
A Reversible Data Hiding Scheme For JPEG

Images

Qiming Li, Yongdong Wu, and Feng Bao

Institute for Infocomm Research, A*Star, Singapore
{qli,wydong,baofeng}@i2r.a-star.edu.sg

Abstract. When JPEG images are used as cover objects for data hiding,
many existing techniques require the images to be fully or partially de-
compressed before embedding. This makes practical application of these
methods limited. In this paper, we investigate ways to hide data in the
compressed domain directly and efficiently, such that both the original
content and the embedded message can be recovered at the same time
during decompression. We propose a method to embed bits into selected
components of the compressed data such that it does not require de-
compression of the JPEG images and introduces very little change to
the original JPEG files. The proposed method can be implemented effi-
ciently and it is possible to perform embedding and detection in a single
pass, so that JPEG streams can be processed in real-time without wait-
ing for the end of the data.

Keywords: Reversible data hiding, compressed domain embedding, JPEG

1 Introduction

Digital data hiding techniques, such as watermarking and steganography, have
been intensively studied during recent years. In a typical data hiding system, an
encoder E embeds a digital message M (e.g., a stego image) into a cover object
C (e.g., a digital photo) by slightly modifying the cover object without changing
its semantics in a given application scenario. On the other hand, a decoder D
extracts, or detects the existence of, the message M from an object C′, which
could be the cover object C, or a slightly distorted version of it due to noise in
the transmission channel.

Data hiding techniques can be very useful in many scenarios, including au-
thentication, fingerprinting, and tamper detection. Many such techniques, how-
ever, inevitably degrades the quality of the original cover data, since it is modified
in a irreversible way. This may not be acceptable in applications that require a
high fidelity. Reversible data hiding techniques are designed for such scenarios,
where the decoder not only extracts the embedded message but also restores the
original cover object to a “clean” state.

The JPEG standard is the most commonly used digital image standard in
daily life, since it achieves very high compression ratio while retaining much of
the image quality as perceived by human eyes. Most of the consumer cameras

output JPEG photos by default, if it was not the only supported format. There-
fore, JPEG images are very good candidates for cover objects when applying
data hiding techniques.

However, using JPEG images as cover objects poses some challenges. Cur-
rently, many data hiding techniques for digital images work on the pixel level
or a transform domain. To use JPEG images as cover objects, it is often re-
quired that the images are decompressed, optionally transformed, encoded, in-
verse transformed if they were transformed, and re-compressed. This gives rise
to a number of problems.

First, the data hiding technique has to be robust against JPEG compression,
which rules out most of the LSB schemes based on manipulating the least sig-
nificant bits of the pixels. Secondly, decompression and re-compression not only
introduces distortions to the image that reduce its quality, but also introduces
changes to the statistics of the DCT coefficients in the JPEG stream that can be
detected (e.g., [11]), which makes it not suitable for steganography applications.
In addition, these techniques are usually computationally more expensive than
those do not require decompression. Therefore, it is important to study data hid-
ing techniques work directly on the compressed domain without decompression.

In this paper, we investigate efficient data hiding techniques that hide mes-
sages into JPEG images without decompressing them. We propose a method
that (1) works directly on the quantized and entropy coded DCT coefficients,
(2) requires very little changes to the JPEG bit stream, and (3) is able to process
the bit stream efficiently on-the-fly without seeing the entire JPEG data. Our
main idea is that, for some selected DCT coefficients for each DCT block, we
treat it as an integer and modify its value in a reversible way. The corresponding
entries in quantization tables may be optionally modified to reduce the distortion
as seen by a standard JPEG decoder.

In Section 2, we give a brief overview of the data compression in the JPEG
standard. We will review previous reversible data hiding methods for JPEG
images in Section 3. The proposed method is given in detail in Section 4. We
evaluate the performance of the proposed scheme in Section 5. We further give
an optional step of quantization level re-mapping as a way to reduce distortion
in Section 6. We then compare our scheme with the previous schemes in Section
7, and conclude in Section 8.

