
Comparing Two Software Design Process Theories

Paul Ralph1

1Lancaster University, United Kingdom
paul@paulralph.name
http://paulralph.name

Abstract. This paper explores an ongoing conflict concerning the nature of
software design. This conflict manifests itself as antagonism between managers
and developers, debates about agile vs. plan-driven methodologies and aspiring
developers’ dissatisfaction with their courses. One side views design as a plan-
driven information processing task involving rational decision-making (the
Reason-Centric Perspective), while the other views design as an improvised,
creative task involving naturalized decision-making (Action-Centric Perspec-
tive). Each perspective includes an epistemology, theory of human action and a
software design process theory (an explanation of how software is created in
practice). This paper reports the results of an exploratory questionnaire study
that comparatively and empirically evaluated the two process theories. Results
clearly favor the Action-Centric process theory: the Sensemaking-Coevolution-
Implementation Framework.

Keywords: Design Science, Process Theory, Software Design, Questionnaire

1 Introduction

Software design science is the philosophical, theoretical and empirical study of soft-
ware creation and modification including its phenomenology, methodology and cau-
sality. It is distinct from the “design-science research paradigm” [1, 2], where design
is a research method. A key element of design science involves theories of the shape
and organization of the design process [3]. Yet, the shape and organization of the de-
sign process of software, in particular, is not well understood [3-6], as most academic
work on software design is prescriptive rather than explanatory or descriptive [see 7,
8] – hence, my primary research question (as follows).

Research Question: What is the process by which development teams
create software in practice?

To address this question, I evaluate competing process theories of software design,
in terms of their descriptive and explanatory validity. A process theory is “an explana-
tion of how and why an organizational entity changes and develops” [9, p. 512]. Proc-
ess theories are distinct from process models – “A process model is an abstract de-
scription of an actual or proposed process” [10, p. 76]. A process theory seeks to ex-
plain how outcomes materialize in general, not simply one or several historical or
possible activity sequences. Following [11], software design (verb) is the act of creat-

mailto:paul@paulralph.name
mailto:paul@paulralph.name
http://paulralph.name
http://paulralph.name

ing a specification of a software object, by an agent, intended to accomplish goals in a
particular environment, using a set of primitive components, satisfying a set of re-
quirements, subject to set of constraints.

This research contributes to the field of software design science, the philosophical,
theoretical and empirical study of the creation of virtual artifacts, including perform-
ance (phenomenology), methods, tools and practices (methodology), and antecedents
and outcomes (causality). This should not be confused with the design science re-
search paradigm [1, 2, 12], where knowledge is created by building and evaluating
technological artifacts.

This paper is organized as follows. Section two categorizes existing research on
software design into two mutually-exclusive clusters of interrelated theoretical and
philosophical concepts (Reason-Centric and Action-Centric Perspectives). Section
three describes the design and results of a survey study that comparatively tested
process theories from both perspectives. Section four summarizes the contributions of
this phase of the study and outlines the next.

2 Two Perspectives on Software Design

This section summarizes the Reason- and Action-Centric Perspectives [8], and defines
the process theories used to operationalize each perspective.

2.1 The Reason-Centric Perspective

“According to the model of Technical Rationality – the view of professional knowl-
edge which has most powerfully shaped both our thinking about the professions and
the institutional relations of research, education, and practice – professional activity
consists in instrumental problem-solving made rigorous by the application of scien-
tific theory and technique,” [13, p. 21]. Technical Rationality requires given problems
– goals are agreed in advance and constraints are knowable. Schön argues that Tech-
nical Rationality is foundational to both positivism [14] and the Technical Problem-
Solving design paradigm [3]. The latter posits that professionals design by optimizing
or “satisficing” a design candidate vis-à-vis known constraints and objectives. They
engage in rational decision making – choosing the best option from a known set [15].

Technical Rationality and the Technical Problem-Solving paradigm are consistent
with the cognitivist view of human action, wherein actions are executed and under-
stood through a plan and defined as “a sequence of actions designed to accomplish
some preconceived end” [16]. Plans are prerequisites to action. Unanticipated condi-
tions trigger replanning; evaluation is performed by comparing resulting and planned
actions and outcomes. In this view, design is a form of plan-driven problem-solving,
where an agent seeks a goal state by executing a plan within a field of constraints
[17]. Moreover, this view is guided by an Information Processing metaphor – “The
designer is seen as a machine capable of rationally selecting and connecting together
elemental information to satisfy a set of constraints” [18, p. 309].

