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ABSTRACT

Formal models of cultural evolution analyze how cognitive processes combine with
social interaction to generate the distributions and dynamics of ‘representations.” Recently,
cognitive anthropologists have criticized such models. They make three points: mental
representations are non-discrete, cultural transmission is highly inaccurate, and mental
representations are not replicated, but rather are ‘reconstructed’ through an inferential
process that is strongly affected by cognitive ‘attractors.” They argue that it follows from
these three claims that: 1) models that assume replication or replicators are inappropriate,
2) selective cultural learning cannot account for stable traditions, and 3) selective cultural
learning cannot generate cumulative adaptation.

Here we use three formal models to show that even if the premises of this critique are
correct, the deductions that have been drawn from them are false. In the first model,
we assume continuously varying representations under the influence of weak selective
transmission and strong attractors. We show that if the attractors are sufficiently strong
relative to selective forces, the continuous representation model reduces to the standard
discrete-trait replicator model, and the weak selective component determines the final
equilibrium of the system. In the second model, we assume inaccurate replication and
discrete traits. We show that very low fidelity replication of representations at the individual
level does not preclude accurate replication at the population level, and therefore, accurate
individual-level replication of representations is not necessary for either cultural inertia
or cumulative cultural adaptation. In the third model, we derive plausible conditions for
cumulative adaptive evolution, assuming continuous cultural representations, incomplete
transmission and substantial inferential transformations.
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Introduction

Formal models of cultural evolution (e.g. Boyd & Richerson 1985) provide
an important tool for understanding cultural phenomena. Culture is shaped
by both psychological processes that determine how people think and
feel, and social processes that determine how people interact, whether
they succeed or fail, and if they live or die. Formal cultural evolutionary
models can combine cognitive and affective processes with patterns of
social interaction to generate explicit predictions about the distributions
and dynamics of ‘representations’ — ideas, beliefs, schemas, or mental
models. With such predictions, empirical data on behavior and beliefs from
populations can be used to select among alternative models, or among the
cognitive and social components of these models, in a manner that informs
our understanding of cognition and connects laboratory experiments with
real life (e.g. Henrich 2001).

Recently Sperber (1996), Atran (2001, 2002), and Boyer (1994, 1999)
have argued that these “Neo-Darwinian” models' are inappropriate for
studying cultural evolution because they are “based on a serious distortion
of the relevant facts” (Sperber 1996:118). They identify three interrelated
problems with such approaches: First, cultural transmission processes are
usually incomplete and imperfect, so, unlike genetic systems, accurate
replication rarely occurs. Replication is the exception, rather than the
rule. Second, unlike DNA replication, inferential processes “transform”
these representations during their transmission and reconstruction. This
suggests that mutation-like processes are much more important than selection-
like processes in shaping cultural variation. Third, unlike genes, cultural
representations are rarely discrete units, suggesting that the idea of
a ‘replicator’ (or meme) makes little sense for most types of cultural

representations.”

IThese scholars use the term “Neo-Darwinian” for such models even when they
are explicitly derived from disease epidemiology (Cavalli-Sforza & Feldman 1981:46-53),
learning theory (see Boyd & Richerson 1985, Chapter 4), or cognitive psychology (Lumsden
& Wilson 1981).

2While such characterizations apply to the informal theorizing of memeticists (e.g.
Dawkins 1982, Dennett 1995 or Blackmore 1999), they are wide of the mark for much
formal cultural theory. Boyd and Richerson (BR 1985:75) explain that there is no need to
assume particulate “units” in order to build evolutionary models (BR 1985:70-75), and 19 of
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Building on these three points, these authors have claimed: First,
because representations are non-discrete, using replicators and replicator
dynamics is entirely inappropriate for culture systems (Sperber 1996:
101-103; Atran 2002: Chapter 8, 2001). Second, because of the high
levels of inaccuracy and the incompleteness, selective cultural transmission
itself does not lead automatically to ‘cultural inertia’ — the existence
of social groups in which individuals share a set of relatively stable
representations (Sperber 1996: 118). From this, Sperber (1996: Chapter 5)
further asserts that inferential transformations create ‘strong cognitive

attractors’ that swamp any influence from the selective components of

3

cultural evolutionary processes.” Such attractors create powerful forces

that overwhelm the weaker effects of selective processes, and, therefore
it is argued, selective processes do not usually generate adaptive cultural
evolution.

Whether social learning is low fidelity, non-discrete and strongly
affected by cognitive transformations are empirical matters, although it
is plausible that Atran and Sperber are correct for a wide range of cultural
domains. However, the deductions they make from these assumptions
are matters of logic, and here we use three mathematical models to

the 38 models presented in their book are continuous (non-discrete) trait models that allow
for an arbitrary amount of transmission error. Similarly, Cavalli-Sforza and Feldman (CSF
1981) devote one of their five chapters entirely to continuous trait models. These continuous
models allow for substantial error and other forms of non-replication. BR also explicitly
distinguish public representations from mental representations (though using different
terminology) throughout their book, and repeatedly specify the inferential transformation
between observed behavior and representation formed. For example, in describing one
model, they write, “The offspring uses each model’s actual behavior [public representation]
to estimate [make inferences about] his or her cultural variant [mental representation]”
(1985:75-79). They also make explicit reference to much research in psychology on the
nature of social learning. After a review of the psychological literature, especially Bandura’s
work on social learning, they specify the following pathway: Modeled events — Attention
Processes — Retention Processes — Motor Reproduction — Motivation Processes —
Matching. Of the 396 references, 101 were by psychologists, or published in psychology
journals. Chapters 4 and 5 discuss how cognitive structures — what Sperber (1996) would
later call “attractors” — bias cultural change so that some outcomes are more likely than
others, and even use some of the same examples as Boyer (1999).

