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Abstract—Given a collection of documents residing on a disk, 
we develop a new strategy for processing these documents and 
building the inverted files extremely fast. Our approach is 
tailored for a heterogeneous platform consisting of a multicore 
CPU and a highly multithreaded GPU. Our algorithm is based 
on a number of novel techniques including: (i) a high-
throughput pipelined strategy that produces parallel parsed 
streams that are consumed at the same rate by parallel 
indexers; (ii) a hybrid trie and B-tree dictionary data structure 
in which the trie is represented by a table for fast look-up and 
each B-tree node contains string caches;  (iii) allocation of 
parsed streams with frequent terms to CPU threads and the 
rest to GPU threads so as to match the throughput of parsed 
streams; and (iv) optimized CUDA indexer implementation 
that ensures coalesced memory accesses and effective use of 
shared memory. We have performed extensive tests of our 
algorithm on a single node (two Intel Xeon X5560 Quad-core) 
with two NVIDIA Tesla C1060 attached to it, and were able to 
achieve a throughput of more than 262 MB/s on the 
ClueWeb09 dataset. Similar results were obtained for widely 
different datasets. The throughput of our algorithm is superior 
to the best known algorithms reported in the literature even 
when compared to those run on large clusters. 

Keywords- indexer; inverted files; multicore; GPU; pipelined 
and parallel parsing and indexing 

I.  INTRODUCTION 

A critical component of all information retrieval systems 
including web search engines is the set of inverted files 
generated typically from a very large collection of 
documents. A considerable amount of research has been 
conducted to deal with various aspects related to inverted 
files. In this paper, we are primarily concerned with methods 
to generate the inverted files as quickly as possible. All the 
recent fast indexers use the simple MapReduce framework 
on large clusters, which enables quick development of 
parallel algorithms dealing with internet scale datasets 
without having to deal with the complexities of parallel 
programming. Such framework leaves the details of 
scheduling, processor allocation, and communication to the 
underlying run time system, and hence relieves programmers 
from all the extra work related to these details. However 
such an abstraction comes at a significant price in terms of 

performance, especially when using the emerging multicore 
processors. In this paper, we take the different approach that 
does try to exploit the common features present on current 
processors, both general CPUs and GPUs, to obtain a very 
fast algorithm for generating the inverted files.  

Current trend in CPUs or GPUs increasingly includes 
more core processors on a single chip. It is expected that the 
number of cores will double every 18 to 24 months, and such 
trend is likely to continue in the foreseeable future. While the 
architectures of current and emerging multiprocessors vary 
significantly, they all include several levels of memory 
hierarchy, SIMD or vector type operations, and 
multithreaded cores. These processors offer unprecedented 
opportunities for speeding up demanding computations on a 
single processor if the available resources can be effectively 
used.  

In this paper we consider a heterogeneous processor 
consisting of a CPU and two GPUs. The CPU consists of 
two Quad-Core Intel Xeon X5560 with 24 GB of main 
memory and each quad core shares a 8MB L3 cache. Two 
NVIDIA Tesla C1060 GPUs are attached to our processor. 
The CPU offers a multithreaded environment with a shared 
memory programming model. In this model, communication 
is carried out through the shared memory, and hence a 
careful management of the shared memory coupled with load 
balancing among the cores is critical to achieve good 
performance.  

On the other hand, The basic architecture of our GPU 
consists of a set of Streaming Multiprocessors (SMs), each 
of which containing eight Streaming Processors (SPs or 
cores) executing in a SIMD fashion, 16,384 registers, and a 
16KB of shared memory. All the SMs have access to a very 
high bandwidth Device Memory; such a bandwidth is 
achieved only when simultaneous accesses are coalesced into 
contiguous 16-word lines. However the latency to access the 
device memory is quite high and is around 400-600 cycles. 
In our work, we have used the NVIDIA Tesla C1060 that has 
30 SMs coupled to a 4GB device memory with a peak 
bandwidth of 102 GB/s. 

The CUDA programming model [1] of the NVIDIA 
GPUs envisions phases of computations running on a host 
CPU and a massively data parallel GPU acting as a co-
processor. The GPU executes data parallel functions called 
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kernels using thousands of threads. Each GPU phase is 
defined by a grid consisting of all the threads that execute 
some kernel function. Each grid consists of a number of 
thread blocks such that all the threads in a thread block are 
assigned to the same SM. Several thread blocks can be 
executed on the same SM, but this will limit the number of 
threads per thread block since they all have to compete for 
the resources (registers and shared memory) available on the 
SM. Programmers need to optimize the use of shared 
memory and registers among the thread blocks executing on 
the same SM. 

Each SM schedules the execution of its threads into 
warps, each of which consists of 32 parallel threads. Half-
warp (16 threads), either the first or second half of a warp, is 
introduced to match the 16 banks of shared memory. When 
all the warp’s operands are available in the shared memory, 
the SM issues a single instruction for the 16 threads in a half-
warp. The eight cores will be fully utilized as long as 
operands in the shared memory reside in different banks of 
the shared memory (or access the same location from a bank). 
If a warp stalls, the SM switches to another warp resident in 
the same SM. Optimizing performance of multithreaded 
computations on CUDA requires careful consideration of 
global memory accesses (as few as possible and should be 
coalesced into multiple of contiguous 16-word lines); shared 
memory accesses (threads in a warp should access different 
banks); and partitioning of thread blocks among SMs; in 
addition to carefully designing highly data parallel 
implementations for all the kernels involved in the 
computation. 

