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The p-rank of the Sp(4,p) Generalized Quadrangle

D. de Caen1 and G. E. Moorhouse2

Abstract. We determine the p-rank of the point-line incidence matrix
of the generalized quadrangle of type Sp(4, p) where p is prime.
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1. Introduction

Let P be a finite generalized quadrangle of order s (i.e. with parameters s = t), and let N

be a point-line incidence matrix of P. Thus N is a square (0, 1)-matrix of size (s2+1)(s+1),

and

NN� = (s+ 1)I + A,

where A is the adjacency matrix of the collinearity graph of P. We recall that the latter

graph is strongly regular and

A2 = s(s+ 1)I + (s− 1)A+ (s+ 1)(J − I − A)

where J is the all-1 matrix, from which we find that A has eigenvalues s(s + 1), s − 1,

−s− 1 with multiplicities 1, 1
2
s(s+1)2, 1

2
s(s2 +1) respectively, and NN� has eigenvalues

(s+ 1)2, 2s, 0 with these same multiplicities. This proves

1.1 Lemma. rankQN = 1
2
s(s+ 1)2 + 1. In particular, rankK N ≤ 1

2
s(s+ 1)2 + 1 for any

field K.

We are interested in a determination of rankF N for a finite classical GQ (i.e. one of

type Sp(4, F ); or its dual, of type O(5, F )), which is to say, the rank of N in the natural

characteristic. In this direction, Sastry and Sin [6] have obtained

rank2N = 1 +
(
(1 +

√
17)/2

)2e +
(
(1−

√
17)/2

)2e

for every classical GQ of order q = 2e. Our main result, proved in Section 3, is that for

classical GQ’s of prime order, the upper bound of Lemma 1.1 is attained:
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1.2 Theorem. If N is the incidence matrix of a generalized quadrangle of type Sp(4, p)

or O(5, p) where p is prime, then rankpN = 1
2p(p+ 1)2 + 1.

We remark that for classical GQ’s of odd order q, Bagchi, Brouwer and Wilbrink show

that

rank2N = 1
2
q(q + 1)2 + 1;

see [1, Thm.9.4(ii)]. Note that this is the rank in characteristic 2 rather than the natural

characteristic. It is therefore reasonable to expect that for a classical GQ of prime order

p, the invariant factors of N should probably consist of 1
2p(p+ 1)2+1 ones and 1

2p(p
2 +1)

zeroes; and this we have verified for p = 2, 3, 5 by computer.

We remark that the incidence matrices of nonclassical objects typically have higher

rank (in the natural characteristic) than their classical counterparts. For example, one

nonclassical GQ of order 8 is known, denoted T2(O) where O is the essentially unique oval

in PG(2, 8) other than a conic; see [7, p.393]. Its 2-rank is 310, which lies between 298

(the 2-rank of the Sp(4, 8) quadrangle) and 325, the upper bound of Lemma 1.1.

No nonclassical GQ’s of odd order are known. If a nonclassical GQ of odd prime order

p exists, which seems unlikely, its p-rank cannot exceed that of a classical GQ of the same

order.

2. Polynomials

(DOM: HERE I GIVE MORE GENERAL NOTATION AND RESULTS THAN RE-

QUIRED IN SECTION 3, ANTICIPATING A GENERALIZATION OF THEOREM 1.2

TO PRIME POWERS)

Following the notation of [2] and [5], let

X = (X0, X1, . . . , Xn), an (n+ 1)-tuple of indeterminates (n ≥ 1);

F a finite field of order q = pe;

F [X ] the ring of polynomials in X0, X1, . . . , Xn with coefficients in F ;

Fd[X ] the d-homogeneous component of F [X ].

Thus dimFd[X ] =
(

n+d
n

)
. Let �(X) = a0X0 + a1X1 + · · ·+ anXn ∈ F1[X ] where ak ∈ F ,

and for a fixed exponent d ≥ 0, consider the multinomial expansion

�(X)d =
∑

i

(
d

i

)
aiX i
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where the sum extends over all (n+1)-tuples i = (i0, i1, . . . , in) of nonnegative integers such

that i0 + i1 + · · ·+ in = d. Here we abbreviate ai := ai0
0 a

i1
1 · · ·ain

n , X i := X i0
0 X

i1
1 · · ·X in

n ,

and the multinomial coefficient(
d

i

)
:=

(
d

i0, i1, . . . , in

)
=

d!
i0!i1! · · · in! .

Following [2] and [5], we let F †
d [X ] denote the subspace of Fd[X ] spanned by all monomials

X i with i0+ i1+ · · ·+ in = d such that the multinomial coefficient
(

d
i

)
is not divisible by p.