SAtran (2001) refers to attractors as “cognitive elicitors.” Boyer (1999) speaks of

5

“triggered representations,” arguing that these channel cultural evolution onto “cognitive

tracks.”
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show that these deductions do not follow from their assumptions. In the
first model, we assume continuously varying representations under the
influence of weak selective transmission and strong attractors. We show
that if the attractors are sufficiently strong relative to selective forces,
the continuous representation model reduces to the standard discrete-trait
replicator model, and the weak selective component determines the final
equilibrium of the system. In the second model, we assume representations
are discrete, but that replication is very inaccurate. We show that very
low fidelity replication of representations at the individual level does
not preclude accurate replication at the population level, and therefore,
accurate individual-level replication of representations is not necessary for
selective forces to generate either cultural inertia or cumulative cultural
adaptation. In the third model, we assume continuous (non-discrete)
cultural representations, incomplete transmission and substantial inferential
transformations. Despite these assumptions, the model shows that adaptive
cultural evolution is likely in empirically plausible conditions — predictions
derived from this model have been tested elsewhere using ethnographic
data (Henrich 2002).

Model 1: Strong attractors give rise to discrete replicators

Formal models of cultural evolution have made use of both continuous and
discrete representations of cultural variation, depending on the situation.
Sperber, Atran and Boyer reject the use of discrete-representation models.
At the same time, they emphasize the role of intra-individual cognitive
transformations of representations (‘strong attractors’), and argue that,
by comparison, selective cultural processes have little or no effect on
the epidemiology of representations (e.g. Sperber 1996: Chapter 5).
In this section, we analyze a simple model that assumes continuous
representations, strong attractors and weak selective forces. We show that
this model reduces to discrete-representation replicator-dynamics in which
the weak selective forces determine the ultimate outcome. The stronger
the cognitive attractors are relative to the selective transmission forces,
the better is the discrete-replicator approximation. Therefore, assuming
that human cognition gives rise to more than one attractor per domain,
it 1s inconsistent to simultaneously advance the idea of strong attractors
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(or ‘cognitive tracks’ or ‘triggered representations) and to reject the use of
discrete-representations in models.

Here we study the evolution of the distribution of mental representa-
tions in a population. We assume that each individual’s mental represen-
tation in this domain is a single real number, x, between zero and 1.t
Individuals holding different representations (i.e. different values of x) be-
have differently on-average, or in Sperber’s terminology, generate different
“public representations.” During each time period, people in the popula-
tion observe the behavior of another individual, infer the mental represen-
tation of the model from his or her behavior, and adopt this inference as
their own representation.” Following Sperber, cognitive ‘attractors’ strongly
bias the inferential process that underlies social learning — an individual
whose model has a representation x, on average, infers a representation
that is nearer to one of two attractors. In particular, we assume that the at-
tractors are x = 0 and x = 1, and that an individual who observes a model
with representation x infers a representation x + Ax, where Ax < 0 for
x <m and Ax > 0 for x > m. We assume that Ax has the form shown
in Figure 1.

The following example illustrates how domain specific cognition might
create multiple attractors. Suppose individuals at Attractor-0 (x = 0)
perceive the Moon as a self-aware, conscious, entity with goals, emotions,
and motivations — thus the Moon’s behavior can be understood using folk
psychology (Leslie 1994). This means that the quantity (1 — x) tells us the
degree to which an individual attributes the Moon’s shape, color, position
and movements to underlying goals, emotions or motivations, or to what
degree the Moon’s goal-driven actions influence events and individuals,
such as weather, tides, personal moods, werewolves, etc. In contrast,
individuals with x = 1 (those at Attractor-1) see the Moon as simply
a big rock, lacking goals, consciousness, and emotions. These individuals
attribute the Moon’s color, shape and movement to the effects of non-
agentic interactions with light, and other mindless bodies, governed by
physical laws that operate throughout the Universe. Any effects the Moon

*We restrict the x to [0, 1] only for simplicity of exposition. Representations that varied
over other ranges, or multidimensional variable produce the same basic result.

SFor the moment we do not allow individuals to observe a sample models and make
use of the pattern of observed behavior in the sample. We return to this question below.
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Weak selective transmission o
| Effect of Strong Attractors
Change in Bi(1-x) Relative
Representation Attractiveness
due to attractor 1+sx of Model with
(Ax) Representation x
X
Attractor 0 m Attractor 1
—Box
e Domainof iy  Domainof __
Attractor 0 Attractor 1

Figure 1. Graphical representation of the assumptions in Model 1. A learner

who observes a model with representation, x, infers a representation x + Ax,

where Ax = —fox if x <m and Ax = B;(1 —x) if x > m. This creates a strong

force that shifts representations in the population toward attractors at 0 and 1.

