim’s Genoupe

[43] and Neverov’s Metaphor [105], both based on C#. Older related systems

include Engler’s tick-C, mentioned above, and Leone’s Fabius [87], but these

are defunct by now.

Exercises 303

A challenge that has been addressed especially in recent years is how en-

sure that generated programs are always well-formed and well-typed, ideally

by (type)checking only the generating program. For Scheme, which is dynami-

cally typed, this problem is usually ignored, but for statically typed languages

such as ML, Java and C# this ought to be possible. This has been achieved in

e.g. the metaprogramming language MetaOCaml, but it is rather more difficult

for general program generators such as SafeGen [63].

A comparison of the efficiency and potential speedups of runtime code gen-

eration in several implementations of the Java/JVM and C#/CLR runtime en-

vironments can be found in [126]. That report also provides more examples,

such as runtime code generation in an implementation of the US Federal Ad-

vanced Encryption Standard (AES).

14.11 Exercises

The main goal of these exercises is to get a taste of programming in Scheme,

to understand program generation using Scheme, and to understand runtime

bytecode generation in .NET using C#.

Do this first

Install a Scheme system, such as Racket [] (previously PLT Scheme) for Win-

dows, MacOS or Linux; or Jaffer’s scm system, primarily for Linux. To check

that everything works out of the box, start the Scheme system and enter this

expression:

(define (fac n) (if (= n 0) 1 (* n (fac (- n 1)))))

and then compute (fac 10); the result should be 3628800. For kicks, try com-

puting also (fac 1000).

Exercise 14.1 Each subproblem in this exercise can be solved by a Scheme

function definition 4 to 7 lines long, but you are welcome to define auxiliary

functions for clarity. Apart from the new syntax and lack of pattern matching

and type checking, Scheme programming is rather close to F#.

(i) Define a function (prod xs) that returns the product of the numbers in xs.

It is reasonable to define the product of an empty list to be 1.

(ii) Define a function (makelist1 n) that returns the n-element list (n ...3 2
1).

(iii) Define a function (makelist2 n) that returns the n-element list (1 2 3 ...
n).

304 Exercises

This can be done by defining an auxiliary function (makeaux i n) that re-

turns the list (i ... n) and then calling that auxiliary function from (makelist2
n). Note that the result of (makeaux i n) should be the empty list if i>n.

(iv) The function (filter p xs) returns a list consisting of those elements of

list xs for which predicate p is true. Thus if xs is ’(2 3 5 6 8 9 10 12 15) then

(filter (lambda (x) (> x 10)) xs) should give (12 15) and (filter (lambda
(x) (= 0 (remainder x 4))) xs) should give (8 12)

Define function (filter p xs).

(v) More recursion. A list can contain a mixture of numbers and sublists, as in

(define list1 ’(1 (1 2) (1 2 3)))

and

(define list2 ’(1 (1 (6 7) 2) (1 2 3)))

Write a function (numbers mylist) that counts the number of numbers in mylist.

The result of (numbers list1) should be 6, and that of (numbers list2) should

be 8.

Hint: The predicate (number? x) is true if x is a number, not a list.

Exercise 14.2 (Scheme and code generation)

(i) The exponential function ex can be approximated by the expression

1+
x
1
(1+

x
2
(1+

x
3
(1+

x
4
(1+

x
5
(. . .)))))

Define a Scheme function (makeexp i n) that returns a Scheme expression

containing the terms from 1+x/i to 1+x/n of the above expression 1, replacing

‘. . . ’ at the end with 1. Note the similarity to Exercise 14.1 part (iii).

Thus (makeexp 1 0) should be the expression 1, and (makeexp 1 1) should

be the expression 1 + x * 1/1 * 1, and (makeexp 1 2) should be 1 + x * 1/1
* (1 + x * 1/2 * 1), and so on.

Hint: In Scheme, multiplication (*) may be applied to any number of argu-

ments, so x * y * z can be written (* x y z).

Hence, in Scheme the three expressions shown above can be written:

1
(+ 1 (* x 1 (+ 1 0)))
(+ 1 (* x 1 (+ 1 (* x 0.5 (+ 1 0)))))

Check that (makeexp 1 n) produces these results for n equal to 0, 1 and 2.

Then define x to be 2 and compute (eval (makeexp 1 n)) for n equal 1, 10

and 20. The correct result is close to 7.38905609893065.

Exercises 305

(ii) Now define a function (makemyexp n) that, as a side effect, defines a

function myexp. When (myexp x) is called, it must compute ex using n terms of

the above expansion.

Function (makemyexp n) should use (makeexp 1 n) to do its job.

Exercise 14.3 (.NET runtime code generation)

To get started, download the example file rtcg.zip and unpack it; compile

RTCG2D.cs and run it; and look at the contents of file RTCG2D.cs.

For the exercises below, use the DynamicMethod approach when generating

new methods at runtime. Using class DynamicMethod from namespace Sys-

tem.Reflection.Emit one can generate a method that can be turned into a del-

egate, which can then be called as any other delegate. Methods generated this

way can also be collected by the garbage collector when no longer in use.

(i) Modify the RTCG2D.cs example so that it generates a method correspond-

ing to this one:

public static double MyMethod1(double x) {
Console.WriteLine("MyMethod1() was called");
return x * 4.5;

}

Hint: The bytecode instruction for multiplication is OpCodes.Mul, from the Sys-

tem.Reflection.Emit namespace.

Check that the new method works by calling it with arguments 1.0 and

10.0.

(ii) Modify the RTCG2D.cs example so that it generates a method corresponding

to this one:

public static double MyMethod2(double x, double y) {
Console.WriteLine("MyMethod2() was called");
return x * 4.5 + y;

}

Note that you need to change the generated method’s signature, and you that

the generated delegate’s type will be Func<double,double,double, where Func<>
is the generic delegate type from .NET namespace System.

(iii) Write a C# method

public static Func<int,int> MakeMultiplier(int c) { ... }

that takes as argument an integer c, and then generates and returns a dele-

gate, of type Func<int,int>, that corresponds to a method declared like this:

306 Exercises

public static int MyMultiplier_c(int x) {
return x * c;

}

Hint: The MakeMultiplier method must include everything needed to generate

a MyMultiplier_c method. The generated method’s return type and its param-

eter type should be int.

(iv) The exponential function ex can be computed by the expression

1+
x
1
(1+

x
2
(1+

x
3
(1+

x
4
(1+

x
5
(. . .)))))

Write a C# method

public static Func<double,double> MakeExp(int n) { ... }

that takes as argument an integer n and uses runtime code generation to gen-

erate and return a delegate, of type Func<double,double>, that corresponds to

a method declared like this:

public static double MyExp_n(double x) {
... compute res as first n terms of the above product ...
return res;

}

Hint (a): If you were to compute the term instead of generating code for it, you

might do it like this:

double res = 1;
for (int i=n; i>0; i--)
res = 1 + x / i * res;

return res;

The generated code should contain no for-loop and no manipulation of i, only

the sequence of computations on res performed by the iterations of the loop

body.

Hint (b): To push integer i as a double, use .NET bytecode instruction

ldc.r8 i, which can be generated like this:

ilg.Emit(OpCodes.Ldc_R8, (double)i);

(v) Write a C# method

public static Func<double,double> MakePower(int n) { ... }

Exercises 307

that takes as argument an int n, and uses runtime code generation to gener-

ate and return a delegate, of type Func<double,double>, that corresponds to a

method declared like this:

public static double MyPower_n(double x) {
... compute res as x to the n’th power ...
return res;

}

Hint (a): If you were to compute the n’th power of x instead of generating code

for it, you might do it like this:

double res = 1;
for (int i=0; i<n; i++)
res = res * x;

return res;

The generated code should contain no for-loop and no manipulation of n, only

the sequence of computations on res performed by the loop’s body.

Hint (b): A much faster way of doing the same – time O(logn) instead of

time O(n) – is this:

double res = 1;
while (n != 0) {
if (n % 2 == 0) {
x = x * x;
n = n / 2;

} else {
res = res * x;
n = n - 1;

}
}
return res;

Again, the generated code should contain no loop and no manipulations of n;

only the sequence of operations on x and res performed by the loop body.

308 Exercises

Appendix A

F# crash course

This chapter introduces parts of the F# programming language as used in this

book. F# belongs to the ML family of programming languages, which includes

classical ML from 1978, Standard ML [99] from 1986, CAML from 1985, Caml

Light [88] from 1990, and OCaml [107] from 1996, where F# most resembles

the latter. All of these languages are strict, mostly functional, and statically

typed with parametric polymorphic type inference.

In Microsoft Visual Studio 2010, F# is included by default. You can also run

F# on MacOS and Linux, using the Mono implementation [102] of CLI/.NET:

see ‘Using F# with Mono’ in the README file of the F# distribution.

A.1 What files are provided for this chapter

File Contents

Intro/Appendix.fs All examples shown in this chapter

A.2 Getting started

To get the F# interactive prompt, open a Visual Studio Command Prompt, then

type fsi for F# Interactive. fsi It allows you to enter declarations and evaluate

expressions:

Microsoft (R) F# 2.0 Interactive build 4.0.30319.1
Copyright (c) Microsoft Corporation. All Rights Reserved.
For help type #help;;
> let rec fac n = if n=0 then 1 else n * fac(n-1);;
val fac : int -> int
> fac 10;;

309

310 Expressions, declarations and types

val it : int = 3628800
> #q;;

Text starting with an angle symbol (>) is entered by the user; the other lines

hold the F# system’s response. You can also run the same F# Interactive inside

Visual Studio 2010 by choosing View > Other Windows > F# Interactive, but

that is likely to cause a lot of confusion when we start using the F# lexer and

parser tools.

A.3 Expressions, declarations and types

F# is a mostly-functional language: a computation is performed by evaluating

an expression such as 3+4. If you enter an expression in the interactive system,

followed by a double semicolon (;;) and a newline, it will be evaluated:

> 3+4;;
val it : int = 7

The system responds with the value (7) as well as the type (int, for integer

number) of the expression.

A declaration let v = e introduces a variable v whose value is the result of

evaluating e. For instance, this declaration introduces variable res:

> let res = 3+4;;
val res : int = 7

After the declaration one may use res in expressions:

> res * 2;;
val it : int = 14

A.3.1 Arithmetic and logical expressions

Expressions are built from constants such as 2 and 2.0, variables such as res,

and operators such as multiplication (*). Figure A.1 summarizes predefined

F# operators.

Expressions may involve functions, such as the predefined function sqrt.

Function sqrt computes the square root of a floating-point number, which has

type float, a 64-bit floating-point number. We can compute the square root of

2.0 like this:

> let y = sqrt 2.0;;
val y : float = 1.414213562

Expressions, declarations and types 311

Floating-point constants must be written with a decimal point (2.0) or in sci-

entific notation (2E0) to distinguish them from integer constants.

