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Abstract

We refine and stratify the standard separation properties to produce a descend-
ing hierarchy between T3 and T1. The interpolated properties are related to the
patch properties and the Vietoris modifications of the parent space.
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Preamble

We take another look at the standard separation properties

T3 =⇒ T2 =⇒ T1 =⇒ T0

and show how the step from T3 to T2 can be continued below T2. The new separation
properties are related to the patch properties of the parent space, and to the nature of its
Vietoris hyperspaces. We attach to each ordinal α three separation properties, α-neat,
α-regular, and α-trim, such that

α-neat =⇒ α-regular =⇒ α-trim =⇒ (α + 1)-neat

for all α. In general, none of these implications is an equivalence. Here we concentrate
on the neat and regular properties, but the trim properties are worth noting. For a T0

space S we have
S is 0-neat ⇐⇒ S is empty

S is 0-regular ⇐⇒ S is T3

S is 1-neat ⇐⇒ S is T2

S is 1-regular ⇐⇒ S is ??

S is 2-neat ⇐⇒ S is ??
...

where the later properties seem not to have been described before, but they certainly
become progressively weaker. For instance, the maximal compact topology, Example 99
in [10], is 1-regular but not T2. In Section 8 we give a whole family of examples which
illustrate the differences between the properties we develop. As the survey [7] shows,
many separation properties have been invented. However, in that work none of these
seem to be arranged in an ordinal indexed family. More recently two ordinal hierarchies
have been described in [8]. One of these is related to, but not the same as, our neat
hierarchy. When we were doing the work for this paper we were unaware of [8]. We say
more about the relationship between the two hierarchies at the end of Section 4.
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We attach to each compact saturated subset Q of a space S a certain operation, a
derivative ∂Q, on the family CS of closed sets of S. (At least that is what we do when S
is sober. For a non-sober space we use a more general approach.) This operation can be
iterated through the ordinals, and eventually stabilizes. The length of the iteration gives
an ordinal rank α, and it is this that is used in the hierarchies.

We find that neatness, being α-neat for some α, decomposes into two properties.

neat = packed + stacked

The first, being packed, is well known but unnamed, and is concerned with the behaviour
of the patch space of the parent space. The second, being stacked, is concerned with the
behaviour of certain Vietoris hyperspaces of the parent space. It is the stacking properties
that are stratified by the ordinals.

These results are taken from [9], mainly Chapters 8 and 11. That account is writ-
ten from a point-free perspective. However, to make this account accessible to a wider
readership we develop the material in a point-sensitive way. (We do make the occasional
remark about the point-free approach, but these can be ignored if you wish.)

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Derivatives on a space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Scott-open filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Neat spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Three interlacing hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Stacking properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 V-points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Boss spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1 Introduction

We outline the aims of this paper, and describe where the results come from. As mentioned
in the preamble, originally we used point-free methods (and, in part, obtained more
general results). Here we use only point-sensitive methods. However, in this introduction
it will be necessary to allude to the point-free approach. If you are not familiar with these
methods, it will not detract from your understanding of the results presented later.

Let S be a topological space. This has families OS of open subsets and CS of closed
subsets. Typically we let

U, V, W . . . range over OS X, Y, Z . . . range over CS

and we write E◦ for the interior and E− for the closure of an arbitrary subset E ⊆ S.
We use the standard separation properties T3, T2, T1, T0 where T3 = T0+regular. As

explained in the preamble, our aim is to show that T3 and T2 are the initial steps in a
hierarchy which descends to somewhere above T1.

The specialization order on a space S is the comparison of points given by

p ≤ q ⇐⇒ p ∈ q−
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for p, q ∈ S. This is always a pre-order, is a partial order precisely when the space is T0,
and is equality precisely when the space is T1.

A saturated set is an upper section of this comparison. Every open set is saturated
but there may be many non-open saturated sets. We write E↑ for the saturation (upwards
closure) of a subset E ⊆ S.

Let QS be the family of compact saturated sets. We use Q as a typical member of
QS. Observe that the saturation K↑ of a each compact set K is in QS. Much of what we
do can be seen as an analysis of the way QS influences the more general properties of S.

It is a standard exercise that for a T2 space S we have QS ⊆ CS. For later we state
this in the form of a separation property and sketch the proof.

1.1 LEMMA. Let S be a T2 space and consider p ∈ S and Q ∈ QS with p /∈ Q. Then

p ∈ U Q ⊆ V U ∩ V = ∅

for some U, V ∈ OS.

Proof. Fix p /∈ Q ∈ QS. For each q ∈ Q the T2 separation gives

p ∈ Uq q ∈ Vq Uq ∩ Vq = ∅

for some Uq, Vq ∈ OS. Letting q vary through Q produces an open cover of Q which, by
the compactness, refines to a finite cover, and so produces the required U, V ∈ OS. �

This suggests that in a T2 space S the sets Q ∈ QS are trying to behave like points.
We remember this when we discuss the V-modifications (Vietoris hyperspaces) of a space.

The property QS ⊆ CS of a space doesn’t seem to have a name, so we give it one.

1.2 DEFINITION. A space S is packed if each compact saturated set is closed.
A space S is tightly packed if each compact saturated set is closed and finite. �

Another property of T2 spaces does have a name.

1.3 DEFINITION. For a space S a closed subset Z is irreducible if it is non-empty and

(Z meets U) and (Z meets V ) =⇒ Z meets U ∩ V

for each U, V ∈ OS. For each p ∈ S the closure Z = p− = {p}− is is irreducible, and we
say p is a generic point of Z. A space S is sober if it is T0 and each of its closed irreducible
sets has a generic point (which, by the T0 property, is unique). �

Almost trivially both the implications

(1) T2 =⇒ T1+sober+packed T0+packed =⇒ T1 (2)

hold. Not so trivially both are strict. An appropriate counter-example for (1) can be
found in [10]. (This book doesn’t deal explicitly with sobriety and packedness. The
dissertation [6] fills in some of the missing details.) The two conditions T1 and sobriety
are incomparable, a space can have one without the other. Notice that a space is T1+sober
precisely when each closed irreducible set is a singleton. Such a space need not be T2.
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Both sobriety and packedness can be viewed as desirable properties of a space. Thus
each T2 space is acceptable, but there are defective spaces. As an attempt to correct one
or other of the defects we can attach to a space S an appropriate space

σ : S −→ sS π : pS −→ S

using a continuous map σ or π. The left hand space sS is the sober reflection of S. For
a T0 space its points are the closed irreducible subsets of S with ‘essentially the same’
topology. The space sS is always sober and, in particular, S is sober precisely when σ
is a homeomorphism. The right hand space pS is the patch space of S. This has the
same points as S but with more open sets. (We simply declare that each Q ∈ QS is now
closed.) In particular, S is packed precisely when π is a homeomorphism. Unfortunately,
in general, the space pS need not be packed, and the construction has to be repeated.

Both these constructions use point-sensitive methods (that is the standard methods
of point set topology). There are also point-free methods available. We need to say a few
words about these without going into any details.

Let Top be the category of topological spaces and continuous maps. This is connected
with another category Frm of a more algebraic nature. A frame is a certain kind of
complete lattice. These are the objects of Frm and the arrows are the appropriate
morphisms. There is a pair of contravariant functors connecting Top and Frm . For
a space S the topology OS is a frame. Each frame A has a point space pt(A) in Top

(obtained by a kind of spectral construction) together with a surjective morphism

A −→ Opt(A)

which need not be an isomorphism.
Many constructions in Top can be mimicked in Frm . Sometimes this gives essentially

the same results, sometimes it gives better results, and sometimes it just misses the point.
For instance, by converting a space S into its topology OS and then taking the point space
pt(OS) we obtain the sober reflection of S. Thus σ : S −→ sS is one of the units of the
contravariant adjunction between Top and Frm .

There is also a point-free version of the patch construction. For a sober space S
there is a bijective correspondence between QS and the Scott-open filters on OS. This
correspondence is discussed in Section 3. For any frame A there is a process of modifying
A by ‘formally adjoining’ its Scott-open filters. This produces a larger frame

A −→ PA

and an embedding. The point set content of the construction is explained in Section 2.
We apply this construction to the topology of a space S to obtain a pair of morphisms

f : OS −→ POS g : POS −→ OpS

in Frm . The composite is essentially the map pS −→ S viewed as a frame morphism. In
particular, when S is packed, that is pS = S, we obtain a pair of morphisms

f : OS −→ POS g : POS −→ OS

where the composite g ◦ f is the identity on OS. The other composite f ◦ g need not be
the identity on POS. An analysis of this led to the result presented here.
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Roughly speaking we say a space is neat if the embedding f is an isomorphism. The
topological content of this notion is discussed in Section 4. We find that

(3) T0+neat =⇒ T1+sober+packed

but this is not an equivalence.
What topological properties ensure neatness? From III(1.2)(iii) of [5] we have

T3 =⇒ T0+neat

(and, in fact, a more general point-free result). We improved this by weakening the
hypothesis to T2, and this with (3) gives (1) above. An analysis of neatness led to the
ordinal indexed hierarchy of separation properties, as described in Section 4 and 5.

The implication (3) is not an equivalence. What more is needed on the right hand
side? The missing property, that of being stacked, is discussed in Section 6. It turns out
that this is concerned with the nature of the V-modifications of the parent space.

For a space S the point-sensitive Vietoris hyperspaces use certain collections of subsets
as points. The most common collection is QS, but there are other larger collections. There
is also a point-free version of this construction, originally described in [3, 4]. This produces
an even larger set VS of points which, in general, are not just certain subsets of S. The
stacking property is concerned with the differences between these various V-modifications.
The background to these results is described in more detail in Section 7.

