
 

Stoned Bootkit 
 

Your PC is now Stoned!  ..again 
 

 
The Rise of MBR Rootkits & Bootkits in the Wild 

 

 

Peter Kleissner 
Hacking at Random 2009 

 

 

Abstract 

 

Stoned Bootkit is a new bootkit attacking all Windows versions from XP up to 7. It is 

loaded by the BIOS before Windows has started and is memory resident up to the 

Windows kernel. Thus it has unrestricted access to the entire system. 
 

It gives the user back the control to the system – which was taken away by 

Windows Vista with its signed driver policy. It allows executing any unsigned driver 
which can be useful both for device testers and malware developers. 

 

There were previous bootkits in the wild, which have changed the battlefield to a 
lower level. In the past there were bootkits which have only been dedicated attacks, 

for example attacking only Vista or Windows 7 64-bit; my bootkit targets now to be 

the most sophisticated and most wide spread one in the wild in 2010. 

 
  



Table of Contents 

 

Abstract ___________________________________________________________ 1 

Table of Contents ___________________________________________________ 2 

Bootkits ___________________________________________________________ 3 

Timeline ___________________________________________________________ 3 

Architecture of Stoned Bootkit _________________________________________ 4 

Sinowal Bootkit _____________________________________________________ 6 

Sector 0: Master Boot Record ________________________________________ 6 

Sector 60: Ntoskrnl hooking _________________________________________ 7 

Sector 61: Kernel Code _____________________________________________ 7 

Bootkits in the Wild __________________________________________________ 8 

Anti Windows Product Activation ________________________________________ 8 

Conclusion ________________________________________________________ 11 

References ________________________________________________________ 12 

 



Bootkits   3 

Bootkits 

 

A bootkit is a rootkit that is able to load from a master boot record and persist in 
memory all the way through the transition to protected mode and the startup of the 

OS. It's a very interesting type of rootkit. 

 Robert Hensing about bootkits [2] 

 
The term “bootkit” was originally used by Vipin & Nitin Kumar and can be expressed 

by bootkit = boot + rootkit. A bootkit is stored in the master boot record (the boot 

sector) and loaded before the main operating system, and its target is to pwn that 
operating system. Bootkits hook, patch and modify operating system functions in 

order to be both executed and at the same time being undetected. 

 

There are code integrity verifications and signed code checks which must be 
patched that the OS will not detect any change. This was a big point of Windows 

Vista’s security, securing the system by signing and verifying all system files. 

Timeline 

 
1987   Stoned, first master boot record (bootkit) virus 

1990   Form, common boot sector virus in the early 1990s 

August 1, 2005 eEye publishes BootRoot & SysRQ2, presented at BH USA 2005 
March 29, 2007 Vbootkit was presented at Black Hat Europe 2007 

October 30, 2007 Mebroot bootkit appears in the wild 

November 2008 Hibernation File Attack was developed, attacking Windows files 
April 2009 Mebroot is updated to work with Windows Vista (non-public info) 

May 2009 Kon-Boot is released, a tool to bypass Windows logon 

March 4, 2009 Vbootkit 2.0 attacks Windows 7 64-bit and goes open source 

 
It first started with the Stoned virus, which was developed in 1987 in New Zealand. 

In the 1990s boot viruses were quite common because they were spread over 

floppy disks. One famous and wide spread boot sector virus was the Forms virus, 
which is still mentioned in Microsoft knowledge base article 122221. 

 

In the last years bootkits were only dedicated attacks to Windows systems. Vbootkit 
only attacks Vista, Vbootkit 2.0 only Windows 7 64-bit, BootRoot only Windows XP 

and so on. 

 

In contrast, Stoned Bootkit attacks all Windows operating systems from Windows XP 
on, including Vista and 7. Only one single master boot record is necessary for 

attacking all Windows versions. With its included file system drivers (for all FAT and 

NTFS file systems) it can load files from the file system without Windows, which 
makes it basically operating system independent. 

 

  



Architecture of Stoned Bootkit   4 

Architecture of Stoned Bootkit 

 

Stoned consists of two main parts, the master boot record and additional files 
stored in the file system. This is completely new – that a bootkit loads its files from 

hard disk. It removes previous limitations (for example only 63 sectors of code) and 

abstracts the attack to the pre-OS environment with the payload (executed virus). 

