# The $p$-rank of the $S p(4, p)$ Generalized Quadrangle 

D. de Caen ${ }^{1}$ and G. E. Moorhouse ${ }^{2}$


#### Abstract

We determine the $p$-rank of the point-line incidence matrix of the generalized quadrangle of type $S p(4, p)$ where $p$ is prime.


Keywords: p-rank, generalized quadrangle

## 1. Introduction

Let $\mathcal{P}$ be a finite generalized quadrangle of order $s$ (i.e. with parameters $s=t$ ), and let $N$ be a point-line incidence matrix of $\mathcal{P}$. Thus $N$ is a square $(0,1)$-matrix of size $\left(s^{2}+1\right)(s+1)$, and

$$
N N^{\top}=(s+1) I+A,
$$

where $A$ is the adjacency matrix of the collinearity graph of $\mathcal{P}$. We recall that the latter graph is strongly regular and

$$
A^{2}=s(s+1) I+(s-1) A+(s+1)(J-I-A)
$$

where $J$ is the all-1 matrix, from which we find that $A$ has eigenvalues $s(s+1), s-1$, $-s-1$ with multiplicities $1, \frac{1}{2} s(s+1)^{2}, \frac{1}{2} s\left(s^{2}+1\right)$ respectively, and $N N^{\top}$ has eigenvalues $(s+1)^{2}, 2 s, 0$ with these same multiplicities. This proves
1.1 Lemma. $\operatorname{rank}_{\mathbb{Q}} N=\frac{1}{2} s(s+1)^{2}+1$. In particular, $\operatorname{rank}_{K} N \leq \frac{1}{2} s(s+1)^{2}+1$ for any field $K$.

We are interested in a determination of $\operatorname{rank}_{F} N$ for a finite classical GQ (i.e. one of type $S p(4, F)$; or its dual, of type $O(5, F)$ ), which is to say, the rank of $N$ in the natural characteristic. In this direction, Sastry and Sin [6] have obtained

$$
\operatorname{rank}_{2} N=1+((1+\sqrt{17}) / 2)^{2 e}+((1-\sqrt{17}) / 2)^{2 e}
$$

for every classical GQ of order $q=2^{e}$. Our main result, proved in Section 3, is that for classical GQ's of prime order, the upper bound of Lemma 1.1 is attained:

[^0]1.2 Theorem. If $N$ is the incidence matrix of a generalized quadrangle of type $S p(4, p)$ or $O(5, p)$ where $p$ is prime, then $\operatorname{rank}_{p} N=\frac{1}{2} p(p+1)^{2}+1$.

We remark that for classical GQ's of odd order $q$, Bagchi, Brouwer and Wilbrink show that

$$
\operatorname{rank}_{2} N=\frac{1}{2} q(q+1)^{2}+1 ;
$$

see $[1$, Thm.9.4(ii)]. Note that this is the rank in characteristic 2 rather than the natural characteristic. It is therefore reasonable to expect that for a classical GQ of prime order $p$, the invariant factors of $N$ should probably consist of $\frac{1}{2} p(p+1)^{2}+1$ ones and $\frac{1}{2} p\left(p^{2}+1\right)$ zeroes; and this we have verified for $p=2,3,5$ by computer.

We remark that the incidence matrices of nonclassical objects typically have higher rank (in the natural characteristic) than their classical counterparts. For example, one nonclassical GQ of order 8 is known, denoted $T_{2}(\mathcal{O})$ where $\mathcal{O}$ is the essentially unique oval in $P G(2,8)$ other than a conic; see [7, p.393]. Its 2-rank is 310 , which lies between 298 (the 2-rank of the $S p(4,8)$ quadrangle) and 325 , the upper bound of Lemma 1.1.

No nonclassical GQ's of odd order are known. If a nonclassical GQ of odd prime order $p$ exists, which seems unlikely, its $p$-rank cannot exceed that of a classical GQ of the same order.

