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 This note is to propose that several points be more heavily emphasized in introductory and 

intermediate presentations of Faraday's Law and that a commonly used notation be avoided.  The use 

of careful and complete notation to ensure that the student is neither under-informed nor misled is 

most crucial.  The Faraday flux rule   relates the emf in a circuit to the rate of change of the magnetic 

flux through the circuit due both to the motion of the circuit and to the time variation of the magnetic 

field.  In this paper, contributions to the net magnetic emf associated with the motion of conductors 

are referred to as motional emfs and those associated with the time dependence of the magnetic field 

are referred to as induced emfs (induction).  For circuits in which a thin conductor defines a closed 

boundary, the Faraday (filamentary circuit) flux rule can be expressed as:  
 

  
    
�magnetic =

d

dt
=

d

dt
B n̂ da

S
 (1) 

 

but not as: 

 

  
     

E d
C

=
d

dt
=

d

dt
B n̂ da

S
  (misleading form) (2) 

 

because Equation 2 can be interpreted to mean that the electric field circulates even for the case of a 

purely motional emf in a static magnetic field (see Equation 9a).  However, the electric field 

circulates only in the case of induction.  Note that we are restricting our attention to emfs associated 

with magnetic fields.  Other sources, such as chemical cells, generate emfs by distinct means, and we 

refer you elsewhere for discussions of these subjects.
1,2,3 The important point is that when 

considering all emfs, a circulating electric field exists only in the case of induction. 
 

 One of the first things that students learn in their introduction to electricity and magnetism is that 

for static situations the electric field does not circulate.  As a consequence, an electrostatic potential 

can be defined such that the electric field is the negative of its gradient.  The students must 

understand that this representation remains complete as long as and only as long as the magnetic field 

is static. 
 

 Some treatments introduce the Faraday flux rule and then analyze a motional emf device such as 

the slide wire generator in a static magnetic field to establish that the emf is equal to the (negative) 

time derivative of the magnetic flux through a surface bounded by the slidewire circuit.  At this point, 

a simple statement that the circulation of the electric field remains zero so long as the magnetic field 

remains static is not sufficient if an expression equivalent to Equation 2 for the circulation of the 

electric field appears later.  The magnetic flux can be time-dependent even for cases in which the 
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magnetic field is static, and so the student may conclude (incorrectly) that Equation 2 predicts that the 

electric field can circulate even if the magnetic field is static everywhere. 
 

 The relation  

  
   

E =
B
t

 (3) 

frequently called the differential form of Faraday's law,   can be transformed into an integral form  

 

  
     
� induction = E d

C
=

B
t

n̂ da
S

  (4) 

using standard theorems.  These integrals are to be computed with paths and surfaces defined at and 

all fields evaluated at a single instant in time as measured in an inertial frame.
4
  We note that 

Equations 3 and 4 only describe induction, and that expressions for motional emfs must be deduced 

separately using the Lorentz force law 

 

  
   
F = q E + v B  (5) 

 

This approach leads to an expression for motional emfs 

 

  
     
�motional = vc B( ) d

C
 (6) 

 

where 
   vc  is the velocity of the boundary element   d .

5
  (At this point it should be emphasized that, in 

spite of the form of this expression, the magnetic force does no work.
6
)  In contrast to Equation 4, 

Equation 1 is a complete statement of The Faraday flux rule which includes both motional emfs and 

induction, although Equation 5 is necessary to compute motional emfs for problems in which the 

circuit does not consist of a thin wire.  The correct physics is always given by Equations 3 and 5.
7
 

 

 Many students in intermediate electromagnetism courses need more instruction on the relation 

between the total time derivative of an integral and the partial time derivative of its integrand.  As an 

example, we examine the content of Equation 1 using Leibnitz's rule for differentiating integrals.  