The rest of the paper is organized as follows. In the next 
section, we provide a brief background about the typical 
strategy used to build inverted files and a summary of the 
work that is most related to our paper. Section III provides a 
detailed description of our algorithm, including our new 
dictionary data structure, the organization of the parallel 
parsers and parallel indexers, and a high performance CUDA 
implementation of the indexer. Section IV provides a 
summary of our test results on three very different 
benchmarks, and we conclude in Section V. 

II. BACKGROUND AND PREVIOUS RELATED WORK 

We start by giving a brief overview of the process of 
building inverted files given a collection of documents 
residing on a disk. The overview will be followed by a 
summary of previous work on parallel and distributed 
implementations of this strategy. 

The overall process essentially converts a collection of 
documents into inverted files consisting of a postings list for 
each of the terms appearing in the collection as follows. The 
strategy starts by parsing each document into a “bag of 
words” of the form <term, document ID> tuples, followed by 
constructing a postings list for each term such that each 
postings contains the ID of the document containing the term, 
term frequency, and possibly other information. Parsing 
consists of a sequence of simple steps: tokenization, 
stemming, and removal of stop words. Tokenization splits a 
document into individual tokens; stemming converts 
different forms of a root term into a single common one (e.g. 

parallelize, parallelization, parallelism are all based on 
parallel); and removal of stop words consists of eliminating 
common terms, such as “the”, “to”, “and”, etc. The overall 
parsing process is well understood, and follows more or less 
the same linguistic rules, even though there exist different 
stemming strategies.   

The next phase consists of constructing the inverted 
index. All <term, document ID> tuples belonging to the 
same term are combined together to form the postings list of 
that term. During the construction, a dictionary is usually 
built to maintain the location of the postings list of each term 
and to collect some related statistics. Postings on the same 
list are usually organized in a sorted order of document IDs 
for faster look up. Indexing is a relatively simple operation—
group tuples for the same term together and then carry out 
sorting by document IDs—but it is always by far the most 
time consuming part given the typical size of the collection 
to be indexed. 

In [2], postings lists are written as singly linked lists to 
disk and the dictionary containing the locations of the linked 
lists remains in main memory; however, another run is 
required as post-processing to traverse all these linked lists to 
get the final contiguous postings lists for all terms. Moffat 
and Bell proposed sort-based indexing in [3] for limited 
memory. Their strategy builds temporary postings lists in 
memory until the memory space is exhausted, sorts them by 
term and document ID and then writes the result to disk for 
each run. When all runs are completed, it merges all these 
intermediate results into the final postings lists file. The 
dictionary is kept in memory; however as the size grows, 
there may be insufficient space for temporary postings lists. 
Heinz and Zoble [4] further improved this strategy to a 
single-pass in-memory indexing version by writing the 
temporary dictionary to disk as well at the end of each run. 
Dictionary is processed in lexicographical term order so 
adjacent terms are likely to share the same prefix and front-
coding compression is employed to reduce the size. 

We now turn to a review of the major parallel strategies 
that appeared in the literature. In [5], the indexing process is 
divided into loading, processing and flushing; these three 
stages are pipelined by software in such a way that loading 
and flushing are hidden by the processing stage. The 
Remote-Buffer and Remote-Lists algorithm in [6] is tailored 
for distributed systems. In the first run, the global vocabulary 
is computed and distributed to each processor and in the 
following runs, once a <term, document ID> tuple is 
generated, it is sent to a pre-assigned processor where it is 
inserted into the destination sorted postings list.  

Today, MapReduce based algorithms are prevalent. First 
proposed in [7], the MapReduce paradigm provides a 
simplified programming model for distributed computing 
involving internet scale datasets on large clusters. The Map 
workers emit <key, value> pairs to Reduce workers defined 
by Master node, and the runtime would automatically group 
incoming <key, value> pairs received by a Reduce worker 
according to key field and pass <key, list of values 
associated with this key> to the Reduce function. A 
straightforward MapReduce algorithm for indexing is to use 
term as key and document ID as value, in which case the 
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Reduce workers can directly receive unsorted postings lists. 
Since there is no mechanism for different Map workers to 
communicate with each other, creating a global dictionary is 
not possible. McCreadie et.al let Map worker emit <term, 
partial postings list> instead to reduce the number of emits 
and the resultant total transfer size between Map and Reduce 
since duplicate term fields are less frequently sent. Their 
strategy has achieved a good speedup relative to the number 
of processors and cores [8]. Around the same time, Lin et.al 
[9] developed a scalable MapReduce Indexing algorithm by 
switching <term, posting{document ID, term frequency}> to 
<tuple{term, document ID}, term frequency>. By doing so, 
there is at most one value for each unique key, and moreover 
it is guaranteed by the MapReduce framework that postings 
arrive at Reduce worker in order. As a result, a posting can 
be immediately appended to the postings list without any 
post processing. Their algorithm seems to achieve the best 
known throughput rate for full text indexing. 

We note that almost all the above strategies perform 
compression on the postings lists for otherwise the output 
file would be quite large. Because document IDs are stored 
in sorted order in each postings list, a basic idea used is to 
encode the gap between two neighbor document IDs instead 
of their absolute values combined with a compression 
strategy such as variable byte encoding, γ encoding and 
Golomb compression. 