The probability that an individual is chosen as a model is 1 + sx. This selective

transmission process creates a weak force that increases the frequency of larger
values of x in the population.

has on things such as tides, moods and calendars, are merely unintentional
consequences of the moon’s mass and movement. Now, it is possible to
imagine Moon-concepts that mix these poles (1 > x > 0). One could
believe, for example, that the moon’s movement and shape are out of its
control (governed by physical laws), while its color or hue expresses its
mood, which in turn influences the weather. Or, perhaps the Moon’s color
is 23% controlled by its emotions and 77% controlled by the laws of light
refraction. One might also believe that on Tuesdays and Thursdays the
Moon is a goal-oriented agent, on Mondays, Wednesdays and Fridays the
Moon is a big rock, and on the weekends these two alternate minute
by minute. Such beliefs might seem odd to us because they violate
intuitive expectations, and would consequently be transformed by cognitive
attractors. In contrast, x = 1 or 0 are “easier to think.” To capture
this example in a formal model, the underlying mental representations,
x, would likely need to be a multi-dimensional vector, and the analysis
represented below could be easily adapted to such representations — none
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of the qualitative findings would change. However, to keep the presentation
tractable, we will limit our analysis to one-dimensional x variables.

A second example illustrates how an attractor might be represented by
a single quantitative dimension. Young and Burke (1998) have shown that
an overwhelming majority of the share cropping contracts in Illinois are
one of two types: In some communities the farmers and the landowners
split the crop yield, while in other communities the landowners receive
two shares for every one received by the farmer. Interestingly, despite wide
variation in land quality within communities, there is little variation in
share cropping contracts within communities. Let us suppose that we were
studying a population of farmers in this region, and that x; is individual
i’s mental representation of the fair or appropriate share for the land-
owner in a share-cropping contract. We scale these representations so
that Attractor-0 (x = 0) is a 1:1 share, while Attractor 1 (x = 1)
represents a 2:1 share. Cognitively, such attractors might arise because
integer ratios involving numbers that humans intuitively understand are
easier to represent and remember than other ratios (e.g., 1.38: 3.13). When
a person is observed to use other contracts, he or she is often thought to
be using (and thinking about) one of the two focal contracts.

We also assume that individuals are selective in picking their cultural
models — that is, in deciding on whom to focus their inferential processes.
In particular, we assume individuals focus on people with higher values
of x. Individuals with higher values of x might have more success,
interact more, or be more salient for other reasons. This assumption about
human psychology is well founded: A substantial amount of evidence
from both laboratory and field research demonstrates than humans pay
particular attention to, preferentially interact with, and tend to imitate
successful/prestigious individuals (Henrich & Gil-White 2001 summarize
this evidence and lay an evolutionary foundation). Using our above
example, it could be that individuals who believe in a 2:1 contract
have more success, on average, than individuals who have other mental
representations, and that their relative success will make them preferred
models. We let w; be the likelihood that individual i is selected as a
model, and assume that there is a positive correlation between x; and w;.

We analyze this model using the Price Equation (Price 1970). This
equation (1) says that the mean change in the mean of any property of
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a population of things, genes, mental representations, or the hydrogen
atoms in the Andromeda galaxy, can be decomposed into two parts: the
extent to which the properties of things covary with the effect of selection,®
and the rate at which the things themselves change with time. There
are no assumptions about replication fidelity, discreteness or underlying
distributions. This form is particularly useful here because it partitions
the change in a population of mental representations into the effect of
selecting particular cultural models (“selective transmission”) from the effect

of inferential processes (“incomplete inference”).

WAX = COV(UJ,‘,X,‘) + E(UJ,‘AX,‘) (1)
e Y
Selective Transmisson  Incomplete Inference

AX is the change in the average value of x in the population per time step,
Ax; captures the effect of the cognitive attractors, and w is the average
replicability of the x; values carried in the minds of the 7 individuals in
the group.

Another useful property of the Price equation is that it makes it easy to
deal with populations that are structured into groups (Price 1972). Here, we
divide the population into two groups, one for each domain of attraction,
and express the dynamics for the change in the average value of x in each
domain of attraction. Group 0 is composed of individuals whose mental
representations are less than m, and group 1 contains those individuals
whose mental representations are greater than m. Let X; and w; be the
mean value of x and the mean replication rate for group j, and let x;; and
wj; be the mental representations of the ith individual in group j. Then
we can rewrite (1) as follows:

wAX = Cov(wj, X;) + E(w;AX;) 2)

That is, the change in the mean value over the whole population can be
decomposed into the covariance between group means and group mean
replication rates, and the average change within each group. But, notice
that the average change within each group has the same form as the left
hand side of the Price equation. Thus, we can apply the Price equation

SIn the form expressed here we have assumed that the x’s proportional representation
from one time step to the next is a function of its relative replicability (or fitness) and its
current representation in the population.
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again, this time to the dynamics within each group — substituting the
expressions given in (3) into the expectation term in (2).