## 2. Polynomials

(DOM: HERE I GIVE MORE GENERAL NOTATION AND RESULTS THAN REQUIRED IN SECTION 3, ANTICIPATING A GENERALIZATION OF THEOREM 1.2 TO PRIME POWERS)

Following the notation of [2] and [5], let
$X=\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, an $(n+1)$-tuple of indeterminates $(n \geq 1)$;
$F$ a finite field of order $q=p^{e}$;
$F[X]$ the ring of polynomials in $X_{0}, X_{1}, \ldots, X_{n}$ with coefficients in $F$;
$F_{d}[X]$ the $d$-homogeneous component of $F[X]$.
Thus $\operatorname{dim} F_{d}[X]=\binom{n+d}{n}$. Let $\ell(X)=a_{0} X_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n} \in F_{1}[X]$ where $a_{k} \in F$, and for a fixed exponent $d \geq 0$, consider the multinomial expansion

$$
\ell(X)^{d}=\sum_{i}\binom{d}{i} a^{i} X^{i}
$$

where the sum extends over all $(n+1)$-tuples $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ of nonnegative integers such that $i_{0}+i_{1}+\cdots+i_{n}=d$. Here we abbreviate $a^{i}:=a_{0}^{i_{0}} a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}, X^{i}:=X_{0}^{i_{0}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$, and the multinomial coefficient

$$
\binom{d}{i}:=\binom{d}{i_{0}, i_{1}, \ldots, i_{n}}=\frac{d!}{i_{0}!i_{1}!\cdots i_{n}!} .
$$

Following [2] and [5], we let $F_{d}^{\dagger}[X]$ denote the subspace of $F_{d}[X]$ spanned by all monomials $X^{i}$ with $i_{0}+i_{1}+\cdots+i_{n}=d$ such that the multinomial coefficient $\binom{d}{i}$ is not divisible by $p$. Thus the polynomials $\ell(X)^{d}$ for $\ell(X) \in F_{1}[X]$ clearly lie in $F_{d}^{\dagger}[X]$. By Lucas' Theorem (see [2], [3] or [5]), $\operatorname{dim} F_{d}^{\dagger}[X]=\prod_{k}\binom{n+d_{k}}{n}$ where $d=\sum_{k} d_{k} p^{k}, 0 \leq d_{k} \leq p-1$. Although the following is not new (cf. [2, Cor.3.2]), for the sake of completeness we include a bare-bones proof here, modulo a few details found in [2].
2.1 Lemma. Let $0 \leq d \leq q-1$. The vector space $F_{d}^{\dagger}[X]$ is spanned by the polynomials $\ell(X)^{d}$ for $\ell(X) \in F_{1}[X]$. In particular for $d \leq p-1$, the polynomials $\ell(X)^{d}$ span $F_{d}[X]$.

Proof. Let $V$ be the subspace of $F_{d}^{\dagger}[X]$ spanned by the polynomials $\ell(X)^{d}$ for $\ell(X) \in F_{1}[X]$. Then $\operatorname{dim} V=p^{n+1}-\operatorname{dim} U$ where $U$ is the vector space of all $p^{n+1}$-tuples $\left(c_{a}: a \in F^{n+1}\right)$ with $c_{a}=c_{a_{0}, a_{1}, \ldots, a_{n}} \in F$ such that $\sum_{a} c_{a}\left(a_{0} X_{0}+a_{1} X_{1}+\cdots+a_{n} X_{n}\right)^{d}=0$. Thus $\left(c_{a}\right)_{a} \in U$ iff

$$
0=\sum_{a} c_{a} \sum_{i}\binom{d}{i} a^{i} X^{i}=\sum_{i}\binom{d}{i}\left[\sum_{a} c_{a} a^{i}\right] X^{i}
$$

Thus $\left(c_{a}\right)_{a} \in U$ iff

$$
\text { (2.1.1) } \quad \sum_{a} a^{i} c_{a}=0
$$

for all $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ such that $\binom{d}{i}$ is not divisible by $p$. By the remarks above, the number of such $i$ is given by $\prod_{k}\binom{n+d_{k}}{n}$ where the $d_{k}$ are the $p$-ary digits of $d$, defined as above. Thus (2.1.1) is a linear system of $\prod_{k}\binom{n+d_{k}}{n}$ equations in $p^{n+1}$ unknowns $c_{a}$. Since each $i_{k} \leq d \leq q-1$, the coefficient matrix of this linear system has full rank $\binom{n+d}{n}$; see [2, Lemma 2.3]. Thus $\operatorname{dim} U=p^{n+1}-\prod_{k}\binom{n+d_{k}}{n}$, whence $\operatorname{dim} V=\prod_{k}\binom{n+d_{k}}{n}$ and $V=F_{d}^{\dagger}[X]$.