2 Background

The JPEG standard is created by Joint Photographic Experts Group for digital
image compression. There are a number of variants under the standard, among
which the most commonly used ones are lossy compressions with Huffman cod-
ing. Given an RGB color image, a JPEG encoder first converts the pixels from
the RGB color space to the YCbCr space. The chrominance information (i.e.,
the Cb and Cr components) is typically down-sampled by a factor of 2 in one or
both dimensions.

There are several different possible coding configurations from this point. In
the most common configuration, the color components are interlaced and coded
in one pass (i.e., sequential coding). In such a configuration, the two dimensional
image is padded (if necessary) and divided into Minimum Coded Units (MCUs).
The size of an MCU may vary for different down-sampling factors. However,
each dimension of an MCU will always be a multiple of 8. As a result, each
MCU contains a number of 8× 8 blocks.

For each 8 × 8 block, a two dimensional Discrete Cosine Transform (DCT)
is applied to the pixels, which results in 64 DCT coefficients. These DCT co-
efficients are then quantized using 64 uniform scalar quantizers specified by a
quantization table. Each color component may be quantized using a different
quantization table. The quantized DCT coefficients are then arranged in a zig-
zag order and entropy coded, typically using one or more Huffman codes. The
Huffman encoding schemes for the first DCT coefficient (commonly referred to
as the DC coefficient) and the other coefficients (i.e., AC coefficients) are slightly
different. However, we will not go into details here since we are only interested
in AC coefficients in this paper.

For each block B of quantized DCT coefficients arranged in zig-zag order, we
will refer to the coefficients as B = {c0, · · · , c63}, where c0 is the DC coefficient,
and c1, · · · , c63 are AC coefficients. Let the quantization table for block B be
QB = {q0, · · · , q63}, where qi represents the step size for the i-th scalar quantizer.
When there is no ambiguity, we will drop the subscript B and simply use Q to
represent quantization tables. Note that these quantizers will always quantize
towards nearest integers. In other words, given an AC coefficient di (1 ≤ i ≤
63), which is the i-th coefficient resulted from two dimensional DCT, the i-th
coefficient ci is computed as

ci =

⌊

di + qi/2

qi

⌋

where ⌊x⌋ denotes the largest integer no greater than x.
Conversely, given a quantized DCT coefficient ci (1 ≤ i ≤ 63), the dequanti-

zation step during decompression simply computes the restored DCT coefficient
d̂i as

d̂i = ciqi

for 1 ≤ i ≤ 63.
We have purposely left out the DC coefficient (i.e., c0) in the above formula-

tion, since in this way there is a one-to-one correspondence between the quantized
DCT coefficient ci and a particular Huffman codeword. DC coefficients are coded
slightly differently and one extra step is needed to convert between ci and the
actual Huffman codeword.

3 Related Work

Much work has been done on digital watermarking, such as that discussed by
Cox et al. [1]. However, many schemes assume that the cover object is available

in an uncompressed form, or the watermarked objects will be distributed in
an uncompressed form, or both. When dealing with JPEG cover images, it is
possible to apply a generic data hiding technique, for example, spread spectrum
method, directly on the DCT coefficients, but this is usually not desirable since
it may introduce large distortion to the images.

There are a number of data hiding techniques tailored for JPEG cover images.
In some of these schemes (e.g., [5, 10, 6, 2, 3, 13]), the basic idea is to manipulate
the quantized DCT coefficients and sometimes the quantization table as well
as to achieve the desired capacity and fidelity. Whereas there are also schemes
(e.g., [9, 8]) that modifies the Huffman code used to encode the quantized DCT
coefficients to hide secret messages.

To use the DCT coefficients for data hiding, there are two major issues that
have to be addressed. The first is the selection of the DCT coefficients. Some of
the previous schemes (e.g., [10]) prefer high frequency coefficients, some prefer
low frequency coefficients (e.g., [6]), and others use mid-frequency coefficients
(e.g., [2, 3]).