To get help on F#, consult http://msdn.microsoft.com/fsharp/ where you may

find the library documentation and the draft language specification [136], or

see the F# Wiki at http://strangelights.com/fsharp/Wiki/.

You can also use (static) methods from the .NET class libraries, after open-

ing the relevant namespaces:

> open System;;
> let y = Math.Sqrt 2.0;;
val y : float = 1.414213562

Logical expressions have type bool:

> let large = 10 < res;;
val large : bool = false

Logical expressions can be combined using logical ‘and’ (conjunction), written

&&, and logical ‘or’ (disjunction), written ||. Like the operators of C/C++/Java/C#

they are sequential, so that && will evaluate its right operand only if the left

operand is true (and dually for ||):

> y > 0.0 && 1.0/y > 7.0;;
val it : bool = false

Logical negation is written not e :

> not false ;;
val it : bool = true

The (!) operator is used for another purpose, as described in section A.12.

Logical expressions are typically used in conditional expressions, written if
e1 then e2 else e3, which correspond to (e1 ? e2 : e3) in C/C++/Java/C#:

> if 3 < 4 then 117 else 118;;
val it : int = 117

A.3.2 String values and operators

A text string has type string. A string constant is written within double quotes

("). The string concatenation operator (+) constructs a new string by concate-

nating two strings:

312 Expressions, declarations and types

Operator Type Meaning

f e Function application

! ’a ref -> ’a Dereference

- num -> num Arithmetic negation

** float * float -> float Power

/ float * float -> float Quotient

/ int * int -> int Quotient, round toward 0

% int * int -> int Remainder of int quotient

* num * num -> num Product

+ num * num -> num Sum

- num * num -> num Difference

:: ’a * ’a list -> ’a list Cons onto list (right-assoc.)

+ string * string -> string Concatenate

@ ’a list * ’a list -> ’a list List append (right-assoc.)

= ’a * ’a -> bool Equal

<> ’a * ’a -> bool Not equal

< ’a * ’a -> bool Less than

> ’a * ’a -> bool Greater than

<= ’a * ’a -> bool Less than or equal

>= ’a * ’a -> bool Greater than or equal

&& bool * bool -> bool Logical ‘and’ (short-cut)

|| bool * bool -> bool Logical ‘or’ (short-cut)

, ’a * ’b -> ’a * ’b Tuple element separator

:= ’a ref * ’a -> unit Reference assignment

Figure A.1: Some F# operators grouped according to precedence. Operators at

the top have high precedence (bind strongly). For overloaded operators, num
means int, float or another numeric type, and numtxt means num or string or

char. All operators are left-associative, except (::) and (@).

Expressions, declarations and types 313

> let title = "Professor";;
val title : string = "Professor"
> let name = "Lauesen";;
val name : string = "Lauesen"
> let junkmail = "Dear " + title + " " + name + ", You have won $$$!";;
val junkmail : string = "Dear Professor Lauesen, You have won $$$!"

The instance property Length on a string returns its length (number of charac-

ters):

> junkmail.Length;;
val it : int = 41

A.3.3 Types and type errors

Every expression has a type, and the compiler checks that operators and func-

tions are applied only to expressions of the correct type. There are no implicit

type conversions. For instance, sqrt expects an argument of type float and

thus cannot be applied to the argument expression 2, which has type int. Some

F# types are summarized in Figure A.2; see also Section A.10. The compiler

complains in case of type errors, and refuses to compile the expression:

> sqrt 2;;
sqrt 2;;
-----^

stdin(51,6): error FS0001: The type ’int’ does not support
any operators named ’Sqrt’

The error message points to the argument expression 2 as the culprit and ex-

plains that it has type int which does not support any function Sqrt. It is up

to the reader to infer that the solution is to write 2.0 to get a constant of type

float.

Some arithmetic operators and comparison operators are overloaded, as

indicated in Figure A.1. For instance, the plus operator (+) can be used to add

two expressions of type int or two expressions of type float, but not to add an

int and a float. Overloaded operators default to int when there are no float
or string or char arguments.

A.3.4 Function declarations

A function declaration begins with the keyword let . The example below de-

fines a function circleArea that takes one argument r and returns the value

of Math.pi * r * r. The function can be applied (called) simply by writing the

function name before an argument expression:

314 Expressions, declarations and types

Type Meaning Examples

Primitive types

int Integer number (32 bit) 0, 12, ~12
float Floating-point number (64 bit) 0.0, 12.0, ~12.1, 3E~6
bool Logical true, false
string String "A", "", "den Haag"
char Character #"A", #" "
Exception Exception Overflow, Fail "index"
Functions (Sections A.3.4–A.3.6, A.9.3, A.11)

float -> float Function from float to float sqrt
float -> bool Function from float to bool isLarge
int * int -> int Function taking int pair addp
int -> int -> int Function taking two ints addc
Pairs and tuples (Section A.5)

unit Empty tuple ()
int * int Pair of integers (2, 3)
int * bool Pair of int and bool (2100, false)
int * bool * float Three-tuple (2, true, 2.1)
Lists (Section A.6)

int list List of integers [7; 9; 13]
bool list List of Booleans [false; true; true]
string list List of strings ["foo"; "bar"]
Records (Section A.7)

{x : int; y : int} Record of two ints {x=2; y=3}
{y:int; leap:bool} Record of int and bool {y=2100; leap=false}
References (Section A.12)

int ref Reference to an integer ref 42
int list ref Reference to a list of integers ref [7; 9; 13]

Figure A.2: Some monomorphic F# types.

Expressions, declarations and types 315

> let circleArea r = System.Math.PI * r * r;;
val circleArea : float -> float
> let a = circleArea 10.0;;
val a : float = 314.1592654

The system infers that the type of the function is float -> float. That is, the

function takes a floating-point number as argument and returns a floating-

point number as result. This is because the .NET library constant PI is a

floating-point number (a double).

Similarly, this declaration defines a function mul2 from float to float:

> let mul2 x = 2.0 * x;;
val mul2 : float -> float
> mul2 3.5;;
val it : float = 7.0

A function may take any type of argument and produce any type of result. The

function junkmail below takes two arguments of type string and produces a

result of type string:

> let makejunk title name =
"Dear " + title + " " + name + ", You have won $$$!";;

val makejunk : string -> string -> string
> makejunk "Vice Chancellor" "Tofte";;
val it : string = "Dear Vice Chancellor Tofte, You have won $$$!"

Note that F# is layout-sensitive (like a few other programming languages,

such as Haskell and). If the second line of the junkmail function declara-

tion had had no indentation at all, then we would get a long error message

(but strangely, in this particular case the declaration would still be accepted):

> let makejunk title name =
"Dear " + title + " " + name + ", You have won $$$!";;

"Dear " + title + " " + name + ", You have won $$$!";;
^^^^^^^

stdin(16,1): warning FS0058: Possible incorrect indentation: [more]
val makejunk : string -> string -> string

A.3.5 Recursive function declarations

A function may call any function, including itself; but then its declaration must

start with let rec instead of let. That is, a function declaration may be recur-

sive:

316 Expressions, declarations and types

> let rec fac n = if n=0 then 1 else n * fac(n-1);;
val fac : int -> int
> fac 7;;
val it : int = 5040

If two functions need to call each other by so-called mutual recursion, they

must be declared in one declaration beginning with let rec and separating

the declarations by and:

> let rec even n = if n=0 then true else odd (n-1)
and odd n = if n=0 then false else even (n-1);;

val even : int -> bool
val odd : int -> bool

A.3.6 Type constraints

As you can see from the examples, the compiler automatically infers the type

of a declared variable or function. Sometimes it is good to use an explicit type

constraint for documentation. For instance, we may explicitly require that the

function’s argument x has type float, and that the function’s result has type

bool:

> let isLarge (x : float) : bool = 10.0 < x;;
val isLarge : float -> bool
> isLarge 89.0;;
val it : bool = true

If the type constraint is wrong, the compiler refuses to compile the declaration.

A type constraint cannot be used to convert a value from one type to another

as in C. Thus to convert an int to a float, you must use function float : int
-> float . Similarly, to convert a float to an int, use a function such as floor
, round or ceil , all of which have type float -> int.

A.3.7 The scope of a binding

The scope of a variable binding is that part of the program in which it is visible.

In a let-expression let dec in exp end, the declaration dec may introduce a

variable binding whose scope is the expression exp only, without disturbing

any existing variables, not even with the same name. For instance:

> let x = 5;; (* old x is 5 : int *)
val x : int = 5
> let x = 3 < 4 (* new x is true : bool *)

in if x then 117 else 118;; (* using new x *)

Pattern matching 317

val it : int = 117
> x;; (* old x is still 5 *)
val it : int = 5

A.4 Pattern matching

Like all languages in the ML family, but unlike most other programming lan-

guages, F# supports pattern matching. Pattern matching is performed by a

match e with ...-expression , which consists of the expression e whose value

must be matched, and a list (...) of match branches. For instance, the factorial

function can be defined by pattern matching on the argument n, like this:

> let rec facm n =
match n with

| 0 -> 1
| _ -> n * facm(n-1);;

val facm : int -> int

The patterns in a match are tried in order from top to bottom, and the right-

hand side corresponding to the first matching pattern is evaluated. For in-

stance, calling facm 7 will find that 7 does not match the pattern 0, but it does

match the wildcard pattern (_) which matches any value. so the right-hand

side n * facm(n-1) gets evaluated.

A slightly more compact notation for one-argument function definitions

uses the function keyword, which combines parameter binding with pattern

matching:

> let rec faca =
function

| 0 -> 1
| n -> n * faca(n-1);;

val faca : int -> int

Pattern matching in the ML languages is similar to but much more powerful

than switch-statements in C/C++/Java/C#, because matches can involve also

tuple patterns (section A.5) and algebraic datatype constructor patterns (sec-

tion A.9) and any combination of these. This makes the ML-style languages

particularly useful for writing programs that process other programs, such as

interpreters, compilers, program analysers and program transformers.

