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Abstract 

 

Boron (B) is an essential nutrient for normal growth of higher plants, and B availability 

in soil and irrigation water is an important determinant of agricultural production. To 

date, a primordial function of B is undoubtedly its structural role in the cell wall; 

however, there is increasing evidence for a possible role of B in other processes such as 

the maintenance of plasma membrane function and several metabolic pathways. In the 

last years, the knowledge of the molecular basis of B deficiency and toxicity responses 

in plants has advanced greatly. The aim of this review is to provide an update on recent 

findings related to these topics, which can contribute to a better understanding of the 

role of B in plants. 
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Introduction 

 

 Boron (B) is a member of the subgroup III of metalloids and has intermediate 

properties between metals and nonmetals (Marschner 1995). Despite its low abundance 

in the nature, B is widely distributed in both lithosphere and hydrosphere, B 

concentration ranging from 5-10 mg kg–1 in rocks (Shorrocks 1997), 3-30 µg kg-1 in 

rivers (Power and Woods, 1997) and ~4.5 mg L–1 in ocean (Lemarchand et al. 2000). 

 B is essential for plants (Warington 1923), and B availability in soil and 

irrigation water is an important determinant of agricultural production (Tanaka and 

Fujiwara 2007). In soil solution B exists primarily as boric acid [B(OH)3], which can be 

easily leached under high rainfall conditions (Shorrocks 1997; Yan et al. 2006) leading 

to deficiencies in plants that grow there (e. g., many regions in Japan, China, USA, and 

Brazil). On the contrary, under low rainfall conditions, B can not be sufficiently leached 

and therefore may accumulate to levels that become toxic to plant growth (Reid 2007b). 

This is very often in arid and semiarid regions with high-boron groundwater, where the 

accumulation of B in topsoil due to the evaporation of groundwater reaches toxic levels 

that reduce crop yields (Tanaka and Fujiwara 2007). 

 Both boric acid and borate are capable to form complexes with a wide variety of 

biological compounds having two hydroxyl groups in cis-configuration. To date, one of 

the primary functions of B in higher plants has been reported to be derived of its 

capacity to form borate esters with apiose residues of rhamnogalacturonan II (RG-II) 

(Kobayashi et al. 1996). The formation of this complex is essential for cell wall 

structure and function (O’Neill et al. 2004) since contributes significantly to the control 

of cell wall porosity (Fleischer et al. 1999) and tensile strength (Ryden et al. 2003). For 

instance, abnormally swollen cell walls and a decreased RG-II dimer formation have 

been shown to result from B deficiency (Matoh 1997; Ishii et al. 2001). In addition, the 

essentiality of the RGII-borate complex for normal plant growth has been shown in the 

Arabidopsis thaliana mutant mur1-1 and mur1-2 plants with a reduced amount of this 

complex (O’Neill et al. 2001). Noguchi et al. (2003) have also reported a lower degree 

of cross-linking in the cell walls of Arabidopsis bor1-1 mutant compared to wild-type 

plants under limited B supply, which seemed to be a consequence of its lower shoot B 

levels. 
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Boron uptake and translocation 

 

As above mentioned, agricultural regions that contain insufficient or toxic levels 

of B in soil have problems with yield and quality of many crops. Hence, understanding 

the mechanisms that are involved in B uptake and distribution in plants can be critical to 

improve agricultural production. On this matter, important advances in the knowledge 

of the molecular aspects that control these processes have been reported in the last 

years. 

 

B uptake by root plants 

B is present in soil solution in several forms but, at common soil pH values (5.5-

7.5), the most plentiful form is the soluble undissociated boric acid [B(OH)3]. It is 

accepted that plants take up B from soil in form of boric acid. Depending on B 

availability, boric acid uptake by roots can be performed by three different molecular 

mechanisms: (1) passive diffusion across lipid bilayer, (2) facilitated transport by major 

intrinsic protein (MIP) channel, and (3) an energy dependent high-affinity transport 

system induced in response to low B supply, which is mediated via BOR transporters 

(Tanaka and Fujiwara 2007).  