The second issue is the actual technique to embed data into the selected
coefficients. The most often considered paradigm is to apply LSB embedding
techniques directly to the selected DCT coefficients (e.g., [5, 10, 2, 3, 13]). For
example, the least significant bits of the DCT coefficients can be simply replaced
by the data to be embedded.

Reversible data hiding techniques first appeared in a patent owned by The
Eastman Kodak [4], where a watermark is embedded into the spatial domain of
an image by simply adding to the pixel values modulo 256. After the watermark
is read, the original image can be restored by subtracting the watermark from
the watermarked image. A similar method is proposed by Macq [7] in a multi-
resolution manner. However, these methods suffer from possible large distortions
to the images due to the modulo operations.

Fridrich et al. [2, 3] propose two practical methods for reversible data hid-
ing for JPEG images using mid-band AC coefficients. In the first method, the
LSBs of some selected DCT coefficients are compressed first and embedded to-
gether with the payload to achieve reversibility. We will refer to this as the
DCT-LSB method. In the second method, the entries in the quantization tables
corresponding to the selected DCT coefficients are either reduced to half of the
original values or smaller (1 in the extreme case), so that there are at least two
candidates for each new DCT coefficient such that it will be quantized to the
same value as the original when the original quantization step is applied. In this
way, one bit can be embedded in each DCT coefficient by choosing a particular
candidate for it. The second method can also be considered as applications of
the difference expansion technique [12] on the quantization error. We will refer
to the second method as DCT-Q.

We note that the requirement that the new quantization step has to be less
than half of the original is unnecessarily restrictive, which is only imposed by
the use of quantization error. In our proposed scheme, we relax this requirement
and allow the quantization step to remain unchanged if quantization level re-

mapping is not used. Even when quantization level re-mapping is used, we allow
any positive quantization step that is less than the original.

4 Proposed Method

4.1 Models and Notations

In this paper we are only concerned with the quantization tables and the quan-
tized DCT coefficients in the JPEG compressed stream. As mentioned earlier
in Section 2, the DCT coefficients in a JPEG stream are organized into MCUs,
each of which in turn contains a number of blocks. Hence, we consider a JPEG
stream as a sequence of blocks of DCT coefficients. Note that this can be applied
to both grayscale and color sequential JPEG images.

For each block B = {c0, · · · , c63}, we consider a subset of it to be suitable
for data embedding, and we denote the indices of the subset as I = {i1, · · · , in},
where n < 63. In other words, the coefficients ci1 , · · · , cin will be used for data
hiding. Without loss of generality, we assume that we embed m message bits per
block.

As mentioned in Section 3, the encoder E = (S, C) for DCT based data hiding
techniques consists of two main algorithms, namely, the selection algorithm S
that selects a subset of DCT coefficients, and the embedder C that actually hides
the bits in the selected coefficients.

The decoder D, however, may or may not know how the coefficients are
selected. It suffices if the decoder knows which coefficients are selected. After
that, the embedding process is reversed to obtain the hidden message as well as
the original content. Hence, in the following, we focus on the selection algorithm
S and the embedder C, and how the later can be reversed.

4.2 DCT Coefficient Selection

A generic paradigm is proposed by Fridrich et al. [3] for lossless embedding.
When it is applied to DCT coefficient selection in JPEG images, the LSBs of
the DCT coefficients are required to be (1) randomizable without causing visible
artifacts, and (2) compressible.

As we will see, since most quantized AC coefficients in a typical JPEG block
are very small, this paradigm is unnecessarily restrictive. Hence, in this paper,
we only consider requirements directly related to applications. In particular, a
number of different strategies can be used as the following.

1. (Fixed Subset) The simplest way to specify a subset for data hiding is to
choose a particular subset based on the analysis of a set of existing cover ob-
jects and the requirements posed by the application scenarios. Note that the
selected subset must be known by the decoder before the communication be-
gins. It could be “hard-coded” into the software, for example, or distributed
as part of the secret key to decode the hidden message.

2. (Capacity Requirement) As we will see in Section 4.3, we only hide data
in DCT coefficients that are zeros. Hence, the subset of DCT coefficients
must contain enough number of zeros to hold the message that we want to
hide. As a result, the selection result can be different for different images,
and the decoder has to either understand the selection rule to pick the right
coefficients for decoding, or be informed of the selection results.