Section 8 contains a collection of examples which illustrate the notions developed here.

2 Derivatives on a space

At first sight you may think the following gadgets look a little odd.

2.1 DEFINITION. A derivative on a space S is an operator ∂ on CS which is deflationary,
monotone, and respects joins, that is

(d) ∂(X) ⊆ X (m) Y ⊆ X =⇒ ∂(Y ) ⊆ ∂(X) (j) ∂(Y ∪ X) ⊆ ∂(Y ) ∪ ∂(X)

for each X, Y ∈ CS. Because of (m) the comparison of (j) is, in fact, an equality. �

There is one very well known example of a derivative that is worth remembering.

2.2 EXAMPLE. Let S be a T0 space. Recall that a point p ∈ X ∈ CS is isolated in the
closed set if X ∩U = {p} for some U ∈ OS. Let lim(X) be the set of non-isolated points
of X, the limit points of X. This lim is the CB-derivative on CS. �

We compare derivatives in a pointwise fashion, that is

∂1 ≤ ∂2 ⇐⇒ (∀X ∈ CS)[∂1(X) ⊆ ∂2(X)]

for derivatives ∂1, ∂2 (on the same space). Notice also that the composite ∂1 ◦ ∂2 of two
derivatives is itself a derivative, and is smaller than its two components.

The CB-derivative is used to extract the perfect part of a closed set. This is done by
iteration, and a similar process is available with any derivative.
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2.3 DEFINITION. Let ∂ be any derivative on a space S. The family

(∂α |α ∈ Ord)

of ordinal iterates of ∂ is generated by

∂0(X) = X ∂α+1(X) = ∂(∂α(X)) ∂λ(X) =
⋂

{∂α(X) |α < λ}

for each X ∈ CS, each ordinal α, and each limit ordinal λ. �

Notice that each ∂α is a derivative. Thus we obtain a descending chain of derivatives

∂0 ≥ ∂1 = ∂ ≥ ∂2 ≥ · · · ≥ ∂α ≥ · · ·

which, on cardinality grounds, must eventually stabilize. In other words, there is a suf-
ficiently large ordinal θ = |∂| such that ∂ ◦ ∂θ = ∂θ. This is the rank or closure ordinal
of ∂, and in due course, we will look at the size of this for some particular derivatives.
Until then it is convenient to write ‘∞’ for this closure ordinal. Of course, the value of
∞ depends on the parent derivative ∂, but when this matters we will be more precise.

For instance lim∞ is the perfect part extractor on the parent space S. The size of
this ∞ is an indicator of some of the pathological properties of S. In a similar way we
will use the rank of other derivatives to determine other properties of S.

2.4 EXAMPLES. Let S be an arbitrary space. For an arbitrary subset K of S, setting

〈K〉(X) = (K ∩ X)−

for each X ∈ CS produces an idempotent derivative 〈K〉 on CS. In particular, when K
is closed we have 〈K〉(X) = K ∩ X for each X ∈ CS. �

For a derivative ∂ the set K = ∂∞(S) is closed and we find that ∂∞ ≤ 〈K〉. We look
at certain derivatives ∂ such that 〈L〉 ≤ ∂∞ for some associated saturated set L.

The topology OS of a space S is a lattice, and so the notion of a filter ∇ on OS makes
sense. Such a filter ∇ is a family of open sets of S, is closed under binary intersections,
and is upwards closed. (Do not confuse this notion of filter with the more usual notion
of filter used in point set topology. The two notions are related but are not the same.)

2.5 DEFINITION. For a space S and a filter ∇ on OS, we set

∂∇(X) =
⋂

{(W ∩ X)− |W ∈ ∇}

for each X ∈ CS to obtain the associated derivative ∂∇ of ∇. �

The fact that ∂∇ is deflationary and monotone is immediate, but the preservation of
joins needs to be checked. By way of contradiction suppose

∂∇(X ∪ Y ) * ∂∇(X) ∪ ∂∇(Y )

for some X, Y ∈ CS. Thus

p ∈ ∂∇(X ∪ Y ) p ∈ (U ∩ X)−
′

p ∈ (V ∩ Y )−
′
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for some point p ∈ S and U, V ∈ ∇. Let W = U ∩ V so that W ∈ ∇ and

p ∈ (W ∩ (X ∪ Y ))− p ∈ (W ∩ X)−
′

p ∈ (W ∩ Y )−
′

which leads to a contradiction.
Each such derivative ∂∇ has a closure ordinal ∞ = |∇| which enables us to attach an

ordinal rank to the parent filter. For later use we refine this process.

2.6 DEFINITION. Let ∇ be a filter on the open sets OS of the space S. We set

∇(0) = S ∇(α + 1) = ∂∇(∇(α)) ∇(λ) =
⋂

{∇(α) |α < λ}

for each ordinal α and limit ordinal λ. In other words we set ∇(α) = ∂α
∇(S) for each

ordinal α. This produces a descending chain of closed sets

S = ∇(0) ⊇ ∇(1) ⊇ · · · ⊇ ∇(α) ⊇ · · ·

which stabilizes at (or before) ∇(∞) = ∂∞
∇ (S) using the closure ordinal of ∂∇. �

For each filter ∇ of OS the set ∇(∞) is closed and ∂∞ ≤ 〈∇(∞)〉. The intersec-
tion

⋂

∇ is saturated since each member of ∇ is open and hence saturated. A simple
calculation shows that

⋂

∇ ⊆ X =⇒
⋂

∇ ⊆ ∂∇(X)

for each closed set X, and hence
⋂

∇ ⊆ ∇(∞) = ∂∞
∇ (S). We can refine this comparison.

2.7 LEMMA. For each space S and filter ∇ on OS we have

〈
⋂

∇〉 ≤ ∂∞
∇ ≤ 〈∇(∞)〉

the sandwich of the associated derivative ∂∞
∇ .

Proof. For convenience let ∂ = ∂∇. By the remarks above we have ∂∞ ≤ 〈∇(∞)〉.
To obtain the lower bound of ∂∞ let L =

⋂

∇. For each W ∈ ∇ and X ∈ CS we
have L ∩ X ⊆ W ∩ X and hence 〈L〉(X) ⊆ ∂(X) holds. A simple induction shows
〈L〉(X) ⊆ ∂α(X) for each ordinal α, and hence 〈L〉 ≤ ∂∞ as required. �

In general ∂∞
∇ will lie strictly between these two extremes.

2.8 EXAMPLE. Let S be a T1 space and let ∇ be the filter of cofinite sets (each of which
is open). Then ∂∇ = lim and hence ∂∞

∇ is the perfect part extractor. In particular, ∇(∞)
is the perfect part of S, which could be S. At the other extreme we have

⋂

∇ = ∅. In
other words, these two extremes tell us almost nothing about the parent space. �

We look at a certain filters for which
⋂

∇ = ∇(∞), and so the sandwich collapses.
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3 Scott-open filters

We describe a slight refinement of the Hofmann-Mislove result which relates Scott-open
filters with compact saturated sets.

Recall that a family U of open sets is (upwards) directed if it is non-empty and for each
U, V ∈ U there is some W ∈ U with U ∪ V ⊆ W .

3.1 DEFINITION. For a space S, a filter ∇ on the topology OS is Scott-open if

⋃

U ∈ ∇ =⇒ U ∩∇ 6= ∅

for each directed family U ⊆ OS. In other words, ∇ is Scott-open when its complement
OS −∇ is closed under directed unions. �

Being Scott-open is a compactness property, as the standard example illustrates.

3.2 EXAMPLES. Let S be a T0 space.
(a) Let Q ∈ QS. The open neighbourhood filter ∇(Q) of Q given by

U ∈ ∇(Q) ⇐⇒ Q ⊆ U

(for U ∈ OS) is Scott-open. Since Q is saturated we find that Q =
⋂

∇(Q).
(b) Suppose Z is closed irreducible in S. Then

U ∈ ∇ ⇐⇒ Z meets U

(for U ∈ OS) defines a Scott-open filter. In fact, this ∇ satisfies U ∩∇ 6= ∅ for every (not
just directed) family U of open sets with

⋃

U ∈ ∇. The space is sober precisely when
each such Z is a point closure q−, in which case ∇ = ∇(q↑). �

When the space S is sober the Hofmann-Mislove result shows that each Scott-open
filter ∇ on OS has the form ∇(Q) for a (unique) Q ∈ QS, namely Q =

⋂

∇. For later
use we need to extract a bit more information out of a proof of this result. To do that we
set up a bit of notation which we carry through to the end of Theorem 3.5.

Let S be a T0 space (which, as yet, need not be sober), and let ∇ be a Scott-open
filter on OS. Let M be the set of maximal members of (OS −∇). Since this difference
is closed under directed unions an application of Zorn’s Lemma gives the following.

3.3 LEMMA. For each U ∈ (OS −∇) there is some P ∈ M with U ⊆ P .

It often happens that a use of Zorn’s Lemma is combined with a proof that the
extracted maximal elements are ‘prime’ in some sense. The same thing happens here.

3.4 LEMMA. Each member of M is the complement of a closed irreducible set.

We now assume that S is sober. Thus each P ∈ M has the form m−′
for some (unique)

m ∈ S. Let M be the set of these points. Thus

M = {m−′
|m ∈ M}

is the set of maximal members of OS −∇.

8



3.5 THEOREM. Suppose the space S is sober and let ∇ be a Scott-open filter on OS.
Then there is some Q ∈ QS with ∇ = ∇(Q). Furthermore, Q =

⋂

∇.