III. DESCRIPTION OF OUR ALGORITHM 

Our main goal in this paper is to present a very fast 
indexing algorithm for today’s common platform – a 
multicore CPU augmented by a GPU accelerator. More 
specifically, we use the Intel Processor Xeon X5560 
consisting of two quad-core processors and two NVIDIA 
Tesla processors each consisting of 240 streaming cores and 
4GB of device memory. Our algorithm can easily be adapted 
to any other such heterogeneous configuration. 

A. Overall Approach 

The cores on the CPU offer opportunities for a limited 
amount of parallelism on highly irregular computations. On 
the other hand, the streaming cores on the GPU are ideally 
suited for a very high number of fine grain data parallel 
computations. Our approach attempts to exploit both 
capabilities simultaneously, carefully orchestrating which 
tasks are assigned to the CPU cores and which are assigned 
to the GPU streaming cores.  This approach is illustrated in 
Fig. 1. 

Briefly, a number of parsers run in parallel on the CPU, 
where each parser reads a fixed size block of the disk 
containing the documents, executes the parsing algorithm, 
and then writes the parsed results onto a buffer. A number of 
indexers, some running on CPU cores and the rest running 
on GPU cores, pull parsed results from the buffer as soon as 
they are available and jointly construct the postings lists, 
which are written into a disk as soon as they are generated. 
The dictionary remains in the CPU memory until the whole 
process is completed.  

 
Figure 1.  Dataflow of Pipelined and Parallel Indexing 

There are many details that need to be carefully worked 
out for this approach to achieve optimal throughput. Before 
providing details about the parsing and indexing tasks and 
how they are allocated to the available cores, we describe the 
dictionary data structure used since it plays a central role 
through which the various tasks coordinate their work.  
This will be followed by a description of the parsing and 
indexing tasks allocated to the various cores available on our 
heterogeneous platform, and how coordination between the 
CPU and GPU cores is carried out. 

B.  Dictionary Data Structure 

The structure of the dictionary plays a critical role in the 
performance of our indexing algorithm since multiple 
concurrent threads have to access the dictionary and hence 
conflicts among the corresponding parallel threads must be 
properly resolved in such a way to ensure correctness and 
achieve high performance. The B-Tree is the typical data 
structure used in many information retrieval systems due to 
its balanced structure and small height. In particular, the 

height of any n-key B-Tree is at most 
1

log
2t

n 
 where t is 

the degree of the tree. Such a structure is not in general 
suited for operations such as multiple threads attempting to 
insert a new term into the same node or any other operations 
with similar conflicts. Locks can be used to prevent such 
hazards but the overhead is extremely high since many 
threads may have to wait until a thread completes its 
modification of the B-Tree. In our implementation, we 
introduce a combination of a trie at the top level and a B-
Tree attached to each of the leaves of the trie. A similar data 
structure was used in [10] to achieve compact size and fast 
search; however in our case we will exploit this hybrid data 
structure to achieve a high degree of parallelism and load 
balancing among the heterogeneous processor cores. 

1) A Hybrid Data Sructure 
Our hybrid data structure for the dictionary is shown in 

Fig. 2. Essentially, terms are mapped into different groups, 
called trie collections, followed by building a B-tree for each 
trie collection. 
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Figure 2.  Hybrid of Trie and B-Tree Structure of Dictionary 

The main reason we use a trie at the top level is to 
generate many independent B-trees instead of a single B-
Tree. Each B-tree is then handled by a single thread, 
independently of the other B-trees. For our platform, we fix 
the height of the trie to three, which means that the first three 
letters in a term are used to determine the corresponding the 
index of the trie collection. In fact, the index category of 
each leaf of the trie is specified in Table I. Clearly, the 
number of terms belonging to different trie collections varies 
significant; for example, there are many words with prefix 
“the” and hardly any terms with prefix “zzz”. The height of 
three for the trie seems to work best since a smaller height 
will lead to a wide variety of trie collections, some very large 
and some very small, which will be hard to allocate to the 
different core processors in such a way as to achieve a good 
load balance. A larger value for the trie height will generate 
many small trie collections, which will be again hard to 
manage. Since the trie height is constant here, we don’t need 
to actually build the trie structure but we use a table to map a 
trie index directly into the root location of the corresponding 
B-Tree. 

TABLE I.  TRIE-COLLECTION INDEX DEFINITION 

Index Term Category Example 

Special 0 
Terms can’t fall into other 
categories 

“-80”, “3d”, 
“Česky” 

1 Numbers starts with ‘0’ “01”,“0195” 

… … … Pure Numbers 
(10 entries) 

10 Numbers starts with ‘9’ “9”, “954” 

11 

Terms start with ‘a’ and 
(1) with ≤3 letters and or 
(2) with special letter in 
the first 3 letters  

“a”, “at”, 
“act”, 
“añonuevo” 

… … … 

Terms with ≤3 
letters or special 

letter in the first 3 
letters 

(26 entries) 
36 

Terms start with ‘z’ and 
(1) with ≤3 letters and or 
(2) with special letter in 
the first 3 letters 

“z”, “zoo”, 
“zoé” 

37 
Terms with >3 letters and 
starts with ‘aaa’ 

“aaat”, 
“aaaé” 

38 
Terms with >3 letters and 
starts with ‘aab’ 

“aabomycin”

… … …

Terms with >3 
letters and no 

special letter in 
the first 3 letters 
(26*26*26=17576 

entries) 17612 
Terms with >3 letters and 
starts with ‘zzz’ 

“zzzy” 

In addition to allowing a high degree of parallelism 
through the independent B-trees, our hybrid data structure 
achieves two more benefits. Since we replace a big B-tree by 
many small B-trees, the heights of the B-trees are smaller, 
implying that the time to search or insert a new term is 
reduced as well. Another advantage of the trie lies in the fact 
that terms belonging to the same trie index share the same 
prefix (except trie index 0) and hence we can eliminate such 
common prefix, save memory space for term strings and 
reduce string comparison time in B-tree operations. The 
average length of a stemmed token is 6.6 in the ClueWeb09 
dataset and hence removing the first three letters results in 
almost doubling the string comparison speed. An alternative 
option to the trie is to use a hash function, but a hash 
function will still require comparisons and searches on full 
strings and hence won’t be as effective as the trie. 