IZ)J'A)EJ' :Cov(wj,-,xj,-)—i-E(wj,-ij,-) (3)

The covariance term gives the change within the groups due to the
psychology of model selection, and the second term gives the change within
each group due to inferential transformation by attractors.

Now we make use of the specific form of the inferential transformation
shown in Figure 1. In group 0, Axy; = —PBoxoi, and in group 1,
Axy;; = Bi(1 — xy;). Further, assume that an individual’s likelihood of
being selected as a model depends linearly on their value of x;; so that
wj; = 1 +sxj;. With these assumptions

WoAXg = —BoXo + s(Var(xo)) — BoE(x5;)) ~ —Bo¥o )
and
WAF = pi(1 — 1) + s[Var(xy) — Bi (%1, — EG))] ~ Bi(1 — x1) (5)

If intra-psychic transformations are strong relative to the selective forces
(B1, Bo > s), then the first terms on the right-hand sides of (4) and (5) will
dominate the dynamics and determine the equilibrium values of the mean
values of x in each group.

We can now write down the approximate epidemiological dynamics
for the entire population. First, let p be the fraction of individuals in group
1 and 1 — p the fraction of the population in group 0. Then, substituting
(4) and () into (2) yields:

WAX ~ [p(@i%) + (1 — p)(ioFo) — Xb]
Clovariance ';';rm from (2)

+[pBi(1 = %1) — (1 — p)Bo%o] (6)

-
Expectation Term from (2)

Because the B’s are so much larger than s, the dynamics of the system will

be initially governed by the attractors: Xy will rapidly evolve toward zero,

X1 toward one, and thus X &~ p. Substituting these values into (6) gives the

following equation for the approximate dynamics after this initial period:

p(w; — w)
w

AX =~ Ap ~ (7)
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Equation (7) is the standard formulation for discrete-trait replicator
dynamics. With this formulation, we see that the longer-term dynamics
and the final equilibrium, X = 1, are determined by selective cultural
transmission and approximated with standard replicator dynamics. The
stronger cognitive attractors are relative to selective cultural transmission,
the better the discrete replicator approximation.

These findings are very general. Elsewhere, we (in prep) show this
finding applies to more than two attractors, for a wide range different
intra-psychic transformations, and to representations in any number of
dimensions. There we also discuss the effect of more complex forms of
selective cultural transmission.

Numerical simulations of the model indicate that the approximate
analysis derived above is quite accurate. In our simulation, we assumed an
initially uniform distribution of x; in a finite population. For parameters,
n = 200, By = B1 = 0.50, s = 0.05 and m = 0.60, Figure 2 shows the
dynamics of the average value of x in group 0 (Xp), the average value of x
in group 1 (X1), the mean of x (overall: X) for one run of the simulation,
the mean value of x for 10 simulations, and the predictions of replicator
dynamics. As assumed above, Xp goes rapidly to 0 and X; goes rapidly
to 1. The trajectory of X from one run of the simulation shows the random

@rage value of
{ x ingroup 1

0.6

0.8

Mean value of x

Predictions of for over 10 runs

replicator dynamics
Mean value of x n =200

0.4 - for one run
b; =0.50
0.2 s =0.05
- Average value of m = 0.60
x ingroup 0
0 T T r T T T r T T

Time

Figure 2.  Results from simulating model described in text. The overall evolution
of the population is very well approximated by a discrete model in which only
weak selective forces are present.
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effects of drift produced by finite populations, but still clearly tracks the
replicator approximation. Across 10 simulations, the effects of drift are
averaged out and replicator dynamics tracks X quite closely. A series of
simulations with a variety of parameter combinations confirms the findings
derived above. In addition, it shows how cultural drift is affected by s, n
and m. As n decreases, the force cultural drift increases, making it more
likely for x to drift into Domain 0. If s gets too small, drift is also more
likely to drive x to zero. As m gets large, x values are more likely to drift
into Domain 0 and be driven to zero.

Model 2: Cultural inertia and cumulative cultural adaptation
can occur even when inference is inaccurate

In this second model, we explore the effect of inaccurate replication.
We assume that cognitive processes generate strong attractors, but that
inferences, based on the available public representations, are highly
inaccurate. We use discrete-representations to show that, even when
transmission fidelity is very low, cultural transmission can still create
cultural inertia and adaptive cultural evolution.

Much of the confusion about whether selective cultural transmission
can produce cultural inertia, shared traditions, and adaptive evolution
arises from a failure to appreciate the differences between cultural and
genetic evolution. In genetic evolution both evolutionary inertia and the
possibility of gradual cumulative cultural change have the same cause:
accurate, unbiased genetic replication. In sexual species like humans, each
individual has two parents and this has important consequences for the
distribution of genotypes in populations. However, except for extremely
rare mutations, each gene is a faithful copy of a single gene carried
by a member of the previous generation — genetic replication is very
accurate. Moreover, each gene that an individual carries, again with a
few exceptions, is equally likely to be included in the individuals’ gametes
— thus genetic reproduction is unbiased. These properties of genetic
reproduction result in Mendel’s laws for the distribution of genotypes.