Moreover, ML-style languages, including F#, usually require the compiler

to detect both incomplete matches and redundant matches; that is, matches

that either leave some cases uncovered, or that have some branches that are

not usable:

318 Pairs and tuples

> let bad1 n =
match n with
| 0 -> 1
| 1 -> 2;;

warning FS0025: Incomplete pattern matches on this expression.
For example, the value ’2’ may not be covered by the pattern(s).
> let bad2 n =

match n with
| _ -> 1
| 1 -> 2;;

| 1 -> 2;;
--------^

warning FS0026: This rule will never be matched

A.5 Pairs and tuples

A tuple has a fixed number of components, all of which may be of different

types. A pair is a tuple with two components. For instance, a pair of integers

is written simply (2, 3), and its type is int * int:

> let p = (2, 3);;
val p : int * int = (2, 3)
> let w = (2, true, 3.4, "blah");;
val w : int * bool * float * string = (2, true, 3.4, "blah")

A function may take a pair as an argument, by performing pattern matching

on the pair pattern (x, y):

> let add (x, y) = x + y;;
val add : int * int -> int
> add (2, 3);;
val it : int = 5

In principle, function add takes only one argument, but that argument is a

pair of type int * int. Pairs are useful for representing values that belong

together; for instance, the time of day can be represented as a pair of hours

and minutes:

> let noon = (12, 0);;
val noon : int * int = (12, 0)
> let talk = (15, 15);;
val talk : int * int = (15, 15)

Lists 319

Pairs can be nested to any depth. For instance, a function can take a pair of

pairs as argument. Note the type of function earlier:

> let earlier ((h1, m1), (h2, m2)) = h1<h2 || (h1=h2 && m1<m2);;
val earlier : (’a * ’b) * (’a * ’b) -> bool

The empty tuple is written () and has type unit. This seemingly useless

value is returned by functions that are called for their side effect only, such

as WriteLine from the .NET class library:

> System.Console.WriteLine "Hello!";;
Hello!
val it : unit = ()

Thus the unit type serves much the same purpose as the void return type in

C/C++/Java/C# — but the name is mathematically more appropriate.

A.6 Lists

A list contains zero or more elements, all of the same type. For instance, a list

may hold three integers; then it has type int list:

> let x1 = [7; 9; 13];;
val x1 : int list = [7; 9; 13]

The empty list is written [], and the operator (::) called ‘cons’ prepends an

element to an existing list. Hence this is equivalent to the above declaration:

> let x2 = 7 :: 9 :: 13 :: [];;
val x2 : int list = [7; 9; 13]
> let equal = (x1 = x2);;
val equal : bool = true

The cons operator (::) is right associative, so 7 :: 9 :: 13 :: [] reads

7 :: (9 :: (13 :: [])), which is the same as [7; 9; 13].

A list ss of strings can be created just as easily as a list of integers; note

that the type of ss is string list:

> let ss = ["Dear"; title; name; "you have won $$$!"];;
val ss : string list = ["Dear"; "Professor"; "Lauesen"; "you have won $$$!"]

The elements of a list of strings can be concatenated to a single string using

the String.concat function:

320 Lists

> let junkmail2 = String.concat " " ss;;
val junkmail2 : string = "Dear Professor Lauesen you have won $$$!"

Functions on lists are conveniently defined using pattern matching and recur-

sion. The sum function computes the sum of an integer list:

> let rec sum xs =
match xs with
| [] -> 0
| x::xr -> x + sum xr;;

val sum : int list -> int
> let x2sum = sum x2;;
val x2sum : int = 29

The sum function definition says: The sum of an empty list is zero. The sum of

a list whose first element is x and whose tail is xr, is x plus the sum of xr.

Many other functions on lists follow the same paradigm:

> let rec prod xs =
match xs with

| [] -> 1
| x::xr -> x * prod xr;;

val prod : int list -> int
> let x2prod = prod x2;;
val x2prod : int = 819
> let rec len xs =

match xs with
| [] -> 0
| x::xr -> 1 + len xr;;

val len : ’a list -> int
> let x2len = len x2;;
val x2len : int = 3
> let sslen = len ss;;
val sslen : int = 4

Note the type of len — since the len function does not use the list elements, it

works on all lists regardless of the element type; see Section A.10.

The append operator (@) creates a new list by concatenating two given lists:

> let x3 = [47; 11];;
val x3 : int list = [47; 11]
> let x1x3 = x1 @ x3;;
val x1x3 : int list = [7; 9; 13; 47; 11]

The append operator does not copy the list elements, only the ‘spine’ of the

left-hand operand x1, and it does not copy its right-hand operand at all. In

Records and labels 321

the computer’s memory, the tail of x1x3 is shared with the list x3. This works

as expected because lists are immutable: One cannot destructive change an

element in list x3 and thereby inadvertently change something in x1x3, or vice

versa.

Some commonly used F# list functions are shown in Figure A.3.

Function Type Meaning

append ’a list -> ’a list -> ’a list Append lists

exists (’a -> bool) -> ’a list -> bool Does any satisfy. . .

filter (’a -> bool) -> ’a list -> ’a list Those that satisfy. . .

fold (’r -> ’a -> ’r) -> ’r -> ’a list -> ’r Fold (left) over list

foldBack (’a -> ’r -> ’r) -> ’r -> ’a list -> ’r Fold (right) over list

forall (’a -> bool) -> ’a list -> bool Do all satisfy. . .

length ’a list -> int Number of elements

map (’a -> ’b) -> ’a list -> ’b list Transform elements

nth ’a list -> int -> ’a Get n’th element

rev ’a list -> ’a list Reverse list

Figure A.3: Some F# list functions, from the List module. The function name

must be qualified by List, as in List.append [1; 2] [3; 4]. Some of the func-

tions are polymorphic (Section A.10) or higher-order (Section A.11.2). For the

list operators cons (::) and append (@), see Figure A.1.

A.7 Records and labels

A record is basically a tuple whose components are labelled. Instead of writing

a pair ("Kasper", 5170) of a name and the associated phone number, one can

use a record. This is particularly useful when there are many components.

Before one can create a record value, one must create a record type, like this:

> type phonerec = { name : string; phone : int };;
type phonerec =
{name: string;
phone: int;}

> let x = { name = "Kasper"; phone = 5170 };;
val x : phonerec = {name = "Kasper";

phone = 5170;}

Note how the type of a record is written, with colon (:) instead of equals (=).

One can extract the components of a record using a record component selector:,

very similar to field access in Java and C#:

322 Raising and catching exceptions

> x.name;;
val it : string = "Kasper"
> x.phone;;
val it : int = 5170

A.8 Raising and catching exceptions

Exceptions can be declared, raised and caught as in C++/Java/C#. In fact,

the exception concept of those languages is inspired by Standard ML. An

exception declaration declares an exception constructor, of type Exception. A

raise expression throws an exception:

> exception IllegalHour;;
exception IllegalHour
> let mins h =

if h < 0 || h > 23 then raise IllegalHour
else h * 60;;

val mins : int -> int
> mins 25;;
> [...] Exception of type ’FSI_0151+IllegalHourException’ was thrown.

at FSI_0152.mins(Int32 h)
at <StartupCode$FSI_0153>.$FSI_0153.main@()

stopped due to error

A try-with-expression (try e1 with exn -> e2) evaluates e1 and returns its

value, but if e1 throws exception exn, it evaluates e2 instead. This serves the

same purpose as try-catch in C++/Java/C#:

> try (mins 25) with IllegalHour -> -1;;
val it : int = -1

As a convenient shorthand, one can use the function failwith to throw the

standard Failure exception, which takes a string message as argument. The

variant failwithf takes as argument a printf-like format string and a se-

quence of arguments, to construct a string argument for the Failure exception:

> let mins h =
if h < 0 || h > 23 then failwith "Illegal hour"
else h * 60;;

val mins : int -> int
> mins 25;;
Microsoft.FSharp.Core.FailureException: Illegal hour
> let mins h =

if h < 0 || h > 23 then failwithf "Illegal hour, h=%d" h

Datatypes 323

else h * 60;;
val mins : int -> int
> mins 25;;
Microsoft.FSharp.Core.FailureException: Illegal hour, h=25

A.9 Datatypes

A datatype, sometimes called an algebraic datatype or discriminated union, is

useful when data of the same type may have different numbers and types of

components. For instance, a person may either be a Student who has only a

name, or a Teacher who has both a name and a phone number. Defining a

person datatype means that we can have a list of person values, regardless of

whether they are Students or Teachers. (Recall that all elements of a list must

have the same type).

> type person =
| Student of string (* name *)
| Teacher of string * int;; (* name and phone no *)

type person =
| Student of string
| Teacher of string * int

> let people = [Student "Niels"; Teacher("Peter", 5083)];;
val people : person list = [Student "Niels"; Teacher ("Peter",5083)]
> let getphone1 person =

match person with
| Teacher(name, phone) -> phone
| Student name -> raise (Failure "no phone");;

val getphone1 : person -> int
> getphone1 (Student "Niels");;
Microsoft.FSharp.Core.FailureException: no phone

A.9.1 The option datatype

A frequently used datatype is the option datatype, used to represent the pres-

ence or absence of a value.

> type intopt =
| Some of int
| None;;

type intopt =
| Some of int
| None

> let getphone2 person =

324 Datatypes

match person with
| Teacher(name, phone) -> Some phone
| Student name -> None;;

val getphone2 : person -> intopt
> getphone2 (Student "Niels");;
val it : intopt = None

In Java and C#, some methods return null to indicate the absence of a result,

but that is a poor substitute for an option type, both in the case where the

method should never return null, and in the case where null is a legitimate

result from the method. The type inferred for function getphone2 clearly says

that we cannot expect it to always return an integer, only an intopt, which

may or may not hold an integer.

In F#, a polymorphic datatype ’a option is predefined.

A.9.2 Binary trees represented by recursive datatypes

A datatype declaration may be recursive, which means that a value of the

datatype t can have a component of type t. This can be used to represent trees

and other data structures. For instance, a binary integer tree inttree may be

defined to be either a leaf Lf or a branching node Br which holds an integer and

left subtree and a right subtree:

> type inttree =
| Lf
| Br of int * inttree * inttree;;

type inttree =
| Lf
| Br of int * inttree * inttree

> let t1 = Br(34, Br(23, Lf, Lf), Br(54, Lf, Br(78, Lf, Lf)));;
val t1 : inttree = Br (34,Br (23,Lf,Lf),Br (54,Lf,Br (78,Lf,Lf)))

The tree represented by t1 has 34 at the root node, 23 at the root of the left

subtree, etc., like this:

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

34

23 54

78

Datatypes 325

Functions on trees and other datatypes are conveniently defined using pattern

matching and recursion. This function computes the sum of the nodes of an

integer tree:

> let rec sumtree t =
match t with

| Lf -> 0
| Br(v, t1, t2) -> v + sumtree t1 + sumtree t2;;

val sumtree : inttree -> int
> let t1sum = sumtree t1;;
val t1sum : int = 189

The definition of sumtree reads: The sum of a leaf node Lf is zero. The sum of

a branch node Br(v, t1, t2) is v plus the sum of t1 plus the sum of t2.

A.9.3 Curried functions

A function of type int * int -> int that takes a pair of arguments is closely

related to a function of type int -> int -> int that takes two arguments. The

latter is called a curried version of the former; this is a pun on the name of

logician Haskell B. Curry, who proposed this idea. For instance, function addc
below is a curried version of function addp. Note the types of addp and addc and

how the functions are applied to arguments:

> let addp (x, y) = x + y;;
val addp : int * int -> int
> let addc x y = x + y;;
val addc : int -> int -> int
> let res1 = addp(17, 25);;
val res1 : int = 42
> let res2 = addc 17 25;;
val res2 : int = 42

A major advantage of curried functions is that they can be partially applied.

