
Power Electronics Technology September 2005 www.powerelectronics.com September 2005 www.powerelectronics.com14

This highly fl exible, power-management protocol
defines the transport and physical interface,
as well as the command language required for
communicating with power converters.

By Bob White, Staff Engineer, Artesyn Technologies,
Westminster, Colo.

T
he need for digital power management has
become more acute in recent years, due to Tbecome more acute in recent years, due to Tseveral related factors. Many board designers
have moved to intermediate bus power
architectures, using multiple on-board dc-dc

converters to generate the diversity of power rails needed by
different silicon devices. One obvious consequence is that
the task of confi guring, controlling and monitoring these
power sources—during design, production test and everyday
in-system use—is now significantly more complicated.
Simply controlling power up/down sequencing can
demand dedicated programmable ICs and large numbers of
additional components, to say nothing of the confi guration
or real-time feedback facilities needed for fl exible system-
level control and diagnostics.

Most modern dc-dc converters are still configured
and controlled via analog signals derived from simple
passive components. Even sophisticated high-functionality
converters with state-of-the-art power-conversion topologies
are likely to use external trim resistors and capacitors
for defi ning values such as startup time, setpoint value
and switching frequency. And of course, none of these
parameters can easily be changed on the fl y, making it
virtually impossible to implement adaptive—let alone
predictive—power-management schemes.

With the exception of a few specialist converters for
microprocessors (which offer limited digital programmability
in the form of voltage identifi cation [VID] codes for output

voltage control), most brick, intermediate bus and point-
of-load (POL) converters on the market still operate in the
analog control domain. The most urgent need is for digitally
controlled nonisolated POL converters, because these are
used extensively to provide the fi nal voltages for devices on
a board. However, the requirement also already embraces
isolated converters, and designers will no doubt shortly be
adding other digitally programmable power sources to their
wish lists.

The reason for this seemingly odd scenario is simple:
until now, there has been no industrywide consensus on
digital power management. A number of power supply
manufacturers have launched digitally programmable POL
converters, which goes some way toward addressing the
issue, but these are based on proprietary architectures and
silicon.

What Exactly Is PMBus?
PMBus is an open-standard digital power-management

protocol with a fully defined command language and
transpost and physical interface. It facilitates communication
with a power converter or other device. The protocol was
founded by a coalition of power supply and semiconductor
manufacturers that recognized that lack of a suitable
standard was inhibiting the adoption of an all-digital
power-management solution, and it is now rapidly gaining
industry acceptance. In March 2005, Revision 1.0 of the
protocol was placed in the public domain, and ownership

PMBus Offers Open-Standard
Digital Power Management

Power Electronics Technology September 2005 www.powerelectronics.com September 2005 www.powerelectronics.com16

DIGITAL POWER MANAGEMENT

transferred to an independent special interest group (SIG)
known as the System Management Interface Forum, which
is now responsible for further developing and promoting
the standard.

It is worth noting that PMBus is not a standard for
ac-dc power supplies or dc-dc converters. It does not specify
attributes such as form factor or pin-out, which are better
served by industry alliances such as POLA and DOSA;
nor does it address communication between one power
source and another—this remains the responsibility of
semiconductor and power supply manufacturers.

Low-Cost Real-Time Control
The PMBus transport layer is based on Version 1.1 of the

low-cost System Management Bus (SMBus), which is a more
robust version of the industry-standard I2C serial bus with
packet error checking and host notifi cation features. The I2C

bus was originally developed by Philips Electronics (New
York) for Inter-IC communication, while the SMBus was
defi ned by Intel (Santa Clara, Calif.) for system management
communications in PCs and servers.

SMBus features a third signal line—SMBALERT—which
allows slave devices such as POL converters to interrupt the
system host/bus master. This arrangement is inherently more
fl exible than a system employing the master to constantly
poll slave devices, and it imposes far less of a burden on the
host processor, making it easier for designers to implement
event-driven closed-loop control schemes. Furthermore,
the PMBus protocol dictates that all slave devices must
either store their default confi guration data in nonvolatile
memory or use pin programming, so that they power up
without any bus communication. System startup times are
consequently signifi cantly shorter than with other digital
control solutions on the market, which demand that the bus
master confi gures all slave devices as part of the power-up
initialization routine.