Proof. Consider the set M ⊆ S extracted above. We first show

U ∈ ∇ ⇐⇒ M ⊆ U

for U ∈ OS. In fact, we show the contrapositive.
Suppose U ∈ (OS −∇). By Lemma 3.3 and the construction of M we have U ⊆ m−′

for some m ∈ M . In particular M * U . Conversely, suppose M * U , so that m ∈ U ′ for
some m ∈ M , to give U ⊆ m−′

/∈ ∇, and hence U /∈ ∇.
Next we check that M is compact. To this end suppose M ⊆

⋃

U where U is a directed
family of open sets. If

⋃

U /∈ ∇ then, again by Lemma 3.3, we have

M ⊆
⋃

U ⊆ m−′

for some m ∈ M . This is impossible so we have
⋃

U ∈ ∇, and hence, since ∇ is Scott-
open, there is some U ∈ U with U ∈ U . The equivalence above ensures M ⊆ U .

Each open set is saturated, so Q = M↑ is a compact saturated set with

U ∈ ∇ ⇐⇒ Q ⊆ U

for U ∈ OS. Trivially we have Q ⊆
⋂

∇, so it remains to verify the converse inclusion.
Consider any p ∈

⋂

∇. Then p−
′
/∈ ∇ (otherwise p ∈ p−

′
), so that Q * p−

′
, and hence

there is some q ∈ Q ∩ p−. We have q ≤ p, so that p ∈ Q, since Q is saturated. �

If we start from a compact saturated set, then we obtain the following result.

3.6 THEOREM. Suppose the space S is sober, and consider Q ∈ QS. Let M be the set of
minimal members of Q (relative to the specialization order). Then for each q ∈ Q there
is some m ∈ M with m ≤ q, the set M is compact, and M↑ = Q.

We call the M the minimal generating set of Q. It will be important in Section 7.

4 Neat spaces

By Lemma 2.7 we have a sandwich

〈
⋂

∇〉 ≤ ∂∞
∇ ≤ 〈∇(∞)〉

for each filter ∇ on the topology OS of a space S. By Example 2.8 these three components
can be distinct. We investigate certain filters where the components can be the same.

The following result is essentially a point-sensitive version of Lemma 2.4(ii) of [3] or
Lemma 3.4(ii) of [4]. We give a proof since the technique used here is important.

4.1 LEMMA. Let ∇ be a Scott-open filter on the topology OS of the space S. Then

∇(∞) ⊆ U =⇒ U ∈ ∇

for each U ∈ OS.
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Proof. We approach the result in four phases. In each we use the derivative ∂ = ∂∇.
For the first phase we show

∂(X)′ ∈ ∇ =⇒ X ′ ∈ ∇

for X ∈ CS. Thus suppose ∂(X)′ ∈ ∇. Then

⋃

{(W ∩ X)−
′
|W ∈ ∇} = ∂(X)′ ∈ ∇

and the left hand union is directed. Thus, since ∇ is Scott-open we have

(W ′ ∪ X ′)◦ = (W ∩ X)−
′
∈ ∇

for some W ∈ ∇. This gives
(W ′ ∪ X ′)◦ ∩ W ∈ ∇

which, since
(W ′ ∪ X ′)◦ ∩ W = ((W ′ ∪ X ′) ∩ W )◦ = X ′ ∩ W

gives X ′ ∩ W ∈ ∇, and hence X ′ ∈ ∇.
For the second phase we show

∂α(X)′ ∈ ∇ =⇒ X ′ ∈ ∇

for X ∈ CS and each ordinal α. We proceed by induction on α. The base case, α = 0, is
trivial. For the induction step, α 7→ α + 1, since ∂α+1 = ∂ ◦ ∂α we have

∂α+1(X)′ ∈ ∇ =⇒ ∂α(X)′ ∈ ∇ =⇒ X ′ ∈ ∇

using the observation of the first phase and the induction hypothesis. The induction leap
to a limit ordinal follows by another use of the Scott-openness.

For the third phase we observe that

∂∞(U ′) = ∅ ⇐⇒ U ∈ ∇

for U ∈ OS. The implication ⇒ is a particular instance of the second phase, and the
implication ⇐ is immediate (since U ∈ ∇ gives ∂(U ′) ⊆ (U ∩ U ′)−).

Finally, we can obtain the required result. Thus suppose ∇(∞) ⊆ U for some U ∈ OS.
Then we have both

∂∞(U ′) ⊆ ∇(∞) ⊆ U ∂∞(U ′) ⊆ U ′

to give ∂∞(U ′) ⊆ U ∩ U ′ = ∅ and hence U ∈ ∇ by the third phase. �

With this observation we can characterize when the sandwich collapses.

4.2 THEOREM. Let ∇ be a Scott-open filter on the topology OS of a space S, and let
∂ = ∂∇. The following four conditions on ∇ are equivalent.

(i) ∂∞ = 〈K〉 for some K ∈ CS.
(ii) (∀U ∈ OS)[U ∈ ∇ ⇐⇒ ∇(∞) ⊆ U ]
(iii)

⋂

∇ = ∇(∞)
(iv) 〈

⋂

∇〉 = ∂∞ = 〈∇(∞)〉
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Proof. (i)⇒(ii). Suppose ∂∞ = 〈K〉 for some K ∈ CS. Then

K = 〈K〉(S) = ∂∞(S) = ∇(∞)

to show what K must be. Consider any U ∈ ∇. Then

∂(U ′) ⊆ (U ∩ U ′)− = ∅

so that
∇(∞) ∩ U ′ = 〈K〉(U ′) = ∂∞(U ′) = ∅

to give ∇(∞) ⊆ U . The converse implication holds by Lemma 4.1.

(ii)⇒(iii). Assuming (ii) we have ∇(∞) ⊆
⋂

∇, and the converse always holds.

(iii)⇒(iv). This follows from the sandwich of ∂∞.

(iv)⇒(i). This is trivial. �

For a Scott-open filter ∇ the sandwich collapses precisely when ∇(∞) ⊆
⋂

∇. Here
∞ is some ordinal which depends on ∇. We take note of this value.

4.3 DEFINITION. Let S be a space and let α be an ordinal.
(a) A Scott-open filter ∇ on OS is α-neat if ∇(α) ⊆

⋂

∇, and hence ∇(α) =
⋂

∇.
(b) The space is α-neat if each of its Scott-open filters is α-neat.
(c) A Scott-open filter or a space is neat if it is α-neat for some α. �

For ordinals α ≤ β we have ∇(α) ⊆ ∇(β) so that

α-neat =⇒ β-neat

for both Scott-open filters and spaces.

4.4 THEOREM. (0) A space is 0-neat precisely when it is empty.
(1) A T0 space is 1-neat precisely when it is T2.

Proof. (0) Suppose the space S is 0-neat, and consider the improper filter ∇ = OS.
This is Scott-open (trivially) and hence the 0-neatness gives S = ∇(0) ⊆

⋂

∇ = ∅. The
converse is immediate.

(1) Suppose the space S is T0 and 1-neat, and consider distinct p, q ∈ S. Since S is T0

we may suppose q /∈ p−, so that p /∈ q↑ ∈ QS. Using the Scott-open filter ∇ = ∇(q↑) the
1-neatness gives

⋂

{W− | q ∈ W ∈ OS} = ∇(1) ⊆
⋂

∇ = q↑

so there is an open set W with p /∈ W− and q ∈ W . This is the required T2-separation.
Conversely, suppose the space is T2, and consider any Scott-open filter ∇. Since S

is T2, it is sober, and hence Theorem 3.5 gives us some Q ∈ QS with ∇ = ∇(Q) and
⋂

∇ = Q. We have
⋂

∇ = Q ⊆ ∇(1), and we must improve this to an equality.
By way of contradiction, suppose there is a point p ∈ (∇(1) − Q). By Lemma 1.1

there are U, V ∈ OS with

p ∈ U Q ⊆ V U ∩ V = ∅
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so that p ∈ ∇(1) ⊆ V − ⊆ U ′ which is the contradiction. �

As far as we can ascertain 2-neatness (or any (2 + α)-neatness) does not seem to be a
standard separation property.

What kind of spaces are neat? The following gives a necessary condition.

4.5 THEOREM. Each T0+neat space is T1+sober+packed.

Proof. Let S be a space that is T0 and neat.
We show first that S is packed. Consider Q ∈ QS, and let ∇ = ∇(Q). Then

Q ⊆ ∇(∞) ⊆
⋂

∇ = Q

where the first inclusion is a general property of QS, the second is the assumed neatness,
and the equality is another general property. This gives Q = ∇(∞) ∈ CS as required.

Since S is T0+packed, it is T1. Thus it remains to show that S is sober.
To this end consider any closed irreducible subset Z of S, and this time let ∇ be the

Scott-open filter given by
U ∈ ∇ ⇐⇒ Z meets U

(for U ∈ OS). We show that Z is a singleton.
By way of contradiction suppose p, q are distinct members of Z. Since S is T1 we have

p ∈ U and q /∈ U for some U ∈ OS. The point p ensures that Z meets U , so that U ∈ ∇,
and hence ∇(∞) ⊆ U by the assumed neatness of S. Since

q ∈ U ′ ⊆ ∇(∞)′ ∈ OS

we see that Z meets ∇(∞), and hence ∇(∞) ⊆ ∇(∞)′ by a second use of neatness. Thus
∇(∞) = ∅, so that ∅ ∈ ∇ by Lemma 4.1, and hence Z meets ∅. �

We will improve this result in Section 6.
Before we continue with our analysis let’s briefly consider a possible weakening of the

notion of α-neatness.
Suppose we attach to each space S a selected family FS of Scott-open filters. Then

we may say a space S is α-F -neat if each ∇ ∈ FS is α-neat. We use a particular case of
this idea.

