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INSTANT RADIOSITY 



BRIEF HISTORY - RADIOSITY 

• Familiar FEM approach 

• Discretize geometry 

• Assume simple, Lambertian surfaces 

• Encode light transport directly 

• Solve 

• Pros 

• Viewpoint independent 

• Simple, in principle 

• Cons 

• Complicated form factors 

• Remeshing 

• Discretization artifacts 

• Does not capture complex materials 

 

Cohen et. al. (SIGGRAPH‘88) 

Modern CAD tools use this for interactive rendering! 

(3ds Max, etc.) 



IDEA – INSTANT RADIOSITY (KELLER SIGGRAPH ‘97) 

• Concentrate power of luminaires at samples 

• No explicit discretization 

• No complex form factors 

• Simple point lights 

• Bounce energy around scene – leave virtual point lights at bounces 

• Reusable paths 

• Fast HW accelerated render passes 

• Still assumes Lambertian surfaces 

• Neat hack to handle ideal specular surfaces. 



ALGORITHM BASICS 

• STEP 1 

 Photons are traced from the light 

source into the scene. 

Diagram from M. Hasan (SIGGRAPH Asia ‘2009) 
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ALGORITHM BASICS 

• STEP 1 

 Photons are traced from the light source into the 

scene. 

 Treat path vertices as Virtual Point Lights (VPLs) 

 Generates a particle approximation of the diffuse 

radiant, using Quasi-random walk based on 

quasi-Monte Carlo integration. 

 

• STEP 2 

 The scene is rendered several times 

for each light source. 

 Hardware renders an image with 

shadows for each particle used as 

point light source. 

 Resulting image is composited in the 

accumulation buffer (hardware). 

 

Cornell Box, rendered using Instant Radiosity 



DERIVATION 

Notation from Veach and Guibas (SIGGRAPH ‘95) 

Bounces from source to VPLs 

𝐿𝑟 𝑥
′ = 
𝑘𝑑(𝑥
′)

𝜋
𝐿𝑖 𝑥 |cos (𝜃𝑖

′)| 

𝐿 𝑥′′ = 𝐿𝑒 𝑥  
𝑘𝑑 𝑥𝑗

𝜋
|cos (𝜃𝑗)|

𝑛

𝑗=0

 



DERIVATION 

Notation from Veach and Guibas (SIGGRAPH ‘95) 

𝐿𝑟 𝑥
′ → 𝑥′′ =

𝑘𝑑(𝑥
′)

𝜋
 𝑉(𝑥 ↔ 𝑥′)

cos 𝜃𝑟 cos (𝜃𝑖
′)

| 𝑥 − 𝑥′ |2
𝐿𝑖 𝑥 → 𝑥

′ 𝑑𝐴(𝑥)
𝑀

 

Bounce from VPLs to camera 

𝐿 𝑥′ → 𝑥′′ =
𝑘𝑑(𝑥
′)

𝜋
 𝑉(𝑥 ↔ 𝑥′)

cos 𝜃𝑟 cos (𝜃𝑖
′)

| 𝑥 − 𝑥′ |2
𝐿𝑖 𝑥 → 𝑥

′

𝑥∈𝑉𝑃𝐿𝑠

 



IMPLEMENTATION 

foreach sample with n reflections: 

  [x, pdf_x] = SampleLuminaire 

  rad = L(x)/pdf_x 

   

  for reflection in {0..n}: 

    pdf_refl = pow(average_reflectivity, reflection) 

    StoreVPL (x, rad/pdf_refl) 

    [w, pdf_w] = SampleDirection 

    rad *= 
𝑘𝑑 𝑥

𝜋
cos ()/pdf_w 

    [x] = RayTrace(x, w) 

Phase 1 – Quasi-Random Walk Notes on Keller’s implementation 

Sampled by surface area (1/pdf_x = supp L) 

Cosine weighted sampling 

cos ()/pdf_w = 1 



IMPLEMENTATION 

foreach VPL in VPLs: 

  [s] = ComputeSurfaceIntersections 

  [v] = ComputeVisibility(s, VPL::x) 

  [brdf] = EvaluateBRDF(s, VPL::x) 

  Image += 1/N*v*brdf*cos*VPL::rad 

Phase 2 – Accumulation 

foreach sample with n reflections: 

  [x, pdf_x] = SampleLuminaire 

  rad = L(x)/pdf_x 

   

  for reflection in {0..n}: 

    pdf_refl = pow(average_reflectivity, reflection) 

    StoreVPL (x, rad/pdf_refl) 

    [w, pdf_w] = SampleDirection 

    rad *= 
𝑘𝑑 𝑥

𝜋
cos ()/pdf_w 

    [x] = RayTrace(x, w) 

Phase 1 – Quasi-Random Walk 



NON-LAMBERTIAN SURFACES 

• Point lights 

• Must match radiance distribution 

• Easy for Lambertian BRDF – can efficiently use fixed function pipeline 

 

• Lambertian assumption 

• Not too important with modern programmable shaders 

• Needs to store incoming direction and delay last BRDF eval for other BRDFs 

• Can also use spot lights to simulate parametric BRDFs 

 

• Ideal specular – not automatically compatible 



SAMPLING 



QUASI-RANDOM NUMBERS 

• Deterministic sequences, that appear to be random for many purposes.  