This rule expands the total time derivative of an integral as the sum of two contributions, one 

associated with the motion of the boundaries of the integration interval and the other with the partial 

time derivative of the integrand.  The Leibnitz rule is usually expressed as 
8 

 

  

   

d

dt
b(x,t) dx

x
1

x
2

= b(x
2
,t)

dx
2

dt
b(x

1
,t)

dx
1

dt
+

b(x,t)

t
dx

x
1

x
2

 (7) 
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For a divergence-free field
    B(r,t) , this rule can be extended to a more general form 

9,10

  

  

     

d

dt
B(r,t) n̂ da

S
= B(r,t)

drc

dt
d

C
+

B(r,t)

t
n̂ da

S
 (8) 

 

where we identify  
   dr dt  as    vc  , the velocity of the segment    d  of the path bounding the 

integration surface.  The cross product represents the rate at which area is swept out by    d .  By 

multiplying through Equation 8 by negative one and by changing the order of the products in the path 

integral we obtain

  

  
    

d

dt
B(r,t) n̂ da

S
= vc B( ) d

C
+

B(r,t)

t
n̂ da

S
 (9a) 

 

Substituting in Equation 9a for the terms corresponding to the expressions in Equations 1, 4, and 6 

we have 
 

  
 
�magnetic = �motional + � induction  ( 9b) 

 

 In spite of the curious completeness of Equation 1 as revealed in Equation 9b, the generation of a 

motional emf and induction are "two different phenomena.” 
11  The phenomena are clearly related. 

This relation can be seen by comparing the measurements made by an inertial observer in the 

situation that a conducting loop moves with constant velocity and fixed orientation in a static, non-

uniform magnetic field with those of an inertial observer moving with the loop.  The link between 

motional emf in one frame and the induced emf in the other is revealed not by the mathematics of the 

Leibnitz rule, but rather by the Principle of Relativity.  Introductory presentations should give the 

distinct natures of the two phenomena the same weight that is given to their unity.  Motional emfs 

cannot, in general, be transformed into examples of induction as there is no requirement that every 

point on a circuit be at rest in a single inertial frame.  Constructive examples should be presented that 

identify the fields responsible for the work done on charges for motional and inductive phenomena.  

One might contrast the operation of a slidewire generator and a betatron.  For the slidewire generator, 

a quasi-static Hall effect electric field does work on the current carriers as they follow a non-closed 

path.
12,13

 In the case of a betatron, a circulating electric field does work on the orbiting electrons. 

 As with Equation 4, the desire for careful, complete notation suggests that Maxwell's fourth 

equation be expressed as:
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B d

C
= µ

0
J+

0

E
t

n̂ da
S

 (10) 

 

This equation also relates the circulation integral of a field to the time variations in the flux of another 

field.  Moving boundary contributions are not to be included in this relation. Grouping the fields on 

the right hand side makes explicit that the surface integrations for the two fields are over the same 

surface S bounded by the curve C. The Maxwell equations describing the circulations of the fields are 

written, correctly and unambiguously, without total time derivatives in Equations 4 and 10. 

Following these conventions, the local conservation of charge law is expressed as: 

 

  
    

J n̂ da
S= V

= tV
dV  (11) 

 

  In summary, we recommend avoiding inexact or ambiguous representations of Faraday's Law, 

such as Equation 2, that blur the distinction between magnetic emf (motional plus induced) and the 

circulation of the electric field.  The electric field circulates only if there is a time-dependent 

magnetic field.  The fact that the magnetic force never does work should be reinforced whenever the 

magnetic force on charges is used as the basis for deriving expressions for motional emfs.  The total 

time derivative of the flux of a divergence-free field through a surface can differ from the flux of the 

partial time derivative of that field if the boundary of the surface is not fixed in space.  In the 

evaluation of the total time derivative of the magnetic flux through a circuit, the terms associated with 

the motion of the boundary do have an interpretation as the motional contribution to the total 

magnetic emf.  However, they are not to be included in the expression for the circulation of the 

electric field.   
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