 
Stoned consists of the following parts: 

 

 Modules in the master boot record 
 Boot applications stored in the file system or embedded in the MBR 

 Plugins out sourced to the file system 

 Payload drivers stored in the file system 

 
Optionally the plugins and the payload can be out sourced to unpartitioned raw 

space on the hard disk, to eliminate any necessary file system access. This is for 

example required for the TrueCrypt attack where the file system is encrypted and 
not available at boot time. 

 

An example module is the integrated file system module, which is responsible for 
handling file system access to FAT and NTFS. Other modules, plugins and boot 

applications can use the API provided by the modules. 

 

Currently Stoned attacks the following operating systems: 
 

 Windows XP 

 Windows Server 2003 
 Windows Vista 

 Windows Server 2008 

 Windows 7 
 

There exists the possibility (and it is intended for the future) to attack other 

operating systems as well, including Linux. The whole magic is done by using 

signatures for the operating systems startup files. 
 

Following Windows startup files have to be considered: 

 
   Windows XP  Windows Vista Environment 

 Stage 1 ntldr   bootmgr  Real Mode 

 Stage 2 OS Loader  OS Loader  Protected Mode 

 Stage 3 -   winload.exe  Protected Mode 
 Stage 4 Ntoskrnl.exe  Ntoskrnl.exe  Protected Mode + Paging 

 

Windows XP (and Server 2003) uses the NT Loader and its embedded OS Loader for 

startup (= loaded by the bootloader). Ntldr contains a 16-bit stub and the 32-bit OS 
Loader. 

 

Windows Vista has split up ntldr into bootmgr, winload.exe and winresume.exe. 
Winload.exe loads the kernel, and winresume.exe resumes from hibernation. 



Architecture of Stoned Bootkit   5 

 

Everything starts with the interrupt 13h service handler. Interrupt 13h is 

responsible for handling disk I/O access (reading and writing sectors). The int 13h is 
hooked by overwriting the respective vector in the interrupt vector table (IVT) to 

point to our own handler. This custom handler forwards the call to the original 

interrupt 13h service handler and then checks the read contents for the stage 1 
signatures. 

 

There are two signatures required for stage 1: 

 
1. Overwriting code to hook a function in order to get called in protected mode 

2. Patching the code integrity verification, otherwise Windows would detect the 

checksum mismatch 
 

For patching the code integrity there are different possible concepts: 

 
 Re-calculating the checksum and storing it in the PE header in memory 

 
PE Optional Header +64, CheckSum 

 

The image file checksum. The algorithm for computing the checksum 

is incorporated into IMAGHELP.DLL. The following are checked for 

validation at load time: all drivers, any DLL loaded at boot 

time, and any DLL that is loaded into a critical Windows process. 

 

Modified RFC 1071 Implementation, [3] 

 

 Patching the conditional jump instruction that decides about match or 

mismatch 

 
mov eax,[ebp-24h]  ; get checksum of PE header 

cmp ebx,eax   ; compare against calculated one 

je Checksum_Valid 

; invalid code handling comes here 

[…] 

Checksum_Valid: 

 
 Patching the return code of the code integrity function to return 

STATUS_SUCCESS (0) instead of STATUS_IMAGE_CHECKSUM_MISMATCH 

(0C0000221h) 

 
mov eax, 0C0000221h 

cmp ebx,eax   ; compare against calculated one 

je Checksum_Valid 

; invalid code handling comes here 

[…] 

Checksum_Valid: 

 

The third method is the best one, it prevents crashing, patching the wrong jumps, 
prevents overwriting other instructions and is most reliable. I have first seen it used 

in the Sinowal version from April 2009. 



Sinowal Bootkit   6 

 

Stage 1 is necessary for executing the protected mode code, and stage 2 (and 3) is 

necessary for getting called in order to relocate the code to paged memory. This 
means the code must be executed and accessible in the running kernel when paging 

is enabled. This is done by copying the code to the end of the ntoskrnl image. The 

algorithm is to take (ntoskrnl.exe image base + SizeOfImage + 00000FFFh) & 
0FFFFF000h – size of bootkit. The FFs are used for aligning to page boundaries (4 

KB). 

 

Also ntoskrnl.exe must be patched to execute the relocated kernel code (and 
furthermore the verification if ntoskrnl.exe is valid in winload.exe must be patched). 

 

Further it is important to mention any payload. Because the bootkit is executed 
under the Windows kernel it can simply use the provided API to load any additional 

code from the file system (including plugins etc.). Mebroot (Sinowal) for example 

keeps its payload stored at unpartitioned space on the hard disk. 
 