To see how accurate, unbiased replication gives rise to genetic inertia
and makes cumulative adaptive change possible, consider a simple genetic
system with only two alleles (or genes) at a single locus segregating in a
large population. We label them A and a. Let g be the frequency of A
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before genetic transmission, and ¢’ the frequency after genetic transmission.
Finally, suppose that each allele mutates to the other with probability u.
This means that,

¢ =(1—2u)q +u ®)

A plot of ¢" as a function of ¢ is a straight line with a slope slightly
smaller than one as shown in Figure 3. If the slope were exactly one
(i.e., no mutation), then transmission would lead to no change in the
population (¢ = q) across the generations. A population that had 80%
A alleles before transmission would have 80% after transmission, and a
population that had 20% before transmission would have 20% afterward.
However, any amount of mutation tends to reduce the frequency of the
more common allele, and thus if no other evolutionary processes affect
the population it will move toward a state in which both alleles have the
same frequency. Because mutations are very rare (u ~ 107°), this will
occur very, very slowly. Thus, in the absence of other forces, populations
will change very slowly, and this explains much genetic inertia. Similarly,
as long as natural selection is stronger than mutation, it can generate
cumulative adaptation.

By analogy from the process just described, Sperber (1996: 103-
118) and Atran (2001) argue that because cultural replication is highly
inaccurate, the social processes of cultural transmission cannot give rise
to cultural inertia or cumulative cultural adaptation. Unlike genes, mental
representations are not replicated during cultural transmission. Instead,
mental representations give rise to behaviors (or “public representations”)
that are observed by others, who must then infer the underlying mental
representations that gave rise to the behavior. Because individuals differ
and public representations provide incomplete information, this inferential
process is, Sperber, Boyer and Atran assert, highly inaccurate.

If they are correct, it does follow that cultural transmission cannot
give rise to cultural inertia for the same reasons as genetic transmission.
To see this, suppose there are only two possible mental representations in
some domain, labeled A and B. Each generates different but overlapping
distributions of public representations. When cultural learning occurs,
naive individuals, perhaps children, observe a sample of individuals from
these distributions, make inferences, and then adopt their own mental
representation. Following Sperber, Atran and Boyer, we suppose this
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Figure 3. The left hand figure plots the frequency of gene after reproduction,

q’, as a function of the frequency before reproduction ¢. As is shown in the right

hand part of the figure, mutation tends to drive gene frequencies toward 0.5, but
because the mutation rate, u, is very low, this happens very slowly.

process is very inaccurate; it is governed by equation (8) but now u = 0.2
(5 orders of magnitude larger than the rate genetic mutation). To get a
feeling for the magnitude of u, remember that # = 0.5 means that there
is no transmission at all — naive individuals adopt mental representations
at random, independent of who they observe. Thus, we are assuming
that the acquisition of mental representations is 40% error and 60%
transmission. As is shown in Figure 4, very high error rates lead to very
different dynamics than accurate replication. Under such high error rates,
populations very rapidly converge to a random distribution of mental
representations. There is no inertia, and extremely strong selective forces
would be required to generate cumulative adaptation.

However, this logic carries the genetic analogy too far. Even if cultural
transmission 1is inaccurate, it does not follow there can be no cultural
inertia or cumulative evolution of adaptations. Any transmission process
that leads to accurate replication at the level of the population will lead to
cultural inertia and allow cumulative adaptation. Put another way, any
transmission process that produces a plot like that shown in Figure 3 will
do the job. The mistake is to assume that the only process that can give rise
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1

. q
0 q 1

Figure 4. The frequency of representations after reproduction, ¢’, as a function
of the frequency before reproduction ¢ when the error rate, u, is high. As before,
errors tend to drive representation frequencies toward 0.5; but, now this occurs

very rapidly because the error rate is large.

accurate replication at the level of the population is accurate replication at
the level of individuals.

Here we show that a tendency to adopt the more common represen-
tation can lead to accurate replication at the population level even when
individual inferences are highly innaccurate. Assume that there are two
possible mental representations, A and B, and that a fraction g of the
experienced population has A. Every naive individual observes the public
representations of 7 models and makes inferences about the mental repre-
sentations that gave rise to these public representations. In each case, this
inferential process is subject to frequent errors. The probability of inferring
the correct mental representation is 1 — u and the incorrect representation
is u. Thus, the probability, p, that a social learner infers that any one of
the models has mental representation A is:

p=q(l—u)+0—-qu 9)

Finally, suppose that individuals adopt, as their own, the mental
representation that they believe is most common among their models.
This means that the probability that a naive individual acquires A, and
therefore, the frequency of A after transmission, ¢’, is:

n n'
i . i n—i
q —Zmﬁ(l—lﬂ (10)

i>n/2 "
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Because individuals tend to acquire the more common mental represen-
tation, this model is one way to represent a “conformist” bias in social
learning.