The following slight improvement of Lemma 2.1 will be useful later.
2.2 Corollary. Let $0 \leq d \leq q-1$. The vector space $F_{d}^{\dagger}[X]$ is spanned by the polynomials $\ell(X)^{d}$ for $\ell(X) \in F_{1}[X]$ of the form $\ell(X)=X_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}, a_{k} \in F$.

Proof. We use the well-known fact that

$$
\sum_{\lambda \in F} \lambda^{d}= \begin{cases}0, & 0 \leq d \leq q-2 \\ -1, & d=q-1\end{cases}
$$

In order to prove the corollary, it suffices to show that for $0 \leq d \leq q-1$, the polynomial $f(X)^{d}$ is a linear combination of the polynomials $\left(X_{0}+\lambda f(X)\right)^{d}$ for $\lambda \in F$, where $f(X)=$ $a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$. Indeed

$$
\begin{aligned}
\sum_{\lambda \in F} \lambda^{q-1-d}\left(X_{0}+\lambda f(X)\right)^{d} & =\sum_{\lambda \in F} \sum_{k=0}^{d}\binom{d}{k} \lambda^{q-1-k} X^{k} f(X)^{d-k} \\
& =\sum_{k=0}^{d}\binom{d}{k}\left[\sum_{\lambda \in F} \lambda^{q-1-k}\right] X^{k} f(X)^{d-k}=-f(X)^{d}
\end{aligned}
$$

## 3. Codes Spanned by Lines of $P G(3, p)$

We now specialize the notation of Section 2 to the case $n=3$ and $F$ is a field of prime order $p$. Let $P_{1}, P_{2}, \ldots, P_{N}$ be the $N=\left(p^{2}+1\right)(p+1)$ points of $P G(3, F)$. For every polynomial $f(X) \in F[X]$, all of whose homogeneous components have degree divisible by $p-1$, the values $f\left(P_{i}\right)$ are well-defined and so we may define

$$
\phi(f):=\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{N}\right)\right) \in F^{N} .
$$

The code spanned by the (characteristic vectors of the) planes of $P G(3, F)$ is simply

$$
\mathcal{C}_{2}:=\left\langle\phi\left(1-\ell(X)^{p-1}\right): \ell(X) \in F_{1}[X]\right\rangle_{F} \leq F^{N}
$$

Note that for nonzero $\ell(X) \in F_{1}[X]$, the vector $\phi\left(1-\ell(X)^{p-1}\right)$ is the characteristic vector of the plane on which $\ell(X)$ vanishes. For $\ell(X)=0$ we obtain $\phi(1)=(1,1, \ldots, 1)$, which is the sum of the characteristic vectors of all planes. The code spanned by the lines is

$$
\mathcal{C}_{1}:=\left\langle\phi\left(\left(1-\ell(X)^{p-1}\right)\left(1-m(X)^{p-1}\right)\right): \ell(X), m(X) \in F_{1}[X]\right\rangle_{F} \leq F^{N} .
$$

Note that if $\ell(X)$ and $m(X)$ are linearly independent, then the line on which they vanish simultaneously has characteristic vector $\phi\left(\left(1-\ell(X)^{p-1}\right)\left(1-m(X)^{p-1}\right)\right)$. If $\ell(X)$ and $m(X)$ are linearly dependent, then the resulting vector $\phi\left(\left(1-\ell(X)^{p-1}\right)\left(1-m(X)^{p-1}\right)\right) \in \mathcal{C}_{2} \subseteq \mathcal{C}_{1}$.