The Function-Behavior-Structure (FBS) Framework [19, 20] is an engineering de-
sign process theory, broadly consistent with the above. Figure 1 shows one represen-
tation of the FBS Framework; Tables 1 and 2 define its artifacts and processes.

F S D

Be Bs

DocumentationCatalog Lookup

Evaluation

Structural Reformulation

Behavioral
Reformulation

Functional
Reformulation

Synthesis

Transformation

Occasional
Transformation

Comparison

Fig 1. The Function-Behavior-Structure-Framework

Table 1. Artifacts of the FBS Framework (adapted from [19])

Symbol Meaning

Be expected (desired) behavior of the structure

Bs “the predicted behavior of the structure” (p. 3)

D a graphically, numerically and/or textually represented model that transfers “suffi-
cient information about the designed artefact so that it can be manufactured, fabri-
cated or constructed” (p. 2)

F “the expectations of the purposes of the resulting artefact” (p. 2)

S “the artefact's elements and their relationships” (p. 2)

The core claim of the FBS Framework is that “the purpose of designing is to trans-
form function, F (where F is a set), into a design description, D, in such a way that the
artefact being described is capable of producing those functions,” [19, p. 2, original
italics]. Gero posited three “intermediate artifacts” – structure (S), structure’s behav-
ior, (Bs) and expected behaviors (Be). Gero and Kannengiesser (2002) situated func-
tion, behavior and structure in three different “worlds” – desired, internal and external
– where each concept exists in each world (e.g., desired functions, the designer’s in-
terpretation of the functions of the current design candidate, and external representa-
tions of said interpretations). Kruchten [21] claimed that software design may be
“cast” in the FBS Framework and consequently mapped the Rational Unified Process
[22] and Waterfall Model [23] onto it.

Table 2. Operations of the FBS Framework (adapted from [19])

Operation Inputs Outputs Meaning

Analysis S Bs the process of deriving the behavior of a structure

Catalog Lookup F S selecting a known structure that performs the re-
quired function

Evaluation Bs & Be Differences
Between Bs
and Be

comparing predicted behavior to expected behavior
and determining whether the structure is capable of
producing the functions

Formulation F Be deriving expected (desired) behaviors from the set of
functions

Production of
Design
Documentation

S D transforming structure into design description suit-
able for manufacturing

Synthesis Be S & Bs “expected behavior is used in the selection and com-
bination of structure based on a knowledge of the
behaviors produced by that structure” (p. 3)

2.2 The Action-Centric Perspective

Social constructivism posits that knowledge is derived from social interactions [24].
Building from social constructivism and empirical studies of professional practice,
Schön [13] devised the Reflection-in-Action design paradigm, where design is a re-
flective conversation between the designer and the situation. The designer alternates
between framing (conceptualizing the problem), making moves (where a move is a
real or simulated action intended to improve the situation) and evaluating moves.
Multiple agents may collectively reflect in action using boundary objects [25].

Schön [13] argued that “when someone reflects in action, … he does not keep
means and ends separate … he does not separate thinking from doing” (p. 69). This
idea is elemental to the ethnomethodological view of human action (ethno-view), in
which “the organization of situated action is an emergent property of moment-by-
moment interactions between actors, and between actors and the environments of
their action” [16, p. 179], while “plans are representations, or abstractions over ac-
tion” (p. 186). Both Reflection-in-Action and the ethno-view imply that innovation is
based on the creativity and experience of the designer; consequently, the guiding
metaphor is creativity [18] and decision making is naturalistic [26].

The Sensemaking-Coevolution-Implementation (SCI) Framework [27, 28] (Figure
2, Table 3) is a design process theory that is broadly consistent with the above con-
cepts. Unlike the FBS Framework, the SCI Framework is specific to software design.
Its core claim is that software design includes three primary activities (in no set order)
– making sense of context, iteratively evolving mental pictures of context and soft-
ware artifact, and writing code based on the mental picture of the software.