Under conditions of adequate or excessive B availability, boric acid absorption 

by roots is mediated through a passive process that involves mostly B diffusion across 

lipid bilayer (Brown et al. 2002; Tanaka and Fujiwara 2007). In fact, the lipid 

permeability coefficient for boric acid, calculated both theoretically (Raven 1980) and 

experimentally (Dordas and Brown 2000; Dordas et al. 2000; Stangoulis et al. 2001b), 

supports the idea that B can cross membranes by a passive process to satisfy plant B 

requirements (Brown et al. 2002). 

Several data suggest that B uptake may be mediated by MIPs channels, which 

can transport small neutral molecules (Dannel et al. 2002). The first experimental 

evidence suggesting the involvement of channel proteins in B transport were provided 

by Dordas et al. (2000), who described that B permeation across plasma-membrane 

vesicles obtained from squash roots was partially inhibited by channel blockers such as 

mercuric chloride and phloretin. These results were subsequently verified in in vivo 

assays performed with intact squash roots (Dordas and Brown 2001). In addition, 

Dordas et al. (2000) showed that expression of the maize PIP1 (a member of MIP 



 5

family) in Xenopus laevis oocytes resulted in an increase of B absorption. Recently, it 

has been identified a novel boric acid channel in Arabidopsis (AtNIP5;1) that belongs to 

nodulin 26-like intrinsic proteins (NIP) subfamily of MIPs family (Takano et al. 2006). 

AtNIP5;1 is localized and expressed in the plasma membrane of root epidermal, 

cortical, and endodermal cells. The expression of AtNIP5;1 is up-regulated in B-

deficient roots, which suggests that this channel is crucial for the uptake of the B 

required for plant development under B limitation (Takano et al. 2006). In rice, 

OsNIP3;1 shows a close homolog sequence to AtNIP5;1 and it has been also identified 

as a boric acid channel required for efficient growth under B-deficient conditions 

(Hanaoka and Fujiwara 2007).  

Physiological studies also have shown the occurrence of an active B uptake by 

roots under low B conditions (Dannel et al. 2000 and 2002; Stangoulis et al. 2001b). 

This active absorption of B is supported by the fact that B uptake was inhibited by both 

metabolic inhibitors and cold treatment in roots (Pfeffer et al. 1999; Dannel et al. 2000). 

However, to date, only one BOR transporter (OsBOR1 in rice) has been suggested to be 

involved in the efficient B uptake into root cells under B deficiency (Nakagawa et al. 

2007; Tanaka and Fujiwara 2007). 

 

B allocation in plants 

Once B has been absorbed by root cells this micronutrient must be loaded into 

xylem. In well B supplied plants this process is mediated by a passive mechanism that 

involves both B diffusion across lipid bilayer and facilitated permeation of boric acid 

via MIPs channel (MIPs) (Dannel et al. 2002). However, an energy dependent high-

affinity transport system mediated via BOR transporters is induced in response to low B 

supply. The first B transporter involved in the process of xylem loading was identified 

as BOR1 in A. thaliana, which is accumulated in plasma membrane of pericycle cells 

under low B conditions (Takano et al. 2002). In addition, bor1-1 mutant plants showed 

a reduced transport of B to the shoot under B deficiency when compared to wild type 

Arabidopsis plants (Takano et al. 2002). All these findings demonstrate that BOR1 is an 

efflux-type B transporter for xylem loading under low B limitation (Takano et al. 2002). 

Afterwards, other BOR1-like genes have been identified in Eucalyptus (Domingues et 

al. 2005) and rice (Nakagawa et al. 2007). 

After being loaded into xylem, B is transported through this vascular system to 

shoot in a process mediated by transpiration stream (Raven 1980; Shelp et al. 1995). 
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However, B can be also transported via phloem to both reproductive and vegetative 

tissues (Shelp et al. 1995; Matoh and Ochiai 2005), although this capacity varies among 

species (Brown and Shelp 1997). One mechanism that has been suggested to mediate 

phloem transport of B involves the formation of boron-diol complexes as transport 

molecules (Brown and Hu 1996; Hu et al. 1997). In fact, B can readily bind to cis-

hydroxyl groups of sugar alcohols (mannitol and sorbitol), which allow B to be 

transported through phloem. For instance, B-polyol complexes have been isolated and 

characterized from the phloem sap in Apium graveolens (Hu et al. 1997). In addition, it 

has been observed that tobacco transgenic plants with an enhanced sorbitol levels had 

higher capacity to transport B by phloem and increased tolerance to B deficiency 

(Bellaloui et al. 1999; Brown et al. 1999). However, B transport via phloem, especially 

to young tissues, also occurs in plants that are not able to produce these types of 

carbohydrates (Stangoulis et al. 2001a; Takano et al. 2001; Matoh and Ochiai 2005). 