The physical address of each slave device is defi ned via
dedicated pins. Silicon manufacturers are certain to offer a
variety of innovative approaches, such as tri-state pins and
resistor value programming. In addition to the SMBus’ clock,
data and interrupt lines, the PMBus protocol also specifi es
two hardwired signals for use with power-conversion devices:
one is a control signal used in conjunction with commands
received over the bus to turn individual slave devices on and
off; the other is an optional write-protect signal that can
be used to prevent any changes to memory-held data. The
control signal is often driven by a power system controller.
If not, the pin can be hardwired low or high as needed.

A typical PMBus implementation is shown in Fig. 1.
SMBus uses the wired-AND connection of all devices on the
bus to provide arbitration in the event of bus contention,
and is electrically similar to the I2C bus.

PMBus has the distinct advantage of the master device
not being based on proprietary silicon, and it does not act as
a translator. All communications between the host and the
power sources are conducted entirely via the bus. This saves
on implementation costs and provides a much more fl exible

control approach. The host can be the system’s
existing processor, a low-cost, general-purpose
microcontroller, or even some gates in an FPGA.
Of course, the host also can be different things
at different stages of product development.

For example, during the board design
phase, a laptop PC can be used as the host;
then during production testing, this role can
be assumed by automatic test equipment, to
comprehensively verify board performance,
and if necessary, dynamically change the
operating parameters of individual power-
conversion devices to accommodate the needs
of the silicon on that board. The fi nal select-
on-test values can then be stored in the slaves’
nonvolatile memory.

Sy
st

em
 H

os
t

Bu
s

M
as

te
r

Serial Bus
Clock

Serial Bus
Data

Control
Signal

SMBAlert # Signal
SMBAlert #
Control
Data
Clock

SMBAlert #
Control
Data
Clock

POL Unit #1

WP

WP

POL Unit #2

Write
Protect

Physical
Address

Write
Protect

Physical
Address

Write
Protect

Physical
Address

SMBAlert #
Control
Data
Clock

POL Unit #N

WP

Fig. 1. The PMBus protocol specifi es clock, data and interrupt lines as in
the SMBus standard, but adds two hardwired signals—a control signal
to turn individual slave devices on and off, and an optional write-
protect signal that prevents changes to memory-held data.

S 7 6 5 4 3 2 17 6 5 4 3 2 1 0 A0 A0 A0 A 7 6 5 4 3 2 17 6 5 4 3 2 1 0 A0 A0 A0 A 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 A

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 A 7 6 5 4 3 2 17 6 5 4 3 2 1 0 A0 A0 A0 A 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 A P

A0S P

Address Byte Command Byte Data Byte 1

Optional PEC ByteData Byte NData Byte 2

STSTARSTARST T Signal From
Host SystemHost System

READ/WRITE#READ/WRITE#
BitBit

ACKNOWLEDGEACKNOWLEDGE
Signal From ConverterSignal From Converter

STOP Signal FromSTOP Signal From
Host SystemHost System

Fig. 2. In a standard master-to-slave PMBus communication sequence, the slave
processes and executes a command immediately after it receives the “stop” bit.

Power Electronics Technology September 2005 www.powerelectronics.com September 2005 www.powerelectronics.com18

DIGITAL POWER MANAGEMENT

Simple Command Language
PMBus communications are based on a simple command

set. Every packet contains an address byte; followed by a
command byte; zero, one or more data bytes; and an optional
packet error code (PEC) byte. Fig. 2 shows a typical host-to-
slave information transfer; the master uses single “start” and
“stop” conditions to indicate the beginning and end of the
process, and the addressed slave device uses a single bit to
acknowledge reception of each byte. To minimize response
times and processor overheads, the slave processes and
executes a command immediately after it receives the “stop”
bit; unlike many other bus protocols, it is not forced to wait
for a separate “execute” command.