 

• Quasi-random numbers may be used in Monte-Carlo simulation in the same way as 

pseudo-random numbers! 

 

• Low-discrepancy: successive numbers are added in a position as far as possible 

from the other numbers (i.e. avoiding clustering). 

1000 iterations, Halton sequence 1000 iterations, pseudo-random numbers 



HALTON SEQUENCE (GENERATION) 

• The Halton sequence in 1D is also known as the van der Corput sequence: 

1. Choose a prime base 𝑏. 
 

2. If 𝑛 is an integer then it can be written in base 𝑏 as: 

 

𝑛 =  𝑑𝑘𝑏
𝑘

𝑚

0

 

3. Then the nth number in the Halton sequence of base b is given by (reflection + 

mapping to [0,1)): 

 

Φ𝑏 𝑛 = 𝑑𝑘𝑏
− 𝑘+1

𝑚

0

 

 

• Efficient algorithms exist for direct or incremental calculations [HW64]. 



HALTON SEQUENCE (EXAMPLE) 

• The following table shows how to calculate the first 7 numbers in the Halton 

sequence of base 2: 

 

 

 

 

 

 

 

 

 

• Notice that the Halton sequence is essentially filling in the largest gap in the range 

(0;1), that doesn't already contain a number in the sequence: start by dividing the 

interval (0,1) in half, then in fourths, eighths, etc. 

 

n d2 d1 d0 Φ2 𝑛 = 

1 0 0 1 0*(1/8) + 0*(1/4) + 1*(1/2) = 0.5 

2 0 1 0 0*(1/8) + 1*(1/4) + 0*(1/2) = 0.25 

3 0 1 1 0*(1/8) + 1*(1/4) + 1*(1/2) = 0.75 

4 1 0 0 1*(1/8) + 0*(1/4) + 0*(1/2) = 0.125 

5 1 0 1 1*(1/8) + 0*(1/4) + 1*(1/2) = 0.625 

6 1 1 0 1*(1/8) + 1*(1/4) + 0*(1/2) = 0.375 

7 1 1 1 1*(1/8) + 1*(1/4) + 1*(1/2) = 0.875 



HALTON SEQUENCE (MULTI-DIMENSIONAL) 

• For 𝒏-dimensions, each dimension is different van der Corput sequence:  

 

 

x𝑖 = (Φ2 𝑖 , Φ3 𝑖 , … , Φ𝑝𝑛 𝑖 ) 

 

• Rate of converges for Monte Carlo integral evaluation is close to 𝑂(𝑁−
𝑛+1

2𝑛 ),  

which is better than the random rate 𝑂(𝑁−
1

2). 

 

 

• The standard Halton sequences perform very well in low dimensions, 

however correlation problems have been noted between sequences 

generated from higher primes (degradation after 14 dimensions).  

 

 



HALTON SEQUENCE  

(CURSE OF DIMENSIONALITY) 

• For example if we start with the primes 17 and 19, the first 16 pairs of points 

would have perfect linear correlation! 

• To avoid this, it is common to drop the first few entries and/or take  

every other number in the sequence. 

• Or better, apply deterministic or random permutation on the digits 

of 𝑛, when forming Φ𝑏 𝑛  (Scrambled Halton sequence). 

• Use the Sobol sequence, less correlation in higher dimensions! [Galanti & Jung ‘97] 

 

Standard Halton Scrambled Halton 



HALTON SEQUENCE  

(CURSE OF DIMENSIONALITY) 

 

 

First 600 number of the scrambled 

Halton (Φ17 𝑖 ,Φ19 𝑖 ) 
First 600 number of the standard 

Halton (Φ17 𝑖 ,Φ19 𝑖 ) 

First 600 pair of pseudo-random 

numbers 
7th and 8th dimension of the 8-

dimensional Sobol sequence 



HAMMERSLEY SEQUENCE 

(IN TWO DIMENSIONS) 

• Similar to Halton: 

   𝑥𝑖 =
𝑖

𝑁
, Φ2 𝑖  

 

• Lower discrepancy than Halton. 

 

• But need to know N, the total number of samples, in advance. 