Very recently it has been demonstrated that B is transported from mature leaves into 

actively growing reproductive organs via phloem in white lupin (Huang et al. 2008). 

Nevertheless, the molecular mechanism involved in this B-phloem transport is still 

unknown.  

Despite in the last years our knowledge about molecular mechanisms that 

mediate B uptake and distribution in plants has advanced notably, further investigations 

will be needed to understand better both processes. Newly, it has been identified several 

BOR1-like genes in Arabidopsis and rice (Nakagawa et al. 2007), and some of them 

could be involved in B uptake and distribution in plants.  

 

Boron deficiency 

 

 It is well known that B deficiency causes different effects on very diverse 

processes in vascular plants such as root elongation, IAA oxidase activity, sugar 

translocation, carbohydrate metabolism, nucleic acid synthesis, and pollen tube growth 

(Blevins and Lukaszewski 1998; Goldbach and Wimmer 2007). As if these were not 

enough, membrane potential, plasmalemma-bound enzymes and ion fluxes across 

membranes (Blaser-Grill et al. 1989; Goldbach et al. 2001), cytoskeletal proteins (Yu et 

al. 2001, 2003), accumulation of phenolics and polyamines (Camacho-Cristóbal et al. 
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2002, 2004, 2005), and nitrogen metabolism (Camacho-Cristóbal and González-Fontes 

1999, 2007), among others, are processes in which B can be also involved.  

 

Cell wall, cytoskeleton, and membranes  

 It is widely known that B deficiency results in the formation of abnormal cell 

wall with altered physical properties (Fleischer et al. 1999; Ryden et al. 2003), these 

effects being a consequence of the role of B in cross-linking of cell wall RG-II and 

pectin assembly. Other works have investigated the short-term effect of B deprivation 

on structural changes in cell walls. Thus, in maize root apices it has been shown that B-

cross-linked RG-II pectins are internalized in brefeldin A-induced compartments 

(Baluska et al. 2002), and their accumulation within compartments of the endocytic 

pathway is inhibited by B deficiency resulting in an enhanced build-up of pectins in the 

cell wall (Yu et al. 2002). Moreover, it has reported that the expression of several cell 

wall-modifying enzymes is down-regulated after 6 and 24 h of B deprivation 

(Camacho-Cristóbal et al. 2008), which could alter the cell wall loosening that results in 

cell elongation (Cosgrove 1999). For instance, the decrease of several xyloglucan 

endotransglycosylase/hydrolases transcript levels observed under B deficiency 

(Camacho-Cristóbal et al. 2008) might affect the rearrangement of the xyloglucan cross-

linked microfibrillard network with the consequent alteration in the tensile properties of 

cell walls (Ryden et al. 2003).  

 Several studies have shown a possible role for B in cytoskeleton structure and 

associated processes (Yu et al. 2001, 2003; Bassil et al. 2004). Thus, B deprivation 

increased the levels of actin and tubulin proteins in Arabidopsis roots (Yu et al. 2001) 

and changed the cytoskeletal polymerization patterns in cells of maize root apices (Yu 

et al. 2003). This accumulation of cytoskeletal proteins has been proposed to be an 

adaptative response for contributing to mechanical reinforcement of cells of root 

periphery under B deficiency (Yu et al. 2003). 

 There is increasing evidence that B is required for the maintenance of the 

structure and functions of membranes and, especially, plasma membrane (Shelp 1993; 

Cakmak and Römheld 1997; Goldbach et al. 2001; Brown et al. 2002). For example, B 

deficiency altered the membrane potential and reduced the activity of proton-pumping 

ATPase in Helianthus annuus (Ferrol and Donaire 1992) and Daucus carota (Blaser-

Grill et al. 1989) roots. Furthemore, it has been also described that B deficiency alters 

plasma membrane permeability for ions and other solutes (Cakmak et al. 1995; Wang et 
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al. 1999). Despite the clear and rapid effects of B deprivation, the underlying 

mechanisms by which B deficiency affects the structure and function of plasma 

membrane are still unknown (Blevins and Lukaszewski 1998; Brown et al. 2002; 

Goldbach and Wimmer 2007). Therefore, it has been suggested that some membrane 

molecules containing hydroxylated ligands such as glycoproteins and glycolipids are 

good candidates for a possible B function in membranes (Goldbach and Wimmer 2007). 