The conformist bias has well-established theoretical and empirical
foundations. Theoretically, evolutionary modeling of the cognitive capacity
for conformist transmission suggests that genes leading to a conformist
bias in social learning will be supported in virtually any environment
that also favors social learning (Henrich & Boyd 1998). Empirically,
psychological evidence for conformity from pre-1984 studies is summarized
in Boyd and Richerson (1985). Much of recent evidence can be found
in Baron et al. (1996), Insko et al. (1985), Smith and Bell (1994),
Bond and Smith (1996), and Campbell and Fairey (1989). These studies
analyze everything from economic decisions and strategy choice in strategic
games to perceptual tasks and food choices. Moreover, by analyzing the
dynamics of transmission, Henrich (2001) provides evidence of conformist
transmission from field data on the diffusion of innovations.

A conformist bias at the individual level leads to more accurate
replication at the population level. Figure 5a plots ¢' as a function of
q for n = 10 and u = 0.2. This figure shows that social learning processes
come much closer to accurately replicating the population frequency of
the mental representations, even though the transmission process is error
prone at the individual level. The maximum error rate at the population
level (at ¢ = 0, 1) is approximately 0.02, one tenth of the individual rate.
The reason for this is simple: errors have a bigger effect on populations in
which one mental representation is common compared to populations in
which both mental representations have similar frequencies. As a result, the
conformist bias in transmission effectively corrects for the effect of errors.
Furthermore, even higher error rates can be compensated for by larger
samples of cultural parents: Figure 5b plots the effect of transmission when
u = 0.3 and n = 20. Recall that # = 0.30 means errors occur 60% of
time.

This conformist learning mechanism can lead cultural inertia because
it tends to increases the frequency of common mental representations, and
reduces the frequency of rare ones (Figure 6a). Observe that the conformist
curves both closely follows the ¢" = ¢ line, and creates two stable equilibria
near the points 0,0 and 1,1. These equilibria occur when the effect of
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1

Figure 5. The post transmission frequency of a cultural representation as a

function of the pre-transmission frequency when the error rate is high but there

is a conformist bias in the cultural transmission rule. In the left panel (a) the error

rate is 0.2 and then number of models is 10, while in the right panel (b) the error
rate is 0.3 and the number of models is 20.

errors and the force of conformist transmission are balanced. Two initially
different populations can remain different even in the same environment.
Cultural inertia is created by conformist transmission even when error rates
are high.

Conformist social learning also allows selective forces to generate
more accurate adaptations to the environment. Suppose that individuals
with mental representation A are twice as successful as individuals with
representation B on average, and that the probability that individuals are
chosen to be models is proportional to the ratio of an individual’s success
to the average success in the population (‘prestige-biased transmission’).
Figure 6b shows that when we combine prestige bias, conformist bias and
high error rates the more successful representation readily spreads.

The combination of high error rates and a conformist bias does not
result in the same kind of “frictionless” adaptation as genetic replication.
Highly accurate, unbiased, genetic replication allows minute selective forces
to generate and preserve adaptations over millions of years. Error prone
cultural replication, even when “corrected” by a conformist bias, imposes
modest, but still significant forces on the cultural composition of the
population. This means that only selective forces of similar magnitude will
lead to cumulative adaptation. We do not think this is a problem because
the selective forces acting on cultural variation are probably much stronger
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1 = 1

Stable
equilibria

Figure 6. (a) The combination of conformist bias and very high error rate (1 =

0.3) acts to preserve variation between groups because common representations

tend to increase in frequency. (b) When more successful individuals are more likely
to be imitated, the more successful variant spreads.

than those that shape genetic variation because they work on shorter time
scales, and are often driven by psychological not demographic events —
e.g. the diffusion of innovations literature shows time scales of decades, not
millennia (Rogers 1995).

Model 3: Adaptive evolution in a model without accurate
replication or discrete representations

Evolutionary theory predicts, and both field and laboratory data confirm,
that individuals have a psychological propensity to copy particularly skillful,
successful and prestigious individuals. We call this prestige-biased transmission;
Henrich and Gil-White (2001) lay out the theory and summarize the
empirical data. This tendency creates a selective force that can, under the
right circumstances, generate cumulative adaptation. It is easy to see how
this would work if cultural replication were accurate. Suppose populations
vary in their ability to perform some important task, say prey tracking or
arrow manufacturing techniques. Further, suppose that in choosing models,
people preferentially imitate the techniques used by the best trackers in
the group. If the mental representations that underlie the success of the
best trackers can be accurately copied, the mean tracking success of the
population will increase through time (Boyd & Richerson 1985, Ch. 8)
because good trackers will leave more cultural ‘descendants.” However,
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Sperber (1996) and Atran (2001) have argued that, because cultural
representations are not discrete, and cultural replication is inaccurate,
selective forces, such as prestige-biased transmission, are unlikely to be
important (Note, Atran et al. (in press) now modifies that position).

Here we show that prestige biased transmission can lead to cumulative
adaptation, even when cultural transmission is inaccurate and represen-
tations are not discrete. Consider a population of N individuals who are
numbered i = 1,..., N. Individual i has a z-value (z;). This value mea-
sures the individual’s skill in some domain like canoe making, arrow manu-
facture or medicinal plant selection. Later we will show that z may measure
either an individual’s mental representation (e.g. how long they think ar-
rows should be), or some phenotypic measure that aggregates many skills
or measures success (like lifetime tapir kills). However, for now we assume
that it is a mental representation. Each individual is also characterized by
a variable f that specifies the relative likelihood that an individual will be
chosen as a cultural model. If people’s social learning attention is drawn
to skilled hunters (and larger values of z lead to hunting skill), then f and
z will have a positive partial regression coefficient (other things can affect
f as well). The pool of individuals could represent the same group of in-
dividuals (same farmers) from one year to the next, or it could be different
generations or cohorts.