Mental
Picture of
Context

Sensemaking

Goals

Design
Agent's

Environment

Design Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Coevolution

Design
Object's

Environment

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

Requirements

Fig 2. The Sensemaking-Coevolution-Implementation Framework

2.3 Comparative Analysis of Perspectives and Process Theories

Perspectives in Conflict. Table 4 contrasts the Reason- and Action-Centric Perspec-
tives, which largely constitute the assumptions of the FBS and SCI Frameworks. The
conflict between these perspectives is evident in Beck’s discussion of common ten-
sions between managers who try to drive projects through cost estimates and develop-
ers who cannot reliably estimate complex projects [29]. Similarly, Graham explains
misalignment between programming education and practice – “I was taught in college
that one ought to figure out a program completely on paper before even going near a
computer. I found that I did not program this way.... I tended to just spew out code
that was hopelessly broken, and gradually beat it into shape” [30]. Moreover, “the
concept of method ... occupies an extremely privileged status in formal information
systems development thought” while “the possibility that amethodical development
might be the normal way” of building systems has “almost entirely elud[ed] the sys-
tems development literature” [31, p.54, 58]. The Reason-Centric perspective has oc-
cupied an analogously privileged status in design research despite little empirical evi-
dence concerning its assumptions and ramifications.

Process Theory Similarities. Despite differing assumptions, the two process theories
are similar in several ways:

1. They are both teleological process theories; i.e., explanations of how and why
an entity changes wherein change is manifested by a goal-seeking agent that
engages in activities in a self-determined sequence, and monitors progress [9,
32, 33]. Therefore, they share fundamental aspects of teleological process theo-
ries, including goals and an agent.

2. They share fundamental design concepts; e.g., the FBS Framework’s expected
behavior and structure concepts are similar to the SCI Framework’s require-
ments and mental picture of the design object concepts (see Tables 1 and 3).

Table 3. Concepts of the SCI Framework (adapted from [28])

Concept Meaning

Constraints a restriction on a structural or behavioral property of the design object

Design Agent an entity or group of entities that is capable of forming intentions and goals
and taking actions to achieve those goals, and that specifies the structural
properties of the design object

Design Object’s
Environment

the totality of the surroundings in which the design object exists or is in-
tended to exist

Design Agent’s
Environment

the totality of the surroundings of the design agent

Design Object a (possibly incomplete) manifestation of the mental picture of design object,
composed of primitives, in the design object’s environment

Goals optative statements (which may exist at varying levels of abstraction) about
the effects the design object should have on the design object’s environment

Mental Picture
of Context

the collection of all beliefs, held by the design agent, regarding the design
agent’s environment and the design object’s environments

Mental Picture
of Design Ob-
ject

the collection of all beliefs held and decisions made by the design agent con-
cerning the design object

Primitives the set of entities from which the design object may be composed

Requirements a structural or behavioral property that a design object must possess

Sensemaking the process where the design agent perceives its environment and the design
object’s environment and organizes these perceptions to create or refine the
mental picture of context

Coevolution the process where the design agent simultaneously refines its mental picture
of design object based on its mental picture of context, and vice versa

Implementation the process where the design agent generates or updates a design object using
its mental picture of design object

Table 4. Comparison of Reason- and Action-Centric Perspectives

Dimension Reason-Centric Perspective Action-Centric Perspective

Epistemology Positivist Constructivist
Theory of Action Cognitivist Ethnomethodological
Design Paradigm Technical Problem-Solving Reflection-in-Action
Decision Making Rational Naturalistic
Guiding Metaphor Information Processing Creativity
Process Theory FBS Framework SCI Framework

1. Both frameworks are consistent with models. In the FBS Framework, the de-
signer necessarily creates an external representation of the design artifact’s
structure and may also model functions and behaviors. In the SCI Framework,
the design agent may model both the mental pictures of the context (conceptual
models) or the design object (design models).

Process Theory Differences. Notwithstanding these similarities, the two theories
differ in at least three ways.

1. Whether problem setting and problem solving are separate (FBS Framework) or
cotemporal and inextricably linked (SCI Framework)

2. Whether the coding process is driven by prefigured decisions (FBS Framework)
or evolves iteratively with the design process (SCI Framework)

3. Whether designers focus on models (FBS Framework) or code (SCI Frame-
work)

The first difference results from the conflicting design paradigms underlying the
two theories, the second from their dissimilar theories of action, the third from the
differing guiding metaphor. Therefore, comparatively testing the two process theories
on these dimensions may give insight into the descriptive validity of the underlying
assumptions encompassed by the Action and Reason-Centric Perspectives.

3 Research Design and Results

Taking a comparative approach to testability [34, 35], my original research question
may now be operationalized as Which of the FBS and SCI Frameworks more accu-
rately describes how software is created in practice?