Thus the polynomials �(X)d for �(X) ∈ F1[X ] clearly lie in F †
d [X ]. By Lucas’ Theorem (see

[2], [3] or [5]), dimF †
d [X ] =

∏
k

(
n+dk

n

)
where d =

∑
k dkp

k, 0 ≤ dk ≤ p− 1. Although the

following is not new (cf. [2, Cor.3.2]), for the sake of completeness we include a bare-bones

proof here, modulo a few details found in [2].

2.1 Lemma. Let 0 ≤ d ≤ q − 1. The vector space F †
d [X ] is spanned by the polynomials

�(X)d for �(X) ∈ F1[X ]. In particular for d ≤ p− 1, the polynomials �(X)d span Fd[X ].

Proof. Let V be the subspace of F †
d [X ] spanned by the polynomials �(X)d for �(X) ∈ F1[X ].

Then dimV = pn+1 −dimU where U is the vector space of all pn+1-tuples (ca : a ∈ Fn+1)

with ca = ca0,a1,...,an
∈ F such that

∑
a ca(a0X0+a1X1+· · ·+anXn)d = 0. Thus (ca)a ∈ U

iff

0 =
∑

a

ca
∑

i

(
d

i

)
aiX i =

∑
i

(
d

i

)[∑
a

caa
i
]
X i.

Thus (ca)a ∈ U iff

(2.1.1)
∑
a
aica = 0

for all i = (i0, i1, . . . , in) such that
(

d
i

)
is not divisible by p. By the remarks above, the

number of such i is given by
∏

k

(
n+dk

n

)
where the dk are the p-ary digits of d, defined

as above. Thus (2.1.1) is a linear system of
∏

k

(
n+dk

n

)
equations in pn+1 unknowns ca.

Since each ik ≤ d ≤ q − 1, the coefficient matrix of this linear system has full rank
(

n+d
n

)
;

see [2, Lemma 2.3]. Thus dimU = pn+1 − ∏
k

(
n+dk

n

)
, whence dimV =

∏
k

(
n+dk

n

)
and

V = F †
d [X ].

The following slight improvement of Lemma 2.1 will be useful later.
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2.2 Corollary. Let 0 ≤ d ≤ q−1. The vector space F †
d [X ] is spanned by the polynomials

�(X)d for �(X) ∈ F1[X ] of the form �(X) = X0 + a1X1 + a2X2 + · · ·+ anXn, ak ∈ F .

Proof. We use the well-known fact that

∑
λ∈F

λd =
{

0, 0 ≤ d ≤ q − 2;
−1, d = q − 1.

In order to prove the corollary, it suffices to show that for 0 ≤ d ≤ q − 1, the polynomial

f(X)d is a linear combination of the polynomials (X0 +λf(X))d for λ ∈ F , where f(X) =

a1X1 + a2X2 + · · ·+ anXn. Indeed

∑
λ∈F

λq−1−d(X0 + λf(X))d =
∑

λ∈F

d∑
k=0

(d
k

)
λq−1−kXkf(X)d−k

=
d∑

k=0

(d
k

)[ ∑
λ∈F

λq−1−k
]
Xkf(X)d−k = −f(X)d.

3. Codes Spanned by Lines of PG(3,p)

We now specialize the notation of Section 2 to the case n = 3 and F is a field of prime

order p. Let P1, P2, . . . , PN be the N = (p2 + 1)(p + 1) points of PG(3, F ). For every

polynomial f(X) ∈ F [X ], all of whose homogeneous components have degree divisible by

p− 1, the values f(Pi) are well-defined and so we may define

φ(f) := (f(P1), f(P2), . . . , f(PN)) ∈ FN .

The code spanned by the (characteristic vectors of the) planes of PG(3, F ) is simply

C2 :=
〈
φ(1− �(X)p−1) : �(X) ∈ F1[X ]

〉
F
≤ FN .

Note that for nonzero �(X) ∈ F1[X ], the vector φ(1− �(X)p−1) is the characteristic vector

of the plane on which �(X) vanishes. For �(X) = 0 we obtain φ(1) = (1, 1, . . . , 1), which is

the sum of the characteristic vectors of all planes. The code spanned by the lines is

C1 :=
〈
φ((1− �(X)p−1)(1−m(X)p−1)) : �(X), m(X) ∈ F1[X ]

〉
F
≤ FN .

Note that if �(X) and m(X) are linearly independent, then the line on which they vanish

simultaneously has characteristic vector φ((1−�(X)p−1)(1−m(X)p−1)). If �(X) andm(X)

are linearly dependent, then the resulting vector φ((1−�(X)p−1)(1−m(X)p−1)) ∈ C2 ⊆ C1 .

4



It follows easily from Lemma 2.1 that the polynomials (1 − �(X)p−1)(1 −m(X)p−1)

span the space of polynomials

V := F ⊕ Fp−1[X ]⊕ F2p−2[X ].