Once again, we use the Price Equation to study the combined
effects of selective transmission and inaccurate inference on continuous
representations.

Az= Cov(fi.zi)) + E(fiAz) (11)
—_—— ——
Selective Transmission  Incomplete Inference

AZ is the change in the average value of z; per time step. If AZ is positive,
then adaptive evolution is taking place because, for example, people are
becoming better trackers or arrow makers. Cov(f;, z;) is the covariation
between f; and z;, and gives the effect of selective cultural forces on Az. In
this case, it captures our psychological tendency to copy successful/skillful
people — here we will assume that all learners attempt to copy the most
skilled individual. E(f;Az;) is the replicability-weighted average effect of
all the individual intra-psychic transformations on cultural representations.

To capture the idea that inferential processes are incomplete and
inaccurate, we assume that the inferential processes that underpin social
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learning are inaccurate in two senses: first, they are noisy, so that copiers
never accurately replicate the z-value of their model, and second, they
are biased so that the behavior acquired by copiers is, on average, less
skilled than the behavior of their model. More formally (as illustrated in
Figure 7), individuals who attempt to copy a model with z-value, z;, end
up with a z-value drawn from a Gumbel probability distribution’ with
mode z; — a and dispersion . Typically, copiers construct representations
that are on average worse than their model’s z-values by an amount o,
but occasionally — through lucky guesses or errors — individuals construct
representations that yield z-values higher than their model. The probability
of that occurring for an individual is the area under the distribution to the
right of the dashed line (the model’s z-value). It’s also worth noting that
the probability of an exact copy is zero, and the probability of two people
arriving at exactly the same copy is zero — no replicas in this model.
With these assumptions, equation (11) becomes:

AZ = —a + B(e + Ln(N)) (12)

The first term represents the effect of systematic errors and is always
negative — it operates against adaptive evolution. In the second term,
Ln(N) is the natural logarithm of N, the number of social learners in the
population. The parameter ¢ is the Euler-gamma constant, which equals
0.577. The parameters B, Ln(N) and & are all always positive, so the
second term is always positive — and favors adaptive evolution. This
means that adaptive cultural evolution depends on the relative sizes of the
two terms. Interestingly, the two components of inference, systematic bias
(measured by @) and random noise (measured by B), have opposite effects
on adaptive evolution. Systematic bias operates against adaptive evolution,
while noise — the tendency of individuals to make different inferences from
observing the operation of the same underlying representation — favors
adaptive evolution. The more individuals tend to make different inferences,
the faster cultural evolution goes (or the more likely it is to be adaptive).
Similarly, the larger the population of social learners, N, the faster adaptive
evolution proceeds (or the more likely selective forces will favor adaptive
processes).

"The specific form of this distribution does not qualitatively impact our results (see
Henrich 2002 for more information).
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— O ——

o Model z, Value

Probability
Imitator

Acquires z,

Imitator z, Value

Figure 7. A graphical representation of the assumptions of Model 3. Learners
observe a model with a behavior z;, given by the dotted line. They infer a value
drawn from the probability density function. Their most likely value is « less than
the models value, and since larger values of z are better, this represents systematic
error. However, there is some probability that individuals acquire larger values
(this is the area under the curves to the right of the dotted vertical line).

Setting Az > 0 and solving (12) yields the conditions under which
selective cultural transmission will drive adaptive cultural evolution:

N* > ef* (13)
N* is the critical number of social learners necessary to produce cumulative
adaptive cultural evolution for a specified set of inferential processes (¢, B).
Figure 8 plots this inequality and graphically shows the conditions under
which selective transmission will drive adaptive evolution.

This result provides several insights about cultural adaptation in a noisy
environment. First, cumulative adaptive evolution is facilitated by both a
large pool of social learners and an inferential tendency to make different
“mistakes” (large B, a tendency for individuals to form quite different
representations). This finding contradicts Sperber (1996) and Atran (2001),
who have argued that because cultural transmission leads to different
representations in each individual’s mind, cumulative cultural evolution
is not possible. Second, no matter how poor individuals are at imitating,
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there are some values of 8 and N that generate cumulative evolution —
elsewhere Henrich (2002) has shown how a sudden drop in population
size (N) initiated a process of technological devolution in Tasmania over
the last 8,000 years. So, both the social environment and the nature of
cognition influence the conditions for cumulative adaptation. Looking only
at the inferential processes and the conditions for adaptation, what matters
is not a, but a/B. So, if the typical inaccuracy of copies doubles (&), while
the variation in different representations triples, cumulative adaptation will
still occur. However, the model also illustrates that in particular cultural
domains — those with large o and small 8 (e.g., some religious beliefs)
— we may not expect to observe cumulative adaptation. Finally, having
incorporated Sperber, Atran and Boyer’s claims about the nature of culture
into this simple model, that bears no resemblance to genetic models (other
than both being about evolutionary processes), we derived insights that are
not obvious from verbal reasoning alone.