You can also out source a driver loader which does the PE relocation and resolving 

of the PE image, in order to be totally undetectable by anti-virus scanners. This is 

useful when using the Windows Driver Kit for high-level driver development. 

Sinowal Bootkit 

 

Since this is hacking at random I also want to cover the Sinowal bootkit. I once 

wrote an article back in 2008 [4], which let me to work together with high security 
industrials which I personally admire and respect in their work. 

 

The old Sinowal bootkit only consists of the sectored master boot record: 
 

Sector 0 Bootloader, Interrupt 13h Hook Code 

Sector 60 Ntldr Hook Code 

Sector 61 Kernel Code (executed directly after Ntoskrnl) 

Sector 62 Original Master Boot Record Backup 

 

All other sectors remain zero and unused. The total size of the master boot record is 

63 sectors (7E00h bytes). 
 

Additionally the kernel driver is stored at the end of the hard disk and a fixed 

reference (sector number) to the location of the kernel driver is patched in the 

bootkit when infecting the machine. 

Sector 0: Master Boot Record 

 

Sector 0 contains the malicious boot code which does some initialization and hooks 
the interrupt 13h. It relocates itself to the end of real mode memory (~ 1 MB, 

mostly 9F400h to be exact) and contains code to hook the ntldr and to read the 

sectors 60 and 61 into the memory. It loads the original bootloader from sector 62 
and executes it. 



Sinowal Bootkit   7 

 

Offset 1B5h 3 bytes for language message descriptions (unused) 

Offset 440 Microsofts Disk Signature 

Offset 1BEh Partition Table 

Offset 510 Boot Signature 

Sector 60: Ntoskrnl hooking 

 

The sector 60 contains code that is executed by the installed hook to ntldr, and does 
nothing more than copying sector 61 to the end of the ntoskrnl image and hooking 

ntoskrnl. 

Sector 61: Kernel Code 

 

The code in sector 61 allocates memory using ExAllocatePool() and copies itself to 

the allocated region. It then loads the kernel driver from the hard disk and starts 

execution of Sinowal. After successful execution it deletes itself from memory by 
overwriting itself and the driver with zeroes, and by deallocating used memory back 

to the system. Thus it leaves no traces in memory. 

 
Detailed description of the bootloader: 

 

1. Initialize registers 
2. Copy itself to the end of memory 

3. Reading further virus data, sector 60 and sector 61 

4. Hooking interrupt 13h 

5. Loading original Microsoft MBR from the sector 62 to 7C00h and execute it 
6. Interrupt 13h hook checks if Read Sectors or if Extended Read Sectors 

functions are requested and executes them 

7. Check the read buffer for ntldr, to inject jump code to sector 60 
8. Check read buffer for ntldr, to overwrite code integrity verification code with 

nops (another method to bypass code integrity verification) 

 
Previously Windows Vista wasn’t affected by the old Sinowal variant because of 

different startup dependencies (different startup files and mechanism). However 

there was an overhauled version in April 2009 which now attacks Windows Vista too 

(non-public, still not reported). 
 

Following code patterns are used by Mebroot: 

 
  Signature:      8B F0 85 F6 74 21/22 80 3D 
  To be in:       ntldr 
  Is at offset:   +26B9Fh 
 
  Signature:      83 C4 02 E9 00 00 E9 FD FF 
  To be in:       ntldr 
  Is at offset:   +1C81h, +1C9Ch 
 
  Signature:      C7 46 34 00 40 ... A1 
  To be in:       ntldr 
  Is at offset:   +19A44h, and A1 located at +19A51h 



Bootkits in the Wild   8 

  Ntoskrnl is scanned for the following code patterns: 
 
    + 6A 4B 6A 19 89/E8 ?? ?? ?? ?? ?? ?? E8/?? 
      Ntoskrnl +01CE87E0h 
      Memory   +80683EC9h 
 
    + E8 ?? ?? ?? ?? 84 C0 
      Ntoskrnl +01CE87F3h         Ntoskrnl +1CE87F8h 
      Memory   +80683ED8h         Memory   +80683EDDh 

 
Yes, these signatures are the magic behind Mebroot. Take the knowledge, use it. 

 

The source code of Mebroot is available to the public [5]. 