 

 

 

 

 

 



HAMMERSLEY SEQUENCE (STRUCTURE) 

• The two-dimensional Hammersley sequence is aligned to a grid, 

which might lead to aliasing artifacts, so apply random jitter:  

 

 

 

 

 

 

 

 

   𝑥𝑖 =
𝑖

𝑁
, Φ2 𝑖 +

𝜉

𝑁
 

 

 

 

 

 

Jitter 



HAMMERSLEY SEQUENCE  

(LARGER BASIS) 

Random Points  

(n = 1000) 

Hammersley Sequence (n = 1000) 

𝑖

𝑁
,Φ2 𝑖  

𝑖

𝑁
,Φ7 𝑖  

𝐢

N
, Φ17 i  

Halton Sequence (n = 1000) 

Φ2 𝑖 ,Φ3 𝑖  Φ2 𝑖 ,Φ7 𝑖  Φ17 𝑖 ,Φ19 𝑖  
[Wong JGT ’97] 



LOW DISCREPANCY SAMPLING  

AS USED IN THE IR PAPER 

• Use two-dimensional jittered Hammersley sequence for 

pixel super-sampling …  

  as we usually use a predefined number of samples there. 

 

• Use multi-dimensional Halton sequences during the quasi-

random walk …  

  as we might need more adaptive control (different number 

of samples). 

  watch out for degradation when the dimension is large (aka. 

large number of bounces)! 



QUASI-RANDOM WALK USING  

HALTON SEQUENCES 

• Each path (𝑖) is characterized by the Halton sequence: 

 

Φ2 𝑖 , Φ3 𝑖 , … , Φ 𝑖 𝑝2𝑗+2 ,   Φ 𝑖 𝑝2𝑗+3 , … , Φ 𝑖 𝑝2𝑙+3   

 

• Use  y = y0 Φ2 𝑖 , Φ3(𝑖)  to sample starting point  

on the luminaire for path 𝑖. 
 

 

• Use ωj = 𝑎𝑟𝑐𝑠𝑖𝑛 Φ(𝑖)𝑝2𝑗+2 ,  2𝜋Φ(𝑖)𝑝2𝑗+3   

to sample new directions for path 𝑖 after 𝑗 bounces. 

 

 

 

 

 



HOW MUCH DOES THIS HELP ? 

• Not shown for the Instant Radiosity method. 

• Previous Keller’s paper “Quasi-Monte Carlo Radiosity” 

gives some intuition: 



ANTI-ALIASING USING  

HAMMERSLEY SEQUENCE 

• Anti-aliasing with the Accumulation Buffer. 

 

• A super-sampling technique is used where the entire scene is offset by small, 

sub-pixel amounts in screen space, and accumulated. 

 Just translate the projection matrix in 𝑥 and 𝑦 and re-render! 

 

• The offset is determined by the jittered-Hammersley sequence 

(N is the number of lights in the scene, and x𝑖  is the offset for the 𝑖-th VPL rendering): 

 

𝑥𝑖 =
𝑖

𝑁
, Φ2 𝑖 +

𝜉

𝑁
 

• Hammersley numbers are suitable, as we have low-dimensional data 

with pre-defined number of samples! 

 

 

 

 

 

 



HOW MUCH DOES THIS HELP ? 

• The two-dimensional jittered Hammersley sequence exposes 

faster convergence rates, when used for pixel super-sampling. 



RESULTS 



10 SAMPLES 



100 SAMPLES 



1000 SAMPLES 



• Unlike path tracing, not noise 

• Structured hotspots 

• Singularity in form factor 

• Hack: clamp sample contribution 

• No longer unbiased 

• Loss of energy around edges 

 

ARTIFACTS 

𝐿 𝑥′ → 𝑥′′ =
𝑘𝑑(𝑥
′)

𝜋
 𝑉(𝑥 ↔ 𝑥′)

cos 𝜃𝑟 cos (𝜃𝑖
′)

| 𝑥 − 𝑥′ |2
𝐿𝑖 𝑥 → 𝑥

′

𝑥∈𝑉𝑃𝐿𝑠

 



GLOSSY BRDF 

𝛼 = 0.25 𝛼 = 0.1 



MODERN WORKS 



BIDIRECTIONAL INSTANT RADIOSITY 

 

 

• Optimize the location of the VPLs, by finding locations which have influence on 

the illumination of the scene rendered from the camera. 

I. First, trace rays from the camera. 

 

II. Second, path vertices of length 2  

form the set of reverse VPL candidates. 

 

III. Finally, connect reverse VPL points with  

the standard VPL points. 

Standard IR VPLs Reverse IR VPLs Standard IR Result Bidirectional IR Result 

Segovia et al. (ESR ‘2006) 



METROPOLIS INSTANT RADIOSITY 

 

 

• We must find VPLs which illuminate parts of the scene, seen by the camera. 

I. First, use the standard sequence of 

Metropolis Light Transport to sample 

VPLs (MLT part). 

 

II. Second, for each path, store the second 

point as a VPL. 

 

III. Accumulate all VPL contributions (IR part) 

Segovia et al. (EUROGRAPHICS ‘2007) 

Standard IR Bidirectional IR Metropolis IR 



VPL based approaches are as good as the  
number of generated point lights. 

 
  

Can we use millions of VPLs  
in reasonable amount of time ? 

 

 

Yes, Lightcuts! 



QUESTIONS? 


