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This highly fl exible, power-management protocol 
defines the transport and physical interface, 
as well as the command language required for 
communicating with power converters. 

By Bob White, Staff Engineer, Artesyn Technologies, 
Westminster, Colo.

T
he need for digital power management has 
become more acute in recent years, due to Tbecome more acute in recent years, due to Tseveral related factors. Many board designers 
have moved to intermediate bus power 
architectures, using multiple on-board dc-dc 

converters to generate the diversity of power rails needed by 
different silicon devices. One obvious consequence is that 
the task of confi guring, controlling and monitoring these 
power sources—during design, production test and everyday 
in-system use—is now significantly more complicated. 
Simply controlling power up/down sequencing can 
demand dedicated programmable ICs and large numbers of 
additional components, to say nothing of the confi guration 
or real-time feedback facilities needed for fl exible system-
level control and diagnostics.

Most modern dc-dc converters are still configured 
and controlled via analog signals derived from simple 
passive components. Even sophisticated high-functionality 
converters with state-of-the-art power-conversion topologies 
are likely to use external trim resistors and capacitors 
for defi ning values such as startup time, setpoint value 
and switching frequency. And of course, none of these 
parameters can easily be changed on the fl y, making it 
virtually impossible to implement adaptive—let alone 
predictive—power-management schemes.

With the exception of a few specialist converters for 
microprocessors (which offer limited digital programmability 
in the form of voltage identifi cation [VID] codes for output 

voltage control), most brick, intermediate bus and point-
of-load (POL) converters on the market still operate in the 
analog control domain. The most urgent need is for digitally 
controlled nonisolated POL converters, because these are 
used extensively to provide the fi nal voltages for devices on 
a board. However, the requirement also already embraces 
isolated converters, and designers will no doubt shortly be 
adding other digitally programmable power sources to their 
wish lists.

The reason for this seemingly odd scenario is simple: 
until now, there has been no industrywide consensus on 
digital power management. A number of power supply 
manufacturers have launched digitally programmable POL 
converters, which goes some way toward addressing the 
issue, but these are based on proprietary architectures and 
silicon.

What Exactly Is PMBus?
PMBus is an open-standard digital power-management 

protocol with a fully defined command language and 
transpost and physical interface. It facilitates communication 
with a power converter or other device. The protocol was 
founded by a coalition of power supply and semiconductor 
manufacturers that recognized that lack of a suitable 
standard was inhibiting the adoption of an all-digital 
power-management solution, and it is now rapidly gaining 
industry acceptance. In March 2005, Revision 1.0 of the 
protocol was placed in the public domain, and ownership 
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transferred to an independent special interest group (SIG) 
known as the System Management Interface Forum, which 
is now responsible for further developing and promoting 
the standard.

It is worth noting that PMBus is not a standard for 
ac-dc power supplies or dc-dc converters. It does not specify 
attributes such as form factor or pin-out, which are better 
served by industry alliances such as POLA and DOSA; 
nor does it address communication between one power 
source and another—this remains the responsibility of 
semiconductor and power supply manufacturers.

Low-Cost Real-Time Control
The PMBus transport layer is based on Version 1.1 of the 

low-cost System Management Bus (SMBus), which is a more 
robust version of the industry-standard I2C serial bus with 
packet error checking and host notifi cation features. The I2C 

bus was originally developed by Philips Electronics (New 
York) for Inter-IC communication, while the SMBus was 
defi ned by Intel (Santa Clara, Calif.) for system management 
communications in PCs and servers. 

SMBus features a third signal line—SMBALERT—which 
allows slave devices such as POL converters to interrupt the 
system host/bus master. This arrangement is inherently more 
fl exible than a system employing the master to constantly 
poll slave devices, and it imposes far less of a burden on the 
host processor, making it easier for designers to implement 
event-driven closed-loop control schemes. Furthermore, 
the PMBus protocol dictates that all slave devices must 
either store their default confi guration data in nonvolatile 
memory or use pin programming, so that they power up 
without any bus communication. System startup times are 
consequently signifi cantly shorter than with other digital 
control solutions on the market, which demand that the bus 
master confi gures all slave devices as part of the power-up 
initialization routine.

The physical address of each slave device is defi ned via 
dedicated pins. Silicon manufacturers are certain to offer a 
variety of innovative approaches, such as tri-state pins and 
resistor value programming. In addition to the SMBus’ clock, 
data and interrupt lines, the PMBus protocol also specifi es 
two hardwired signals for use with power-conversion devices: 
one is a control signal used in conjunction with commands 
received over the bus to turn individual slave devices on and 
off; the other is an optional write-protect signal that can 
be used to prevent any changes to memory-held data. The 
control signal is often driven by a power system controller. 
If not, the pin can be hardwired low or high as needed.