Bootkits in the Wild 

 

There are a variety of usage methods of bootkits: 

 

Sinowal Stealing banking information $$$ 

Kon-Boot Bypassing Windows logon 

Stoned.A Keeping the user happy with text and sound messages :) 

Vista Loader Using AntiWPA 

 
A very good example of using Stoned is the extraction of the unpacked driver of 

Sinowal. It traces memory operations and monitors the unpacking of Sinowal and 

writes out the unpacked driver. The Sinowal Extractor uses the Stoned Bootkit to 

get loaded and to install hooks to ntoskrnl by overwriting export RVAs. 
 

Stoned Bootkit is interesting for: 

 
 Security Researchers (AV industry) 

 Law enforcement agencies – Stoned bypasses full volume encryption 

 Black Hats, Stoned can be used for malware to get loaded (undetected!) to 
the Windows kernel for any Windows OS (gaining full rights, staying under 

the radar..) 

 Home & personal use, bypassing Windows logon and Anti Windows Product 

Activation 
 

A free development framework of Stoned is available on its project site [7]. 

Anti Windows Product Activation 

 
In the wild there are some different Anti Windows Product Activation (AntiWPA) 

methods available; I will discuss the most interesting and sophisticated one here 

(others are time stopper, re-arm and some other techniques). 
 

Microsoft has a secret arrangement with OEM hardware manufacturers to include a 

secret additional ACPI table to identify the system as OEM and activating it without 
any need of online activation. The background is that they can ship out PCs without 



Anti Windows Product Activation   9 

activating every single one online, which was previously handled by using corporate 

keys (which do not exist for Vista and 7 in the same way anymore). 

 
The list of hardware manufacturers include: Acer, ASUS, Dell, Fujitsu Siemens, 

Gateway, HP, Lenovo, Medion, NEC, Sony, Sotec, Toshiba, MSI 

 
Microsoft is using SLP 2.0 (System Locked Preinstallation) technology for activation 

process of OEM (Original Equipment Manufacturer) edition of Windows Vista on 

branded PC. One of the requirement to activate Windows Vista with OEM product 

key is the existence of SLP public key and SLP marker which stored in SLIC 
(Software Licensing Internal Code) table in ACPI. 

 Betalog.com, [8] 

 
When activating Windows Vista with an OEM license it checks whether the SLIC 

table is present and uses it together with a digital certificate. There is no public 

description available of this SLIC table, not even any confirmation in any official 
ACPI document. However, there exists a source code file (actbl1.h) from Intel 

(which is also part of the arrangement) that reveals that table: 

 
* Name: actbl1.h - Additional ACPI table definitions 
 
 * Copyright (C) 2000 - 2008, Intel Corp. 
 * All rights reserved. 
 
#define ACPI_SIG_SLIC           "SLIC"  /* Software Licensing 
Description Table */ 

 
According to the Advanced Configuration and Power Interface specification (chapter 

“ACPI Software Programming Model”) there is the Root System Description Pointer 

(RSDP) structure that is set up by the firmware (= BIOS) and contains the address 
of the Extended System Description Table (XSDT) which references other 

description tables. It is supposed that the XSDT also contains a pointer to the SLIC 

table, so this is the point where we have to look and inject the table at. 
 

The XSDT contains an array with pointers to those tables. Each system description 

table is built up from a header DESCRIPTION_HEADER and of its data following. It is 

easy to find the RSDP and so on the XSDT, the RSDP is statically pointed to by a 
variable at 40Eh in memory (excerpt from the ACPI documentation):  

 
The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA 
systems, the EBDA can be found in the two-byte location 40:0Eh on the 
BIOS data area. The BIOS read-only memory space between 0E0000h and 
0FFFFFh. 

 

RSDP + 24 points to the XSDT, and XSDT +36 contains an array with pointers to 

the description tables. So all tables are revealed – and where to add the SLIC table. 
There is software available that lists the ACPI tables (and the contents of the 

DESCRIPTION_HEADER), the particular SLIC table reveals following information: 

 
ACPI Signature SLIC 
Table Description Software Licensing Description Table 



Anti Windows Product Activation   10 

Memory Address 7FEE8F30h 
Table Length 374 bytes 
OEM ID _ASUS_ 
OEM Table ID Notebook 
OEM Revision 11000624h 
Creator ID MSFT 
Creator Revision 00000097h 

 

Putting that information together, only the SLIC table has to be added, and all the 
other ACPI tables are well documented. The SLIC table contains the public key and 

the certificate must match to the SLIC table data. If both the SLIC table and the 

certificate are present, Windows Vista and 7 will accept the OEM key and no internet 

connection is necessary for activation =). It is as simple as that. 
 