Sperber, Atran and Boyer have argued that evolutionary models
cannot be applied to phenotypes (or public representations) alone; they
are applicable only if there are identified ‘units’ of transmission. This
is not the case, and suggests a failure to apprehend the more general
nature of evolutionary processes (Boyd and Richerson 2000). Neither
genetic, nor cultural evolutionary, models require ‘units of transmission’

600

500 -

400 A

N* 300 Cumulative Adaptive
Evolution

200 A1

Negative Adaptive

1007 Evolution

o/f

Figure 8.
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— genetic evolutionary models were providing insights into the nature of
evolution long before anyone knew anything about DNA discreteness or
replication, and genetic models of quantitative characters, like height, still
ignore these “units.” The most general form of the Price Equation, for
example, is exact for anything one can measure about the constituent
parts of any evolutionary system. This feature allows us to study the
evolution of, and interrelation between, phenotypically expressed behavior
(“public representations”) and the epidemiology of the underlying mental
representations. Suppose now, instead of a mental representation of a skill,
Z measures success in some domain such as hunting (perhaps quantified in
lifetime tapir kills), combat (in ‘heads-taken’), canoe making, or farming
(in sacks harvested per hectare of wheat sown). Equation (11) would
still govern the evolution of z. However, if we wanted to get at the
underlying mental representations that produce particular values of z,
we would have to specify how each mental representation contributes
to individuals’ behavioral expressions (to their success). For illustrative
purposes, suppose 2 1s hunting returns (a phenotypic measure) and y and
¢ are mental representations related to prey pursuit time and arrow length
— presumably there are many more relevant representations for hunting.
Using a linear regression equation, we can express the causal relationship
of between mental representations y and ¢ on success, 2z, as follows.?

Zi=pnt Ay A + s (14)

The A’s give the relative contribution of an individual’s y and ¢ mental
representations to the observed success, z;. & gives uncorrelated random
error, and p specifies the constant term. With this, we can express the
change in the average value of representation y as:

Ay = Cov(fi.y)) + E(fiAy) (13)
—_—— ———
Selective Transmisson  Incomplete Inference

But, because an individual’s likelihood of being selected as a cultural model
depends on f, and f depends on individuals observing z (e.g., hunting

8In general, we can do this for any number of mental representations, and study the
g y P > y
interaction of different mental representations.
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returns), then this can be rewritten as,

Ay = npVar(y) +  E(fidy) (16)
—_———— ———
Selective Transmisson  Incomplete Inference

where p is the partial regression coefficient on f on z. The introduction
of A1 shows us that effective transmission of y depends on how much it
affects z. The Ay; term would have the same form as above; it depends
on how difficult it was to infer the underlying y; by observing the models’
behavior. The reminder of the derivation proceeds as above.

Conclusion

Formal models help us develop a more complete of understanding of cog-
nition and culture. Our minds are not well equipped to understand the
population-level outcomes that arise from numerous minor interactions,
weak cognitive biases, random errors, migration rates and micro-level de-
cisions. The history of population ecology, epidemiology and evolutionary
biology over the last 40 years provides strong evidence that simple mathe-
matical models provide powerful tools for understanding such problems.

The simple models described in this paper yield several findings that

challenge the untutored intuitions of many:

1. Strong attractors generate replicator dynamics, such that weak
selective forces determine the final state of the system. The stronger
the attractors, the better the assumption of discrete-trait replicator
dynamics.

2. Conformist transmission can compensate for even very high error
rates in social inference in a manner that violates the intuitions
imported from genetics. Prestige-biased transmission combines with
conformist transmission to spread adaptive representations; together
they predict the conditions for inertia and change.

3. Adaptive cultural evolution can occur even when representations
are continuous and inferences are biased against adaptation. Poor
inferences can be compensated for by larger pools of social learners,
or greater amount of random error (i.e., by the fact that people
don’t all make the same inferential mistakes).

4. Discrete units of transmission are not necessary for adaptive
evolution, Dawkins (1976, 1982) claims notwithstanding.
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The crux of Sperber, Atran and Boyer’s position is that the transmis-
sion of culture requires domain specific cognitive mechanisms, and that
therefore that population dynamic models of culture proceed from unten-
able assumptions. We accept that social learning, like all other forms of
learning, requires innate expectations about objects in the environment
and the nature of relationships among them. How these innate structures
shape the human mind is obviously of great importance for understand-
ing human culture. The mistake is to see these ideas as incompatible with
making population dynamic models of cultural change. It will never be
enough to focus on the mind and ignore the interactions between differ-
ent minds. To keep track of such interactions some kind of population
dynamic models will be necessary. What is needed is both more effort by
coevolutionary theorists to incorporate rich cognition into formal models
of social learning, and more effort by cognitive scientists to consider how
innate cognitive structure interacts with social processes and the cognition
of social learning to influence the epidemiology of representations and its
associated behavioral products.
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