My literature review did not uncover any previous empirical evaluations of either
theory in the software domain. Moreover, I uncovered little methodological advice on
evaluating process theories. However, Wolfe [36] identified two common approaches
to studying innovation processes – cross-sectional surveys and in-depth field studies.
Considering the similarity between design and innovation, it would seem reasonable
to adopt these methods here. Furthermore, combining the two approaches enables
multi-method triangulation – the survey (phase 1) allows for larger sample size and
reliability while the field study (phase 2) facilitates gathering deep insights into de-
veloper behaviors and cognitive processes. This paper focuses on the survey, which I
designed based on well-known guidelines [37-39].

3.1 Hypothesis

I hypothesize that the SCI Framework is more accurate, as its underlying design para-
digm (Reflection in Action) and theory of human action (Ethno-View) are better sup-
ported by empirical studies than their Reason-Centric alternatives [13, 16].

Hypothesis H1: The SCI Framework more accurately reflects how software is cre-
ated in practice than the FBS Framework.

3.2 Instrument Development and Validation

The steps in the instrument development and validation were as follows.
1. The author identified differences between the two theories.
2. A colleague with expert knowledge of software design reviewed these differ-

ences, finding no bias in the interpretation of either theory.
3. The author generated approximately 80 items concerning these differences.
4. Items were reviewed by two MIS faculty, one with extensive experience in

questionnaire-based research, the other with extensive knowledge of design.
5. A pilot was conducted with three professional developers and seven MIS PhD

students to get research-oriented feedback. Items were revised.
6. A second pilot with 12 professional developers was conducted. Results indicated

that the questionnaire was too long and difficult to understand. Most items were
dropped; remaining items were simplified.

7. A third pilot with 10 professional developers was conducted. Minor revisions
were made, resulting in the final version of the instrument.

Following this process, the questionnaire comprised 13 items (listed in the Appen-
dix). Each item was constructed with six responses: one strongly supporting each
framework; one supporting each framework; one neutral; one “Not Applicable / Don’t
know.” The question order was randomized; the answer order varied by question.
Please note, these items are not reflective indicators of latent constructs. Differences
between process theories are not latent constructs and items do not reflect these dif-
ferences as much as describe certain behaviors and attitudes related to the differences.
For example, from Difference 1 (whether problem setting and solving are separate),
the survey included the item “The process of designing the software has NOT helped
my team better understand the context in which the software is intended to be used.”

3.3 Sampling and Administration

The population of interest includes all members of all software development teams,
worldwide. However, for practical reasons, I limit the sample to English speakers.
Moreover, having no comprehensive population list, random sampling was impracti-
cal. Instead, participants were recruited through posts on popular software develop-
ment blogs and through Twitter. The questionnaire was administered online.

Between December 2, 2009 and January 11, 2010, 1384 participants responded to
the survey. The response rate cannot be calculated since, as in snowball sampling, the
sample size is undefined. However, of the 4410 individual visitors to the survey page,
1384 completed it (31%), 1118 partially completed it and 1908 bounced (looked at the
survey’s front page and then left). Table 5 summarizes their key demographics.

Responses were received from 65 countries across six continents with concentra-
tions in the United States (549), Canada (176), United Kingdom (118) and Australia
(73). Participants indicated fulfilling varied roles (they could choose several), includ-
ing developer (1325), analyst (569), quality assurance specialist (533), manager (266)
and graphics designers (195). Respondents reported using a wide variety of agile
(e.g., Scrum), plan-driven (e.g., the Rational Unified Process) and homegrown meth-
odologies. When asked “Is your project more ‘social’ (like a website) or ‘technical’

(like a device driver)”, participants answered: more social - 34%; more technical -
29%; in between - 36%.

Table 5. Summary of Sample Demographics

Dimension Mode Minimum Maximum
Years of Experience 1 to 5 years✻ (31.5%) < 1 year (2.9%) > 25 years (3.6%)
Education Bachelor’s Degree✻ (48%) Some School (1.7%) PhD (4.1%)
Company Size 1 to 10 (29%) 1 to 10 (29%) >10 000 (10.5%)
Dimension Mean Standard Deviation Range
Team Size 11 members 83 members 3000 members
Project Length 1.9 years 2.4 years 20 years

3.4 Results

Before presenting the results, I enumerate the possible patterns and their interpreta-
tions, assuming responses are coded from 1 (strong support for the FBS Framework)
to 5 (strong support for the SCI Framework).