2) Special Node Structure in B-tree 
The structure of a B-tree node is illustrated in Table II. 

The degree of B-tree is 16, that is, each node can hold up to 
31 terms, and this number is selected to match the CUDA 
warp size. Since the length of a term string is not fixed but 
varies over a wide range, it is impossible to store the strings 
within a fixed B-Tree node; instead, pointers are used to 
indicate the memory location of the actual strings. During a 
search or insert operation into one of the B-trees, strings are 
accessed through these pointers, and such operations can be 
quite expensive on both the CPU and the GPU.  To get 
around this problem, we include 31 four-byte caches in each 
node. These caches are used to store the first four bytes of 
the corresponding term strings. Consider for example the 
term “application”—the first 3-byte “app” is not needed 
since it is already captured by the trie, so we only have to 
store the term string “lication” into the B-Tree, and hence 
“lica” is stored in the cache, and the remaining string is 
stored in another memory location indicated by the term 
string pointer. 

Occasionally some memory space will be wasted when 
caches are not fully occupied. However the advantages of 
our scheme are substantial because: 

 Short strings can be fully stored within the B-tree node; 

 For long strings, even though only the first four bytes 
are stored, it is highly likely that the required 
comparison between two term strings can be done 
with only these four bytes since it is a rare case that 
two arbitrary terms share the same long prefix. 

TABLE II.  DATA STRUCTURE OF ONE B-TREE NODE 

Field Number Data Size (Byte)

Valid term number 1 4

Pointer to term string 31 124

Leaf indicator 1 4

Pointer to postings lists 31 124

Pointer to children 32 128

4-Byte Cache for term string 31 124

Padding 1 4

Total Size  512
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Figure 3.  Data Flow of One Parser Thread 

C. Parsers 

As mentioned earlier, we will have several parsers 
running in parallel, the number of which depends on the 
number of CPU cores available and will be discussed further 
later. Here we describe the sequence of operations executed 
by each parser, illustrated in Fig. 3. Each such sequence will 
be executed by a single CPU thread. The corresponding steps 
are briefly described next.   

 Step1 reads files from disk, decompresses them if 
necessary, assigns local document ID to each 
document, and builds a table containing <document 
ID, document location on disk> mapping. 

 Step2 performs tokenization, that is, parses each 
document into tokens and determines the trie index of 
each resulting term. 

 Step3 performs Porter stemmer. 

 Step4 removes stop words using a stop word list. 

 Step5 rearranges terms with the same trie index so 
that they are located contiguously. In addition, the 
prefix of each term captured by the trie index is 
removed. 

The first four steps are standard in most indexing systems. 
Step5 is special to our algorithm. Essentially, this step 
regroups the terms into a number of groups, a group for each 
trie collection index as defined by our dictionary data 
structure. We note that the overhead of this regrouping step 
is relatively small, about 5% of the total running time of the 
whole parser in all our experiments. This is due to the fact 
that tokenization scans input document character by 
character and hence a trie index can be calculated as a by-
product using a minimal additional effort.  

This regrouping is clearly needed for our parallel 
indexing algorithm. However, even in the case when 
indexing is carried out by a serial CPU thread, regrouping 
results in approximately 15-fold speedup based on our tests. 
The improved performance is due to improved cache 
performance caused by the additional temporal locality. Now 
we are processing a group of terms falling under the same 
trie collection index, which are inserted into the same small 
B-tree whose content stays in cache for a long time.   

After processing a number of documents with a fixed 
total size, e.g. 1GB, the parsed results organized according to 
trie index values will be passed to the indexers. For trie 
collection index i, the parsed results will look like: 

 
Figure 4.  A B-tree Corresponding to a Single Trie Collection Index 

 
Figure 5.  Work Assignments among Multiple Threads 

Trie Collection corresponding to index i: (Doc_ID1, 
term1, term2, …), (Doc_ID2, term1, term2, …), ….. 

Doc_IDs in the lists are local ones within this parser. A 
global document ID offset will be calculated by the indexer; 
thus the global document ID can be obtained by adding 
Doc_ID and the global offset. 

D. Indexers 

As described in Section A, we will have a number of 
indexers running in parallel, some on the CPU cores and the 
rest on the GPU cores. In this section, we focus on 
describing the algorithm for an indexer either for a single 
CPU thread or for a single GPU kernel. 

The purpose of an indexer is to construct all the B-Trees 
and the postings lists corresponding to each input term as 
shown in Fig. 4.  

Clearly, the B-tree of each trie collection can be built 
independently of the rest of the B-trees. To ensure load 
balancing, a CPU thread or a GPU kernel will take care of 
the B-trees of several trie collections as we will describe later. 
However, we focus here on the algorithm used to build a 
single B-tree. 