3. (Distortion Requirement) Since each DCT coefficient may have different
effects in terms of leaving artifacts in the resulting image, we may need to
analyze the cover image and choose the coefficients that have the least visual
impact. Similar to the previous case, the selection results has to be known
by the decoder.

4. (Least Modifications) It is often desirable that a data hiding method
should make as few changes to the cover object as possible. Based on this
requirement, the selection of DCT coefficients should have a reasonable ratio
of embedded bits against the amount of changes we make.

It is known that modifications to the DC coefficients would easily cause
blocking artifacts. Hence we only consider AC coefficients here. If we select high
frequency coefficients, it would be necessary to reduce the corresponding quanti-
zation steps to make the changes visually insignificant, since those quantization
steps are often the largest. However, this requires extra modifications to the
quantization tables and there are applications (e.g., steganography) where this
is not desirable. Furthermore, the compression ratio may be affected since part
of the compression power of JPEG comes from the fact that most of the high fre-
quency coefficients are zeros and can be omitted all together during the encoding
by the use of the EOB (end of block) symbol.

Therefore, we believe that the best coefficients for data hiding would be in
the mid-frequency band. As we will see, our embedding method hides bits into
zero coefficients. Hence, for capacity considerations, we need to choose coeffi-
cients that are very likely to be zeros. This can be either a fixed subset resulted
from statistical analysis of cover images, or adaptively chosen after analyzing a
given cover image. A disadvantage of the adaptive approach is that it needs one
additional pass before the data is embedded or decoded, whereas a fixed subset
allows real-time encoding and decoding.

4.3 Proposed Data Hiding Method

Our main idea is to design a function f that maps an original number c ∈ M for
some domain M (in our case, all possible values for a quantized DCT coefficient)
to a new value c′ = f(c), such that the following conditions hold.

1. The absolute value of the difference |c− c′| is small.

2. There exists a function g such that c = g(c′) for every c and c′.

3. There exists a function h such that h(c′) outputs either a bit of 1 or 0, or
the symbol ⊥, which indicates that no bits were hidden in c′.

For example, if the domain M = Z is the set of all integers, one way to define
functions that satisfy the above requirements is as the following.

f(x) =

0 or ± 1, when x = 0
x+ 1, whenx > 0
x− 1, otherwise.

g(x) =

0, when |x| ≤ 1
x− 1, whenx > 1
x+ 1, otherwise.

h(x) =

{

|x|, when |x| ≤ 1
⊥, otherwise.

(1)

As can be easily seen here, the secret message to be embedded can be used as
the randomness in function f , which can then be extracted by h. We will refer
to these functions as integer expansion functions.

Now, suppose we have selected n DCT coefficients in a block B for data hid-
ing. Let C = {ci1 , · · · , cin} ⊂ B be the selected coefficients. For each coefficient
c ∈ C, we apply the integer expansion functions as in (1). Note that a message
bit m ∈ {0, 1} can be embedded when c is zero. In particular, given a coefficient
c and the message bit m, the encoder does the following.

1. If c is non-zero, increase its absolute value by 1 and stop. The sign is left
unchanged.

2. Choose c′ such that |c′| = m, and the sign of c′ is randomly chosen if c′ is
non-zero.

Similarly, on the decoder side, the subset C′ = {c′
i1
, · · · , c′

in
} is selected.

Given an coefficient c′ ∈ C′, the decoder does the following.

1. If |c′| > 1, decrease its absolute value by 1 and stop. The sign is left un-
changed.

2. Output |c′| as a message bit extracted from cover data.
3. Change c′ to 0.

At the end of decoding, the DCT coefficients would be restored, and the hidden
message would be extracted.

5 Performance Evaluation

We measure the performance of our data hiding scheme by examining its ca-
pacity, distortion and its effect on the file size. We do not intend to make our
scheme robust to noise, since noise is generally not tolerated in the compressed
domain regardless of the existence of hidden messages.