For each point q ∈ S the filter ∇(q↑) given by

U ∈ ∇(q↑) ⇐⇒ q↑ ⊆ U ⇐⇒ q ∈ U

(for U ∈ OS) is Scott-open with
⋂

∇(q↑) = q↑. This filter gives us a derivative

∂q = ∂∇(q↑)

on CS, and we may say S is α-point-neat if ∂α
q (S) = q↑ for each point q ∈ S. This notion

has appeared elsewhere.
In [8] Sequeira attached to each point q of a space S an ordinal indexed family ∆α(q)

of subsets of S. The space S is α-step-Hausdorff if ∆α(q) = {q} for each q ∈ S. In fact

∆α(q) = ∂α
q (S)

and it doesn’t take too long to prove the following.
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4.6 THEOREM. A space is α-step-Hausdorff precisely when it is T0 and α-point-neat.
Furthermore, each such space is T1.

A more detailed analysis of the connection between neatness and the properties dis-
cussed in [8] will appear elsewhere.

5 Three interlacing hierarchies

We know that each α-neat space is (α+1)-neat, but not conversely. What does an α-neat
space have that an (α + 1)-neat doesn’t? It has a certain amount of regularity.

5.1 DEFINITION. Let α be an ordinal.
(r) A space S is α-regular if for each U, V ∈ OS with U * V , there is some W ∈ OS

such that
(∗) W ⊆ U W * V (W ∩ ∇(α))− ⊆ U

for each Scott-open filter ∇ with U ∈ ∇.
(t) A space S is α-trim if for each U, V ∈ OS with U * V , and for each Scott-open

filter ∇ with U ∈ ∇, there is some W ∈ OS such that (∗) holds. �

The idea is the same for both notions. Given U, V ∈ OS with U * V , there is a
W ∈ OS which separates U and V in a certain way. The difference between α-regularity
and α-trimness is the dependencies amongst the quantifiers. In particular, we have

α-regular =⇒ α-trim

for these trivial reasons. It seems that in general this implication is not an equivalence.
However, the case α = 0 is different. The trick is that ∇(0) = S for every filter ∇, and
this makes the dependency on ∇ illusory.

The following is the analogue of Theorem 4.4.

5.2 THEOREM. For a space S the three properties

(i) S is regular (ii) S is 0-regular (iii) S is 0-trim

are equivalent.

Proof. (i) ⇒ (ii). Suppose S is regular, consider any U, V ∈ OS with U * V , and
consider any witnessing point p ∈ U, p ∈ V ′. By the regularity of S we have

p ∈ W ⊆ W− ⊆ U

for some W ∈ OS. For each Scott-open filter ∇ we have ∇(0) = S, so that

(W ∩ ∇(0))− = W− ⊆ U

as required.

(ii) ⇒ (iii). This is immediate.
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(iii) ⇒ (i). Suppose S is 0-trim and consider any p ∈ U ∈ OS. Let V = p−
′
, so that

U * V . With the Scott-open filter ∇ = OS, since ∇(0) = S the 0-trimness gives

W ⊆ U W * p−
′

W− ⊆ U

for some W ∈ OS. In particular p ∈ W , which is enough to show that S is regular. �

The notion of α-regularity has an inbuilt uniformity in the selection of the separating
set W . Because of this the weaker notion of α-trimness may seem more natural. However,
the stronger notion of α-regularity is related to a notion of α-well-inside in the same way
that standard regularity is related to the standard well-inside comparison. We won’t
develop that relationship here, but we will give just a hint of the difference.

Suppose S is α-trim, let U ∈ OS, and let ∇ be a Scott-open filter with U ∈ ∇. Let

V =
⋃

{W ∈ OS |W ⊆ U, (W ∩∇(α))− ⊆ U}

so that V ⊆ U . The α-trimness ensures that V = U . This decomposition of U depends on
the filter ∇. A similar use of α-regularity will produce a filter independent decomposition.

5.3 THEOREM. The three implications

α-neat =⇒ α-regular =⇒ α-trim =⇒ (α + 1)-neat

hold for each ordinal α.

Proof. For the left hand implication suppose the space S is α-neat, and consider
U, V ∈ OS with U * V . Let W = U , so that

W ⊆ U W * U

(trivially). Consider any Scott-open filter ∇ with U ∈ ∇. The α-neatness gives ∇(α) ⊆ U ,
so that

(W ∩ ∇(α))− ⊆ ∇(α)− ⊆ ∇(α) ⊆ U

to give the required result.
The central implication follows by a trivial manipulation of quantifiers.
For the right hand implication suppose the space S is α-trim, consider a Scott-open fil-

ter ∇, and consider any open set U ∈ ∇. We require ∇(α+1) ⊆ U . By the decomposition
observation above we have

U =
⋃

{W ∈ OS |W ⊆ U, (W ∩∇(α))− ⊆ U}

and, by a simple calculation, this union is directed. Since ∇ is Scott-open and U ∈ ∇,
this gives some W ∈ ∇ with

∇(α + 1) ⊆ (W ∩ ∇(α))− ⊆ U

as required. �

For α = 0 this result and Theorem 5.2 show that each regular space is 1-neat. By
Theorem 4.4, for T0 spaces this gives T3 ⇒ T2 (which is not exactly unknown). Theorem
5.3 is a kind of generalization of this implication.
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6 Stacking properties

By Theorem 4.5 each T0+neat space is T1+sober+packed, but not conversely. Neat spaces
have extra properties. Consider Q ∈ QS. This generates a Scott-open filter ∇(Q) with
Q =

⋂

∇(Q), and so gives a derivative ∂Q = ∂∇(Q). To simplify the notation we set

Q(α) = ∂α
∇(Q)(S) = ∇(Q)(α)

for each ordinal α. The filter ∇(Q) is neat precisely when Q = Q(∞). The packedness of
the space is concerned with an equality Q− = Q.

Each Q ∈ QS gives us three sets

Q ⊆ Q− ⊆ Q(∞)

and comparisons between four derivatives

〈Q−〉 · · · 〈Q(∞)〉

Packed
...

... Neat
〈Q〉 · · · ∂∞

Q

where each dotted line indicates a comparison, either left to right or from bottom to top.
Packedness ensures an equality on the left and neatness is concerned with an equality on
the right. What about equalities at the top or bottom?

6.1 DEFINITION. Let S be a space.
(a) A set Q ∈ QS is stacked if Q− = Q(∞), and is strongly stacked if 〈Q〉 = ∂∞

Q .
(b) The space S is stacked or strongly stacked if each of its compact saturated sets is

stacked or strongly stacked, respectively. �

These names may look odd. They are explained by the second part of the following.

6.2 THEOREM. (a) All three of the implications

neat =⇒ strongly stacked =⇒ stacked T1+stacked =⇒ sober

hold for spaces.
(b) A T0 space is neat precisely when it is packed and stacked.

Proof. (a) The two left hand implications are immediate.
For the right hand implication consider any space S which is T0+stacked (not yet T1).

Consider any closed irreducible subset Z of S. We obtain some information about Z.
Consider q ∈ Z, let Q = q↑ (so that Q ∈ QS), and let ∂ = ∂Q. We show first that

Z ⊆ ∂(Z) and hence ∂(Z) = Z. To this end consider W ∈ OS with q ∈ W . We show
Z ⊆ (W ∩Z)−, and then take the intersection over all such W . Consider any p ∈ Z and,
by way of contradiction, suppose

p ∈ V = (W ∩ Z)−
′
= (W ′ ∪ Z ′)◦

holds. Since Z meets both W and V (at q and p, respectively) we have Z ∩ W ∩ V 6= ∅
which, by a simple calculation, is nonsense.
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Since Z = ∂(Z) we have

q ∈ Z = ∂∞(Z) ⊆ ∂∞(S) = Q(∞) = Q = q↑

where Q(∞) = Q holds since S is stacked. Finally, if we assume that S is T1 then
q ∈ Z ⊆ q↑ = {q} so that Z is a singleton, which is more than enough to show S is sober.

(b) The implication
T0+neat =⇒ packed+stacked

follows by Theorem 4.5 and part (a).
Conversely, suppose the space S is T0+packed+stacked. The first two properties

ensure that S is T1, and hence S is sober by part (a). Consider any Scott-open filter ∇
on OS. We have ∇ = ∇(Q) for some Q ∈ QS. Since S is packed and stacked we have

∇(∞) = Q(∞) = Q− = Q =
⋂

∇

and hence S is neat. �

The Alexandroff topology on a poset gives a T0+strongly stacked space which is neat
precisely when the poset is discrete.

7 V-points

Let S be a sober space. We wish to construct a hyperspace of S, a new space where the
points are certain subsets of S. The construction we use here is as follows.

7.1 DEFINITION. Let S be any topological space and let KS be any set of compact
subsets K. For U ∈ OS let ♦(U) and �(U) be the subsets of KS given by

K ∈ ♦(U) ⇐⇒ K meets U K ∈ �(U) ⇐⇒ K ⊆ U

(for K ∈ KS). We use these to topologize KS. We take the smallest topology in which
each of these sets is open. This is the V-modification of S on KS. �

We use the given topology OS to doubly index a subbase of the topology constructed
on KS. (We needn’t worry about whether or not ∅ should be in KS.)

By varying the choice of KS we produce different V-modifications. For instance, when
KS is the set of singletons we merely reproduce the parent space. In the original example
(as described by Vietoris) the space S is compact T2 and KS = CS. An obvious extension
of this is to take KS = QS. A more recent extension uses the compact lenses of S.

