ROTA'S BASIS CONJECTURE FOR PAVING MATROIDS

JIM GEELEN AND PETER J. HUMPHRIES

Abstract

Rota conjectured that, given n disjoint bases of a rank- n matroid M, there are n disjoint transversals of these bases that are all bases of M. We prove a stronger statement for the class of paving matroids.

1. Introduction

We prove the following theorem.
Theorem 1.1. Let B_{1}, \ldots, B_{n} be disjoint sets of size $n \geq 3$ and let M_{1}, \ldots, M_{n} be rank-n paving matroids on $\bigcup_{i} B_{i}$ such that B_{i} is a basis of M_{i} for each $i \in\{1, \ldots, n\}$. Then there exist n disjoint transversals A_{1}, \ldots, A_{n} of $\left(B_{1}, \ldots, B_{n}\right)$ such that A_{i} is a basis of M_{i} for each $i \in$ $\{1, \ldots, n\}$.

A paving matroid M is a matroid in which each circuit has size $r(M)$ or $r(M)+1$, where $r(M)$ is the rank of M. Theorem 1.1 implies Rota's basis conjecture for paving matroids.

Conjecture 1.2 (Rota). Given n disjoint bases B_{1}, \ldots, B_{n} in a rank-n matroid M, there exist n disjoint transversals A_{1}, \ldots, A_{n} of $\left(B_{1}, \ldots, B_{n}\right)$ that are all bases of M.

For $n=2$, Conjecture 1.2 follows immediately from basis exchange in matroids. Chan [2] proved the conjecture for $n=3$. Wild [9] proved a stronger conjecture for the class of strongly base-orderable matroids, while more recently a slightly weaker result was proved for a general matroid (Ponomarenko [8]). Further partial results may be found in [1], [3], [4], [5] and [9].

Theorem 1.1 fails for both $n=2$ and matroids in general. When $n=2$, if we take $\mathcal{B}\left(M_{1}\right)=\{\{e, f\},\{e, g\},\{f, h\},\{g, h\}\}$ and $\mathcal{B}\left(M_{2}\right)=$

Date: June 8, 2006.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. Rota's basis conjecture, paving matroids.
This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the New Zealand Marsden Fund.
$\{\{e, f\},\{e, h\},\{f, g\},\{g, h\}\}$, then $\{e, f\},\{g, h\}$ is the only pair of disjoint bases. In the second instance, if $r_{M_{1}}\left(E-B_{1}\right)=0$, then there are no M_{1}-independent transversals of $\left(B_{1}, \ldots, B_{n}\right)$.

The remainder of this paper is taken up with the proof of the theorem. In Section 2, we prove that Theorem 1.1 holds when $n=3$. This result is used, in Section 3, as the base case of an inductive proof of Theorem 1.1. The induction argument is surprisingly straightforward and can be read independently of Section 2.

2. The case $n=3$

For basic concepts in matroid theory, the reader is referred to Oxley [7]. We follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily be interested in rank-2 flats, or lines. In the proof of Theorem 2.1, we make frequent use of the fact that if $r_{M}(X)=r_{M}(Y)=2$ and $|X \cap Y| \geq 2$, then X and Y are contained in the same line in M.
Theorem 2.1. Theorem 1.1 holds for $n=3$.
Proof. Assume that the theorem is false. Then there exist bases $B_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, B_{2}=\left\{b_{1}, b_{2}, b_{3}\right\}, B_{3}=\left\{c_{1}, c_{2}, c_{3}\right\}$ of rank-3 paving matroids M_{1}, M_{2}, M_{3} respectively, with common ground set $E=$ $B_{1} \cup B_{2} \cup B_{3}$, that provide a counterexample. The rank of a set X in M_{i} will be denoted by $r_{i}(X)$ and the closure by $\mathrm{cl}_{i}(X)$. A three-element subset of E will be called a transversal if it meets each of B_{1}, B_{2}, and B_{3}. Note that we may assume that every non-trivial line in each matroid contains a transversal, since all non-trivial lines not containing a transversal may be relaxed to provide an alternative counterexample (see [7], Section 1.5, Exercise 3).
2.1.1. Let $X \subseteq E$ be a set that meets each of B_{1}, B_{2}, B_{3}. If $r_{i}(X)=3$, then X contains an M_{i}-independent transversal.