However, to date, the occurrence of these B complexes has not been proved yet. A 

recent study showed that at least three potentially B-binding membrane glycoproteins 

were neither detected in B-deficient pea nodules nor in other B-deficient plant tissues, 

which could indicate that B and certain membrane glycoproteins are involved in 

membrane processes associated with general cell growth (Redondo-Nieto et al. 2007). 

In addition, surface proteins attached to the membrane via a glycosyl-phosphatidyl-

inositol anchor such as arabidogalactan proteins (AGP) have been suggested to be 

putative B-binding structures (Goldbach and Wimmer 2007). Interestingly, a similar 

alteration in cell wall pectins has been demonstrated in pollen tubes suffering from B 

deficiency (Yang et al. 1999) or exposed to Yariv reagent (Roy et al. 1998), a 

compound that cross-links plasma membrane-associated AGPs. Moreover, recently it 

has been shown that B deficiency causes a rapid decrease in the expression of several 

AGP genes in Arabidopsis roots (Camacho-Cristóbal et al. 2008). Therefore, it is 

important to point out that B might exert its action in membranes not only by stabilizing 

of membrane-molecules with cis-diol groups (Bolaños et al. 2004a), but also by 

regulating the expression of genes involved in membrane structure and function.  

 

Nitrogen fixation and nitrate assimilation 

Several studies have pointed out the essentiality of B for N2 fixation in the 

heterocyst of the cyanobacterium Anabaena PCC 7119 (Mateo et al. 1986; García-

González et al. 1990) and in the vesicles of actinomycetes of the genus Frankia 

(Bolaños et al. 2002). Both types of microorganisms require B for the stability of the 

envelopes that protect nitrogenase from inactivation by oxygen when grown under N2-

fixing conditions. Moreover, it has been described a lower number of developed 

nodules and capacity to fix N2 in legumes under B deficiency (Bolaños et al. 1994; 

Yamagishi and Yamamoto 1994), which could be attributable to the possible role of B 

in Rhizobium-legume cell surface interaction (Bolaños et al. 1996). Specifically, B is 

needed for the targeting of nodule-specific plant derived glycoproteins (Bolaños et al. 
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2001) that are crucial as signals for bacteroid differentiation into a N2-fixing form 

(Bolaños et al. 2004b). In addition, the cell walls of B deficient nodules have low levels 

of hydroxyproline-/proline-rich proteins such as ENOD2, which results in a higher 

oxygen diffusion into the nodules and the consequent inactivation of nitrogenase 

(Bonilla et al. 1997). 

There are several reports on the possible involvement of B in nitrogen 

assimilation. For instance, a reduced nitrate reductase (NR) activity and enhanced 

accumulation of nitrate have been described in B deficient plants (Kastori and Petrovic 

1989; Ramón et al. 1989; Shen et al. 1993), these effects being attributable to the 

possible role of B in the de novo synthesis of the NR protein or facilitation of nitrate 

absorption (Ruiz et al. (1998a). However, tobacco plants subjected to a severe B 

deficiency (B-deprived plants for 6 weeks) had a significant decrease in leaf NR 

activity, as well as in magnesium, calcium, potassium and, especially, nitrate 

concentrations in comparison to control plants (Camacho-Cristóbal and González-

Fontes 1999). More recently it has been shown that short-term B deficiency led to a 

decline in root and, especially, leaf nitrate contents without affecting NR activity 

(Camacho-Cristóbal and González-Fontes 2007) or the concentrations of other 

macronutrients such as magnesium, calcium, potassium or phosphate (Camacho-

Cristóbal et al. 2005). This decreased nitrate content was attributable to the lower net 

nitrate uptake rate found in B-deficient plants, probably as a consequence of the drop in 

the levels of root plasma membrane H+-ATPase (PMA2) transcript during the B 

deficient treatment (Camacho-Cristóbal and González-Fontes 2007). In addition, B 

deficiency may also promote ammonium assimilation via asparagine synthetase in 

tobacco roots (Camacho-Cristóbal and González-Fontes 2007). 