A lens of S is a subset of the form L = R ∩ Y where R is saturated and Y is closed.
Thus L is a certain kind of convex subset in the specialization order. Let LS be the set
of the compact lenses, the lenses of S which are also compact subsets.

For any Q ∈ QS and X ∈ CS the lens L = Q ∩ X is compact. In particular, Q is a
compact lens (since Q = Q ∩ Q−). Thus we have an inclusion QS ⊆ LS which, with the
V-topology on each of QS and LS, is a topological embedding.

This is the point-sensitive version of the V-modification (or as much of it as we need
to know here). There is also a point-free version. This was introduced in [3, 4], and a
simplified account for compact T2 spaces is given in [5]. We give an outline of the general
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constuction, but for what we do here we can take the results of Theorem 7.2 and Lemma
7.3 as the definition of the associated space VS of a sober space S.

Starting from the parent space we view the topology OS as a lattice of a certain kind.
We generate a larger lattice (which must satisfy certain equalities), and hit this with a
hull-kernel (spectral) construction to produce a space. This is the new V-modification.
We write VS for the points of the new space. As you can probably guess these points
have something to do with QS. The points of VS are described in [3, 4], but not in the
most transparent manner.

Consider any Q ∈ QS. As in Section 3 this has a minimal generating subset M . Thus
we have three closed sets M− ⊆ Q− ⊆ Q(∞) and a derivative ∂Q associated with Q.

7.2 THEOREM. For a sober space S the points in VS are the pairs (Q, X) where

Q ∈ QS X ∈ CS M− ⊆ X ⊆ Q(∞) ∂Q(X) = X

hold. Furthermore, for Q ∈ QS, each of (Q, M−), (Q, Q−), (Q, Q(∞)) is in VS.

This shows that each Q ∈ QS always produces at least one point in VS (namely
(Q, Q−)). There can be many points in VS of the form (Q, X), and in Section 8 we
illustrate that the family of all such Q-points can be extremely complicated.

The topology on VS is produced automatically (since it is a hull-kernel construction).
We find that it does look very like the more traditional V-topologies.

7.3 LEMMA. For each sober space S the doubly indexed families given by

(Q, X) ∈ �(U) ⇐⇒ X meets U (Q, X) ∈ �(U) ⇐⇒ Q ⊆ U

(for V-points (Q, X) and U ∈ OS) form a subbase of the topology on VS.

It is easy to check that the assignment

Q 7−→ (Q, Q−) : QS −→ VS

is a topological embedding. This show that VS has a rather curious structure.
There is a copy of QS running through VS, and VS is bundled over QS. However,

some points such as (Q, M−) lie on one side of the sliver, and other points such as
(Q, Q(∞)) lie on the other side. Not much seems to be known about this geometric
structure (for it is surely more than just a space), but we can begin to see how the
stacking properties of the parent space simplify the structure.

7.4 THEOREM. A space S is T1+stacked precisely when it is sober and its V-modifications
QS and VS are canonically homeomorphic.

Proof. Suppose that S is T1+stacked. By Theorem 6.2 the space is sober, so we may
use the material outlined above. Consider any Q ∈ QS and point (Q, X) ∈ VS. But S
is T1 so that M = Q, and S is stacked so that Q− = Q(∞). Thus, by Theorem 7.2, we
have X = Q−, to give the required result.

Conversely, suppose S is sober and QS = VS, that is

(Q, M−) = (Q, Q−) = (Q, Q(∞))
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for each Q ∈ QS. In particular, we have Q− = Q(∞), so that S is stacked. Consider any
m ∈ S and let Q = m↑. We have m− = Q− which, by a simple argument, shows that m−

is a singleton. Thus S is T1. �

The relationship between LS and VS is more interesting.

7.5 THEOREM. Let S be a sober space. For each L ∈ LS we have (L↑, L−) ∈ VS.

Proof. We have L = R ∩ Y for some saturated R and closed Y , and we know that L
is compact. We first massage this information into a more canonical form.

Let Q = L↑ and X = L−, so that Q ∈ QS (since the saturation of any compact set is
compact) and X ∈ CS. We have L ⊆ R and L ⊆ Y so that

Q = L↑ ⊆ R↑ = R X = L− ⊆ Y − = Y

and hence L ⊆ Q ∩ X ⊆ R ∩ Y = L to give

L = Q ∩ X = L↑ ∩ L−

which is the canonical representation of L.
We have L↑ = Q ∈ QS and L− = X ∈ CS, so it remains to verify the other two

conditions of Theorem 7.2.
Let M be the minimal generating set of Q. We show M ⊆ L, so that M− ⊆ L− = X.

Consider any m ∈ M and, aiming for a contradiction, suppose L ⊆ m−′
. Then, since m−′

is saturated, we have m ∈ M ⊆ L↑ ⊆ m−′
which is false. This shows that L meets m−, to

give some l ∈ L ∩ m−. But now l ≤ m ∈ M with l ∈ L, so that l = m by the minimality
of m. Thus m = l ∈ L, and hence M ⊆ L.

Finally, consider any W ∈ OS and Q ⊆ W . Then L ⊆ Q ∩ X ⊆ W ∩ X so that
L− ⊆ (W ∩ X)− to give X = L− ⊆ ∂Q(X) to complete the proof. �

This result shows how each compact lens gives a V-point. By looking at the two
constructions it is easy to check that the assignment

L 7−→ (L↑, L−) : LS −→ VS

is a topological embedding. Naturally, we call the pair (L↑, L−) a focal point of S.

7.6 LEMMA. Let S be a sober space. A V-point (Q, X) of S is a focal point if and only
if X = (Q ∩ X)−.

Proof. Suppose first that (Q, X) is a focal point of S. Thus there is some L ∈ LS
with Q = L↑ and X = L−. But now, since L is a lens, as in the proof of Theorem 7.5, we
have L = (L− ∩ L↑), so that

X = L− = (L− ∩ L↑)− = (Q ∩ X)−

as required.
Conversely, suppose (Q, X) is a V-point with X = (Q∩X)−. We show that L = Q∩X

is a lens with L↑ = Q and L− = X. The equality L− = X holds by hypothesis, and the
inclusion L ⊆ Q gives L↑ ⊆ Q. We require the converse inclusion.
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Let M be the minimal generating set of Q. We have M ⊆ X (since (Q, X) is a
V-point) so that M ⊆ L. In particular, we have

L ⊆ U =⇒ M ⊆ U =⇒ Q ⊆ U

for each U ∈ OS. Now consider an arbitrary q ∈ Q. We have Q * q−′, so that L * q−′,
which gives some p ∈ L with p ≤ q, and hence q ∈ L↑. Thus Q ⊆ L↑ and hence L↑ = Q.

Finally L ⊆ L− ∩ L↑ = X ∩ Q = L to give L = L− ∩ L↑, and hence L is a lens. �

With this characterization we quickly obtain the focal analogue of Theorem 7.2.

7.7 THEOREM. For a sober space S the focal points of S are the pairs (Q, X) where

Q ∈ QS X ∈ CS M− ⊆ X ⊆ Q− (Q ∩ X)− = X

hold. Furthermore, for Q ∈ QS, both (Q, M−) and (Q, Q−) is a focal point.

This shows when S is T1 its focal points are essentially the members of QS. However,
lenses are useful only when the specialization order is important (and not just equality).

The stacking properties of a space has an impact on its focal properties.

7.8 THEOREM. Both the implications

strongly stacked =⇒ (VS = LS) =⇒ stacked

hold for each sober space S.

Proof. For the left hand implications suppose the sober space S is strongly stacked
and consider any V-point (Q, X). Since ∂Q = 〈Q〉 a use of Theorem 7.2 gives

X = ∂Q(X) = (Q ∩ X)−

and hence (Q, X) is a focal point by Theorem 7.7.
For the right hand implications suppose for the sober space S each V-point is focal.

In particular, for Q ∈ QS the V-point (Q, Q(∞)) is focal, and hence Q(∞) ⊆ Q− by
Theorem 7.7, to show that Q is stacked. �

The precise relationship between these three properties is not known to us.

8 Boss spaces

We describe a family of examples which illustrate the variety of stacking properties a space
may have. For each space we start with a tree S furnished with some extra gadgetry. We
refer to a member of S as a node. We attach to S a new point ⋆, the boss point, to obtain

S = {⋆} ∪ S

the set of points of the space. The furnishings of S induce the topology OS on S.
This gives us a boss space with its boss topology. The boss point controls many of the
topological properties of S, and yet doesn’t seem to do anything useful. Each such space
is T1+sober+tightly packed but the stacking properties can differ widely.
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• For each ordinal α there is a boss space which is (α + 1)+neat but not α-neat.

• There is a boss space S with ∂⋆(S) = S and such that for many subtrees T of S the
pair ({⋆}, {⋆} ∪ T) is a V-point of S.

All the examples we used are based on the most common type of tree (well-founded
with height no more that ω), but the methods work for a much larger arboretum.

8.1 DEFINITION. Let S be a poset with comparison ≤ and, as usual, with < as the
associated strict comparison. We say S is a tree if for each node x ∈ S the set

P (x) = {z ∈ S | z ≤ x}

of predecessors of x is linearly ordered (by the comparison).
For each node x ∈ S let

I(x)

be the set of immediate successors of x, the set of all those y ∈ S such that x < y and
there is no z ∈ S with x < z < y. �

You may be more familiar with the smaller class of trees where for each node x the
set P (x) is well-ordered (not just linearly ordered). We don’t need that restriction here.

Notice that

y ≤ x
z ≤ x

}

=⇒ y ≤ z or z ≤ y I(x) ∩ I(y) 6= ∅ =⇒ x = y

for all nodes x, y, z of a tree.