Subproof. Let $T \subseteq X$ be a transversal, and suppose that T is $M_{i^{-}}$ dependent. Then since $r_{i}(X)=3$, there is some $e \in X$ such that $e \notin \operatorname{cl}_{i}(T)$. Without loss of generality, $e \in B_{1}$, so let f be the unique element in $T \cap B_{1}$. Then $r_{i}((T-f) \cup e)=3$, and we are done.
2.1.2. If no M_{1}-dependent transversal contains both a_{1} and b_{1}, then there exists $e \in B_{3}$ such that $r_{2}\left(E-\left\{a_{1}, b_{1}, e\right\}\right)=2$.
Subproof. For each $a \in B_{1}$ and $b \in B_{2}$, there exists $c \in B_{3}$ such that $\{a, b, c\}$ is M_{3}-independent (since $r_{3}\left(B_{3}\right)=3$). In particular, there exist $e, f, g \in B_{3}$ such that $\left\{a_{2}, b_{3}, e\right\},\left\{a_{3}, b_{3}, f\right\}$, and $\left\{a_{2}, b_{2}, g\right\}$ are $M_{3^{-}}$ independent. Then, by 2.1.1, $\left\{a_{3}, b_{2}\right\} \cup\left(B_{3}-\{e\}\right),\left\{a_{2}, b_{2}\right\} \cup\left(B_{3}-\{f\}\right)$,
and $\left\{a_{3}, b_{3}\right\} \cup\left(B_{3}-\{g\}\right)$ all have rank 2 in M_{2} (since otherwise we would find the required partition into transversals). The second and third of these sets both have two points in common with the first, and so they are all contained in a common line in M_{2}.

Suppose that M_{1} has a line L containing at least seven elements. Since $r_{1}\left(B_{1}\right)=3,\left|L-B_{1}\right| \geq 5$. Up to symmetry, we may assume that $b_{1}, b_{2}, c_{1}, c_{2}, c_{3} \in L$ and that $a_{1} \notin \mathrm{cl}_{1}(L)$. Now neither $\left\{a_{1}, b_{1}\right\}$ nor $\left\{a_{1}, b_{2}\right\}$ is in an M_{1}-dependent transversal. So by 2.1.2 $r_{2}\left(\left\{a_{2}, a_{3}, b_{2}, b_{3}\right\}\right)=r_{2}\left(\left\{a_{2}, a_{3}, b_{1}, b_{3}\right\}\right)=2$, contradicting the fact that $r_{2}\left(B_{2}\right)=3$. Thus none of M_{1}, M_{2}, and M_{3} contain a line on seven or more elements.
2.1.3. Every pair $e \in B_{i}, f \notin B_{i}$ is contained in some M_{i}-dependent transversal.

Subproof. Suppose that no M_{1}-dependent transversal contains both a_{1} and b_{1}. Then, by 2.1.2 and symmetry, we may assume that $r_{2}\left(E-\left\{a_{1}, b_{1}, c_{1}\right\}\right)=2$. Let $X=E-\left\{a_{1}, b_{1}, c_{1}\right\}$ and $Y=X-B_{1}$. Each transversal in $\left\{a_{2}, a_{3}, b_{2}, b_{3}, c_{1}\right\}$ is M_{2}-independent, for otherwise $E-\left\{a_{1}, b_{1}\right\}$ is a seven-point line in M_{2}. Since each transversal in $\left\{a_{1}, b_{1}, c_{2}, c_{3}\right\}$ is M_{1}-independent, there is no M_{3}-independent transversal in X; thus $r_{3}(X)=2$. Similarly, since each transversal in $\left\{a_{2}, a_{3}, b_{1}, c_{2}, c_{3}\right\}$ is M_{2}-independent and each transversal in $\left\{a_{2}, a_{3}, b_{2}, b_{3}, c_{1}\right\}$ is M_{3}-independent, we conclude that $r_{1}\left(Y \cup\left\{a_{1}\right\}\right)=2$. Without loss of generality, $a_{2} \notin \operatorname{cl}_{1}(Y)$, and so both $\left\{a_{2}, b_{2}, c_{2}\right\}$ and $\left\{a_{2}, b_{3}, c_{3}\right\}$ are M_{1}-independent. This means that $\left\{a_{1}, b_{1}, c_{2}\right\}$ and $\left\{a_{1}, b_{1}, c_{3}\right\}$ are M_{2}-dependent, for otherwise we again have three disjoint transversals that are independent in their respective matroids. Thus $r_{2}\left(\left\{a_{1}, b_{1}, c_{2}, c_{3}\right\}\right)=2$ and $E-\left\{c_{1}\right\}$ is an eight-point line in M_{2}, which is a contradiction.