Applying addc to only one argument, 17, we obtain a new function of type int
-> int. This new function adds 17 to its argument and can be used on as many

different arguments as we like:

> let addSeventeen = addc 17;;
val addSeventeen : (int -> int)
> let res3 = addSeventeen 25;;
val res3 : int = 42
> let res4 = addSeventeen 100;;
val res4 : int = 117

326 Type variables and polymorphic functions

A.10 Type variables and polymorphic functions

We saw in Section A.6 that the type of the len function was ’a list -> int:

> let rec len xs =
match xs with

| [] -> 0
| x::xr -> 1 + len xr;;

val len : ’a list -> int

The ’a is a type variable. Note that the prefixed prime (’) is part of the type

variable name ’a. In a call to the len function, the type variable ’a may be in-

stantiated to any type whatsoever, and it may be instantiated to different types

at different uses. Here ’a gets instantiated first to int and then to string:

> len [7; 9; 13];;
val it : int = 3
> len ["Oslo"; "Aarhus"; "Gothenburg"; "Copenhagen"];;
val it : int = 4

A.10.1 Polymorphic datatypes

Some data structures, such as a binary trees, have the same shape regardless

of the element type. Fortunately, we can define polymorphic datatypes to rep-

resent such data structures. For instance, we can define the type of binary

trees whose leaves can hold a value of type ’a like this:

> type ’a tree =
| Lf
| Br of ’a * ’a tree * ’a tree;;

type ’a tree =
| Lf
| Br of ’a * ’a tree * ’a tree

Compare this with the monomorphic integer tree in Section A.9.2. Values of

this type can be defined exactly as before, but the type is slightly different:

> let t1 = Br(34, Br(23, Lf, Lf), Br(54, Lf, Br(78, Lf, Lf)));;
val t1 = Br(34, Br(23, Lf, Lf), Br(54, Lf, Br(78, Lf, Lf))) : int tree

The type of t1 is int tree, where the type variable ’a has been instantiated to

int.

Likewise, functions on such trees can be defined as before:

Type variables and polymorphic functions 327

> let rec sumtree t =
match t with
| Lf -> 0
| Br(v, t1, t2) -> v + sumtree t1 + sumtree t2;;

val sumtree : int tree -> int
> let rec count t =

match t with
| Lf -> 0
| Br(v, t1, t2) -> 1 + count t1 + count t2;;

val count : ’a tree -> int

The argument type of sumtree is int tree because the function adds the node

values, which must be of type int.

The argument type of count is ’a tree because the function ignores the

node values v, and therefore works on an ’a tree regardless of the node type

’a.

Function preorder1 : ’a tree -> ’a list returns a list of the node values

in a tree, in preorder, that is, the root node comes before the left subtree which

comes before the right subtree:

> let rec preorder1 t =
match t with
| Lf -> []
| Br(v, t1, t2) -> v :: preorder1 t1 @ preorder1 t2;;

val preorder1 : ’a tree -> ’a list
> preorder1 t1;;
val it : int list = [34; 23; 54; 78]

A side remark on efficiency: When the left subtree t1 is large, then the call

preorder1 t1 will produce a long list of node values, and the list append oper-

ator (@) will be slow. Moreover, this happens recursively for all left subtrees.

Function preorder2 does the same job in a more efficient, but slightly more

obscure way. It uses an auxiliary function preo that has an accumulating pa-

rameter acc that gradually collects the result without ever performing an ap-

pend (@) operation:

> let rec preo t acc =
match t with
| Lf -> acc
| Br(v, t1, t2) -> v :: preo t1 (preo t2 acc);;

val preo : ’a tree -> ’a list -> ’a list
> let preorder2 t = preo t [];;
val preorder2 : ’a tree -> ’a list

328 Higher-order functions

> preorder2 t1;;
val it : int list = [34; 23; 54; 78]

The following relation holds for all t and xs: preo t xs = preorder1 t @ xs.

From this it follows that preorder2 t = preo t [] = preorder1 t @ [] = preorder1
t.

A.10.2 Type abbreviations

When a type, such as (string * int) list, is used frequently, it is convenient

to abbreviate it using a name such as intenv:

> type intenv = (string * int) list;;
type intenv = (string * int) list
> let bind1 (env : intenv) (x : string, v : int) : intenv = (x, v) :: env;;
val bind1 : intenv -> string * int -> intenv

The type declaration defines an abbreviation, not a new type, as can be seen

from the compiler’s response. This also means that the function can be applied

to a perfectly ordinary list of string * int pairs:

> bind1 [("age", 47)] ("phone", 5083);;
val it : intenv = [("phone", 5083); ("age", 47)]

A.11 Higher-order functions

A higher-order function is one that takes another function as an argument.

For instance, function map below takes as argument a function f and a list, and

applies f to all elements of the list:

> let rec map f xs =
match xs with
| [] -> []
| x::xr -> f x :: map f xr;;

val map : (’a -> ’b) -> ’a list -> ’b list

The type of map says that it takes as arguments a function from type ’a to type

’b, and a list whose elements have type ’a, and produces a list whose elements

have type ’b. The type variables ’a and ’b may be independently instantiated

to any types. For instance, we can define a function mul2 of type float ->
float and use map to apply that function to all elements of a list:

Higher-order functions 329

> let mul2 x = 2.0 * x;;
val mul2 : float -> float
> map mul2 [4.0; 5.0; 89.0];;
val it : float list = [8.0; 10.0; 178.0]

Or we may apply a function isLarge of type float -> bool (defined on page 316)

to all elements of a float list:

> map isLarge [4.0; 5.0; 89.0];;
val it : bool list = [false; false; true]

A.11.1 Anonymous functions

Sometimes it is inconvenient to introduce named auxiliary functions. In this

case, one can write an anonymous function expression using fun instead of a

named function declaration using let:

> fun x -> 2.0 * x;;
val it : float -> float = <fun:clo@0-1>

This is particularly useful in connection with higher-order functions such as

map:

> map (fun x -> 2.0 * x) [4.0; 5.0; 89.0];;
val it : float list = [8.0; 10.0; 178.0]
> map (fun x -> 10.0 < x) [4.0; 5.0; 89.0];;
val it : bool list = [false; false; true]

The function tw defined below takes a function g and an argument x and applies

g twice; that is, it computes g(g x). Using tw one can define a function quad
that applies mul2 twice, thus multiplying its argument by 4.0:

> let tw g x = g (g x);;
val tw : (’a -> ’a) -> ’a -> ’a
> let quad = tw mul2;;
val quad : (float -> float)
> quad 7.0;;
val it : float = 28.0

An anonymous function created with fun may take any number of arguments.

A function that takes two arguments is similar to one that takes the first ar-

gument and then returns a new anonymous function that takes the second

argument:

330 Higher-order functions

> fun x y -> x+y;;
val it : int -> int -> int = <fun:clo@0-2>
> fun x -> fun y -> x+y;;
val it : int -> int -> int = <fun:clo@0-3>

The difference between fun and function is that a fun can take more than

one parameter but can have only one match case, whereas a function can

take only one parameter but can have multiple match cases. For instance,

two-argument increaseBoth is most conveniently defined using fun and one-

argument isZeroFirst is most conveniently defined using function:

> let increaseBoth = fun i (x, y) -> (x+i, y+i);;
val increaseBoth : int -> int * int -> int * int
> let isZeroFirst = function | [0] -> true | _ -> false;;
val isZeroFirst : int list -> bool

A.11.2 Higher-order functions on lists

Higher-order functions are particularly useful in connection with polymorphic

datatypes. For instance, one can define a function filter that takes as argu-

ment a predicate (a function of type ’a -> bool) and a list, and returns a list

containing only those elements for which the predicate is true. This may be

used to extract the even elements (those divisible by 2) in a list:

> let rec filter p xs =
match xs with
| [] -> []
| x::xr -> if p x then x :: filter p xr else filter p xr;;

val filter : (’a -> bool) -> ’a list -> ’a list
> let onlyEven = filter (fun i -> i%2 = 0) [4; 6; 5; 2; 54; 89];;
val onlyEven : int list = [4; 6; 2; 54]

Note that the filter function is polymorphic in the argument list type. The

filter function is predefined in F#’s List module. Another very general pre-

defined polymorphic higher-order list function is foldr, for fold right, which

exists in F# under the name List.foldBack :

> let rec foldr f xs e =
match xs with
| [] -> e
| x::xr -> f x (foldr f xr e);;

val foldr : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

One way to understan foldr f xs e is to realize that it recursively replaces:

F# mutable references 331

[] by e
(x :: xr) by f x xr

The foldr function presents a general procedure for processing a list, and is

closely related to the visitor pattern in object-oriented programming, although

this may not appear very obvious.

Many other functions on lists can be defined in terms of foldr:

> let len xs = foldr (fun _ res -> 1+res) xs 0;;
val len : ’a list -> int
> let sum xs = foldr (fun x res -> x+res) xs 0;;
val sum : int list -> int
> let prod xs = foldr (fun x res -> x*res) xs 1;;
val prod : int list -> int
> let map g xs = foldr (fun x res -> g x :: res) xs [];;
val map : (’a -> ’b) -> ’a list -> ’b list
> let listconcat xss = foldr (fun xs res -> xs @ res) xss [];;
val listconcat : ’a list list -> ’a list
> let stringconcat xss = foldr (fun xs res -> xs + res) xss "";;
val stringconcat : string list -> string
> let filter p xs = foldr (fun x r -> if p x then r else x :: r) xs [];;
val filter : (’a -> bool) -> ’a list -> ’a list

The functions map, filter, fold, foldBack and many others are predefined in

the F# List module; see Figure A.3.

A.12 F# mutable references

A reference is a handle to a memory cell. A reference in F# is similar to a refer-

ence in Java/C# or a pointer in C/C++, but it cannot be null and the memory

cell it points to cannot be uninitialized and cannot be accidentally overwritten

by a memory write operation.

A new unique reference memory cell and a reference to it is created by

applying the ref constructor to a value. Applying the dereferencing operator

(!) to a reference gives the value in the corresponding memory cell. The value

in the memory cell can be changed by applying the assignment (:=) operator to

a reference and a new value:

> let r = ref 177;;
val r : int ref = {contents = 177;}
> let v = !r;;
val v : int = 177
> r := 288;;

332 F# arrays

val it : unit = ()
> !r;;
val it : int = 288

A typical use of references and memory cells is to create a sequence of distinct

names or labels:

> let nextlab = ref -1;;
val nextlab : int ref = {contents = -1;}
> let newLabel () = (nextlab := 1 + !nextlab; "L" + string (!nextlab));;
val newLabel : unit -> string
> newLabel();;
val it : string = "L0"
> newLabel();;
val it : string = "L1"
> newLabel();;
val it : string = "L2"

References are used also to implement efficient algorithms with destructive

update, such as graph algorithms.