The SLIC.bin file contains the basic SLIC table (always 374 bytes). Following 

certificates and OEM IDs are necessary (must be patched to SLIC table +CCh): 

 

Acer ACRSYSACRPRDCT acer.xml 

ASUS _ASUS_Notebook asus.xrm-ms 

DELL DELL  M07      dell.xrm-ms 

Fujitsu Siemens FSC   PC        

Gateway GATEWASYSTEM   gateway.xrm-ms 

HP HPQOEMSLIC-MPC hp.xrm-ms 

Lenovo LENOVOTC-2P    lenovo.xrm-ms 

Medion MEDIONMEDIONAG  

NEC NEC ND000146   nec.xrm-ms 

Sony Sony  VAIO     sony.xmr-ms 

Sotec SOTEC SOTECDT  

Toshiba TOSQCITOSQCI00  

 

The OEM IDs are padded with white spaces (20h) and zeros (00h) to fit to 14 
characters. These OEM tables are a very nice idea; however it has not been publicly 

documented. Security by obscurity is not a good idea, especially here where it 

reveals the possibility of modifying and adding the SLIC table at runtime. 
 

The SLIC table for my DELL Notebook: 

 
00000000  53 4C 49 43 76 01 00 00 01 47 44 45 4C 4C 20 20  SLICv....GDELL   
00000010  4D 30 37 20 20 20 20 00 12 0C D6 27 41 53 4C 20  M07    ...Ö'ASL  
00000020  61 00 00 00 00 00 00 00 9C 00 00 00 06 02 00 00  a.......œ....... 
00000030  00 24 00 00 52 53 41 31 00 04 00 00 01 00 01 00  .$..RSA1........ 
00000040  7F F6 C1 05 BE 5C 57 63 A5 8A 68 F3 6E 8F 06 FA  .öÁ.¾\Wc¥Šhón..ú 
00000050  AF B4 9F 68 82 23 EC 50 40 5A 73 7F EC E4 07 CB  ¯´Ÿh‚#ìP@Zs.ìä.Ë 
00000060  DC 25 1A 9C E3 E3 66 11 E0 A5 98 06 C5 80 0A FA  Ü%.œããf.à¥˜.Å€.ú 
00000070  42 93 86 98 E7 D5 1B D4 D7 3A A4 0B EE E2 7D BE  B“†˜çÕ.Ô×:¤.îâ}¾ 
00000080  5F 5B 15 0C AB D0 21 DE BF E9 B5 6E A4 57 B9 8C  _[..«Ð!Þ¿éµn¤W¹Œ 
00000090  0C D2 BA 3A 69 30 76 94 71 A2 64 D7 4C D8 85 BF  .Òº:i0v”q¢d×LØ…¿ 
000000A0  DF A5 6A C8 DC 45 D5 4D 8C B8 8C 05 2F FC 2E 23  ß¥jÈÜEÕMŒ¸Œ./ü.# 
000000B0  C4 29 C5 6F 3F 29 6C 6D 57 79 0E B6 75 ED 21 95  Ä)Åo?)lmWy.¶uí!• 
000000C0  01 00 00 00 B6 00 00 00 00 00 02 00 44 45 4C 4C  ....¶.......DELL 
000000D0  20 20 4D 30 37 20 20 20 20 00 57 49 4E 44 4F 57    M07    .WINDOW 
000000E0  53 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00  S .............. 
000000F0  00 00 00 00 00 00 51 E9 A5 CD 35 30 91 B0 9B C0  ......Qé¥Í50„°›À 
00000100  CE 05 FA 26 B5 43 29 40 1C 13 16 EF E3 BF 17 2F  Î.ú&µC)@...ïã¿./ 



Conclusion   11 

00000110  BD 3B 99 B5 6E 23 49 F7 97 BC ED FF C9 4A 95 F4  ½;™µn#I÷—¼íÿÇJ•ô 
00000120  A5 CD 33 0B 40 2E C8 E1 8B E6 8F B6 74 8E 94 43  ¥Í3.@.Èá‹æ.¶tŽ”C 
00000130  E0 2F B6 CE 53 F0 09 3D B4 18 0F 44 23 10 64 F3  à/¶ÎSð.=´..D#.dó 
00000140  74 06 2E 1D 00 71 13 6A C7 C9 9E 82 CB 71 09 B1  t....q.jÆÇž‚Ëq.± 
00000150  9E 42 5A 7D F3 F8 CC D1 FD 22 90 BF 37 3E 2C 68  žBZ}óøÌÈý".¿7>,h 
00000160  BB 30 FF 84 0F B5 2B B3 C0 7A 71 44 C5 EB 13 15  »0ÿ„.µ+³ÀzqDÅë.. 
00000170  C3 CA 66 1B 80 2E                                ÃÊf.€. 