1. A symmetric distribution (median of 3) would indicate that neither framework is
substantially more accurate than the other.

2. A positively-skewed distribution (median of 1 or 2) favors the FBS Framework.
3. A negatively-skewed distribution (median of 4 or 5) favors the SCI Framework.
4. A bimodal distribution (e.g., modes of 2 and 4) would indicate that developers

can be categorized into two groups, one supporting each framework.
5. A combination of symmetric, positively and negatively skewed items would

suggest a problem with the survey instrument.
The results are given in Table 6 (please note: columns do not total 1384 as each

question had a “N/A” option). It is clear from inspecting Figure 3 that the overall
distribution favors the SCI Framework. The same pattern is observed at both the item
level (each item had a median response of 4 or 5) and the individual level (96.6% of
respondents had a median response of 4 or 5). In summary, the response distribution
is negatively skewed, supporting the SCI Framework.

Table 6. Questionnaire Results

ItemItemItemItemItemItemItemItemItemItemItemItemItem
1 2 3 4 5 6 7 8 9 10 11 12 13

Strong FBS
FBS Framework
Neutral
SCI Framework
Strong SCI

Median
Mode

7 13 14 20 62 22 22 13 17 58 23 13 9
38 66 42 76 161 61 97 39 63 168 173 174 67
72 162 109 120 195 78 113 55 122 148 320 299 303
597 662 576 572 572 398 539 452 539 492 671 623 562
656 446 628 575 349 819 592 796 620 505 173 155 425

4 4 4 4 4 5 4 5 4 4 4 4 4
5 4 5 5 4 5 5 5 5 5 4 4 4

Fig 3. FBS/SCI Agreement Across 13 Items

Many methodologists and statisticians disagree as to whether Likert scales of the
kind used in this research produce interval or ordinal data, and consequently as to
whether to apply parametric or nonparametric tests [40]. Here, I take the more cau-
tious route, treating the data as ordinal.

Nonparametric tests (such as chi-square) require an expected distribution to com-
pare with the observed distribution. Since there is no a priori “FBS-supporting distri-
bution”, I generated one (for each item) by reflecting the observed distribution (sub-
tracting each response from 6). The resulting chi-square statistics (with significance
via the sign test) indicate that the observed distribution of each item is significant at p
< 0.001 (Table 7). This answers the question, ‘is the observed distribution signifi-
cantly different from an equally compelling distribution supporting the alternative
hypothesis?’ Substituting normal and uniform distributions produced similar results.

Table 7. Chi-square Test Results - Observed vs. Reflected Distribution

Item Z Asymp. Sig. (2-tailed) Item Z Asymp. Sig. (2-tailed)

1 -33.49 p < 0.001 8 -33.18 p < 0.001
2 -29.90 p < 0.001 9 -30.48 p < 0.001
3 -32.21 p < 0.001 10 -22.13 p < 0.001
4 -29.92 p < 0.001 11 -20.10 p < 0.001
5 -20.47 p < 0.001 12 -18.84 p < 0.001
6 -31.45 p < 0.001 13 -27.87 p < 0.001
7 -28.53 p < 0.001

In addition to the thirteen items, several demographic and project variables were
included in the questionnaire, including gender, education, experience, nationality,
occupation, team size, project duration, firm size, methodologies in use, and the na-
ture of the software. Although space does not permit a thorough presentation of the
analysis, none of these variables had a measurable effect on individuals’ overall
agreement with the FBS or SCI Framework.

0

225

450

675

900

Strong FBS FBS Framework Neutral SCI Framework Strong SCI

N
um

be
r o

f R
es

po
ns

es

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7
Item 8 Item 9 Item 10 Item 11 Item 12 Item 13

4 Implications for Research and Practice

4.1 Contributions

To the best of my knowledge, this study is not just the first empirical evaluation of the
FBS and SCI Frameworks but of any software design process theory. The evidence
supporting the SCI Framework (and vicariously the Action-Centric Perspective) lends
further support to a growing body of evidence questioning the centrality of rational
thought in design and other professional activity [e.g., 13, 18, 31, 41-43]. Moreover,
the SCI Framework is immediately useful for both research, practice and teaching.