1) CPU Indexer 
A CPU indexer is executed by a single CPU thread, 

which follows the commonly used procedures for building 
the B-tree and the corresponding postings lists. The only 
difference is to make use of the fact that a cache is included 
within each B-tree node. Hence, when a new term is inserted 
into a B-tree, the first 4-bytes of the string are stored in the 
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string cache field in the appropriate B-tree node. The 
remaining bytes, if any, are stored in another memory 
location, which can be reached via the string pointer for this 
term. Multiple CPU threads can execute concurrently 
without any modification to build B-trees corresponding to 
different trie collection indices. 

2) GPU Indexer 
We allocate the work to build a single B-tree and the 

related postings lists corresponding to a single trie collection 
to a thread block consisting of 32 threads (forming a warp). 
At this stage, we assume that our term strings are already 
moved into the device memory and are represented as 
indicated in Fig. 6. Without loss of generality, we also 
assume that no term is longer than 255 bytes and hence one 
byte will be sufficient to hold the length of the corresponding 
string. We read these term strings in contiguous chunks 
(512B) and store them into the shared memory 
corresponding to the thread block handling this particular trie 
collection. Hence we are making use of coalesced memory 
accesses to move the data into the streaming multiprocessor 
shared memory. The GPU threads will then access the shared 
memory to process the corresponding terms instead of 
accessing the device memory. 

Each term is now inserted into the B-tree using the 32 
threads as follows. Starting from the root and as we go down 
the B-tree, we move the next B-tree node to be examined 
into the shared memory using coalesced memory access. We 
use the available threads to perform a comparison between 
the term to be inserted and each of the terms stored in the 
node in parallel. This parallel comparison operation followed 
by a parallel reduction step [11] will enable us to identify the 
location of the new term as indicated in Fig. 7. If this term 
needs to be inserted in the current position of term (i+1), 
then term (i+1) up to the current last term in the node must 
be shifted to the right, which is achieved by a number of 
parallel threads.  

During B-tree insertion, three major operations inside a 
B-Tree node can take place and they are all carried out in 
parallel using coalesced device memory accesses. 

 
Figure 6.  String Representation: Term Length in the First Byte 

 
Figure 7.   Parallel Comparison in One GPU Thread Block 

 Searching: the algorithm compares the new term with 
existing terms inside the current B-Tree node and then 
do one of the following: (1) if this term is already 
present, we update the postings lists; (2) if this term is 
not there and this node is not a leaf, we proceed to the 
corresponding child node for searching; (3) if this term 
is not there and this node is a leaf, we insert this term 
into this node. 

 Inserting: in order to insert a new term, we must first 
shift those existing terms which are “larger” than the 
new term so that a blank location is created to 
accommodate this new term. 

 Splitting: before accessing a B-Tree node, we check to 
determine whether this node is full or not and if yes, 
the node will be split into two nodes. 

We now address the issue of how the trie collections 
assigned to the GPU will be handled. Since the trie 
collections are of different sizes and depend on the input 
documents, any static allocation of these collections to the 
available thread blocks is likely to incur a serious load 
imbalance. In our algorithm we use a dynamic round-robin 
scheduling strategy such as whenever a thread block 
completes the processing of a particular trie collection, it 
starts processing the next available trie collection.  

E. Load Balancing between the CPU and GPU Indexers 

In deciding how to allocate the trie collections among the 
CPU and GPU, we exploit the strength of each 
architecture—a large cache on the CPU and a high degree of 
data parallelism on the GPU. We divide the trie collections 
into two major groups. The first group, to be called popular 
trie collections, consists of the trie collections containing the 
most frequently occurring terms. In this group, a few 
common terms dominate the entries in each corresponding 
trie collection (by Zipf’s law [12]). In this case, the B-tree 
nodes on the path from the root to these common terms will 
be accessed frequently and hence it makes sense to store 
such paths in cache, which would indeed happen if we 
process such collections on the CPU. 

The second group consists of the remaining collections. 
Unlike the popular trie collections, this group contains 
primarily infrequent terms and, again according to Zipf’s law, 
the differences in their frequencies are relatively very small. 
This means that every time we perform a B-tree operation 
for a new term, the path taken is likely to be very different 
than the previous one, and hence caching won’t be so useful. 
However exploiting data parallelism in processing each node 
(to perform all the comparisons in parallel) speeds up the 
computation significantly, and this is exactly what we do 
using CUDA thread blocks. 

Therefore, we assign the popular trie collections to a 
number of CPU indexers and unpopular ones to the GPU 
indexers. To determine which collections belong to which 
group, we extract a sample from the document collection, e.g. 
1MB out of every 1GB, and run several tests on the sample 
to determine membership. Since there are many trie 
collections in this group and we have multiple GPUs, say N 
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(N=2 on our platform), we use a simple method of splitting 
the unpopular trie collections among the N2 GPUs by 
assigning  the trie collection TCi with index i to the GPU 
whose index is given by i mod N2. For example, if unpopular 
trie collections have indices (0, 13, 27, 175, 384, 5810, 
10041, 17316) and there are two GPU, then (0, 384, 5810, 
17316) are assigned to GPU indexer 0 and (13, 27, 175, 
10041) to GPU indexer 1.  

However there are relatively very few popular trie 
collections (around one hundred), and hence we split these 
trie collections into N1 independent sets such that each 
contains almost the same number of tokens, where N1 is the 
number of CPU threads used. 