A typical PMBus implementation is shown in Fig. 1. 
SMBus uses the wired-AND connection of all devices on the 
bus to provide arbitration in the event of bus contention, 
and is electrically similar to the I2C bus.

PMBus has the distinct advantage of the master device 
not being based on proprietary silicon, and it does not act as 
a translator. All communications between the host and the 
power sources are conducted entirely via the bus. This saves 
on implementation costs and provides a much more fl exible 

control approach. The host can be the system’s 
existing processor, a low-cost, general-purpose 
microcontroller, or even some gates in an FPGA. 
Of course, the host also can be different things 
at different stages of product development. 

For example, during the board design 
phase, a laptop PC can be used as the host; 
then during production testing, this role can 
be assumed by automatic test equipment, to 
comprehensively verify board performance, 
and if necessary, dynamically change the 
operating parameters of individual power-
conversion devices to accommodate the needs 
of the silicon on that board. The fi nal select-
on-test values can then be stored in the slaves’ 
nonvolatile memory.
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Fig. 1. The PMBus protocol specifi es clock, data and interrupt lines as in 
the SMBus standard, but adds two hardwired signals—a control signal 
to turn individual slave devices on and off, and an optional write-
protect signal that prevents changes to memory-held data. 
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Fig. 2. In a standard master-to-slave PMBus communication sequence, the slave 
processes and executes a command immediately after it receives the “stop” bit.
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Simple Command Language
PMBus communications are based on a simple command 

set. Every packet contains an address byte; followed by a 
command byte; zero, one or more data bytes; and an optional 
packet error code (PEC) byte. Fig. 2 shows a typical host-to-
slave information transfer; the master uses single “start” and 
“stop” conditions to indicate the beginning and end of the 
process, and the addressed slave device uses a single bit to 
acknowledge reception of each byte. To minimize response 
times and processor overheads, the slave processes and 
executes a command immediately after it receives the “stop” 
bit; unlike many other bus protocols, it is not forced to wait 
for a separate “execute” command.

While the protocol’s one-byte command code implies that 
as many as 256 commands are potentially available, it is not a 
condition of compliance that PMBus devices have to support 
all commands, and in fact, many will use only a small subset 
to achieve their intended purpose. Considerable attention 
has been paid to “future proofi ng” the standard; there is 
provision for two command extensions that effectively 
permit two-byte commands. One extension is reserved for 
PMBus device manufacturers’ own use, while the other is 
reserved for subsequent revisions of the protocol. 

The PMBus provides a great deal of flexibility. It is 
not possible in this short article to list the more than 100 
commands available to power converter and power system 
developers. There are several commands for setting the output 
voltage, as well as commands for setting warning and fault 
thresholds for input and output voltages, input and output 
currents, temperature and other parameters. In addition, 
how the unit responds to each fault, such as immediate 
shutdown or hiccup mode, can be programmed. 

There are commands for retrieving status bits and reading 
data like output voltage or the unit’s temperature. There also 
are commands for setting up the interleaving of paralleled 
converters, providing a software lock against accidental 
changes of data, confi guring how the unit responds to on/off 
commands received from the SMBus port and CONTROL 
pin, and turn-on and turn-off sequencing. Commands 
are also available for storing and retrieving inventory 
information like a manufacturer’s ID, model number, serial 
number and date code.

Though the focus of the following examples is on POL 

converters, it is important to note that 
the PMBus can be used with any type 
of power supply or dc-dc converter. 
The wide range of commands allow the 
confi guration, control and monitoring 
of general purpose point-of-load con-
verters, microprocessor-powering VRMs, 
standard isolated dc-dc converters, bus 
converters and ac-dc power supplies. 
The PMBus even has the flexibility 
and capability for use with rectifi ers in 
telecommunications battery plants.

To illustrate the flexibility of the 
PMBus specifi cation, let us take a look at the commands 
available to control the output voltage, which include:

• VOUT_COMMAND
• VOUT_MARGIN_HIGH
• VOUT_MARGIN_LOW
• VOUT_TRIM
• VOUT_CAL
• VOUT_DROOP (as a function of IOUT)
• VOUT_MAX
• VOUT_SCALE_LOOP.
Fig. 3 shows a conceptual view of how these commands are 

used; the actual implementation is left to the manufacturer 
of the POL converter, but the overall behavior of the device 
must be as shown.

The process of setting the output voltage starts with 
three basic commands: VOUT_COMMAND, VOUT_
MARGIN_HIGH and VOUT_MARGIN_LOW. Each of these 
commands sends a value that is stored in a register in the 
PMBus device’s memory. One of these three values is selected 
by the OPERATION command and passed on to the rest of 
the output voltage command processing. The next step is to 
add the value in the VOUT_TRIM register to the output of 
the conceptual multiplexer. 