1. For researchers, it may facilitate evaluating and improving design methods,
tools and practices. For example, in evaluating a design methodology (e.g., Ex-
treme Programming), we may ask, “does this methodology provide guidance
concerning all three fundamental design activities – sensemaking, coevolution
and implementation?” If not, can the methodology be improved by considering
those omitted?” Moreover, it may inform development of an antecedent theory
of design project success. In a strict interpretation of causality, causal theories
imply precedence relationships. The SCI-Framework dispenses with Waterfall-
like, artificial activity sequences. Therefore, it may help eliminate extraneous
causal relationships during theory building (e.g., the hypothesis that analysis
quality causes design quality is incorrect a priori since analysis and design are
cotemporal in practice).

2. For educators, it may inform evaluation and improvement of software design
curricula. For example, the presented evidence implies that the SCI Framework
is a better description of software design than the Waterfall Model [23] (which is
a subset of the FBS Framework [21]); therefore, it may be more useful to teach
the concepts of the SCI Framework in design-oriented courses.

3. For managers, it suggests that developers may resist attempts to pressure them
to separate analysis from design, write code linearly or iterate on models; that
implementing a tool, practice or method that is incompatible with iterative cod-
ing and simultaneous analysis and design will likely be ineffective without cor-
responding changes in development practices; and that managers who believe
that their employees build software according to the Reason-Centric Perspective
(that is, rationally) or using a Reason-Centric method (e.g., Waterfall) are likely
mistaken or possibly actively being deceived. Furthermore, if developers do not
understand the problems that they are solving until the solution is well into de-
velopment, any upfront budget and schedule estimates lack substantive under-
standing of the problem. It seems incredulous that anyone could accurately es-
timate the cost of solving a problem without knowing what identifying the prob-
lem.

4.2 Limitations

The results of this study should be considered in light of four limitations:
1. The sample is not random and may include some bias. However, given the vari-

ety in the reported demographics, suggesting that the sample comprises only one
or several fringe developer communities seems incredulous.

1. The limitations inherent to survey research, including lack of depth and re-
sponder bias, obviously apply here. Phase two of the study (described below) is
designed to mitigate these shortcomings.

2. As the test was comparative, it does not indicate that the SCI Framework is une-
quivocally “right” or “true”. It is simply more accurate than the alternative.

4.3 Future Work (Phase 2)

As mentioned above, a multimethodological research design combining a survey with
one or more in-depth fields studies would provide more convincing evidence than
either approach alone. Following this, the next phase of the current study involves
comparatively evaluating the FBS and SCI Frameworks using a field study to cor-
roborate (or contradict) and add nuance to the current evidence.

One form of field study with a rich methodological foundation in organizational
research is the case study [c.f. 35, 44-47]. A case study is a “comprehensive research
strategy” that “investigates a contemporary phenomenon within its real-life context,
especially when the boundaries between phenomenon and context are not clearly evi-
dent … [and] relies on multiple sources of evidence, with data needing to converge in
a triangulating fashion” [35, p. 13-14]. A case study approach is preferable when 1)
the research focuses on how things are done in practice, 2) the research focuses on
contemporary events, and 3) the research does not necessitate behavioral manipula-
tions [35]. The present situation clearly meets these criteria.

I propose a three-case design comprising two literal replications and one theoreti-
cal replication (two studies of software development teams where the same result
(SCI Framework superior) is predicted and one study of an engineering design team,
where a different result (FBS Framework superior) is predicted). The proposed design
is informed by the incisive summary of recommendations in [44]. Data collection may
include interviews, recording meetings, direct observation and copying relevant arti-
facts (e.g., design diagrams). The resulting collection of statements, observations and
artifacts can then be coded according to a closed coding scheme based on the two
theories. Specifically, for each concept and relationship of each theory, related items
of evidence would be classified as ether supporting or opposing. The extent of sup-
port for each theory would reflect the cumulative support for each concept and rela-
tionship. At least two coders will be used to facilitating measurement of reliability via
intercoder agreement [35, 44, 46, 47].