Once a trie collection is assigned to a particular indexer, 
it is bound with this indexer through the program lifetime. 
That is to say, every indexer keeps an independent and 
exclusive part of the global dictionary and will focus on this 
part only.  

In addition to the main indexing step, pre-processing 
delivers input to the GPU device memory and post-
processing combines postings lists from all indexers, 
compress them with variable bytes encoding and then write 
the compact results to disk. These two steps are serialized. 
We call such procedure beginning with input data in a parser 
buffer and ending in postings lists as a single run, as shown 
in Fig. 8. 

F. Overall Pipelined Data Flow  

In our setting, the input document data collection is 
stored on a disk which is processed through our 
heterogeneous platform to generate the postings lists residing 
on a disk. The dictionary is kept in main memory until the 
last batch of documents is processed, after which it is moved 
to the disk. To avoid several parsers from trying to read from 
the same disk at the same time, a scheduler is used to 
organize the reads of the different parsers, one at a time. On 
the other hand, an output buffer is allocated to each parser to 
store the parsed results. The CPU and GPU indexers in the 
next stage will read from these buffers in order, that is, 
(buffer of Parser 0, buffer of Parser 1, …, buffer of Parser M-
1, buffer of Parser 0, …). Such read sequence is enforced to 
ensure that document first read from disk will also be 
indexed first so the postings lists are intrinsically in sorted 
order. The number of parsers, the number of CPU indexers 
and the number of GPU indexers devices are determined by 
the physical resources available. In the next section, we 
determine the best values of these parameters for our 
platform.  

We note that a separate output file is created for the 
postings lists generated during a single run, whose header 
contains a mapping table indicating the location and length 
of each postings list. This mapping table is indexed by the 
pointers to postings lists stored in the dictionary as shown in 
Table I. To retrieve a postings list for a certain term string, 
we look it up in the dictionary and use the corresponding 
pointer to determine the location of the partial postings list in 
each of the output files. This output format has some 
additional benefits including: 

 
Figure 8.  Data Flow of One Single Run on Parallel CPU and GPU 

Indexers 

 
Figure 9.  Pipelined Data Flow of Overall Indexing System 

 faster search when narrowed down to a range of 
document IDs since we can fetch only those partial 
postings lists that overlap with this range. This is 
possible since we include an auxiliary file containing 
the mapping of document IDs to output file names; 
and 

 the possibility of parallel reading of the postings lists 
because the output files can be written onto multiple 
disks. 

Although a postings list is divided into partial lists and 
stored in separate files, the index is still monolithic for the 
entire document collection. If necessary, we can combine the 
partial postings lists of each term into a single list in a post-
processing step, with an additional cost of less than 10% of 
the total running time. 

IV. EXPERIMENTAL EVALUATION OF OUR ALGORITHM 

Our parallel and pipelined indexing system is tested on a 
single machine that holds two Intel Xeon X5560 Quad-core 
CPUs and two NVIDIA Tesla C1060 GPUs each with a 4GB 
device memory. We use three document collections to test 
the performance of our algorithm. We start with the first 
English segment of the ClueWeb09 collection, which has 
been heavily utilized by the information retrieval community. 
Crawled between January and February 2009 by Language 
Technologies Institute at Carnegie Mellon University, this 
data set includes 50,220,423 web pages packed into 1,492 
files with a total size  of 230GB compressed and 1.389 TB 
uncompressed. The second data set is the Wikipedia01-07 
data, which is derived from a publicly available XML dump 
of Wikipedia articles created on January 3th 2008 with 83 
monthly snapshots between February 2001 and December 
2007. The third is the Congressional data set from the 
Library of Congress, which includes weekly snapshots of 
selected news and government websites crawled between 
May 2004 and September 2005 by the Internet Archive.  
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Overall statistics about the three are given in Table III. These 
document collections are stored on a disk connected to our 
platform via a 1Gbs Ethernet. The generated output, postings 
lists and dictionary, are written to either a remote disk (with 
1Gbs connection) or to a local disk (resulting performance 
differences are very small and insignificant). We report 
results averaged over three trials and in all our tests the 
differences between the fastest and slowest execution times 
have been less than 2%. 

In what follows, we start by determining the best values 
on our platform for the following parameters: number of 
parallel parsers, number of CPU indexers, and number of 
thread blocks and number of threads per block for each of 
the two GPUs. This will be followed by summarizing the 
performance of our algorithm on the three document 
collections. We end by comparing our performance to the 
best reported results in the literature. 

A. Optimal Numbers of Parallel Parsers and Indexers 

In this section we focus on determining the best number 
of parallel parsers and indexers. Note that our goal is not 
only to speed up the parsing of the documents but also to 
match it with the speed at which indexers are able to 
consume the parsed data. Fig. 10 illustrates the performance 
of our algorithm on the ClueWeb09 data set as a function of 
the number of parsers under three scenarios: (1) M parsers 
and 8-M CPU indexers without GPU indexers; (2) M parsers 
and 8-M CPU indexers with 2 GPU indexers; and (3) M 
parsers without any CPU or GPU indexers. The value of M 
varies from 1 to 7 since there are only eight physical cores 
available.  