 

You see there clearly the “RSA1” keyword, which  means that the RSA algorithm is 
used with the public key following from 40h up to C0h; so the size of the key = 80h 

= 128 bytes = 1024 bit. The OEM identifier is stored at CCh up to D9h. 

 
A secure way would be using the TPM to verify the startup, which implies that the 

startup was not hooked and thus no modification of any ACPI table occurred. There 

is the program Vista Loader in the wild which can be considered as a bootkit using 
this AntiWPA technique. It adds add runtime the SLIC tale to the BIOS (the BIOS is 

writable at runtime in memory), and spoofs an OEM BIOS which allows using the 

OEM key together with the certificate. 

Conclusion 

 

Bootkits are currently getting more and more attention. The security flaw is by 

design, there is no fix and it cannot be fixed. However the computer’s startup can 

be verified by using the Trusted Platform Module in connection with full volume 
encryption, which would break down bootkits. If the bootkit was detected (using 

TPM) and the key for full volume decryption cannot be unlocked then the OS will not 

be able to start (and thus the system useless). There is quite much potential left in 
bootkits, so I am sure that we will see a lot of movement in this field in the future. 

 

The next target of Stoned is to add Linux kernel support and for me to do research 

work with the Trusted Platform Module. There was once TPMkit by Nitin & Vipin 
Kumar which should be presented at Black Hat USA 2007, however, which has been 

withdrawn from there by the authors for unknown purposes. 

 



 

References 

 

[1] Your Computer is Now Stoned (...Again!): The Rise of MBR Rootkits 
 Elia Florio (Symantec) and Kimmo Kasslin (F-Secure) 

http://www.symantec.com/content/en/us/enterprise/media/security_respons

e/whitepapers/your_computer_is_now_stoned.pdf 

 
[2] VBootkit vs. Bitlocker in TPM mode 

 Robert Hensing's Blog 

http://blogs.technet.com/robert_hensing/archive/2007/04/05/vbootkit-vs-
bitlocker-in-tpm-mode.aspx 

 

[3] An Analysis of the Windows PE Checksum Algorithm 

 Jeffrey Walton 
 http://www.codeproject.com/KB/cpp/PEChecksum.aspx 

 

[4] Analysis of Sinowal 
 Paul Kleissner =) loof 

 http://web17.webbpro.de/index.php?page=analysis-of-sinowal 

 
[5] Mebroot Source Code 

http://web17.webbpro.de/downloads/Sinowal%20Article/Sinowal%20Source

%20Code.zip 

 
[6] Anti-Sinowal strategies and Sinowal Bootkit Extractor 

 www.bootkitanalytics.com 

 
[7] Stoned Bootkit Project Site 

 www.stoned-vienna.com 

 
[8] Improved Way to Add SLIC (SLP 2.0) Table into BIOS ACPI to Activate 

Windows Vista OEM 

 http://www.betalog.com/read.php/152.htm 

 
 

 

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/your_computer_is_now_stoned.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/your_computer_is_now_stoned.pdf
http://blogs.technet.com/robert_hensing/archive/2007/04/05/vbootkit-vs-bitlocker-in-tpm-mode.aspx
http://blogs.technet.com/robert_hensing/archive/2007/04/05/vbootkit-vs-bitlocker-in-tpm-mode.aspx
http://www.codeproject.com/KB/cpp/PEChecksum.aspx
http://web17.webbpro.de/index.php?page=analysis-of-sinowal
http://web17.webbpro.de/downloads/Sinowal%20Article/Sinowal%20Source%20Code.zip
http://web17.webbpro.de/downloads/Sinowal%20Article/Sinowal%20Source%20Code.zip
http://www.bootkitanalytics.com/
http://www.stoned-vienna.com/
http://www.betalog.com/read.php/152.htm