 

Secondary metabolism and oxidative stress 

There is evidence that B is one of the nutrients responsible for the changes in 

concentration and metabolism of phenolic compounds in vascular plants. In fact, it is 

well known that B deficiency causes an accumulation of phenolics through the 

stimulation of the enzyme phenylalanine-ammonium lyase (PAL) (Cakmak et al. 1995; 

Ruiz et al. 1998b; Camacho-Cristóbal et al. 2002). Other reports have shown that B 

deficiency not only induced quantitative changes but also qualitative changes in the 

phenolic pool of plants (Camacho-Cristóbal et al. 2002; 2004; Karioti et al. 2006). Thus, 

B deficiency caused an accumulation of two polyamine-phenolic conjugates that were 



 10

not detected in B-sufficient conditions. This is consistent with the increased 

accumulation of polyamines reported in B-deprived tobacco plants (Camacho-Cristóbal 

et al. 2005). 

B deprivation also increased the activity of polyphenoloxidase activity (PPO) 

(Pfeffer et al. 1998; Camacho-Cristóbal et al. 2002), enzyme that catalyses the oxidation 

of phenolic compounds into quinones. Although it has been proposed that the loss of 

membrane integrity under B deficiency may be due to accumulated phenolics and their 

oxidation products (Cakmak and Römheld 1997), it has been demonstrated that resupply 

of B to deficient leaves does not recovery plasma-membrane integrity throughout 

complexing phenols or inhibiting PPO activity (Pfeffer et al. 1998; Ruiz et al. 1999; 

Cara et al. 2002). 

The ascorbate/glutathione cycle plays an essential role in the oxygen toxic 

species detoxification mechanisms in cells, and different researchers have shown that B 

deficiency has an effect on this cycle. In fact, both ascorbate and glutathione levels have 

been shown to decrease in root and leaves under B-deficient conditions (Lukaszewski 

and Blevins 1996; Cakmak and Römheld 1997). For example, Lukaszewski and Blevins 

(1996) observed a decrease in ascorbate concentration in root tips of squash suffering 

from B deficiency that was not related to ascorbate oxidation. Interestingly, the 

ascorbate concentration declined in proportion to growth rate under low B supply, and 

the external addition of ascorbate to the low B medium improved root growth. Thus, 

these authors proposed that root growth inhibition in B-deficient squash may be a result 

of impaired ascorbate metabolism. More recently it has been reported an induction in 

the expression of glutathione S-transferase and glucosyltransferase in tobacco BY-2 

cells, which might constitute a rescue system against oxidative damage under B 

deficiency (Kobayashi et al. 2004). Furthermore, B induced an enhancement of 

glutathione levels in sunflower and maize plants subjected to aluminium stress (Ruiz et 

al. 2006; Corrales et al. 2008), which supports the view that adequate B supply 

stimulates antioxidant responses in aluminium stressed plants. 

 

Boron toxicity 

 

B toxicity is a worldwide problem that limits significantly crop yield in 

agricultural areas of Australia, North Africa, and West Asia characterized by alkaline 
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and saline soils together with a low rainfall and very scarce leaching. In addition, B-rich 

soils also occur as a consequence of over-fertilization and/or irrigation with water 

containing high levels of B (Nable et al. 1997). 

B toxicity exerts different effects on very diverse processes in vascular plants, 

such as altered metabolism, reduced root cell division, lower leaf chlorophyll contents 

and photosynthetic rates, and decreased lignin and suberin levels, among others (Nable 

et. al. 1997; Reid 2007b). Accordingly a reduced growth of shoots and roots is typical 

of plants exposed to high B levels (Nable et al. 1990). 

B accumulation follows a pattern from leaf base to tip in many plants and this 

leads to typical toxicity symptoms on older leaves which appear as marginal or tip 

chlorosis or both and necrosis (Marschner 1995; Roessner et al. 2006). Although the 

physiological basis for B toxicity is not clear enough, three main causes have been 

proposed taking into account our knowledge on B chemistry, that is, the ability of B to 

bind compounds with two hydroxyl groups in the cis-configuration: (1) alteration of cell 

wall structure, (2) metabolic disruption by binding to the ribose moieties of molecules 

such as ATP, NADH or NADPH, and (3) disruption of cell division and development 

by binding to ribose, either as the free sugar or within RNA (Reid et al. 2004). 