While the protocol’s one-byte command code implies that
as many as 256 commands are potentially available, it is not a
condition of compliance that PMBus devices have to support
all commands, and in fact, many will use only a small subset
to achieve their intended purpose. Considerable attention
has been paid to “future proofi ng” the standard; there is
provision for two command extensions that effectively
permit two-byte commands. One extension is reserved for
PMBus device manufacturers’ own use, while the other is
reserved for subsequent revisions of the protocol.

The PMBus provides a great deal of flexibility. It is
not possible in this short article to list the more than 100
commands available to power converter and power system
developers. There are several commands for setting the output
voltage, as well as commands for setting warning and fault
thresholds for input and output voltages, input and output
currents, temperature and other parameters. In addition,
how the unit responds to each fault, such as immediate
shutdown or hiccup mode, can be programmed.

There are commands for retrieving status bits and reading
data like output voltage or the unit’s temperature. There also
are commands for setting up the interleaving of paralleled
converters, providing a software lock against accidental
changes of data, confi guring how the unit responds to on/off
commands received from the SMBus port and CONTROL
pin, and turn-on and turn-off sequencing. Commands
are also available for storing and retrieving inventory
information like a manufacturer’s ID, model number, serial
number and date code.

Though the focus of the following examples is on POL

converters, it is important to note that
the PMBus can be used with any type
of power supply or dc-dc converter.
The wide range of commands allow the
confi guration, control and monitoring
of general purpose point-of-load con-
verters, microprocessor-powering VRMs,
standard isolated dc-dc converters, bus
converters and ac-dc power supplies.
The PMBus even has the flexibility
and capability for use with rectifi ers in
telecommunications battery plants.

To illustrate the flexibility of the
PMBus specifi cation, let us take a look at the commands
available to control the output voltage, which include:

• VOUT_COMMAND
• VOUT_MARGIN_HIGH
• VOUT_MARGIN_LOW
• VOUT_TRIM
• VOUT_CAL
• VOUT_DROOP (as a function of IOUT)
• VOUT_MAX
• VOUT_SCALE_LOOP.
Fig. 3 shows a conceptual view of how these commands are

used; the actual implementation is left to the manufacturer
of the POL converter, but the overall behavior of the device
must be as shown.

The process of setting the output voltage starts with
three basic commands: VOUT_COMMAND, VOUT_
MARGIN_HIGH and VOUT_MARGIN_LOW. Each of these
commands sends a value that is stored in a register in the
PMBus device’s memory. One of these three values is selected
by the OPERATION command and passed on to the rest of
the output voltage command processing. The next step is to
add the value in the VOUT_TRIM register to the output of
the conceptual multiplexer.

The value in the VOUT_TRIM register is a two’s
complement number that can either add to or subtract from
the value from the conceptual multiplexer. The VOUT_TRIM
register will typically be used by the end user to adjust the
output voltage once the POL converter is assembled into
the end user’s system. This might be done, for example, to
adjust the voltage at the pins of a critical IC to optimize its
performance.

Next, the value from the VOUT_CAL register is added.
This is also a two’s complement number and can add to
or subtract from the voltage command value. The VOUT_
CAL register will typically be used by the POL converter
manufacturer to adjust the output voltage in the factory.

If the POL converter has an output voltage droop
characteristic, it is applied now. The VOUT_DROOP
coeffi cients are always greater than or equal to zero, and
droop is only applied if the output current is greater than
zero. The value of the VOUT_DROOP coeffi cient and the
value of output current are multiplied and the result is always
subtracted from the voltage command. VOUT_DROOP can

Fig. 3. A series of PMBus commands are required to set the output voltage on a POL converter.

Operation
Command

+ + -

VOUT_MAX

VOUT_SCALE_LOOP

Limiter
Reference
Voltage

Equivalent

IOUT

Set Alarm

VOUT_MARGIN_HIGH

VOUT_COMMAND

VOUT_MARGIN_LOW

VOUT_TRIM

VOUT_DROOP

3:1
Mux

VOUT_CAL

www.powerelectronics.com Power Electronics Technology September 2005www.powerelectronics.com Power Electronics Technology 19

only act to reduce the output voltage, never to increase it.
The next step is to compare the commanded voltage

developed so far with the maximum permissible output
voltage set by the VOUT_MAX command. If the calculated
voltage command would create an output voltage greater
than the VOUT_MAX value, the POL converter limits the
command voltage passed to the controller to the VOUT_
MAX value, and also sets an alarm.