A.13 F# arrays

An F# array is a zero-based indexable fixed-size collection of elements of a

particular type, just like a .NET array, but it uses a different syntax for array

creation, indexing and update. The F# array type is generic in its element

type:

> let arr = [| 2; 5; 7 |];;
val arr : int array = [|2; 5; 7|]
> arr.[1];;
val it : int = 5
> arr.[1] <- 11;;
val it : unit = ()
> arr;;
val it : int array = [|2; 11; 7|]
> arr.Length;;
val it : int = 3

The .NET method System.Environment.GetCommandLineArgs() has type string
array and holds the command line arguments of an F# when invoked from a

command prompt. The element at index 0 is the name of the running exe-

cutable, the element at index 1 is the first command line argument, and so on

(as in C).

Other F# features 333

A.14 Other F# features

The F# language has a lot more features than described in this appendix, in-

cluding facilities for object-oriented programming and convenient use of the

.NET libraries and programs written in other .NET languages, and many ad-

vanced functional programming features. For a more comprehensive descrip-

tion of F# and its libraries, see [137, 136] and the F# resources linked from the

course homepage.

For instance, F# can use .NET’s exact high-range decimal type for account-

ing and other calculations with money, which should never be done using

floating-point numbers. Constants of type decimal must be written with an

upper-case M suffix, as in C#:

> let tomorrow =
let nationalDebt = 11682843645139.02M
let perSecond = 44907.41M
in nationalDebt + 86400M * perSecond;;

val tomorrow : decimal = 11686723645363.02M

For another example, F#’s type bigint supports arbitrary-range integers. Con-

stants of type bigint must be written with an upper-case I suffix, as in 42I,

but are otherwise used just like any other numbers:

> open Microsoft.FSharp.Math;;
> let rec fac (n : bigint) = if n=0I then 1I else n * fac(n-1I);;
val fac : bigint -> bigint
> fac 104I;;
val it : bigint =
1029901674514562762384858386476504428305377245499907218232549
1776887871732475287174542709871683888003235965704141638377695
179741979175588724736000000000000000000000000I

334 Other F# features

Bibliography

[1] Web page. At http://www.haskell.org/.

[2] db4objects. Homepage. At http://www.db4o.com/.

[3] Dylan programming language. Web page. At http://www.opendylan.org/.

[4] The LLVM compiler infrastructure. Web page. At http://llvm.org/.

[5] Racket programming language. Web page. At http://racket-lang.org/.

[6] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press, 1985.

[7] Adobe Corporation. Postscript technical notes. At

http://partners.adobe.com/asn/developer/technotes/postscript.html.

[8] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1974.

[9] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, second edition, 2006.

[10] aJile Systems. Homepage. At http://www.ajile.com/.

[11] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,

1992.

[12] G. Attardi, A. Cisternino, and A. Kennedy. Codebricks: Code fragments as

building blocks. In Partial Evaluation and Semantics-Based Program

Manipulation (PEPM’03), San Diego, California, June 2003. ACM Press, 2003.

[13] L. Augustsson. A compiler for Lazy ML. In 1984 ACM Symposium on Lisp and

Functional Programming, Austin, Texas, pages 218–227. ACM, 1984.

[14] J. Auslander et al. Fast, effective dynamic compilation. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

pages 149–158, May 1996.

[15] David F. Bacon. Realtime garbage collection. ACM Queue, 5(1):40–49, February

2007.

[16] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with

low overhead and consistent utilization. In Thirtieth ACM Symposium on

Principles of Programming Languages, pages 285–298. ACM, 2003.

335

336 Bibliography

[17] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103

of Studies in Logic and the Foundations of Mathematics. North-Holland, revised

edition, 1984.

[18] Alan Bawden. Quasiquotation in Lisp. In Olivier Danvy, editor, 1999 ACM

SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM’99), San Antonio, Texas, pages 4–12. BRICS, Aarhus

University, Denmark, 1999. At

http://www.brics.dk/~pepm99/Proceedings/bawden.ps.

[19] Peter Bertelsen. Semantics of Java bytecode. Technical report, Royal Veterinary

and Agricultural University, Denmark, 1997. At

http://www.dina.kvl.dk/~pmb/publications.html.

[20] Joshua Bloch. Effective Java. Addison-Wesley, 2008.

[21] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment.

Software Practice & Experience, pages 807–820, September 1988.

[22] Hans Boehm. A garbage collector for c and c++. At

http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[23] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for

the past: Adding genericity to the Java programming language. In ACM

Symposium on Object Oriented Programming: Systems, Languages, and

Applications (OOPSLA), Vancouver, British Columbia, pages 183–200. ACM,

1998.

[24] W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[25] Bytecode Engineering Library (BCEL). Home page. At

http://jakarta.apache.org/bcel/.

[26] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing

multi-stage languages using ASTs, gensym and reflection. In Frank Pfenning

and Yannis Smaragdakis, editors, Generative Programming and Component

Engineering (GPCE’03), Erfurt, Germany, September 2003. Lecture Notes in

Computer Science, vol. 2830, pages 57–76. Springer-Verlag, 2003.

[27] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the

ACM, 13(11):677–678, 1970.

[28] Shigeru Chiba. Load-time structural reflection in Java. In ECOOP 2000.

Object-oriented Programming. Lecture Notes in Computer Science, vol. 1850,

pages 313–336, 2000.

[29] Alonzo Church. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58(2):345–363, April 1936.

[30] Antonio Cisternino. Multi-stage and Meta-programming Support in Strongly

Typed Execution Engines. PhD thesis, University of Pisa, 2003.

[31] Antonio Cisternino and Andrew Kennedy. Language independent program

generation. University of Pisa and Microsoft Research Cambridge UK, 2002.

Bibliography 337

[32] R.M. Cohen. The defensive Java virtual machine, version 0.5. Technical report,

Computational Logic Inc., Austin, Texas, May 1997. At http://www.cli.com.

[33] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, second edition, 2001.

[34] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In

Fourth ACM Symposium on Principles on Programming Languages, Los

Angeles, California, January 1977, pages 238–252. ACM, 1977.

[35] Malcolm Crowe. Home page. At http://cis.paisley.ac.uk/crow-ci0/.

[36] L. Damas and R. Milner. Principal type schemes for functional programs. In 9th

ACM Symposium on Principles of Programming Languages, 1982.

[37] Olivier Danvy and Andrzej Filinski. Representing control. A study of the CPS

transformation. Mathematical Structures in Computer Science, 2:361–391, 1992.

[38] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a reflective

tower. In Lisp and Functional Programming, pages 327–341, 1988.

[39] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. In OSDI 2004, 2004.

[40] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage collection.

In Fourth international Symposium on Memory Management, pages 37–48.

ACM Press, 2004.

[41] IBM Java developer kits. Homepage. At

http://www-128.ibm.com/developerworks/java/jdk/.

[42] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for programming language

implementation. Future Generation Computer Systems, 16(7):739–751, May

2000.

[43] Dirk Draheim, Christof Lutteroth, and Gerald Weber. A type system for

reflective program generators. In R. Glück and M. Lowry, editors, The Fourth

International Conference on Generative Programming and Component

Engineering (GPCE’05), Tallin, Estonia, September 2005. Lecture Notes in

Computer Science, vol. 3676, pages 327–341. Springer-Verlag, 2005.

[44] Ecma TC39 TG1. ECMAScript language specification. Standard ECMA-262,

3rd edition. 1999. At

http://www.ecma-international.org/publications/standards/Ecma-262.htm.

[45] Ecma TC39 TG3. Common Language Infrastructure (CLI). Standard

ECMA-335, 3rd edition. June 2005. At

http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[46] Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Variance and

generalized constraints for c# generics. In ECOOP, 2006.

[47] Dawson R. Engler. Vcode: a retargetable, extensible, very fast dynamic code

generation system. In Programming Language Design and Implementation,

1996. At http://www.pdos.lcs.mit.edu/~engler/vcode-pldi.ps.

338 Bibliography

[48] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: a language for

high-level, fast dynamic code generation. In 23rd Principles of Programming

Languages, St Petersburg Beach, Florida, pages 131–144. ACM Press, 1996. At

http://www.pdos.lcs.mit.edu/~engler/pldi-tickc.ps.

[49] Michael J. Fischer. Lambda calculus schemata. In ACM Conference on Proving

Assertions about Programs, volume 7 of SIGPLAN Notices, pages 104–109, 1972.

[50] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without

metaphysics. In Lisp and Functional Programming, Austin, Texas, pages

348–355. ACM Press, 1984.

[51] Neal Gafter et al. JSR proposal: Closures for Java. Homepage. At

http://www.javac.info/consensus-closures-jsr.html.

[52] gnu.bytecode bytecode generation tools. Home page. At

http://www.gnu.org/software/kawa/.

[53] Michael T. Goodrich and Roberto Tamassia. Algorithm Design. John Wiley and

Sons, 2002.

[54] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh

LCF, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[55] John Gough. Compiling for the .Net Common Language Runtime (CLR).

Prentice-Hall, 2002.

[56] B. Grant et al. DyC: An expressive annotation-directed dynamic compiler for C.

Theoretical Computer Science, 248(1-2):147–199, October 2000. Also

ftp://ftp.cs.washington.edu/tr/1997/03/UW-CSE-97-03-03.PS.Z.

[57] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language.

Peer-to-Peer Communications, third edition, 1996. At

http://www.cs.arizona.edu/icon/lb3.htm.

[58] David Gudeman. Representing type information in dynamically typed

languages. Technical Report TR 93-27, Department of Computer Science,

University of Arizona, October 1993.

[59] David A. Gudeman. Denotational semantics of a goal-directed language. ACM

Transactions on Programming Languages and Systems, 14(1):107–125, January

1992.

[60] Vineet Gupta. Notes on the CLR garbage collector. Blog entry, January 2007. At

http://vineetgupta.spaces.live.com/blog/.

[61] F. Henglein and H.G. Mairson. The complexity of type inference for higher-order

lambda calculi. In 18th ACM Symposium on Principles of Programming

Languages, January 1991, Orlando, Florida, pages 119–130. ACM Press, 1991.

[62] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[63] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically safe

program generation with SafeGen. In R. Glück and M. Lowry, editors, The

Bibliography 339

Fourth International Conference on Generative Programming and Component

Engineering (GPCE’05), Tallin, Estonia, September 2005. Lecture Notes in

Computer Science, vol. 3676, pages 309–326. Springer-Verlag, 2005.