We modify libjpeg1 to hide data into AC coefficients of our choice. A color
Lena image of dimension 512x512 with 6144 DCT blocks is used with different

1 A JPEG compression library developed by the Independent JPEG Group
(http://www.ijg.org/).

AC coefficient selections, and each time we try to embed as many bits as possible.
In our experiment we only embed into one AC coefficient to show the effect on
different AC coefficients, but it should be noted that it is possible to embed into
multiple AC coefficients at the same time.

The results of the first experiment are summarized in Table 1. In this exper-
iment, the Lena image is JPEG compressed with a quality factor of 75, which
is used as the “original” cover data, and random secret messages are embedded
into different AC coefficients. The distortion is measured by the PSNR between
the cover JPEG and the stego image to simulate the application scenario where
only JPEG images are available as the cover data. The same experiment is re-
peated 10 times and the average values of the file size and PSNR are shown in
the table.

Original (q = 75) c[5, 2] c[4, 4] c[2, 5]

File size (bytes) 35731 36588.9 37554.7 39150.3

File expansion 0 2.4% 5.1% 9.6%

Payload (bits) 0 3788 (61.7%) 4480 (72.9%) 5201 (84.7%)

PSNR (dB) inf 43.4219 39.778 34.5169
Table 1. Performance at quality 75.

From Table 1, it is clear that there is a trade-off among file size expansion,
capacity and distortion. In particular, as we choose an AC coefficient that is
more likely to be 0 in a given image, we obtain a larger capacity (i.e., we can
embed more bits into the image), but the file becomes larger and the distortion
becomes higher as measured by PSNR.

For example, the selection of the 16-th AC coefficient (the one on the fifth
column and second row) gives the best image quality in terms of PSNR, as well
as the smallest file size expansion (about 2.4%), at the expense of smaller data
hiding capacity (only about 61.7% of the DCT blocks can be embedded). When
we choose the 19-th AC coefficient (second column and fifth row), however, we
can embed into 5201 (about 84.7%) of the blocks at the cost of larger file size
(expansion of about 9.6%) and lower PSNR.

Quality 75 80 85 90

File size (bytes) 39150.3 52560.4 63655.5 70968.2

File expansion 9.6% 5.3% 3.4% 2.8%

Payload (bits) 5201 (84.7%) 4393 (71.5%) 3747 (61.0%) 3733 (60.8%)

PSNR (dB) 34.5169 36.3063 38.5455 41.7728
Table 2. Performance at different qualities.

In our second experiment (Table 2), we examine how the quality factor affects
the performance. In this experiment, we always choose the 19-th AC coefficient,

but use Lena images compressed with different qualities as the original. In this
case, the PSNR and file expansion are computed using the corresponding original
for each quality. As we can see, when the quality increases, the capacity drops,
and file expansion and PSNR become better. This is expected since higher quality
images contain more details and the same AC coefficient becomes less likely to
be zero.

6 Quantization Level Re-mapping

In our proposed method, all the non-zero coefficients need to be increased, and
the distortion may become too large under certain scenarios. As we will see in
this section, the distortion due to the increment of coefficients can be reduced if
we modify the quantization table slightly.

Given a DCT coefficient c, let q be the the corresponding quantization step in
the quantization table. Let p be another quantization step such that 0 < p < q.
Let α be the smallest positive integer such that α > 1 and

⌊

αp+ q/2

q

⌋

=

⌊

(α + 1)p+ q/2

q

⌋

, β. (2)

In other words, both αp and (α+1)p will be quantized to the same symbol (i.e.,
β) using q as the quantization step.

For example, suppose p = 0.8q, we have α = 2 and β = 2, since both
αp = 1.6q and (α + 1)p = 2.4q will be both quantized to β = 2 if q is used as
the quantization step. This is illustrated in Fig. 1.

0 2pp 3p

q 2q0 3q

Fig. 1. Minimum α and corresponding β for p = 0.8q.