TABLE III.  STATISTICS OF DOCUMENT COLLECTIONS 

 ClueWeb09 1st 
Eng Seg 

Wikipedia 
01-07 

Library of 
Congress 

Compressed 
Size 

230GB 29GB 96GB 

Uncompressed 
Size 

1422GB 79GB 507GB 

Crawl Time 01/09 to 02/09 
02/01 to 

12/07 
05/04 to 09/05

Document 
Number 

50,220,423 16,618,497 29,177,074 

Number of 
Terms 

84,799,475 9,404,723 7,457,742 

Number of 
Tokens 

32,644,508,255 9,375,229,726 16,865,180,093

 
Figure 10.  Optimal Number of Parallel Parsers and Indexers 

When the number of parsers is within the range of 1 to 5, 
we observe similar performance among the three scenarios, 
including an almost linear scalability as a function of the 
number of parsers. This indicates that the indexers are 
keeping up with the data generated by the parsers and hence 
within this range the parsers constitute the slow stage of the 
pipeline. The major limitations to speeding up the parsers 
include the sequential access to our single disk and the 
contention on cache and memory bandwidth resources. 
Beyond 5 parsers, when the number of CPU indexers 
decreases, the indexing pipeline stage is not able to catch up 
with the parsing stage without the help of the GPU. On the 
other hand, the streams generated by 6 parsers can be 
consumed by the 2 CPU and 2 GPU indexers. 

In other words, with acceleration from the GPU, when 
six parsers are running in parallel, the total parsing 
throughput achieved through the first pipeline stage 
approximately matches the indexing throughput of the 
second pipeline stage. When GPU is disabled, a ratio of 5:3 
between parsers and indexers is the best possible.   

We now clarify an issue related to the data format 
processed by the parsers. A typical file of the ClueWeb09 
data set is about 160MB compressed and 1GB uncompressed. 
On average, it takes around 1.6 seconds to read such a 
compressed file and 3.2 seconds to decompress it. On the 
other hand, it takes about 10 seconds to read the 
uncompressed file via the 1Gbs Ethernet. Therefore we load 
the compressed files from disk and then decompress them in 
memory before parsing. Two choices are possible here: 
decompression can be folded into either the file read stage or 
as a separate step after reading. The advantage of the former 
is that decompression can be partially hidden by file access 
time if decompression starts whenever there is any data 
available in memory, so the overall time for reading and 
decompressing a file takes 3.8 seconds on average, which 
translates into 263MB/s intake bandwidth. The disadvantage 
of this method is that the file access right cannot be released 
to a parser until reading and decompression are both 
completed. This causes a mismatch between the data 
generated by the parsers and the data consumed by the 
indexers. Hence we choose the second scheme in which 
decompression starts after the file is fully transferred to 
memory. In this case, the average time to read a compressed 
file is (1.6+3.2/p) seconds where p is the number of parallel 
parsers. When p=6 the intake bandwidth reaches as high as 
469MB/s. 

B. Scalability of the Number of Parallel Indexers 

Given that we have already determined that the best 
overall performance is achieved by using six parsers, we 
now proceed to examine the scalability of CPU and GPU 
indexers in combination with the six parser threads. We test 
the performance of our algorithm using five configurations: 
(i) no CPU indexer and two GPUs; (ii) one CPU indexer and 
no GPUs; (iii) two CPU indexers and no GPUs; and (iv) two 
CPU indexers and two GPUs. However we start by 
discussing the best possible strategy for indexing on a single 
GPU (Tesla C1060). As mentioned earlier we use thread 
blocks each with 32 threads to match the number of keys in 
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each B-tree node and load each such node into shared 
memory using the 32 threads to achieve coalesced access. 
After extensive testing using a wide range of values for the 
number of thread blocks, it turns out that the best 
performance is achieved by using 480 thread blocks per GPU. 
From now on, whenever we refer to a GPU indexer we mean 
480 thread blocks are running on a single GPU, each with 32 
threads. 

We now focus on the indexing time using the four 
configurations mentioned above. First, we notice a speedup 
by a factor of 1.77 when we use two CPU indexer threads 
compared to single CPU indexer thread and an extra 37.7% 
performance gain is achieved through the acceleration from 
the two GPU indexers. Second, if we calculate the indexing 
throughput by dividing uncompressed input data size by 
indexing time, we notice that the throughput from 
CPU+GPU combination in scenario (iv) is higher than 
throughput of CPU in scenario (iii) plus throughput of GPU 
in scenario (i) separately. This superlinear scalability comes 
from our specific task partitioning strategy between CPU and 
GPU so both processors are doing computation that they are 
good at. Note that the performance of multiple GPU indexers 
is limited by the time it takes to transfer the parsed input to 
the GPU device memory and the time it takes to move the 
output postings lists back to main memory at the end of each 
single run. Another issue is the possibility of load imbalance 
among the CUDA threads, which is hard to fully control. 

If we calculate the difference between the total indexer 
time and the sum of the pre-processing time, the indexing 
time and the post-preprocessing time, we obtain the time 
during which the indexers are waiting for results from the 
parsers. This is due to the fluctuations between the two 
pipeline stages, which are very hard to fully control since 
they are input dependent. Note that this gap can be 
occasionally severe during some runs.  

Detailed running times of various steps are shown in 
Table IV. 