Moreover, the map φ : V → C1 is linear and surjective. Its kernel is V0 ⊕ V1 ⊕ V2 ⊕ V3

where Vk = (Xp
k −Xk)Fp−2[X ]. Thus

dim C1 = 1 +
(
p+ 2
3

)
+

(
2p+ 1

3

)
− 4

(
p+ 1
2

)
= 1

6(p+ 1)(5p2 − 2p+ 6),

in agreement with Hamada’s formula; see [3, Thm.4.8]. We remark that this argument

shows that as an FG-module for G = GL(n+1, p), C1 has a filtration with quotients

given by F , Fp−1[X ], and F2p−2[X ]/F †
2p−2[X ]; this is because F †

2p−2[X ] is spanned by the

monomials of degree 2p− 2 divisible by some Xp
k .

We now prove Theorem 1.2, considering only a generalized quadrangle of type Sp(4, p).

(The GQ of type O(5, p) is its dual.) We may choose

B(u, v) = u0v2 + u1v3 − u2v0 − u3v1

for our nondegenerate alternating bilinear form. The code spanned by the (characteristic

vectors of the) totally isotropic lines with respect to B is C := φ(U) where U ≤ V is the

subspace spanned by all polynomials of the form (1 − �(X)p−1)(1 −m(X)p−1) such that

the simultaneous zeroes of �(X) and m(X) form a totally isotropic line.

Order the monomials in F [X ] by graded reverse lex order (cf. [4]). This is the total

order on monomials specified as follows. We have X i < Xj whenever i0 + · · · + i3 <
j0 + · · ·+ j3. For monomials of the same degree, we have

X i0
0 X

i1
1 X

i2
2 X

i3
3 < X

j0
0 X

j1
1 X

j2
2 X

j3
3 iff

{ i3<j3, or
i2<j2 & i3=j3, or
i1<j1 & i2=j2 & i3=j3.

For each nonzero polynomial f(X), the initial monomial of f(X), denoted Init(f(X)), is

the largest monomial appearing in f(X). Gaussian elimination shows that the dimension

of U equals the number of initial monomials of the nonzero polynomials in U . Moreover

since the kernel of φ : U → C equals U ∩ (
∑

k Vk),

dim C =
∣∣{Init(f(X)) : 0 �= f(X) ∈ U, Init(f(X)) is not divisible by any Xp

k}
∣∣.

Clearly F ⊕ Fp−1[X ] ⊆ U , so that dim C ≥ 1 +
(

p+2
3

)
. In view of the upper bound given

by Lemma 1.1, it suffices to find 1
2
p(p+1)2 +1−1− (

p+2
3

)
= 1

6
p(p+1)(2p+1) monomials

of degree 2p− 2, none of which are divisible by any Xp
k , occurring as initial monomials of

polynomials in U .
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3.1 Lemma. The monomials Xj0
0 X

j1
1 X

j2
2 X

j3
3 for j0 + · · ·+ j3 = 2p− 2, j0 + j2 ≤ p− 1,

occur as initial monomials of polynomials in U .

Proof. Let α, β, γ ∈ F . Then

〈(−α, 0, 1, γ), (γ,−1, 0, β)〉F

is a totally singular line of PG(3, p), equal to the set of common zeroes of

�(X) = X0 + γX1 + αX2 and m(X) = βX1 − γX2 +X3 .

Two applications of Corollary 2.2 show that

U ⊇ 〈
[(X0 + γX1) + αX2]p−1[βX1 + (X3 − γX2)]p−1 : α, β, γ ∈ F〉

F

=
〈
(X0 + γX1)i0X i1

1 X
i2
2 (X3 − γX2)i3 : i0 + i2 = i1 + i3 = p− 1, γ ∈ F〉

F
.

Now

(X0 + γX1)i0X i1
1 X

i2
2 (X3 − γX2)i3 = (X0 + γX1)i0X i1

1 X
i2
2 X

i3
3 +

(
linear combinations

of monomials < X i0
0 X

i1
1 X

i2
2 X

i3
3

)
.

Another application of Corollary 2.2 shows that the monomials X i0−k
0 X i1+k

1 X i2
2 X

i3
3 for

i0 + i2 = i1 + i3 = p− 1, 0 ≤ k ≤ i0, occur as initial monomials of members of U . These

monomials are the same as those listed in the statement of the lemma.

Among the monomials listed in Lemma 3.1, those which are not divisible by any Xp
k

are the monomials

Xj0
0 X

j1
1 X

d−j0
2 X2p−2−d−j1

3 , 0 ≤ j0 ≤ d ≤ p− 1, p− 1− d ≤ j1 ≤ p− 1.

The number of such monomials is

p−1∑
d=0

(d+ 1)2 = 1
6
p(p+ 1)(2p+ 1).

By the preceding arguments, this proves Theorem 1.2.
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