If we reduce the quantization step from q to p, we can always modify the
value of the quantized DCT coefficient c to c′ such that c′p will be quantized to
c using q as the quantization step. When p < q, as can be seen from Fig. 1, there
will be multiple choices for c′ that would achieve the same effect. Therefore,
we can make use of this observation to mark the end of the increment due to
embedding.

In particular, given a quantized DCT coefficient c with quantization step q
and message bit m, let p be a new quantization step such that 0 < p < q and
let α and β be defined as above, the enhanced encoder now does the following.

1. If c = 0, choose |c′| = m, and randomly choose a sign for c′ if it is non-zero.
Otherwise do the following.

2. If 0 < |c| < β, increase its absolute value by 1. The sign is left unchanged.
3. If |c| = β, |c′| = α+ 1 and the sign of c′ is the same as c.
4. If |c| > β, choose c′ such that |c′p− cq| is minimized.

Accordingly, given a DCT coefficient c′ with quantization step p, let p, α and
β be as defined above, the decoder performs the following steps.

1. If |c′| ≤ 1, output |c′| as a message bit, and output c = 0 as the restored
coefficient. Otherwise do the following.

2. If 1 < |c′| ≤ α, output c such that |c| = |c′|− 1 and the sign of c′ is the same
as that of c.

3. If |c′| > α, output c such that |c′p− cq| is minimized.

Let us give some numerical examples with p = 0.8q where α = 2 and β = 2
as in Fig. 1. If a selected DCT coefficient c = 0, we can embed the message bit
by directly modifying its value. If the message bit is 0, the coefficient remain
unchanged, otherwise it is changed to 1 or −1 randomly. If c = 1, we cannot
embed data into it. We then follow the second step in the encoder, and change
its value to 2. When c = 2, we see that c = α, and follow the third step of the
encoder and change its value to α+1 = 3. If c = 3, according to the fourth step
of the encoder, we search for a c′ such that c′p − cq is minimized, and this c′

happens to be 4. The decoding process is simply the reverse of the above steps.
This is illustrated in Fig. 2, where the dashed lines represent random choices
determined by the message bit.

2pp

q 2q0 3q

4p3p0

Fig. 2. Numerical encoding examples for p = 0.8q.

Note that whether to apply the quantization level re-mapping, as well as
the choice of the values for p would be very much dependent on the application
scenario, and we will leave it for future investigations.

7 Comparisons with Previous Schemes

As we have mentioned in Section 3, prior to our studies, there are two practi-
cal reversible data hiding methods in the JPEG compressed domain, which are

proposed by Fridrich et al. [2, 3]. We refer to these methods as DCT-LSB and
DCT-Q.

The DCT-LSB method requires compression of the LSB plan of the quantized
DCT coefficients. As a result, the entire cover JPEG image has to be available
before the encoding could start. In contrast, our method processes one DCT
block at a time, hence is able to perform encoding and decoding on-the-fly when
data becomes available. Furthermore, the DCT-LSB method requires the LSB
plan of the quantized DCT coefficients to be highly compressible, whereas our
method allows any selection of a subset of DCT coefficients, as long as there are
sufficient number of 0’s. In other words, we can embed data into DCT coefficients
with almost truly random LSB.

The DCT-Q method requires the quantization step corresponding to the
DCT coefficient to be either halved or reduced to some integer factor of it (in the
extreme case, 1). While a small quantization step does allow smaller distortions,
it can be undesirable in certain scenarios. For example, with a small quantization
step, the absolute value of the quantized coefficient becomes larger. This may
make it more difficult to compress the data stream.

In addition, reducing quantization steps drastically makes it easy to spot
the existence of embedded data, hence making it undesirable for steganography
applications. In our proposed method without quantization level re-mapping, the
quantization table remains unchanged and it leaves no trace in the quantization
table.

Even with the quantization level re-mapping, the relevant entries in the quan-
tization table only needs to be slightly modified. This makes it possible to modify
the entire quantization table so that it appears to be a JPEG image of a slightly
higher quality factor. This would be difficult with the DCT-Q method without
making the data stream much more difficult to compress.