It follows easily from Lemma 2.1 that the polynomials $\left(1-\ell(X)^{p-1}\right)\left(1-m(X)^{p-1}\right)$ span the space of polynomials

$$
V:=F \oplus F_{p-1}[X] \oplus F_{2 p-2}[X] .
$$

Moreover, the map $\phi: V \rightarrow \mathcal{C}_{1}$ is linear and surjective. Its kernel is $V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$ where $V_{k}=\left(X_{k}^{p}-X_{k}\right) F_{p-2}[X]$. Thus

$$
\operatorname{dim} \mathcal{C}_{1}=1+\binom{p+2}{3}+\binom{2 p+1}{3}-4\binom{p+1}{2}=\frac{1}{6}(p+1)\left(5 p^{2}-2 p+6\right)
$$

in agreement with Hamada's formula; see [3, Thm.4.8]. We remark that this argument shows that as an $F G$-module for $G=G L(n+1, p), \mathcal{C}_{1}$ has a filtration with quotients given by $F, F_{p-1}[X]$, and $F_{2 p-2}[X] / F_{2 p-2}^{\dagger}[X]$; this is because $F_{2 p-2}^{\dagger}[X]$ is spanned by the monomials of degree $2 p-2$ divisible by some $X_{k}^{p}$.

We now prove Theorem 1.2, considering only a generalized quadrangle of type $S p(4, p)$. (The GQ of type $O(5, p)$ is its dual.) We may choose

$$
B(u, v)=u_{0} v_{2}+u_{1} v_{3}-u_{2} v_{0}-u_{3} v_{1}
$$

for our nondegenerate alternating bilinear form. The code spanned by the (characteristic vectors of the) totally isotropic lines with respect to $B$ is $\mathcal{C}:=\phi(U)$ where $U \leq V$ is the subspace spanned by all polynomials of the form $\left(1-\ell(X)^{p-1}\right)\left(1-m(X)^{p-1}\right)$ such that the simultaneous zeroes of $\ell(X)$ and $m(X)$ form a totally isotropic line.

Order the monomials in $F[X]$ by graded reverse lex order (cf. [4]). This is the total order on monomials specified as follows. We have $X^{i}<X^{j}$ whenever $i_{0}+\cdots+i_{3}<$ $j_{0}+\cdots+j_{3}$. For monomials of the same degree, we have

$$
X_{0}^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}} X_{3}^{i_{3}}<X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} X_{3}^{j_{3}} \quad \text { iff } \quad \begin{cases}i_{3}<j_{3}, & \text { or } \\ i_{2}<j_{2} \& i_{3}=j_{3}, & \text { or } \\ i_{1}<j_{1} \& i_{2}=j_{2} \& i_{3}=j_{3}\end{cases}
$$

For each nonzero polynomial $f(X)$, the initial monomial of $f(X)$, denoted $\operatorname{Init}(f(X))$, is the largest monomial appearing in $f(X)$. Gaussian elimination shows that the dimension of $U$ equals the number of initial monomials of the nonzero polynomials in $U$. Moreover since the kernel of $\phi: U \rightarrow \mathcal{C}$ equals $U \cap\left(\sum_{k} V_{k}\right)$,

$$
\operatorname{dim} \mathcal{C}=\mid\left\{\operatorname{Init}(f(X)): 0 \neq f(X) \in U, \operatorname{Init}(f(X)) \text { is not divisible by any } X_{k}^{p}\right\} \mid
$$

Clearly $F \oplus F_{p-1}[X] \subseteq U$, so that $\operatorname{dim} \mathcal{C} \geq 1+\binom{p+2}{3}$. In view of the upper bound given by Lemma 1.1, it suffices to find $\frac{1}{2} p(p+1)^{2}+1-1-\binom{p+2}{3}=\frac{1}{6} p(p+1)(2 p+1)$ monomials of degree $2 p-2$, none of which are divisible by any $X_{k}^{p}$, occurring as initial monomials of polynomials in $U$.
3.1 Lemma. The monomials $X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{j_{2}} X_{3}^{j_{3}}$ for $j_{0}+\cdots+j_{3}=2 p-2, j_{0}+j_{2} \leq p-1$, occur as initial monomials of polynomials in $U$.