There is no evidence to support the hypothesis that toxicity in leaves is due to 

osmotic stress induced by the accumulation of B (Reid et al. 2004). Although growth 

was rapidly inhibited by internal B concentrations in the range 1-5 mM, this inhibition 

was not attributable to effects of B on either energy supply or inhibition of protein 

synthesis, but the toxicity to mature tissues was rather due to the accumulated 

retardation of many cellular processes, enhanced in light by photooxidative stress (Reid 

et al. 2004). 

 

Boron toxicity and salt stress 

Simultaneous stress by B toxicity and salinity can occur when either plants are 

irrigated with water containing high levels of B and salts (Nable et al. 1997), or plants 

are grown in soils with natural presence of high concentrations of salts and B, usually in 

semiarid and arid regions characterized by low rainfall and poor drainage (Marschner 

1995; Nable et al. 1997). Very recently it has been reported that combined B toxicity 

and salinity caused less severe toxic effects on growth than what would be expected if 

effects of the separate factors were additive, suggesting as possible explanations 

reduced uptake of B in the presence of chloride and reduced uptake of chloride in the 
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presence of B (Yermiyahu et al. 2008). Also it has been proposed that, under 

simultaneous presence of B and salt stress, boric acid could affect the activity of 

specific membrane components regulating the functions of certain aquaporin isoforms 

and ATPase as possible components of the salinity tolerance mechanism (Martínez-

Ballesta et al. 2008). In fact, at high external B levels, significant B transport occurs 

through the plasma membrane aquaporins (Dordas et al. 2000; Dordas and Brown 

2001). 

Interestingly, it has been reported that increased B and calcium supplies enhance 

crop salt tolerance and improve yield production in saline soils (El-Hamdaoui et al. 

2003a,b; Bonilla et al. 2004), which could be useful for agriculture. 

 

Boron-toxicity tolerance 

B-tolerant varieties are characterized by a decreased B concentration in their leaf 

tissues in comparison to non-tolerant varieties (Nable et al. 1990), probably due to a 

reduced uptake of B into both roots and shoots. In this sense, the basis for B-tolerance 

in the landrace cv Sahara has been explained by its high ability to efflux B, and it has 

been reported two models for this mechanism of active efflux of B, namely, anion 

(borate) exchange or an anion channel (Hayes and Reid 2004). 

As above set out, BOR1 is an efflux-type borate transporter required for the 

transport of B from roots to shoots under low B supply (Takano et al. 2002). However, 

in the presence of B toxic levels BOR1 is degraded via endocytosis (Takano et al. 

2005), and overexpression of BOR1 gene does not result in a better plant growth (Miwa 

et al. 2006). These results suggest that BOR1 is not involved in B tolerance. 

Nevertheless, an independent transgenic A. thaliana line has been generated showing 

that BOR4, another efflux-type borate transporter, is not degraded at posttranslational 

level as occurs with BOR1 (Miwa et al. 2007). Accumulation of BOR4-GFP and 

tolerance of B were positively correlated and the overproduction of BOR4-GFP 

improved plant growth under high B levels through B efflux. Moreover, GFP 

fluorescence derived from BOR4-GFP was strongly detected in the plasma membrane 

of epidermal cells in the root elongation zone of A. thaliana (Miwa et al. 2007). 

Also in the barley landrace Sahara 3771 has been identified Bot1, a BOR1 

ortholog, as the gene responsible for the B-toxicity tolerance. This cultivar contains 3.8 

times more Bot1 gene copies than the B-intolerant malting variety Clipper, and Bot1 

transcript levels in Sahara are about 160-fold and 18-fold higher in roots and leaf 
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blades, respectively, when compared with Clipper (Sutton et al. 2007). Furthermore, 

Sahara Bot1 protein has a higher capacity to provide B tolerance in yeast than Clipper 

Bot1 or Arabidopsis BOR1. Bot1 transcript levels are consistent with a lower net entry 

of B into the barley root and in a higher B disposal from leaf guttation through 

hydathodes (Sutton et al. 2007). Therefore, the ability of Sahara cultivar to maintain 

lower shoot B concentration is at least due to a mechanism of active B efflux from the 

root, that is, Bot1 encodes a functional B efflux transporter responsible for B tolerance. 