8.2 EXAMPLE. Let I be an arbitrary set, thought of as an alphabet. Let S be the set of
all words on I, including the empty word ⊥. Thus each x ∈ S is a list

x = ⊥i1 . . . il

of letters i1, . . . , il ∈ I. Here l is the length of x and l = 0 is allowed. These words are
partially ordered by extension, thus x ≤ y (for words x, y) precisely when

y = xi1 . . . il

for some sequence i1, . . . , il of letters (and again l = 0 is allowed). This makes S a
well-founded tree of height ω (or 0 if I is empty). It is the full I-splitting tree.

For each word x
I(x) = {xi | i ∈ I}

is the set of immediate successors of x. Each set I(x) is essentially the same as I. �

When I is empty, we have S = {⊥}. When I is a singleton, S is essentially the natural
numbers. When I is a pair, S is the Cantor tree. When I is countably infinite, S is the
Baire tree. Eventually we will look at the case where I is uncountable.

8.3 DEFINITION. For a set I a notion of smallness on I is an ideal S of PI. �
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Thus S is a collection of subsets of I with ∅ ∈ S and such that

F ⊆ E ∈ S =⇒ F ∈ S E, F ∈ S =⇒ E ∪ F ∈ S

for E, F ⊆ I. We think of the members of S as the small subsets of I. There are some
rather uninteresting notions of smallness on I. We could take either of the two extremes
S = {∅} or S = PI, or any principal ideal. There are many more sophisticated notions
of ‘small’, especially when I carries some extra ‘calibrating’ structure.

8.4 DEFINITION. Let S be a notion of smallness on a set I. We say S is fresh if E ∈ S
for each finite E ∈ PI. We say S is stringent if E ∈ S for each countable E ∈ PI. �

If I is countable then PI is the only stringent notion of smallness. However, when I
is uncountable there can be many stringent ideals.

8.5 DEFINITION. Let S be a tree. We say S is dressed if for each node x ∈ S the set I(x)
carries a notion of smallness S(x). We say S is freshly dressed or stringently dressed if each
S(x) is fresh or stringent, respectively. �

For a dressed tree S, as x varies through S the notions of smallness S(x) may be quite
unrelated. However, the full I-splitting tree of Example 8.2 can be dressed in a uniform
way. We select a notion of smallness S for the alphabet I.

8.6 DEFINITION. Let S be a dressed tree and set

S = {⋆} ∪ S

(where ⋆ /∈ S). Let OS be the family of all those subsets U of S such that both

⋆ ∈ U =⇒ (∀x ∈ S)[I(x) − U ∈ S(x)] (∀x ∈ U)[I(x) − U ∈ S(x)]

hold. �

It is easy to check that OS is a topology. A set X ⊆ S is closed precisely when both

(∃x ∈ S)[I(x) ∩ X /∈ S(x)] =⇒ ⋆ ∈ X (∀x ∈ S)[I(x) ∩ X /∈ S(x) =⇒ x ∈ X]

hold. We will return to the first implications when we look at the CB properties of S.
To give some examples of open and closed sets we first sort out some notation.
As earlier for an arbitrary space we write (·)↑ and (·)↓ for the upwards and the down-

wards closures relative to the specialization order. As we will see, each interesting boss
space S is T1, so these operations are not needed. However, S is based on a tree S which
carries a different comparison. For E ⊆ S we write

↑E ↓E

for the upwards and the downwards closures of E in S relative to the carried comparison.
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8.7 EXAMPLES. (a) For each y ∈ S the set

U = ↑y = {z ∈ S | y ≤ z}

is open. By construction ⋆ /∈ U , so it suffices to consider those x ∈ U . For such an x we
have I(x) ⊆ U so that I(x) − U = ∅ ∈ S(x).

(b) Suppose S is freshly dressed. For V ∈ OS with ⋆ /∈ V and y ∈ S, the set

U = V − ↑y

is open. Since ⋆ /∈ U it suffices to consider those x ∈ U . For such an x we have

I(x) − U = (I(x) − V ) ∪ (I(x) ∩ ↑y)

and the first component is in S(x) (since x ∈ V ∈ OS). Consider any z in the second
component. Thus x < z with nothing between these. But also y ≤ z and hence x < y ≤ z
(since S is a tree and y � x). Thus z = y, and the second component is no more than a
singleton.

(c) Suppose S is freshly dressed. Then each finite X ⊂ S is closed (since I(x) ∩ X ∈
S(x) for every node x). Since {⋆} is closed (almost vacuously), this shows that S is T1.

If S is stringently dressed then each countable X ⊂ S is closed. This second remark
will be crucial in the proof of Theorem 8.8.

(d) Suppose S is stringently dressed, consider any countable Z ⊆ S, and any Y ⊆ ↓Z.
We show that

(∀x ∈ S)[I(x) ∩ Y ∈ S(x)]

and hence Y is closed.
Fix x ∈ S. If I(x) ∩ Y is empty, then it is certainly in S(x). Thus we may suppose

this intersection is non-empty. For each y ∈ I(x) ∩ Y we have x < y ≤ z for some z ∈ Z.
By choice this sets up a selection function f : I(x) ∩ Y −→ Z with x < y ≤ f(y) ∈ Z for
each y ∈ I(x) ∩ Y . We show that f is injective, so that I(x) ∩ Y is countable, and hence
is in S(x).

Consider y1, y2 ∈ I(x) ∩ Y with f(y1) = f(y2) = z ∈ Z. Since S is a tree we have
x < y1 ≤ y2 ≤ z (say). But y1 ∈ I(x) so there is nothing between x and y2, to give
y1 = y2, as required. �

The construction of Definition 8.6 works for any dressed tree. However, for our pur-
poses we need a stringent dressing. This is used in the proof of the following crucial result.
We will indicate precisely where.

8.8 THEOREM. Let S be a stringently dressed tree. Then the associated boss space S is
T1+sober+tightly packed.

Proof. We look at the three properties in turn.

Example 8.7(c) shows that S is T1. (This requires only that S is freshly dressed.)

To show that S is sober consider any closed irreducible subset Z. We aim to show
that Z is a singleton, but first we show that Z ∩ S is no more than a singleton.

By way of contradiction suppose there are distinct x, y ∈ Z ∩ S. Since

Z meets U = ↑x at x Z meets V = ↑y at y
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and U, V are open, by Example 8.7(a), the irreducibility ensures that Z meets U ∩ V
to give some z ∈ Z with x, y ≤ z. Since S is a tree we may suppose x < y ≤ z (by
symmetry). The set W = ↑x − ↑y is open, by Example 8.7(a,b), and

Z meets W = ↑x at x Z meets V = ↑y at y

so that Z meets W ∩ V (by a second use of the irreducibility). Since

W ∩ V ⊆ V ′ ∩ V = ∅

this is the contradiction.
This shows that either Z is a singleton or has the form {⋆, x} for some x ∈ S. We

must exclude this second case.
Suppose Z = {⋆, x}. Then Z meets ↑x at x and Z meets {x}′ at ⋆, so that Z meets

↑x ∩ {x}′ (by a third use of the irreducibility). This give some z ∈ Z ∩ S with x < z,
which can not be since Z ∩ S is no more than a singleton.

It remains to show that S is tightly packed. This is where the stringent dressing of S
is crucial. We invoke Example 8.7(c).

Let Q ∈ QS. To show that Q is finite we first show something weaker.
Let L be any antichain of S. We show that Q ∩ L is finite.
By way of contradiction suppose Q ∩ L is infinite. Thus there is a countably infinite

subset X ⊆ Q∩L. Since the dressing is stringent, this set X is closed by Example 8.7(c).
Thus, using Example 8.7(a) we see that

X ′ ∪ {↑x | x ∈ X}

is an open cover of S (since ⋆ ∈ X ′). The compactness of Q gives

X ⊆ Q ⊆ X ′ ∪ ↑x1 ∪ · · · ∪ ↑xm

for some x1, . . . , xm ∈ X, and hence

X ⊆ L ∩ (↑x1 ∪ · · · ∪ ↑xm)

holds. Consider any y ∈ X. Then y ∈ L and xi ≤ y for some 1 ≤ i ≤ m. But
xi ∈ X ⊆ L and L is an antichain, so that y = xi. This gives X ⊆ {x1, . . . , xm} which is
the contradiction (since X is supposed to be infinite).

We use this observation for sets L ⊆ I(x) for x ∈ S.
Consider any subset H ⊆ S and any x ∈ S and let L = H ∩ I(x). By the observation

Q ∩ L = Q ∩ H ∩ I(x)

is finite and hence in S(x). This shows that Q∩H is closed. In particular, for each q ∈ Q
the set Xq = Q ∩ {q}′ is closed, and hence Uq = X ′

q = Q′ ∪ {q} is open. But

{Uq | q ∈ Q}

is an open cover of S, so that the compactness of Q gives

Q ⊆ Q′ ∪ {q1, . . . , qm}

for some q1, . . . , qm ∈ Q. Thus Q ⊆ {q1, . . . , qm} to give the required result. �

Let us fix some boss space S with a stringent dressing. Eventually we want to take
some Q ∈ QS and see what ∂Q does. In particular, we want to determine Q(∞) and to
estimate the closure ordinal. It turns out that the boss has his finger in everything.
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8.9 DEFINITION. For each closed set X ∈ CS let ℓ(X) be the subset of S given by

⋆ ∈ ℓ(X) ⇐⇒ ⋆ ∈ X x ∈ ℓ(X) ⇐⇒ I(x) ∩ X /∈ S(x)

for each x ∈ S. �

The characterization of closed sets given just before Examples 8.7 shows that

ℓ(X) 6= ∅ =⇒ ⋆ ∈ X ℓ(X) ⊆ X

for each X ∈ CS. It is easy to check that ℓ is a derivative on S but we don’t need to do
that here. However, we do observe that ℓ is related to a derivative on S.