The same scaling factor that is applied to the external
output voltage by a resistive divider is now applied to the
calculated voltage command. This is done by multiplying
the calculated voltage command by VOUT_SCALE_LOOP.
At this point, the converter has a calculated value that is
used as the equivalent to the reference voltage in a standard
analog controller. This is the value to which the signal from
the resistive divider on the output is compared for adjusting
the duty cycle of the POL.

For setting the output voltage, and related commands like
setting the output overvoltage fault threshold, the PMBus
allows up to 16 bits of resolution. For other data, like reading
back the input voltage or the output current, the PMBus
specifi cation allows up to 10 bits of resolution. 10 bits of
resolution corresponds to a resolution of approximately
±0.05%, which is more than suffi cient for the vast majority
of the market.

Ease of Implementation
The rich command set of the PMBus protocol enables

designers to write lean and effi cient power-management
programs, and implement the scheme easily and quickly.
Voltage sequencing of POL converters provides an ideal
example. Until now, many designers have chosen to use some
of the excellent special-purpose controller ICs that are on
the market to handle this task, accepting the fact that this
involves developing programs using software provided by
the IC manufacturer and using up valuable board space for
the devices. Converters that can be directly controlled by
PMBus potentially offer a more cost-effective and fl exible
solution, enabling a wide range of operating parameters to
be changed at any point during the product’s life cycle to
accommodate engineering changes.

Only two PMBus commands are required for controlling
the startup sequence of a POL converter, as shown in

Fig. 4. TON_DELAY programs a time for the converter
to wait after receiving the control signal before starting to
produce an output, and TON_RISE programs the time for
the output to increase from zero to the fi nal programmed
value. The user simply programs each converter with its own
turn-on delay time and turn-on rise time. Similarly, only two
commands (TOFF_DELAY and TOFF_FALL) are required
for turn-off sequencing.

Voltage margining is another area where digitally
programmable converters will make life easier for designers
and production test personnel. Many board manufacturers
now use this technique to evaluate the performance of ICs
in the face of minor variations in their supply voltages; any
marginal or below-spec devices can then be replaced as part
of the normal production test process, before they become
expensive, diffi cult-to-rectify fi eld failures.

Until now, margin testing has been a highly iterative
and time-consuming procedure, involving fi tting different
value resistors to dc-dc converters in order to vary their
output voltage a few percent either side of nominal.
PMBus-compliant POL converters simplify this process
using just two commands: VOUT_MARGIN_HIGH and
VOUT_MARGIN_LOW. As shown in Fig. 5, each converter
can be instructed to deliver tightly controlled test voltages,
while the effect on board performance is monitored. This
can signifi cantly reduce production test times, help eliminate
ambiguity and produce clearly documented test results.

The T1 and T2 time periods are determined by the
VOUT_TRANSITION_RATE command, and the rate is
defi ned in mV/µs. Hence:

(VOUT_MARGIN_HIGH - VOUT)
T1 =

VOUT_TRANSITION_RATE

(VOUT - VOUT_MARGIN_LOW)
T2 =

VOUT_TRANSITION_RATE

Setting the VOUT_TRANSITION_RATE to a value of FF
FFh implies transition as quickly as possible.

Further information about the open-standard PMBus
digital power-management protocol and the SMBus transport
layer can be obtained from the System Management Interface
Forum’s website at www.powerSIG.com. PETech

Operation
Command
Received

VOUT

VOUT_COMMAND
Value

VOUT_MARGIN_HIGH
VALUE

VOUT_MARGIN_LOW
VALUE

T1 T2

Fig. 5. Voltage margining is controlled with one PMBus command.

Control

TON_DELAY TON_RISE TOFF_FALL

TOFF_DELAY
VOUT

Fig. 4. Power-up/-down sequencing typically involves just four PMBus
commands.

DIGITAL POWER MANAGEMENT