To illustrate, let us look at an experiment with the Lena image. When com-
pressing the Lena image using libjpeg version 7 and a quality factor of 75, we get
a JPEG image of 35731 bytes. If we reduce all the quantization steps to no more
than half of the values, we will need to use a quality factor of at least 88, which
would result in a JPEG image of 65891 bytes, or a 84% increase in size. On the
other hand, if we only reduce the quantization steps to 0.8 of the original values,
the quality factor required is 80, which gives a JPEG image of 49908 bytes, or a
40% increase.

8 Conclusions

In this paper we investigate data hiding methods for JPEG images, which are
the most common source of digital images nowadays.

Despite many existing methods for data hiding, most of them are not suitable
for efficient processing of JPEG images. For example, some of them require
the cover images to be in spatial domain or a transform domain that is not
“native” to JPEG. There are a few previous embedding methods for JPEG

images that directly manipulate the compressed stream. However, we found that
their assumptions may be unnecessarily strong for generic JPEG data hiding.

We therefore propose a new paradigm of data hiding in JPEG images. Our
methods are based on the observations that in most cases, the part of the com-
pressed stream of the JPEG image contain mostly integers with small absolute
values. Hence we believe that it is sufficient to embed bits as if the cover data
are integers. To reduce the distortion the embedding method may introduce to
the cover images, we further introduce an enhanced method that require the
quantization table to be slightly changed.

We further note that the changes required to the quantization table and
the compressed stream are very small and require only a single pass of the data.
Furthermore the algorithms can be implemented efficiently by slightly modifying
any existing encoder and decoder. These make our scheme suitable for efficient
real-time applications.

References

1. Cox, I., Miller, M., Bloom, J.: Digital Watermarking. Morgan Kaufmann (2002)
2. Fridrich, J., Goljan, M., Du, R.: Invertible authentication watermark for JPEG im-

ages. In: International Conference on Information Technology: Coding and Com-
puting. pp. 223–227 (2001)

3. Fridrich, J., Goljan, M., Du, R.: Lossless data embeddingnew paradigm in digital
watermarking. EURASIP Journal on Applied Signal Processing 2, 185–196 (2002)

4. Honsinger, C., Jones, P., Rabbani, M., Stoffel, J.: Lossless recovery of an original
image containing embedded data. US Patent Application, Docket No: 77102/E-D
(1999)

5. Johnson, N., Jajodia, S.: Steganalysis of images created using current steganog-
raphy software. In: Information Hiding Workshop. LNCS, vol. 1525, p. 273289.
Portland, Oregon, USA (April 1998)

6. Luoa, W., Gregory L. Heilemana, b., Pizano, C.E.: Fast and robust watermarking
of jpeg files. In: IEEE Symposium on Image Analysis and Inerpretation. pp. 158–
162 (2002)

7. Macq, B.: Lossless multiresolution transform for image authenticating watermark-
ing. In: European signal processing conference. pp. 1973–1976 (2000)

8. Mobasseri, B.G., Cinalli, D.: Lossless watermarking of compressed media using
reversibly decodable packets. Signal Processing 86(5), 951–961 (May 2006)

9. Mobasseri, B.G., II, R.J.B.: A foundation for watermarking in compressed domain.
Signal Processing Letters 12(5), 399–402 (May 2005)

10. Noguchi, Y., Kobayashi, H., Kiya, H.: A method of extracting embedded binary
data from jpeg bitstreams using standard jpeg decoder. In: International Confer-
ence on Image Processing. pp. 577–580 (2000)

11. Pevny, T., Fridrich, J.: Detection of double-compression in jpeg images for applica-
tions in steganography. IEEE Transactions on Information Forensics and Security
3(2), 247–258 (2008)

12. Tian, J.: Reversible data embedding using a difference expansion. IEEE Transac-
tions on Circuits and Systems for Video Technology 13(8), 890–896 (2003)

13. Tseng, H.W., Chang, C.C.: High capacity data hiding in jpeg-compressed images.
Informatica 15(1), 127–142 (January 2004)