Assume that B_{2} is dependent in M_{1}. Thus, some line L in M_{1} contains B_{2}; we may assume that L also contains a_{1} and c_{1}, since any non-trivial line contains a transversal. There must be some element a_{3}, say, of B_{1} that is not in $\mathrm{cl}_{1}(L)$, but then no transversal containing both a_{3} and c_{1} is dependent in M_{1}, leading to a contradiction by 2.1.3. Thus each of B_{1}, B_{2}, and B_{3} is independent in all three matroids. This provides additional symmetry since we may now permute (B_{1}, B_{2}, B_{3}).

Suppose next that M_{1} contains a five- (or six-) point line L. By the conclusion of the last paragraph, we may assume that $a_{1}, b_{1}, b_{2}, c_{1}, c_{2} \in$ L and that $a_{3} \notin \mathrm{cl}_{1}(L)$. Now, since there is an M_{1}-dependent transversal containing a_{3}, b_{1}, we have that $\left\{a_{3}, b_{1}, c_{3}\right\}$ must be M_{1}-dependent. Likewise $\left\{a_{3}, b_{2}, c_{3}\right\}$ is M_{1}-dependent, and thus $r_{1}\left(\left\{a_{3}, b_{1}, b_{2}, c_{3}\right\}\right)=2$,
contradicting the fact that $a_{3} \notin \operatorname{cl}_{1}(L)$. Hence, none of M_{1}, M_{2}, and M_{3} have lines containing more than four points.

We suppose now that the transversal $\left\{a_{3}, b_{3}, c_{3}\right\}$ is M_{2}-independent and M_{3}-dependent. Since $r_{1}\left(E-\left\{a_{3}, b_{3}, c_{3}\right\}\right)=3$, we may assume that $\left\{a_{1}, b_{1}, c_{1}\right\}$ is M_{1}-independent, and also that $r_{3}\left(\left\{a_{2}, b_{2}, c_{2}\right\}\right)=2$ for otherwise we have the required disjoint bases. Now, at most one of a_{3}, b_{3}, and c_{3} may be contained in $\mathrm{cl}_{3}\left(\left\{a_{2}, b_{2}, c_{2}\right\}\right)$, so without loss of generality both $\left\{a_{2}, b_{3}, c_{2}\right\}$ and $\left\{a_{3}, b_{2}, c_{2}\right\}$ are M_{3}-independent. Then $\left\{a_{3}, b_{2}, c_{3}\right\}$ and $\left\{a_{2}, b_{3}, c_{3}\right\}$ are both M_{2}-dependent. The transversal $\left\{a_{2}, b_{2}, c_{3}\right\}$ must now be M_{2}-independent, for otherwise we get a line in M_{2} containing $\left\{a_{3}, b_{3}, c_{3}\right\}$. Thus $r_{3}\left(\left\{a_{3}, b_{3}, c_{2}\right\}\right)=2$, and further $r_{3}\left(\left\{a_{3}, b_{3}, c_{2}, c_{3}\right\}\right)=2$. Then both of $\left\{a_{2}, b_{2}, c_{3}\right\}$ and $\left\{a_{3}, b_{2}, c_{3}\right\}$ are M_{3}-independent, for otherwise there is a line in M_{3} that contains $E-\left\{a_{1}, b_{1}, c_{1}\right\}$. So we have $r_{2}\left(\left\{a_{3}, b_{3}, c_{2}\right\}\right)=r_{2}\left(\left\{a_{2}, b_{3}, c_{2}\right\}\right)=2$. This, together with the dependence of $\left\{a_{3}, b_{2}, c_{3}\right\}$ and $\left\{a_{2}, b_{3}, c_{3}\right\}$ in M_{2}, further implies that $\left\{a_{3}, b_{3}, c_{3}\right\}$ is M_{2}-dependent, which is a contradiction.