Also it has been suggested that BOR2 gene encodes an efflux-type borate transporter 

responsible for tolerance to B toxicity in wheat and barley (Reid 2007a). 

It has been also described that B inhibits one step of in vitro pre-mRNA splicing 

reaction (Shomron and Ast 2003), which could suggest that B toxicity is primarily due 

to disruption of RNA splicing (Reid 2007b). Interestingly, several B-tolerance genes 

from lupin and Arabidopsis that encode transcription factor or ribosomal proteins 

conferred tolerance to high B in yeast (Nozawa et al. 2006; Reid 2007b). These proteins 

could act by protecting the splicing sites from attack by B, which would indicate the 

occurrence of a mechanism to confer B tolerance other than the ability to efflux B from 

the cells (Reid 2007b). 

 

Boron and gene expression 

 

 In the last years, several reports have described that B deficiency affects the 

expression level of genes related to nitrogen metabolism (Redondo-Nieto et al. 2001; 

Camacho-Cristóbal and González-Fontes 2007), oxidative stress (Kobayashi et al. 

2004), B uptake (Takano et al. 2006; Kasajima and Fujiwara 2007), and cell wall 

(Camacho-Cristóbal et al. 2008). However, there is no direct evidence to explain how 

the signal from B deficiency is transferred to nuclei. Kobayashi et al. (2004) proposed 

that a quick signal transfer from the cell wall to the cytoplasm could be involved for 

gene induction after the cellular redox imbalance imposes by B deficiency. Goldbach 

and Wimmer (2007) suggested that changes in B concentrations may lead to a 

mechanical cascade of signals extending into the cytoplasm via the cell wall-plasma 

membrane-cytoskeleton continuum, with the possible involvement of AGPs. This 

hypothesis is supported by the fact that B deprivation led to an altered polymerization 

pattern of cytoskeletal proteins (actin and tubulin) assemblies (Yu et al. 2001, 2003) and 
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to an inhibition of the endocytic pathway for internalization of B-cross-linked RG-II 

pectins in brefeldin A-induced compartments (Yu et al. 2002). Finally, González-Fontes 

et al. (2008) have also suggested a putative role of B as a cellular signal capable of 

interacting with transcription factors, which could explain why the expression of several 

genes involved in different physiological processes are rapidly affected when vascular 

plants are subjected to B deficiency. Furthermore, there is also the possibility that B is 

affecting calcium-mediated signaling (see Bolaños et al. 2004a). 

 In addition, it has been reported that high B induces the expression of several 

genes in both roots and rosette leaves of Arabidopsis (Kasajima and Fujiwara 2007). 

One of these genes has been identified as a zinc finger family transcription factor 

(At1g03770), which could regulate the expression of downstream genes involved in the 

physiological response pathways to B toxicity in plants (Kasajima and Fujiwara 2007). 

This result might support the putative role of B as a cellular signal capable of interacting 

with transcription factors (González-Fontes et al. 2008). 

 

Concluding remarks 

 

 Boron is an essential element for the growth and development of vascular plants, 

and adequate B nutrition is crucial for crop production. This fact highlights the 

importance of understanding the role of B in plants as well as the molecular 

mechanisms in response to B deficiency and toxicity, which will allow to improve the 

tolerance of crops to B stresses.  

 It has been established that a primary role of B is the cross-linking of cell wall 

RG-II and pectin assembly (Kobayashi et al., 1996). Nevertheless, Bolaños et al. 

(2004a) hypothesize that the primary role of B in biological systems is stabilization of 

molecules with cis-diol groups, independently of their function. Thus, it has been 

suggested that B could be involved in membrane function by complex formation with 

glycoproteins (Goldbach and Wimmer 2007). More recently, it has been proposed the 

possible role of B as a cellular signal through the interaction with transcription factors 

(González-Fontes et al. 2008). Future research should be focused to identify the B-

binding ligands as well as their functions in plant physiology.  
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