[64] Graham Hutton. Higher-order functions for parsing. Journal of Functional

Programming, 2:323–343, July 1992.

http://www.cs.nott.ac.uk/~gmh/parsing.pdf.

[65] Aubrey Jaffer. SCM Scheme implementation. Web page. At

http://swissnet.ai.mit.edu/~jaffer/SCM.html.

[66] Javassist. Home page. At http://www.csg.is.titech.ac.jp/~chiba/javassist/.

[67] JMangler. Home page. At http://javalab.cs.uni-bonn.de/research/jmangler/.

[68] T. Johnsson. Efficient compilation of lazy evaluation. SIGPLAN Notices,

19(6):58–69, June 1984. ACM SIGPLAN 1984 Symposium on Compiler

Construction.

[69] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993. At

http://www.itu.dk/people/sestoft/pebook/pebook.html.

[70] Richard Jones. The garbage collection bibliography. Web site, 2009. At

http://www.cs.kent.ac.uk/people/staff/rej/gcbib/gcbib.html.

[71] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. John Wiley & Sons, 1996.

[72] S. L. Peyton Jones. The implementation of functional programming languages,

chapter 8 and 9. Prentice-Hall International, 1987.

[73] Simon Peyton Jones. Haskell 98 Language and Libraries. The Revised Report.

Cambridge University Press, 2003.

[74] U. Jørring and W.L. Scherlis. Compilers and staging transformations. In

Thirteenth ACM Symposium on Principles of Programming Languages, St.

Petersburg, Florida, pages 86–96. ACM Press, 1986.

[75] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.

Acta Informatica, 7:305–317, 1977.

[76] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: Run-time code generation

for Java and its applications. In Code Generation and Optimization (CGO 2003),

San Francisco, California, March 2003.

[77] R. Kelsey, W. Clinger, and J. Rees (editors). Revised5 report on the algorithmic

language Scheme. Higher-Order and Symbolic Computation, 11(1), August

1998.

[78] A. Kennedy and D. Syme. The design and implementation of generics for the

.Net Common Language Runtime. In Programming Language Design and

Implementation, Snowbird, Utah, June 2001, pages 1–23. ACM Press, 2001.

[79] A. Kennedy and D. Syme. Generics for C# and .Net CLR. Web site, 2001. At

http://research.microsoft.com/projects/clrgen/.

340 Bibliography

[80] Andrew Kennedy and Benjamin Pierce. On decidability of nominal subtyping

with variance. In International Workshop on Foundations and Developments of

Object-Oriented Languages (FOOL/WOOD’07), Nice, France, 2007.

[81] David Keppel, Susan J. Eggers, and Robert R. Henry. A case for runtime code

generation. Technical Report 91-11-04, Department of Computer Science and

Enginnering, University of Washington, November 1991. At

ftp://ftp.cs.washington.edu/tr/1991/11/UW-CSE-91-11-04.PS.Z.

[82] David Keppel, Susan J. Eggers, and Robert R. Henry. Evaluating

runtime-compiled value-specific optimisations. Technical Report

UW-CSE-93-11-02, Department of Computer Science and Engineering,

University of Washington, November 1993. At

ftp://ftp.cs.washington.edu/tr/1993/11/UW-CSE-93-11-02.PS.Z.

[83] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice-Hall, second edition, 1988.

[84] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. ML typability is DEXPTIME-complete.

In Proceedings of the fifteenth colloquium on CAAP’90, 1990, Copenhagen,

Denmark, pages 206–220, 1990.

[85] Donald E. Knuth. On the translation of languages from left to right.

Information and Control, 8:607–639, 1965.

[86] Lambda calculus reduction workbench. Web page, 1996. At

http://www.dina.kvl.dk/~sestoft/lamreduce/.

[87] M. Leone and P. Lee. Lightweight run-time code generation. In Partial

Evaluation and Semantics-Based Program Manipulation, Orlando, Florida,

June 1994 (Technical Report 94/9, Department of Computer Science, University

of Melbourne).

[88] X. Leroy. The Zinc experiment: An economical implementation of the ML

language. Rapport Technique 117, INRIA Rocquencourt, France, 1990.

[89] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, 2006.

[90] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, 26(6):419–429, June 1983.

[91] GNU lightning machine code generation library. Home page. At

http://www.gnu.org/software/lightning/lightning.html.

[92] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.

Addison-Wesley, second edition, 1999. Also at

http://java.sun.com/docs/books/vmspec/.

[93] John McCarthy. Recursive functions of symbolic expressions. Communications

of the ACM, 3(4):184–195, April 1960.

[94] Microsoft. Microsoft developer network .NET resources. Web page. At

http://msdn.microsoft.com/net/.

[95] Microsoft. Microsoft shared source CLI implementation. Web page. At MSDN,

URL varies.

Bibliography 341

[96] Sun Microsystems. Memory management in the Java Hotspot virtual machine.

Whitepaper, 2006. At http://java.sun.com/j2se/reference/whitepapers.

[97] Sun Microsystems. The garbage-first garbage collector. Web page, 2009. At

http://java.sun.com/javase/technologies/hotspot/gc/g1_intro.jsp.

[98] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT

Press, 1990.

[99] R. Milner, M. Tofte, R. Harper, and D.B. MacQueen. The Definition of Standard

ML (Revised). MIT Press, 1997.

[100] T. Mogensen and P. Sestoft. Partial evaluation. In A. Kent and J.G. Williams,

editors, Encyclopedia of Computer Science and Technology, volume 37, pages

247–279. New York: Marcel Dekker, 1997.

[101] Torben Mogensen. Basics of Compiler Design. University of Copenhagen and

lulu.com, anniversary edition, 2019. At

http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/.

[102] Mono project. Home page. At http://www.mono-project.com/.

[103] Peter Naur. Checking of operand types in ALGOL compilers. BIT, 5:151–163,

1965.

[104] Atanas Neshkov. DJ Java decompiler. Web page. At

http://members.fortunecity.com/neshkov/dj.html.

[105] Gregory Neverov and Paul Roe. Metaphor: A multi-stage, object-oriented

programming language. In The Third International Conference on Generative

Programming and Component Engineering (GPCE), Vancouver, Canada,

October 2004. Lecture Notes in Computer Science, vol. 3286.

[106] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages,

volume 34 of Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 1992.

[107] OCaml. Home page. At http://caml.inria.fr/.

[108] Y. Oiwa, H. Masuhara, and A. Yonezawa. Dynjava: Type safe dynamic code

generation in java. In JSSST Workshop on Programming and Programming

Languages, PPL2001, March 2001, Tokyo, 2001. At

http://wwwfun.kurims.kyoto-u.ac.jp/ppl2001/papers/Oiwa.pdf.

[109] L.C. Paulson. ML for the Working Programmer. Cambridge University Press,

second edition, 1996.

[110] Gordon Plotkin. Call-by-name, call-by-value and the lambda calculus.

Theoretical Computer Science, pages 125–159, 1975.

[111] T. Printezis and D. Detlefs. A generational mostly-concurrent garbage collector.

In Second international Symposium on Memory Management, pages 143–154.

ACM Press, 2000.

[112] Parallel Virtual Machine (PVM) project. At http://www.csm.ornl.gov/pvm/.

342 Bibliography

[113] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.

IBM Journal of Research and Development, 3:114–125, 1959.

[114] Mark Reinhold. Closures for Java. Homepage, November 2009. At

http://blogs.sun.com/mr/entry/closures.

[115] John Reynolds. The discoveries of continuations. Lisp and Symbolic

Computation, 6(3/4):233–247, 1993.

[116] John Reynolds. Definitional interpreters for higher-order languages.

Higher-order and symbolic computation, 11(4):363–397, 1998. Originally

published 1972.

[117] Martin Richards. Homepage. At http://www.cl.cam.ac.uk/~mr/.

[118] Dennis M. Ritchie. Homepage. At http://www.cs.bell-labs.com/who/dmr/.

[119] Dennis M. Ritchie. The development of the C language. In Second History of

Programming Languages Conference, Cambridge, Massachusetts, 1993.

[120] John Alan Robinson. A machine-oriented logic based on the resolution principle.

Communications of the ACM, 5:23–41, 1965.

[121] Lutz Roeder. Homepage. At http://www.red-gate.com/products/reflector/.

[122] Didier Rémy. Extension of ML type system with a sorted equational theory on

types. INRIA Rapport de Recherche 1766, INRIA, France, October 1992.

[123] Michael Schwartzbach. Polymorphic type inference. Technical report, DAIMI,

Aarhus University, March 1955. 27 pages. http://www.daimi.au.dk/~mis/.

[124] P. Sestoft. Grammars and parsing with Java. Technical report, KVL, 1999. At

http://www.dina.kvl.dk/~sestoft/programmering/parsernotes.pdf.

[125] P. Sestoft. Java Precisely. Cambridge, Massachusetts: The MIT Press, May

2002.

[126] P. Sestoft. Runtime code generation with JVM and CLR. Unpublished report,

October 2002. 28 pages.

[127] Brian Cantwell Smith. Reflection and semantics in Lisp. In 11th Principles of

Programming Languages, pages 23–35. ACM Press, 1984.

[128] James E. Smith and Ravi Nair. Virtual Machines. Versatile Platforms for

Systems and Processes. Morgan Kaufmann, 2005.

[129] Guy Lewis Steele. LAMBDA: The ultimate declarative. MIT AI Lab memo

AIM-379, MIT, November 1976. At

ftp://publications.ai.mit.edu/ai-publications/0-499/AIM-379.ps.

[130] Guy Lewis Steele. A compiler for Scheme (a study in compiler optimization).

MIT AI Lab technical report AITR-474, MIT, 1978. At

ftp://publications.ai.mit.edu/ai-publications/0-499/AITR-474.ps.

[131] Christopher Strachey. Fundamental concepts in programming languages.

Higher-order and symbolic computation, 13:11–49, 2000. Written 1967 as

lecture notes for a summer school.

Bibliography 343

[132] Christopher Strachey and Christopher Wadsworth. Continuations, a

mathematical semantics for handling full jumps. Higher-order and symbolic

computation, 13:135–152, 2000. Written 1974.

[133] David Stutz, Ted Neward, and Geoff Shilling. Shared Source CLI Essentials.

O’Reilly, 2003.

[134] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine —

Definition, Verification, Validation. Springer-Verlag, 2001.

[135] Gerald J. Sussman and Guy L. Steele. Scheme: an interpreter for the extended

lambda calculus. MIT AI Memo 349, Massachusetts Institute of Technology,

December 1975.

[136] Don Syme et al. The F# 1.9.6.16 draft language specification. Technical report,

2009. At http://research.microsoft.com/projects/fsharp/spec.html.

[137] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#. Apress, 2007.