4.4 Concluding Remarks

“The shape and organization of the design process is an essential component of a the-
ory of design” [3, p. 130-1]. Since “the shape and organization of the design process”
in the software domain is poorly understood [3-6], this study began with the question,
What is the process by which development teams create software in practice? This
question was operationalized as an empirical, survey study comparing two incompati-
ble software design process theories; i.e., explanations of the shape and organization
of the design process. The SCI Framework – in which design is modeled as an impro-
vised, emergent activity wherein a self-directing agent alternates between three pri-
mary activities: 1) making sense of context; 2) iteratively evolving mental pictures of

context and software artifact; 3) writing code based on the mental picture of the soft-
ware – was supported. Since the differences between the FBS and SCI Frameworks
tested reflect differences in the assumptions comprising the Reason and Action-centric
perspectives, this evidence also suggests that the Action-Centric Perspective is more
consistent with the pragmatic reality of software design than the Reason-Centric Per-
spective. Since the Reason-Centric Perspective has held a privileged position in de-
sign literature for many years [31], this evidence calls into question much of the
field’s conceptual research, the potential usefulness of popular design methodologies,
and the conventional wisdom surrounding how software designers are educated and
how software projects are managed.

References

1.	
 March, S.T., Smith, G.F.: Design and natural science research on information technology.
Decision Support Systems 15, 251--266 (1995)

2.	
 Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-
search. MIS Quarterly 28, 75-105 (2004)

3.	
 Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge, MA, USA (1996)
4.	
 Freeman, P., Hart, D.: A Science of design for software-intensive systems. Communications

of the ACM 47, 19-21 (2004)
5.	
 Sullivan, K.: Preliminary Report: NSF Workshop on the Science of Design: Software and

Software-Intensive Systems. University of Virginia Department of Computer Science,
Airlie Center (2003)

6.	
 Wynekoop, J., Russo, N.: Systems development methodologies: unanswered questions.
Journal of Information Technology 10, (1995)

7.	
 Wynekoop, J., Russo, N.: Studying system development methodologies: an examination of
research methods. Information Systems Journal 7, 47-65 (1997)

8.	
 Ralph, P.: The Sensemaking-Coevolution-Implementation Framework of Software Design.
MIS Quarterly (under review), 76 pages (2010)

9.	
 Van de Ven, A.H., Poole, M.S.: Explaining development and change in organizations. The
Academy of Management Review 20, 510--540 (1995)

10.	
Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM 35, 75-
90 (1992)

11.	
Ralph, P., Wand, Y.: A Proposal for a Formal Definition of the Design Concept. In: Lyyti-
nen, K., Loucopoulos, P., Mylopoulos, J., Robinson, W. (eds.) Design Requirements Engi-
neering: A Ten-Year Perspective. Lecture Notes on Business Information Processing, pp.
103-136. Springer-Verlag (2009)

12.	
Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Building an information system design theory
for vigilant EIS. Information Systems Research 3, p36 - 59 (1992)

13.	
Schön, D.A.: The reflective practitioner: how professionals think in action. Basic Books,
USA (1983)

14.	
Hacking, I.: Scientific Revolutions. Oxford University Press, New York, USA (1982)
15.	
Luce, D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey Wiley, New

York, NY, USA (1957)
16.	
Suchman, L.: Plans and Situated Actions: The problem of human-machine communication.

Cambridge University Press (1987)
17.	
Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Inc. (1972)

18.	
Love, T.: Philosophy of Design: A Meta-theoretical Structure for Design Theory. Design
Studies 21, 293-313 (2000)

19.	
Gero, J.S.: Design prototypes: A Knowledge Representation Schema for Design. AI Maga-
zine 11, 26-36 (1990)

20.	
Gero, J.S., Kannengiesser, U.: The Situated Function-Behaviour-Structure Framework.
Design Studies 25, 373-391 (2004)

21.	
Kruchten, P.: Casting Software Design in the Function-Behavior-Structure Framework.
IEEE Software 22, 52-58 (2005)

22.	
Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Professional
(2003)

23.	
Royce, W.W.: Managing the development of large software systems: concepts and tech-
niques. In: Proceedings of Wescon, (1970)

24.	
Berger, P., Luckmann, T.: The social construction of reality : a treatise in the sociology of
knowledge. Penguin, London (1966)

25.	
Levina, N.: Collaborating on Multiparty Information Systems Development Projects: A
Collective Reflection-in-Action View. Information Systems Research 16, 109-130 (2005)

26.	
Klein, G.: Sources of Power: How People Make Decisions. The MIT Press, Cambridge,
MA, USA (1999)

27.	
Ralph, P., Wand, Y.: A Teleological Process Theory of Software Development. JAIS The-
ory Development Workshop, vol. 8(23), Sprouts: Working Papers on Information Systems,
Paris, France (2008)