Proof. Let $\alpha, \beta, \gamma \in F$. Then

$$
\langle(-\alpha, 0,1, \gamma),(\gamma,-1,0, \beta)\rangle_{F}
$$

is a totally singular line of $P G(3, p)$, equal to the set of common zeroes of

$$
\ell(X)=X_{0}+\gamma X_{1}+\alpha X_{2} \quad \text { and } \quad m(X)=\beta X_{1}-\gamma X_{2}+X_{3} .
$$

Two applications of Corollary 2.2 show that

$$
\begin{aligned}
U & \supseteq\left\langle\left[\left(X_{0}+\gamma X_{1}\right)+\alpha X_{2}\right]^{p-1}\left[\beta X_{1}+\left(X_{3}-\gamma X_{2}\right)\right]^{p-1}: \alpha, \beta, \gamma \in F\right\rangle_{F} \\
& =\left\langle\left(X_{0}+\gamma X_{1}\right)^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}}\left(X_{3}-\gamma X_{2}\right)^{i_{3}}: i_{0}+i_{2}=i_{1}+i_{3}=p-1, \gamma \in F\right\rangle_{F}
\end{aligned}
$$

Now

$$
\begin{gathered}
\left(X_{0}+\gamma X_{1}\right)^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}}\left(X_{3}-\gamma X_{2}\right)^{i_{3}}=\left(X_{0}+\gamma X_{1}\right)^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}} X_{3}^{i_{3}}+(\text { linear combinations } \\
\text { of monomials } \left.<X_{0}^{i_{0}} X_{1}^{i_{1}} X_{2}^{i_{2}} X_{3}^{i_{3}}\right)
\end{gathered}
$$

Another application of Corollary 2.2 shows that the monomials $X_{0}^{i_{0}-k} X_{1}^{i_{1}+k} X_{2}^{i_{2}} X_{3}^{i_{3}}$ for $i_{0}+i_{2}=i_{1}+i_{3}=p-1,0 \leq k \leq i_{0}$, occur as initial monomials of members of $U$. These monomials are the same as those listed in the statement of the lemma.

Among the monomials listed in Lemma 3.1, those which are not divisible by any $X_{k}^{p}$ are the monomials

$$
X_{0}^{j_{0}} X_{1}^{j_{1}} X_{2}^{d-j_{0}} X_{3}^{2 p-2-d-j_{1}}, \quad 0 \leq j_{0} \leq d \leq p-1, \quad p-1-d \leq j_{1} \leq p-1
$$

The number of such monomials is

$$
\sum_{d=0}^{p-1}(d+1)^{2}=\frac{1}{6} p(p+1)(2 p+1) .
$$

By the preceding arguments, this proves Theorem 1.2.

## References

1. B. Bagchi, A. E. Brouwer and H. A. Wilbrink, 'Notes on binary codes related to the $O(5, q)$ generalized quadrangle for odd $q^{\prime}$, Geom. Dedicata 39 (1991), 339-355.
2. A. Blokhuis and G. E. Moorhouse, 'Some p-ranks related to orthogonal spaces', J. Algebraic Combinatorics 4 (1995), 295-316.
3. A. E. Brouwer and H. A. Wilbrink, 'Block Designs', in Handbook of Incidence Geometry. Foundations and Buildings, ed. F. Buekenhout, North-Holland, Amsterdam and New York, 1994, pp.349-382.
4. D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, 2nd Ed., Springer, New York, 1996.
5. G. E. Moorhouse, 'Some p-ranks related to finite geometric structures', in Mostly Finite Geometries, ed. N. L. Johnson, Marcel-Dekker, 1997, pp.353-364.
6. N. S. N. Sastry and P. Sin, 'The code of a regular generalized quadrangle of even order', preprint.
7. J. A. Thas, 'Generalized Polygons', in Handbook of Incidence Geometry. Foundations and Buildings, ed. F. Buekenhout, North-Holland, Amsterdam and New York, 1994, pp.383-431.

[^0]:    ${ }^{1}$ Dept. of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
    ${ }^{2}$ Dept. of Mathematics, University of Wyoming, Laramie WY, U.S.A.