The value in the VOUT_TRIM register is a two’s 
complement number that can either add to or subtract from 
the value from the conceptual multiplexer. The VOUT_TRIM 
register will typically be used by the end user to adjust the 
output voltage once the POL converter is assembled into 
the end user’s system. This might be done, for example, to 
adjust the voltage at the pins of a critical IC to optimize its 
performance.

Next, the value from the VOUT_CAL register is added. 
This is also a two’s complement number and can add to 
or subtract from the voltage command value. The VOUT_
CAL register will typically be used by the POL converter 
manufacturer to adjust the output voltage in the factory.

If the POL converter has an output voltage droop 
characteristic, it is applied now. The VOUT_DROOP 
coeffi cients are always greater than or equal to zero, and 
droop is only applied if the output current is greater than 
zero. The value of the VOUT_DROOP coeffi cient and the 
value of output current are multiplied and the result is always 
subtracted from the voltage command. VOUT_DROOP can 

Fig. 3. A series of PMBus commands are required to set the output voltage on a POL converter.
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only act to reduce the output voltage, never to increase it.
The next step is to compare the commanded voltage 

developed so far with the maximum permissible output 
voltage set by the VOUT_MAX command. If the calculated 
voltage command would create an output voltage greater 
than the VOUT_MAX value, the POL converter limits the 
command voltage passed to the controller to the VOUT_
MAX value, and also sets an alarm.

The same scaling factor that is applied to the external 
output voltage by a resistive divider is now applied to the 
calculated voltage command. This is done by multiplying 
the calculated voltage command by VOUT_SCALE_LOOP. 
At this point, the converter has a calculated value that is 
used as the equivalent to the reference voltage in a standard 
analog controller. This is the value to which the signal from 
the resistive divider on the output is compared for adjusting 
the duty cycle of the POL.

For setting the output voltage, and related commands like 
setting the output overvoltage fault threshold, the PMBus 
allows up to 16 bits of resolution. For other data, like reading 
back the input voltage or the output current, the PMBus 
specifi cation allows up to 10 bits of resolution. 10 bits of 
resolution corresponds to a resolution of approximately 
±0.05%, which is more than suffi cient for the vast majority 
of the market. 

Ease of Implementation
The rich command set of the PMBus protocol enables 

designers to write lean and effi cient power-management 
programs, and implement the scheme easily and quickly. 
Voltage sequencing of POL converters provides an ideal 
example. Until now, many designers have chosen to use some 
of the excellent special-purpose controller ICs that are on 
the market to handle this task, accepting the fact that this 
involves developing programs using software provided by 
the IC manufacturer and using up valuable board space for 
the devices. Converters that can be directly controlled by 
PMBus potentially offer a more cost-effective and fl exible 
solution, enabling a wide range of operating parameters to 
be changed at any point during the product’s life cycle to 
accommodate engineering changes.

Only two PMBus commands are required for controlling 
the startup sequence of a POL converter, as shown in 

Fig. 4. TON_DELAY programs a time for the converter 
to wait after receiving the control signal before starting to 
produce an output, and TON_RISE programs the time for 
the output to increase from zero to the fi nal programmed 
value. The user simply programs each converter with its own 
turn-on delay time and turn-on rise time. Similarly, only two 
commands (TOFF_DELAY and TOFF_FALL) are required 
for turn-off sequencing.

Voltage margining is another area where digitally 
programmable converters will make life easier for designers 
and production test personnel. Many board manufacturers 
now use this technique to evaluate the performance of ICs 
in the face of minor variations in their supply voltages; any 
marginal or below-spec devices can then be replaced as part 
of the normal production test process, before they become 
expensive, diffi cult-to-rectify fi eld failures. 

Until now, margin testing has been a highly iterative 
and time-consuming procedure, involving fi tting different 
value resistors to dc-dc converters in order to vary their 
output voltage a few percent either side of nominal. 
PMBus-compliant POL converters simplify this process 
using just two commands: VOUT_MARGIN_HIGH and 
VOUT_MARGIN_LOW. As shown in Fig. 5, each converter 
can be instructed to deliver tightly controlled test voltages, 
while the effect on board performance is monitored. This 
can signifi cantly reduce production test times, help eliminate 
ambiguity and produce clearly documented test results.

The T1 and T2 time periods are determined by the 
VOUT_TRANSITION_RATE command, and the rate is 
defi ned in mV/µs. Hence:

(VOUT_MARGIN_HIGH - VOUT)
T1 = 

VOUT_TRANSITION_RATE
       

(VOUT - VOUT_MARGIN_LOW)
T2 = 

VOUT_TRANSITION_RATE

Setting the VOUT_TRANSITION_RATE to a value of FF 
FFh implies transition as quickly as possible.

Further information about the open-standard PMBus 
digital power-management protocol and the SMBus transport 
layer can be obtained from the System Management Interface 
Forum’s website at www.powerSIG.com.  PETech
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Fig. 5. Voltage margining is controlled with one PMBus command.
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