28.	
Ralph, P.: Theories of Software Design. MIS Quarterly (under review), 76 pages (2010)
29.	
Beck, K.: Extreme Programming eXplained: Embrace Change. Addison Wesley, Boston,

MA, USA (2005)
30.	
Graham, P.: Hackers and Painters. (2003)
31.	
Truex, D., Baskerville, R., Travis, J.: Amethodical systems development: the deferred

meaning of systems development methods. Accounting, Management and Information
Technologies 10, 53-79 (2000)

32.	
Singer, E.A.: Experience and Reflection. University of Pennsylvania Press (1959)
33.	
Churchman, C.W.: The design of inquiring systems: Basic concepts of systems and organi-

zation. Basic Books, New York (1971)
34.	
Sober, E.: Testability. Proceedings and Addresses of the American Philosophical Associa-

tion 73, 47--76 (1999)
35.	
Yin, R.: Case study research: Design and methods. Sage Publications, California, USA

(2003)
36.	
Wolfe, R.A.: Organizational innovation: review, critique and suggested research directions.

Journal of Management Studies 31, 405-431 (1994)
37.	
Straub, D.W.: Validating Instruments in MIS Research. MIS Quarterly 13, 147-169 (1989)
38.	
DeVellis, R.: Scale development: Theory and applications. Sage, Thousand Oaks, CA, USA

(2003)
39.	
Fowler, F.J.: Improving survey questions: Design and evaluation. Sage, Thousand Oaks,

CA, USA (1995)
40.	
Harwell, M.R., Gatti, G.G.: Rescaling Ordinal Data to Interval Data in Educational Re-

search. Review of Educational Research 71, 105-131 (2001)
41.	
Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it. IEEE

Transactions on Software Engineering 12, 251-257 (1986)
42.	
Nandhakumar, J., Avison, D.: The Fiction of Methodological Development: A Field Study

of Information Systems Development. Information Technology & People 12, 176-191
(1999)

43.	
Zheng, Y., Venters, W., Cornford, T.: Agility, Improvisation and Enacted Emergence. In:
International Conference on Information Systems, Montreal, Canada (2007)

44.	
Dube, L., Pare, G.: Rigor in Information Systems Positivist Case Research: Currect Prac-
tices, Trends and Recommendations. MIS Quarterly 27, 597-635 (2003)

45.	
Eisenhardt, K.M.: Building Theories from Case Study Research. The Academy of Man-
agement Review 14, 532-550 (1989)

46.	
Lee, A.S.: A scientific methodology for MIS case studies. MIS Quarterly 13, 33-50 (1989)
47.	
Benbasat, I., Goldstein, D., Mead, M.: The case research strategy in studies of information

systems. MIS Quarterly 11, 369-386 (1987)

Appendix: Questionnaire Items

Participants were asked to respond to the following items on a 5 point agreement scale.
• No one thing drives all design decisions – they are made based on a variety of information
• Changes to my team's understanding of what the software is supposed to do were triggered by

changes in our understanding of the problem/situation
• My understanding of what the software is supposed to do has been influenced by several

factors (e.g., management, marketing, clients, the dev team, standards, my own values, expe-
rience on previous products, etc.)

• My understanding of the software’s purpose has been influenced by several factors (e.g.,
management, marketing, clients, the dev team, standards, my own values, experience on pre-
vious products, etc.)

• The process of designing the software has NOT helped my team better understand the context
in which the software is intended to be used

• A complete, correct specification of low-level design decisions was available before coding
began (*e.g., whether to use a hashtable or array to store usernames)

• The software was coded iteratively
• My team has revised the software code based on new information (e.g., bug reports, failed

unit tests, feedback from Quality Assurance, etc.)
• My team now understands what the software is supposed to do better than we did when we

started coding
• Low-level design decisions* were primarily made before the first line of code was written

(*e.g., whether to use a hashtable or array to store usernames)

Participants were asked to respond to the following items on a 5 point ranging from “Exclu-
sively with models,” to “Exclusively with code.”
• I do detailed design...
• My team does detailed design...

Participants were asked to respond to the following item on a 5 point ranging from “Exclu-
sively prediction,” to “Exclusively observation.”

Which of these is more consistent with how your team does testing? (Required)
1) Prediction: testers inspect models of the software and predict how code based on those mod-
els will behave (e.g., predict from a UML class diagram how the code will handle an error).
2) Observation: testers run the code and see what it does (e.g., unit testing, manually test the
interface).