8.10 LEMMA. For each X ∈ CS we have

ℓ(X) ∩ S = lim(X) ∩ S

where lim is the CB-derivative on S.

Proof. Fix X ∈ CS.
Firstly, consider any x ∈ ℓ(X) ∩ S and, by way of contradiction, suppose x is isolated

in X. Thus X ∩ U = {x} for some U ∈ OS. In particular, X ⊆ U ′ ∪ {x} so that

I(x) ∩ X ⊆ (I(x) − U) ∪ (I(x) ∩ {x}) = I(x) − U

(since x /∈ I(x)). But x ∈ U , so that I(x) − U ∈ S(x), which is the contradiction (since
x ∈ ℓ(X)).

Secondly, consider any x ∈ S with x ∈ X−ℓ(X). We have x ∈ X and I(x)∩X ∈ S(x),
and we must show that x is isolated in X. To this end consider

U = (S ∩ X ′) ∪ {x}

so that X ∩ U = {x} and hence it suffices to show that U is open.
By construction ⋆ /∈ U . Consider any y ∈ U . We require I(y) − U ∈ S(y). But

I(y) − U ⊆ I(y) ∩ X so that I(y) ∩ X ∈ S(y) will suffice. Since y ∈ U we have either
y ∈ X ′ or y = x. Since X ′ is open this first alternative gives I(y) ∩ X ∈ S(y). For the
second alternative we have y = x /∈ ℓ(X), and hence I(y) ∩ X ∈ S(y), as required. �

This result can not be strengthened. If ⋆ ∈ X then ⋆ ∈ ℓ(X), but ⋆ may be isolated
in X (for instance if X = {⋆}).

Consider any Q ∈ QS, and let ∂ = ∂Q. We have Q ∩ X ⊆ ∂(X) for each X ∈ CS.
The operator ℓ gives us an upper bound for ∂.

8.11 LEMMA. Let Q ∈ QS and let ∂ = ∂Q. Then for each X ∈ CS we have

∂(X) ⊆ ℓ(X) ∪ (Q ∩ X)

with equality if ⋆ ∈ Q.
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Proof. We first show the inclusion and then deal with the equality.
If ⋆ ∈ ∂(X) then ⋆ ∈ X, and hence ⋆ ∈ ℓ(X). Also ∂(X) ⊆ X, so it suffices to show

x ∈ ∂(X) =⇒ x ∈ ℓ(X) or x ∈ Q

(for x ∈ S). In fact, we show the contrapositive.
Suppose

(i) x /∈ ℓ(X) (ii) x /∈ Q

for x ∈ S. Let U = {x}′ ∈ OS, so that Q ⊆ U (by (ii)), and hence ∂(X) ⊆ (U ∩ X)−.
We show that U ∩ X is closed, so that ∂(X) ⊆ U ∩ X ⊆ U and hence x /∈ ∂(U).

Suppose
I(y) ∩ U ∩ X /∈ S(y)

for some y ∈ S. We require {⋆, y} ⊆ U ∩X. By enlargement we have I(y)∩X /∈ S(y) so
that {⋆, y} ⊆ X. Also ⋆ ∈ U by construction. From (i) we have I(x) ∩ X ∈ S(x) so that
y 6= x, and hence y ∈ U , as required.

For the second part of the proof we suppose ⋆ ∈ Q. For X ∈ CS we have Q∩X ⊆ ∂(X),
so it suffices to show ℓ(X) ⊆ ∂X. If ℓ(X) = ∅, then we are done. Thus we may suppose
ℓ(X) 6= ∅, and hence ⋆ ∈ X (since X is closed).

Consider any open set U with Q ⊆ U . We require ℓ(X) ⊆ (U ∩ X)−. To this end let
Y = (U ∩ X)−, so that X ∩ U ∩ Y ′ = ∅ and hence X ⊆ U ′ ∪ Y to give

I(x) ∩ X ⊆ (I(x) − U) ∪ (I(x) ∩ Y )

for each x ∈ S. Since ⋆ ∈ Q ⊆ U we have I(x) − U ∈ S(x) for each such x. Thus, since
Y ∈ CS, we have

x ∈ ℓ(X) =⇒ I(x) ∩ X /∈ S(x) =⇒ I(x) ∩ Y /∈ S(x) =⇒ x ∈ Y

to give ℓ(X) ⊆ Y , as required. �

If ⋆ /∈ X then ℓ(X) = ∅, and we have the following.

8.12 COROLLARY. Let Q ∈ QS and ∂ = ∂Q. Then

∂(X) = Q ∩ X

for each X ∈ CS with ⋆ /∈ X.

We said earlier that the operator ℓ is a derivative but didn’t prove it. Here is why.
The singleton {⋆} is in QS and so gives a derivative ∂⋆ = ∂{⋆}. By Lemma 8.11 we have

∂⋆(X) = ℓ(X) ∪ ({⋆} ∩ X)

for each X ∈ CS. But either ⋆ ∈ X in which case ⋆ ∈ ℓ(X), or ⋆ 6∈ X, and hence

∂⋆(X) = ℓ(X) ∪ {⋆} = ℓ(X) ∂⋆(X) = ℓ(X) = ∅

in these two cases. Thus we have the following.
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8.13 COROLLARY. We have ∂⋆ = ℓ.

This with Lemma 8.11 begins to show how the boss point controls the stacking prop-
erties of S. To obtain more precise information we extend the lemma.

8.14 LEMMA. Let Q ∈ QS and ∂ = ∂Q. For each X ∈ CS and ordinal α we have

Q ∩ X ⊆ ∂α(X) ⊆ ℓα(X) ∪ (Q ∩ X)

where the right hand inclusion is an equality if ⋆ ∈ Q.

Proof. The left hand inclusion is immediate. For the right hand inclusion we proceed
by induction on α. The base case and the induction leap to a limit ordinal are straight
forward. For the induction step, α 7→ α + 1, by an immediate use of the induction
hypothesis we have

∂α+1(X) ⊆ ∂
(

ℓα(X) ∪ (Q ∩ X)
)

= ∂
(

ℓα(X)
)

∪ ∂(Q ∩ X)

⊆
(

ℓα+1(X) ∪ (Q ∩ ℓα(X)
)

∪
(

ℓ(Q ∩ X) ∪ (Q ∩ X)
)

= ℓα+1(X) ∪ (Q ∩ X)

to give the required result. Here the third step (the second inclusion) follows by Lemma
8.11, and the final equality holds since ℓ is deflationary. �

As a particular case of the this result we may take X = S to get

Q ⊆ Q(α) ⊆ ℓα(S) ∪ Q

for each ordinal α. Since ℓ = ∂⋆, for S to be neat we must at least have ℓθ(S) = {⋆} for
some ordinal θ. But then

Q ⊆ Q(θ) ⊆ {⋆} ∪ Q

for each Q ∈ QS, which almost shows neatness. Certainly if ⋆ ∈ Q then Q(θ) = Q. When
Q does not contain ⋆ the two extremes differ by just one point. In particular, if ⋆ /∈ Q(θ)
then Q = Q(θ) and the space is neat. We show that this must be the case.

8.15 LEMMA. Let Q ∈ QS with ⋆ /∈ Q. Then Q = Q(2).

Proof. We show first that Q(1) ⊆ {⋆} ∪ ↓Q. To this end consider x ∈ S − ↓Q. By
Examples 8.7(a,b) both U = ↑x and V = S − ↑x are open, and these sets are disjoint.
For each q ∈ Q we have x � q, so that q ∈ V . Thus Q ⊆ V , to give Q(1) ⊆ V − ⊆ U ′ and
hence x /∈ Q(1).

We have Q(1) ⊆ {⋆} ∪X where X = ↓Q and, by Example 8.7(d), the set X is closed.
In particular ∂(X) = Q ∩ X = Q by Corollary 8.12. Also Q ⊆ S ∈ OS (since ⋆ /∈ Q) so
that ∂({⋆}) ⊆ (S ∩ {⋆})− = ∅ and hence

Q ⊆ Q(2) = ∂(Q(1)) ⊆ ∂({⋆}) ∪ ∂(X) = Q

to give the required result. �

With this result we can complete the calculation we started earlier.
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8.16 THEOREM. Let S be a stringently dressed tree with boss space S, and suppose
ℓθ(S) = {⋆} for some ordinal θ. Then Q(θ) = Q for each Q ∈ QS, and S is neat.

Proof. Consider Q ∈ QS.
If ⋆ ∈ Q then Q(θ) = Q by the calculation above.
If ⋆ /∈ Q then Q(2) = Q by Lemma 8.15. Thus only if θ ≤ 1 can a discrepancy arise.

However, in this case we have

Q ⊆ Q(1) = ∂(S) ⊆ ℓ(S) ∪ Q = {⋆} ∪ Q

so that either Q = Q(1) or Q(1) = {⋆} ∪ Q. Since ⋆ /∈ Q we must have Q = Q(1). (The
case θ ≤ 1 can arise only if S is discrete.) �

This result does not show that every stringent boss space is neat, for we also need
ℓ∞(S) = {⋆} to achieve that. Later we will see an example where ℓ∞(S) = S with S very
large. However, the result does suggest a way of ensuring neatness.

8.17 THEOREM. Let S be a stringently dressed tree in which each strictly ascending chain
is finite. Then the associated boss space is neat.