From now on, we may assume that M_{1}, M_{2}, and M_{3} are the same matroid M, since they share the same set of independent transverals. Suppose that M contains the four-point line $\left\{a_{3}, b_{3}, c_{2}, c_{3}\right\}$. Without loss of generality, we may assume that $\left\{a_{1}, b_{1}, c_{1}\right\}$ is independent in M, but then both $\left\{a_{2}, b_{3}, c_{3}\right\}$ and $\left\{a_{3}, b_{2}, c_{2}\right\}$ are also independent in M, so we are done.

Thus, the rank-2 flats in M each contain at most three points. Let $\left\{a_{3}, b_{3}, c_{3}\right\}$ be a dependent transversal of M. By 2.1.1, the set $\left\{a_{3}, b_{2}, c_{1}, c_{2}\right\}$ contains a transversal that is independent in M. Suppose without loss of generality that $\left\{a_{3}, b_{2}, c_{2}\right\}$ is such a transversal. Then, again by 2.1.1, the set $\left\{a_{1}, a_{2}, b_{1}, c_{1}\right\}$ contains an M-independent transversal, $\left\{a_{1}, b_{1}, c_{1}\right\}$ say. Finally, $\left\{a_{2}, b_{3}, c_{3}\right\}$ is also independent, for otherwise we get a four-point line, and we have the three required transversals.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we require two further lemmas. These allow us to apply induction with Theorem 2.1 as the base case. Let $\mathcal{B}(M)$ denote the set of bases of a matroid M.
Lemma 3.1. Let $B_{1} \in \mathcal{B}\left(M_{1}\right), B_{2} \in \mathcal{B}\left(M_{2}\right)$ be disjoint bases of rank-n paving matroids on the same ground set, where $n \geq 3$. Let X be a two-element subset of B_{1}. Then there is some $x \in X, y \in B_{2}$ such that $\left(B_{1}-x\right) \cup y \in \mathcal{B}\left(M_{1}\right)$ and $\left(B_{2}-y\right) \cup x \in \mathcal{B}\left(M_{2}\right)$.
Proof. Since M_{1}, M_{2} are paving matroids, $\left(B_{1}-X\right) \cup y$ is $M_{1^{-}}$ independent for all $y \in B_{2}$. Suppose that both $\left(B_{1}-x\right) \cup y$ and
$\left(B_{1}-x^{\prime}\right) \cup y$ are circuits in M_{1}, where x, x^{\prime} are distinct elements of X. Then by circuit elimination, B_{1} is also a circuit of M_{1}. Hence for each $y \in B_{2}$, at least one of $\left(B_{1}-x\right) \cup y$ and $\left(B_{1}-x^{\prime}\right) \cup y$ must be a basis of M_{1}.

Let y_{1}, y_{2}, y_{3} be distinct elements of B_{2}. Then without loss of generality $\left(B_{1}-x\right) \cup y_{1},\left(B_{1}-x\right) \cup y_{2} \in \mathcal{B}\left(M_{1}\right)$. Also, one of $\left(B_{2}-y_{1}\right) \cup x$ and $\left(B_{2}-y_{2}\right) \cup x$ is a basis of M_{2}, so we are done.

Lemma 3.2. Let B_{1}, \ldots, B_{n} be disjoint sets of size $n \geq 3$ and let M_{1}, \ldots, M_{n} be rank-n paving matroids on $\bigcup_{i} B_{i}$ such that B_{i} is a basis of M_{i} for each $i \in\{1, \ldots, n\}$. Then there is an ordering of the elements of B_{1} as a_{1}, \ldots, a_{n} and a transversal $\left\{b_{2}, \ldots, b_{n}\right\}$ of $\left(B_{2}, \ldots, B_{n}\right)$ such that for all $j \in\{2, \ldots, n\}$, the set $\left(B_{1}-\left\{a_{2}, \ldots, a_{j}\right\}\right) \cup\left\{b_{2}, \ldots, b_{j}\right\}$ is a basis of M_{1} and $\left(B_{j}-b_{j}\right) \cup a_{j}$ is a basis of M_{j}.