[138] Walid Taha and Tim Sheard. Multi-stage programming with explicit

annotations. In ACM/SIGPLAN Workshop Partial Evaluation and

Semantics-Based Program Manipulation. Amsterdam, The Netherlands., pages

203–217. ACM Press, 1997.

[139] R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS.

Society for Applied and Industrial Mathematics, Philadelphia, Pennsylvania,

1983.

[140] Runi Thomsen. Creation of a serialization library for C# 2.0 using runtime code

generation. Master’s thesis, IT University of Copenhagen, Denmark, 2005.

[141] Mads Tofte. The PL/0 machine. Lecture notes, University of Nigeria, Nsukka,

1990.

[142] Stephan Tolksdorf. Fparsec. a parser combinator library for F#. Homepage. At

http://www.quanttec.com/fparsec/.

[143] David A. Turner. Miranda — a non-strict functional language with polymorphic

types. In Jean-Pierre Jouannaud, editor, Functional Programming Languages

and Computer Architecture, Nancy, France, September 1985. Lecture Notes in

Computer Science, vol. 201, pages 1–16. Springer-Verlag., 1985.

[144] Velocity. Home page. At http://jakarta.apache.org/velocity/.

[145] Webgain. The JavaCC lexer and parser generator. At

https://javacc.dev.java.net/.

[146] Paul Wilson. Uniprocessor garbage collection techniques. ACM Computing

Surveys. Draft available as ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.

[147] XDoclet. Home page. At http://xdoclet.sourceforge.net/xdoclet/.