Proof. Let X = ℓ∞(S), so that X is closed with ℓ(X) = X. By Theorem 8.16 it
suffices to show X = {⋆}. By way of contradiction suppose there is some x ∈ X ∩ S.
Then x ∈ ℓ(X) so that I(x) ∩ X /∈ S(x) and, in particular, I(x) ∩ X 6= ∅. This gives
us some x < y ∈ X ∩ S. By iterating this construction we generate a strictly ascending
chain of elements of X ∩ S. This is the contradiction. �

This result gives us a simple way of producing neat spaces. For convenience, let us
say a tree is standard if is is well-founded and each of its branches is finite. Then each
stringently dressed standard tree has a neat boss space. Of course, what the result doesn’t
do is to estimate the degree of neatness (the stacking length). This can be small even
when the tree is large. For instance, if the dressing is such that S(x) = PI(x) for each
node x then the the boss space is discrete (and hence T2). In the remainder of this section
we show that even with a standard tree the stacking length can be arbitrarily large. To
achieve this the tree must have a lot of splitting.

To begin this last part we produce an ascending chain

S0 ⊆ S1 ⊆ · · · ⊆ Sr ⊆ · · · ⊆ Sω (r < ω)

of boss spaces where, for r < ω, the space Sr+1 is (r + 1)-neat but not r-neat. The
properties of

Sω =
⋃

{Sr | r < ω}

are in contrast to this. Later we will indicate how to obtain (α + 1)-neatness for α ≥ ω.
Let I be some uncountable alphabet and let Sω be the full I-splitting tree of Example

8.2. Let S be the ideal of countable subsets of I. We use this as a uniform notion of
smallness on Sω. Of course, this is a stringent dressing.

The tree Sω splits naturally into layers. Thus let

L0 = {⊥} Lr+1 = {xi | x ∈ Lr, i ∈ I}
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for each r < ω. With these let

S0 = ∅ Sr+1 = Sr ∪ Lr

(for r < ω) to produce the ascending chain

S0 ⊆ S1 ⊆ · · · ⊆ Sr ⊆ · · · ⊆ Sω (r < ω)

of layered lower sections of Sω. For each r < ω we have

Sr+1 = L0 ∪ · · · ∪ Lr

and Lr is the top layer of Sr+1.
As well as Sω, each Sr is a tree, so we may set

Sr = {⋆} ∪ Sr Sω = {⋆} ∪ Sω

to produce the ascending chain of boss spaces.
Each tree Sr is standard (but Sω is not), so each space Sr is neat. We have

S0 = {⋆} S1 = {⋆,⊥}

and both are discrete. In particular, S1 is 1-neat (that is T2) but not 0-neat (non-empty).
More generally, we will show that

ℓr(Sr+1) = {⋆,⊥} ℓr+1(Sr+1) = {⋆}

so that Sr+1 is (r + 1)-neat but not r-neat.
We use the layering of Sω

8.18 LEMMA. For each r < ω the three conditions

(i) x ∈ Sr (ii) I(x) ⊆ Sr+1 (iii) I(x) ∩ Sr+1 6= ∅

are equivalent for each x ∈ Sω.

Proof. (i) ⇒ (ii) Suppose x ∈ Sr, so that x ∈ Ls for some s < r, and hence

I(x) ⊆ Ls+1 ⊆ Sr+1

as required.
(ii) ⇒ (iii) This is trivial (since I(x) 6= ∅).
(iii) ⇒ (i) Suppose y ∈ I(x) ∩ Sr+1, so that x < y ∈ Sr+1. Then y ∈ Ls for some

s ≤ r, and hence x ∈ Lt for some t < r, to give x ∈ Sr. �

The calculations of this last proof are done in the top space Sω. However, in order
to determine its properties some calculations have to be done in a lower space such as
Sr+1. We must do this with a little care. For instance, for a node x ∈ Sr+1 ∩ Sω = Sr+1,
what is the set of immediate successors in Sr+1? It is either I(x) if x ∈ Sr or is empty if
x ∈ Lr, the top layer of Sr+1. In other words the set is I(x) ∩ Sr+1. We could develop a
notation to reflect this, such as Ir+1(x), but this won’t be necessary provided we do take
some care. Here is an example of this.
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8.19 COROLLARY. For each r < ω the set Sr is closed in all the higher spaces Sr, . . . , Sω.

Proof. This is trivial for the case r = 0. Thus it suffices to show that each set Sr+1 is
closed in all its higher spaces.

We have ⋆ ∈ Sr+1. Consider any node x such that

I(x) ∩ Sr+1 = I(x) ∩ Sr+1 /∈ S(x)

holds in some higher space. Then I(x)∩ Sr+1 6= ∅ (otherwise this intersection is in S(x)),
so that Lemma 8.18 gives x ∈ Sr+1 ⊆ Sr+1, as required. �

Each of the spaces S0, S1, . . . , Sω carries its own special derivative as given by Definition
8.9. For the time being let us write ℓs+1 for that carried by Ss+1, and reserve ℓ for that
carried by Sω. Thus, for each X ∈ CSs+1 we have

⋆ ∈ ℓs+1(X) ⇐⇒ ⋆ ∈ X x ∈ ℓs+1(X) ⇐⇒ I(x) ∩ Ss+1 ∩ X /∈ S(x)

for each x ∈ Ss+1. Remember that I(x) ∩ Ss+1 is the set of immediate successors of x in
Ss+1. In particular, with X = Sr+1 for some r ≤ s we have

x ∈ ℓs+1(Sr+1) ⇐⇒ I(x) ∩ Sr+1 /∈ S(x)

for each x ∈ Ss+1. For such x we have x ∈ Lt for some t ≤ s. But then I(x) ⊆ Lt+1 to
give

I(x) ∩ Sr+1 =

{

I(x) if t < r

∅ if r ≤ t

which shows that this intersection is either uncountable and not in S(x) (if t < r) or is
empty and in S(x) (if r ≤ t). Thus we have

x ∈ ℓs+1(Sr+1) ⇐⇒ (∃t < r)[x ∈ Lt] ⇐⇒ x ∈ Sr

for each x ∈ Ss+1.
In other words

ℓs+1(Sr+1) ∩ Ss+1 = Sr

which, since ⋆ ∈ Sr ⊆ Sr+1, proves the following. In the statement of the result we have
dropped the subscript of ℓs+1, but have included a warning.

8.20 LEMMA. For each r < ω we have ℓ(Sr+1) = Sr where this calculation may take
place in any higher space Sr+1, . . . , Sω.

The explanation before this result shows that when calculating ℓ(Sr+1) we don’t need
to worry about what the parent space is, the result is the same for each of Sr+1, . . . , Sω.
In the same way we have the following.

8.21 LEMMA. For each r < ω we have ℓr(Sr+1) = S1 = {⋆,⊥}.
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Proof. We proceed by induction on r. The base case, r = 0, is trivial. For the
induction step, r 7→ r + 1, we have

ℓr+1(Sr+2) = ℓr(ℓ(Sr+2)) = ℓr(Sr+1) = S1

using first Lemma 8.20 and then the induction hypothesis. �

This, with Theorem 8.17, more or less proves the following.

8.22 THEOREM. For each r < ω the boss space Sr+1 is (r + 1)-neat but not r-neat.

Proof. By Theorem 8.17 the space Sr+1 is certainly neat, so it suffices to determine its
stacking rank. By Lemma 8.21 we have ℓr(Sr+1) = S1 6= {⋆} so that space is not r-neat.
But this also gives ℓr+1(Sr+1) = ℓ(S1) = {⋆} so that space is (r + 1)-neat. �

This result shows that the neatness hierarchy does not collapse before ω. Later we
will indicate why the hierarchy never collapses. Before that let’s look at the space Sω.

It is not too hard to show that ℓ(Sω) = Sω, and hence this space is far from neat. We
generalize this observation. A subtree T of Sω is just a lower section. Many of these can
be used to produce closed sets.

8.23 DEFINITION. A T of Sω is rampant if I(x) ∩ T /∈ S(x) for each x ∈ T. �

In other words a rampant subtree is ‘almost all’ of Sω. Such subtrees are easy to
generate. For each uncountable J ⊆ I we may view the full J-splitting tree as a subtree
of Sω. Such a subtree is rampant. There are many other rampant subtrees. For instance,
start from the root ⊥, and select an uncountable subset of I(⊥). For each x in this subset
select an uncountable subset of I(x). Then for each y in each of these sets select an
uncountable subset of I(y). Repeat this process through all levels.

The following result is a trivial consequence of being rampant.

8.24 THEOREM. Let T be a rampant subtree of Sω. Then X = {⋆} ∪ T is closed with
ℓ(X) = X, and the pair ({⋆}, {⋆} ∪ T) is a V-point of Sω.

To conclude we indicate how the higher levels of neatness can be achieved.
Suppose for some ordinal α we have an example of a tree S which produces a (α + 1)-

neat space which is not α-neat. We form a new tree S+ by sticking uncountable many
copies of S above a new root. (This is the process which takes us from Sr+1 to Sr+2.) A
few calculations shows that S+ produces (α + 2)-neat space which is not (α + 1)-neat.

Suppose λ is a limit ordinal and suppose for α < λ we have a tree Sα which produces
a a (α + 1)-neat space which is not α-neat. (We certainly have such examples for λ = ω.)
Form a new tree Sλ by taking uncountably many copies of each Sα and stick them above
a new root. Again it can be checked that Sλ produces a space which is λ+1-neat but not
λ-neat. The details of these calculations can be found in [9].

You may have spotted that we haven’t exhibited a space that is ω-neat but not r-neat
for each r < ω. Such an example can be found in [9]. It is interesting to note that this is
the boss space of a non-well-founded tree.
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