Proof. For $j=2$, the lemma follows immediately from Lemma 3.1. Suppose now that the lemma holds for some $j \in\{2, \ldots, n-1\}$, so that $B^{\prime}=\left(B_{1}-\left\{a_{2}, \ldots, a_{j}\right\}\right) \cup\left\{b_{2}, \ldots, b_{j}\right\} \in \mathcal{B}\left(M_{1}\right)$. Then $\left|B_{1} \cap B^{\prime}\right| \geq 2$, and so by Lemma 3.1 there is some element $a_{j+1} \in B_{1} \cap B^{\prime}$ and some $b_{j+1} \in B_{j+1}$ such that $\left(B^{\prime}-a_{j+1}\right) \cup b_{j+1} \in \mathcal{B}\left(M_{1}\right)$ and $\left(B_{j+1}-b_{j+1}\right) \cup$ $a_{j+1} \in \mathcal{B}\left(M_{j+1}\right)$, thus proving the lemma.

Lemma 3.2 is stated for $j \in\{2, \ldots, n\}$ to simplify the induction process. We only need the result for $j=n$ to prove main theorem of this paper.

Proof of Theorem 1.1. Assume that the theorem is true for some $m \geq$ 3 , and take $n=m+1$. Let $B_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $b_{i} \in B_{i}$ for each $i \in$ $\{2, \ldots, n\}$. By Lemma 3.2 we may assume that $A_{1}=\left\{a_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis of M_{1} and that $B_{i}^{\prime}=\left(B_{i}-b_{i}\right) \cup a_{i}$ is a basis of M_{i} for each $i \in\{2, \ldots, n\}$.

Now let $X=E-\left(B_{1} \cup A_{1}\right)$ and $M_{i}^{\prime}=\left(M_{i} / a_{i}\right) \mid X$ for each $i \in$ $\{2, \ldots, n\}$. Then each M_{i}^{\prime} is a rank- m paving matroid having $B_{i}-b_{i}$ as a basis. By our induction hypothesis, there are disjoint transversals $A_{2}^{\prime}, \ldots, A_{n}^{\prime}$ of these m bases such that A_{i}^{\prime} is a basis of M_{i}^{\prime}. Hence $A_{i}=A_{i}^{\prime} \cup a_{i}$ is a basis of M_{i} for each $i \in\{2, \ldots, n\}$. Moreover, the bases A_{1}, \ldots, A_{n} are disjoint transversals of $\left(B_{1}, \ldots, B_{n}\right)$ as required.

Acknowledgements

The authors thank the anonymous referees for their helpful comments.

References

[1] Aharoni, R. \& Berger, E., The intersection of a matroid and a simplicial complex, preprint.
[2] Chan,W., An exchange property of matroid, Discrete Math. 146 (1995), 299302.
[3] Chow, T., On the Dinitz conjecture and related conjectures, Discrete Math. 145 (1995), 73-82.
[4] Drisko, A.A., On the number of even and odd Latin squares of order $p+1$, Advances in Math. 128 (1997), 20-35.
[5] Drisko, A.A., Proof of the Alon-Tarsi conjecture for $n=2^{r} p$, Electron. J. Combin. 5 (1998), R28.
[6] Huang, R. \& Rota, G.-C., On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Math. 128 (1994), 225-236.
[7] Oxley, J.G., Matroid Theory. Oxford University Press, New York (1992).
[8] Ponomarenko, V., Reduction of jump systems, Houston J. Math. 30 (2004), 27-33.
[9] Wild, M., On Rota's problem about n bases in a rank n matroid, Advances in Math. 108 (1994), 336-345.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

E-mail address: pjh96@student.canterbury.ac.nz