344 Index

Index

! (F# dereferencing operator), 331

& (C address operator), 138, 200

’a (F# type variable), 326

* (C dereferencing operator), 137

+ (F# string concatenation), 311

.f (F# component selector), 321

:: (F# list constructor), 319

:= (F# assignment operator), 331

_ (F# wildcard pattern), 317

Abelson, Harold, 267

abstract machine, 29, 177–195

abstract syntax, 14

abstract syntax tree, 40

access expression, 142

accumulating parameter, 227, 327

and continuation, 230

Ackermann function, 118

activation record, 164

actual parameters, 135

ADD instruction, 160

address operator, 200

Advanced Encryption Standard,

303

AES. See Advanced Encryption

Standard

Aho, A.V., 64

algebraic datatype, 323

allocation

in heap, 201

and (F# keyword), 316

anonymous method, 92

Appel, Andrew, 245

append (F# function), 321

array assignment in Java and C#,

82

association list, 13

AST. See abstract syntax tree

Augustsson, Lennart, 83

B language, 137

Börger, Egon, 194

backquote (Scheme), 285

backtracking, 240–244

backtracking continuation, 242

Backus, John, 63

Backus-Naur Form, 64

backwards code generation, 252

backwards compiler, 253

Bacon, David F., 210

Barendregt, Henk, 99

base pointer, 158

Bawden, Alan, 302

BCEL. See Bytecode Engineering

Library

BCPL language, 137

Bertelsen, Peter, 194

binding level, 111

binding-time analysis, 281

black block, 217

blue block, 217

BNF. See Backus-Naur Form

Boehm-Demers-Weiser garbage

collector, 209

bottom-up parser, 41

bound variable occurrence, 25

Bracha, Gilad, 119

buffer overflow, 201

Burge, W.H., 64

bytecode

verification, 186

Bytecode Engineering Library,

182, 297, 302

C language

tail call, 263

C language, 137–139

Index 345

type declaration, 138–139

C# language

reflection, 275

C# language, 201, 290

array assignment, 82

collection classes, 82

dynamic typing, 82

generic types, 119

parser generator, 41

runtime code generation,

290–295

Calcagno, Cristian, 302

CALL instruction, 160

call with current continuation,

239–240

call-by-reference, 135

call-by-value, 135

call-by-value-return, 135

call/cc, 239–240

canonical representative, 117

car (Scheme function), 283

CAR instruction, 216

cdecl program, 139

cdr (Scheme function), 283

CDR instruction, 216

ceil (F# function), 316

Cheney, C. J., 219

Chomsky hierarchy, 64

Chomsky, Noam, 63

Church numerals, 98

Church, Alonzo, 96, 99

CIL. See Common Intermediate

Language

Cisternino, Antonio, 302

class file, 182–185

CLI. See also Common Language

Infrastructure

bytecode

example, 190

instruction types, 188

instructions, 183

runtime code generation,

290–295

stack frame, 187

<clinit> pseudo-method, 182

Clojure programming language,

178

closed expression, 26

closure, 71

in Java, 92

CLR. See Common Language

Runtime

co-variance

in Java, 123

co-variant generic type, 122

CoCo/R parser generator, 41

Cohen, R.M., 194

collection classes in Java and C#,

82

collector, 203

comma operator (Scheme), 285

comment

delimited, 145

end-line, 145

common subexpression

elimination, 265

Common Intermediate Language,

187

Common Language Runtime, 178

Common Language Infrastructure,

178

Common Language Infrastructure,

186–189

compacting garbage collection, 207

compilation scheme, 167

compiler, 24

composite pattern, 16

concat (F# function), 319

concrete syntax, 14

CONS instruction, 216

conservative garbage collector, 209

constant pool, 182

346 Index

constant propagation, 265

context free grammar, 43

continuation, 225–249

and backtracking, 240–244

and frame stack, 236

call with current, 239–240

failure, 242

success, 242

continuation-passing style,

229–236

contra-variance

in Java, 123

contra-variant generic type, 122

CPL language, 137

CPS. See continuation-passing

style

CPS transformation, 231, 245

CSTI instruction, 160

curried function, 325

Curry, Haskell B., 325

Damas, Luis, 125

dangling pointer, 200

Danvy, Olivier, 245, 277, 302

db4objects database system, 92

dead code elimination, 266

Dean, Jeffrey, 93

deBruijn index, 28

declaration, 310

decompile, 193

define (Scheme keyword), 282

delegate, 92

in Java, 301

delegate (C#), 290

delete
deallocation in C++, 201

delimited comment, 145

dereferencing operator, 137

Detlefs, David, 210

Diehl, Stephan, 194

Dijkstra, Edsger W., 219

disassembler

ildasm, 187

javap, 185

discriminated union, 323

dispose
deallocation in Pascal, 201

DIV instruction, 160

Doligez, Damien, 83, 219

Draheim, Dirk, 302

DUP instruction, 160

dyadic operator, 12

dynamic

binding time, 281

scope, 75

semantics, 15

typing, 81

in Java and C#, 82–83

dynamic method (C#), 290

eager evaluation, 83, 95–96

ECMAScript language, 82

Eggers, Susan J., 302

end-line comment, 145

Engler, Dawson R., 302

environment, 13

environment and store, 133–135

EQ instruction, 160

error continuation, 233

eval (Scheme function), 285

exception (F# keyword), 322

exception handling

in a stack machine, 236–238

in an interpreter, 231–233

in stack machine, 238

.exe file, 189

exists (F# function), 321

explicit types, 76

expression, 133

expression statement, 140

F# language, 11, 309–333

and keyword, 316

Index 347

anonymous function, 329

append function, 321

array, 332

ceil function, 316

concat function, 319

declaration, 310

dereferencing, 331

exception keyword, 322

exists function, 321

expression, 310

failwith function, 322

failwithf function, 322

filter function, 321, 330

float function, 316

floor function, 316

fold function, 321

foldBack function, 321, 330

forall function, 321

fun keyword, 313, 329, 330

function keyword, 317, 330

if keyword, 311

incomplete match, 317

label, 321

Length function, 313

length function, 321

let keyword, 310, 313, 316

let rec keyword, 315

list, 319

logical and, 311

logical expression, 311

logical negation, 311

logical or, 311

map function, 321, 328

match keyword, 317

mutually recursive functions,

316

not function, 311

nth function, 321

open keyword, 311

operator, 312, 321

pair, 318

pattern matching, 317

polymorphic datatype, 326

raise keyword, 322

record, 321

redundant match, 317

ref keyword, 331

reference, 331

rev function, 321

round function, 316

sqrt function, 310

square root, 310

structure, 44

try keyword, 322

tuple, 318

type

constraint, 316

predefined, 314

variable, 326

type keyword, 321, 323, 328

unit keyword, 319

wildcard pattern, 317

with keyword, 317, 322

WriteLine function, 319

Fabius (two-level ML), 302

factorial (example), 140

failure continuation, 233, 242

failwith (F# function), 322

failwithf (F# function), 322

Filinski, Andrzej, 245, 302

filter (F# function), 321, 330

finalizer, 211

Find operation (union-find), 117

first-order functional language, 69

Fischer, Michael J., 245

float (F# function), 316

floor (F# function), 316

fold (F# function), 321

foldBack (F# function), 321, 330

forall (F# function), 321

formal parameter, 135

Forth language, 31

348 Index

Fortran language, 132

Fortran language, 136

forwarding pointer, 223

fragmentation, 203, 207

frame in a stack, 164

frame stack, 164

and continuation, 236

in JVM, 180

free
deallocation in C, 201

free variable occurrence, 25

freelist, 203

Friedman, Daniel P., 276

from-space, 206

fsc F# compiler, 45

fsi F# interactive system, 44

fsi F# interactive, 45, 309

fslex lexer generator, 41, 42, 45

fsyacc parser generator, 45

fun (F# keyword), 313, 329, 330

function (F# keyword), 317, 330

function closure, 71

functional programming language,

69

Futamura, Yoshihiko, 302

Gafter, Neal, 92

garbage collection, 199–224

generational, 208

major, 208

mark-sweep, 205

minor, 208

slice, 206

two-space stop-and-copy, 206

garbage collector, 180

conservative, 209

precise, 209

genealogy of programming

languages, 19

generating extension, 281

generational garbage collection,

208

generator, 241

generic method, 119

generic type, 119

generic type variance

in C#, 123–124

in Java, 122, 123

generic types, 119–125

Genoupe (two-level C#), 302

GETBP instruction, 160

GETSP instruction, 160

Ghemawat, Sanjay, 93

GNU Lightning, 299

gnu.bytecode library, 182, 295–297

goal-directed computation, 241

Gomard, Carsten K., 302

Gordon, Michael, 83

GOTO instruction, 160

grammar rules, 43

grey block, 217

Groovy programming language,

178

Gudeman, David, 216

Hancock, Peter, 125

Harper, Robert, 83

Hartel, Pieter, 194

Haskell, 315

Haskell programming language, 96

Haskell language, 83, 200

heap, 180, 200

and garbage collection, 199

heap allocation, 201

Henry, Robert R., 302

Hewitt, Carl, 219

higher-order function, 89

higher-order function, 328

Hindley, J. R., 125

Hindley-Milner polymorphism, 125

Hopcroft, J.E., 64

Horner’s rule, 284, 294

HotSpot JVM implementation, 178

Index 349

Hudak, Paul, 83

Hughes, John, 83

Hutton, G., 64

IBM JVM, 299

Icon language, 241

if (F# keyword), 311

IFNZRO instruction, 160

IFZERO instruction, 160

ildasm disassembler, 187

immutable list, 321

imperative programming

language, 131

naive, 132–133

implementation language, 24

incremental garbage collection,

206

INCSP instruction, 160

<init> pseudo-method, 182

initialized reference (C++), 149

instantiation of type scheme, 109

interpreter, 23, 24

exception handling, 231–233

in continuation-passing style,

231–236

invariant generic type, 122

IronPython implementation, 178

IronRuby implementation, 178

iterative, 227

Java language, 201

array assignment, 82

collection classes, 82

delegate, 301

dynamic typing, 82

garbage collection, 209

generic types, 119

parser generator, 41, 60

reflection, 275

runtime code generation,

295–297

Java Virtual Machine, 178–186

javac compiler, 182

JavaCC lexer and parser

generator, 60

JavaClass, 302

JavaCup parser generator, 41

javap disassembler, 185

JavaScript language, 82

Javassist library, 182

jikes compiler, 182

JMangler library, 182

Johnson, S.C., 64

Johnsson, Thomas, 83

Jones, Richard, 220

Jones, Neil D., 302

JRuby implementation, 178

JScript programming language,

178

jUnit unit testing framework, 276

JVM. See also Java Virtual

Machine

bytecode, 181

example, 190

verification, 186

class file, 182–185

example, 184

constant pool, 182

frame stack, 180

instruction types, 182

instructions, 183

runtime code generation,

295–297

Jython implementation, 178

Kennedy, Andrew, 119, 125, 302

Keppel, David, 302

Kernighan, Brian W., 137, 152

Kleene, Stephen Cole, 63

Knuth, Donald E., 64

KVM JVM implementation, 178

Lam, M., 64

lambda abstraction, 96

350 Index

lambda calculus, 96–99

layout-sensitive language, 315

lazy evaluation, 83, 95–96

Lazy ML language, 83

LDARGS instruction, 160

LDI instruction, 160

left-recursive grammar rules, 62

Length (F# function), 313

length (F# function), 321

Leone, Mark, 302

Leroy, Xavier, 83, 119, 267

let (F# keyword), 310, 313, 316

let rec (F# keyword), 315

lexeme, 40

lexer, 40

generator, 40

specification, 40–41

examples, 48–50, 57–63

lexical scope, 74, 200

lexical token, 40

Lexing module (F#), 46

Lieberman, Henry, 219

lifetime of a value, 200

Lindholm, Tim, 194

LinkedList (example), 82, 120,

121, 184, 201

Lins, Rafael, 220

Lisp language, 75, 82, 83, 200, 276

list (Scheme function), 283

list-C language, 212–215

LL parser, 41

LLVM compiler infrastructure, 179

local subroutine, 188

longjmp function, 240

loop invariant computation, 266

LR parser, 41

LR(0)-item, 51

LT instruction, 160

Łukasiewicz, Jan, 29

lvalue, 134, 142

MacQueen, David, 83

major garbage collection, 208

malloc
allocation in C, 201

Malmkjær, Karoline, 277

map (F# function), 321, 328

mark-sweep garbage collection,

205

match (F# keyword), 317

McCarthy, John, 83, 219

memory leak, 209, 211

meta language, 11

metadata in bytecode files, 193

MetaML (two-level ML), 302

MetaOCaml (two-level ML), 302

Metaphor (two-level C#), 302

metaprogramming language, 288

method

anonymous, 92

micro-C language, 140–148

abstract syntax, 141

backwards compilation,

252–264

compilation to stack machine,

165–175

compiler functions, 166

example programs, 142, 144

interpreter, 142–143

stack layout, 164

stack machine, 158–165

exception handling, 238

micro-ML language, 69

abstract syntax, 70

explicitly typed, 76–78

first-order, 69–82

interpreter, 73–74

higher-order, 94

lexer and parser, 57

micro-SQL language

lexer and parser, 58

Milner, Robin, 125

Milner, Robin, 83, 125

Index 351

minor garbage collection, 208

Miranda language, 83

ML language, 83

MOD instruction, 160

Mogensen, Torben, 1, 39, 302

monomorphic type rules, 108

MUL instruction, 160

mutator, 203

Nair, Ravi, 194

naive imperative programming

language, 132–133

naive store model, 133

Naur, Peter, 64, 83

Neshkov, Atanas, 194

.NET (Microsoft), 178

net effect principle, 30, 166

Neverov, Gregory, 302

new
allocation in C++, 201

allocation in Java, 201

allocation in Pascal, 201

New operation (union-find), 117

Nielson, Flemming, 302

Nielson, Hanne Riis, 302

NIL instruction, 216

nonterminal symbol, 43

normal continuation, 232

not (F# function), 311

NOT instruction, 160

nth (F# function), 321

null? (Scheme function), 283

obfuscator, 194

object language, 11

Oiwa, Y., 302

old generation, 208

open (F# keyword), 311

optimizing compiler

for micro-C, 251–265

orphan block, 218

P-code language, 177

Parallel Virtual Machine, 179

parameter, 135

passing mechanisms, 135–136

parametric polymorphism,

107–119

parser, 40

combinator, 64

generator, 40

specification, 40, 43–44

examples, 46–47, 57–63

Parsing module (F#), 46

partial evaluation, 281, 302

Pascal language, 178

Paulson, L.C., 64

PDF. See Portable Document

Format

Perl language, 82, 201

Peyton Jones, Simon, 83

Pierce, Benjamin, 125

Plotkin, Gordon, 245

PLT Scheme. See Racket

programming language

pointer, 137

arithmetics, 138

dangling, 200

polymorphic type, 107–119

polymorphic types, 107–125

polynomial (example), 284

Portable Document Format, 31

postfix notation, 29

Postscript language, 30, 82, 133,

177

power function (example), 280, 293

precise garbage collector, 209

prefix notation, 282

preorder traversal, 327

PRINTC instruction, 160

Printezis, Tony, 210

PRINTI instruction, 160

production (in grammar), 43

352 Index

program

counter, 158

specialization, 281, 302

Prolog language, 125, 241

pure functional language, 69

PVM. See Parallel Virtual Machine

Python, 315

Python language, 82, 201

quasi-quotation, 285

quasiquotation, 282

Rabbit compiler, 245

Rabin, Michael O., 63

Racket programming language,

303

Racket programming language,

301

raise (F# keyword), 322

recursive descent, 59

reduce action, 52

reduce/reduce conflict, 55

ref (F# keyword), 331

reference counting, 204–205

reflection, 273–277

comparing Java and C#, 275

reflective method call, 274

efficient, 299

regular expression syntax, 41

reification, 277

Reinhold, Mark, 92

Rémy, Didier, 125

result sequence, 241

resumption, 242

RET instruction, 160

return statement

compilation, 168

rev (F# function), 321

reverse Polish notation, 29

Reynolds, John, 244

Richards, Martin, 137, 152

Ritchie, Dennis M., 137, 152

Robinson, Alan, 125

Roeder, Lutz, 194

root set, 203

round (F# function), 316

RTCG. See runtime code

generation

Ruby language, 82

runtime code generation, 279–307

in C#, 290–295

in CLI, 290–295

in Java, 295–297

in JVM, 295–297

speed, 297–299

rvalue, 134, 142

S-expression, 59

SASL language, 83

Scala programming language, 178

scanner. See lexer

Scheme language, 82, 83, 200,

282–287

backquote, 285

car function, 283

cdr function, 283

comma operator, 285

define keyword, 282

eval function, 285

list function, 283

null? function, 283

unquote operator, 285

Schwartzbach, Michael, 125

scope, 24

dynamic, 75

lexical, 74

nested, 25

static, 24, 74, 200

Scott, Dana, 63

semantic action, 47

semantics, 14

dynamic, 15

static, 15

Index 353

semispace, 206

SETCAR instruction, 216

SETCDR instruction, 216

Sethi, R., 64

setjmp function, 240

Sheard, Tim, 302

shift action, 51

shift/reduce conflict, 55

side effect of expression, 133

Sierpinski curve, 32

Simula language, 200

single-threaded store, 135

slice of a garbage collection, 206

Smalltalk language, 200

Smith, Brian Cantwell, 276

Smith, James E., 194

SML. See Standard ML language

SML/NJ implementation, 239, 245

source language, 24

space leak, 201

specialization of programs, 302

sqrt (F# function), 310

stack

allocation, 199

frame, 164

machine, 29

exception handling, 236–238

for expressions, 30

for micro-C, 158–165

pointer, 158

staging transformations, 302

Standard ML language, 83, 200

start symbol, 43

statement, 132

static

binding time, 281

scope, 74, 200

semantics, 15

Steele, Guy L., 83, 245, 301

STI instruction, 160

STOP instruction, 160

stop-and-copy garbage collection,

206

store and environment, 133–135

Strachey, Christopher, 137, 148,

230, 244

Fundamental Concepts,

148–152

string concatenation in F#, 311

SUB instruction, 160

success continuation, 232, 242

Sun Hotspot JVM, 299

Sussman, Gerald, 83, 267

Sussman, Julie, 267

SWAP instruction, 160

Syme, Don, 119

syntax, 14

abstract, 14

concrete, 14

Taha, Walid, 302

tail call, 227, 228

and continuations, 238–239

definition, 226

in C language, 263

optimization, 261–265

tail position, 228

tail-recursive, 227

target language, 24

TCALL instruction, 160, 239

terminal symbol, 43

Thompson, Ken, 137

tick-C system (two-level C), 302

to-space, 206

Tofte, Mads, 83, 267

tokenizer, 48

top-down parser, 41

try (F# keyword), 322

Turing, Alan, 97

Turner, David A., 83

two-level language, 288

two-space garbage collection, 206

354 Index

type

checking, 76–78

inference, 108–111

scheme, 109

variable, 114, 326

type (F# keyword), 321, 323, 328

Ullman, J.D., 64

Union operation (union-find), 117

union-find data structure, 117–118

unit (F# keyword), 319

unmanaged CIL, 188

unquote operator (Scheme), 285

unreachable code, 261

variable occurrence

bound, 25

free, 25

variance

in C#, 123–124

in Java, 122, 123

VB.NET programming language,

178

Vcode (machine code generation),

302

verification of bytecode, 186

virtual

machine, 177

VM. See virtual machine

Wadler, Phil, 83

Wadsworth, Christopher, 83, 230,

244

Wand, Mitchell, 276

white block, 217

wildcard in generic type (Java),

122–123

Wilson, Paul, 220

with (F# keyword), 317, 322

write barrier, 208

WriteLine (F# function), 319

Yellin, Frank, 194

young generation, 208