TABLE IV.  RUNNING TIME OF INDEXERS 

Time (second) 

 6 Parsers 
2 GPU 

Indexers 

6 Parsers 
1 CPU 

Indexers 

6 Parsers
2 CPU 

Indexers

6 Parsers 
2 CPU 

Indexers
&2 GPU 
Indexers

Pre-Processing Time 
(second) 

107.01 93.44 111.74 104.15

Indexing Time 
(second) 

19313.6 11243.61 6357.67 4616.78

Post-Processing Time 
(second) 

417.21 416.66 521.52 464.04

Sum of above Three 
(second) 

19837.82 11753.71 6990.93 5184.97

Total Indexer Time 
(second) 

19858.69 11758.81 7019.87 5408.25

Indexing Throughput 
(MB/s) 

75.41 129.53 229.08 315.46

Total Indexer 
Throughput (MB/s) 

73.34 123.86 207.47 269.29

 
Figure 11.  Scalability of Parallel Indexers 

We now take a closer look at the indexing throughput 
(not including pre-processing and post-processing since they 
are serialized) of parallel indexers. We track the time of the 
parallel indexers spent on each file in the document corpus 
and compute the throughput for each file in scenario (ii), (iii) 
and (iv) as shown in Fig. 11. Note that starting with file 
index 1,200, we can see a significant drop in performance. 
This can be explained by the fact that the files with indices 
from 1,200 to 1,492 all belong to Wikipedia.org, and hence 
they exhibit a totally different behavior than previous 
documents. The combined CPU and GPU solution is 
especially affected with a significant drop in throughput after 
this point because our CPU and GPU parameters depend on 
sampling the whole collection prior to indexing and since the 
portion of the Wikipedia files is relatively small, the 
resulting parameters do not effectively reflect the 
characteristics of this small subset. 

Note that overall slope is similar in all three scenarios: 
sharp decrease near the beginning followed by a trend that 
approaches a horizontal line. This pattern coincides with the 
inverse of the depth of B-tree because as the B-trees grow 
deeper, it takes more time to perform insert or search 
operations. 

Now let’s take a look at the contents processed by the 
CPU and the GPUs during indexing when the configuration 
consists of two CPU indexers and two GPU indexers. The 
GPU indexers process almost 80% the number of tokens 
compared to those processed by the CPU, while the numbers 
of terms and characters are respectively 2.5 times and 2.16 
times as those performed by the CPU. This shows that the 
effectiveness of the way we split the work load between 
CPU and GPU. 

TABLE V.  WORK LOAD BETWEEN CPU AND GPU 

 CPU Indexers GPU Indexers

Token Number 14,465,084,050 18,179,424,205

Term Number 24,244,017 60,555,458

Character Number 239,433,858 513,640,554
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TABLE VI.  PERFORMANCE COMPARISON ON DIFFERENT DOCUMENT 
COLLECTION 

Time (second) 

Time Type 
ClueWeb09 

ClueWeb09 
 w/o 

GPUs 

Wikipedia 
01-07 

Library 
of 

Congress

Sampling Time 59.53  57.53 7.27 29.01 

Parallel Parsers 5410.89  7024.86 999.45 2437.79 

Parallel Indexers 5408.25  7019.87 1023.96 2458.64 

Dictionary Combine 2.46  2.54 0.26 0.21 

Dictionary Write 59.21  54.92 0.57 0.80 

Total Time 5541.62  7126.77 1033.34 2495.29 

Throughput (MB/s) 262.76  204.32  78.29 208.06 

C. Performance of our Algorithm on Different Document 
Collections 

We show in Table VI the overall running times of our 
algorithm on the three different document collections. For all 
tests, six CPU parsers, two CPU indexers and two GPU 
indexers are used to achieve the best performance. The 
throughputs achieved on the ClueWeb09 and Library of 
Congress datasets are comparable. For the Wikipedia01-07 
collection, the HTML tags were removed, and the remainder 
is just pure text. As we can see from Table III that although 
the uncompressed sized is only 1/18th of ClueWeb09, the 
numbers of documents and tokens are about one third to one 
fourth compared to the ClueWeb09 dataset. Hence the 
slower than 100MB/s throughput achieved on Wikipedia01-
07 actually amounts to a very high processing speed.  

D. Comparison with Fastest Known Indexers 

In this section, we compare our algorithm to the best 
known algorithms that appeared in the literature, namely 
Ivory MapReduce [9] and Single-Pass MapReduce [8].  Both 
of these algorithms are implemented using the MapReduce 
framework, and hence the comparison is a bit unfair since 
these are high level algorithms that do not exploit the 
underlying architectures. The Ivory MapReduce tests are 
conducted on exactly the same ClueWeb09 collection using 
a cluster of 99 nodes each with two cores. Positional postings 
lists are generated by the Ivory MapReduce algorithm, which 
will add some extra cost but we don’t believe this will alter 
the overall throughput numbers significantly. The Single-
Pass MapReduce result uses a cluster of 8 nodes with a total 
of 24 cores on the .GOV2 collection. ClueWeb09 
and .GOV2 are well-known collections in the information 
retrieval community. Detailed platforms comparison can be 
found in Table VII. The throughput numbers presented in 
Fig. 12 correspond to the uncompressed collection size 
divided by total running time. 

It is clear that our pipelined and parallel indexing 
algorithm achieves the best raw performance with or without 
GPUs even when compared to much larger clusters. A 
number of factors contribute to the superior performance of 
our algorithm including: 

 

TABLE VII.  PLATFORM CONFIGURATION COMPARISON 

 This Paper 
Ivory 

MapReduce 
SP MapReduce

Processors 
per Node 

Two Intel 
Xeon 2.8GHz 

Quad-core 
CPUs 

Two NVIDIA 
Tesla C1060 

GPUs 

Two Intel 
Single-core  

2.8GHz CPUs 

One Intel Xeon 
2.4GHz Quad-

core CPUs 
(one core 

reserved for 
distributed file 

system) 
Memory 
per Node 

24GB 4GB 4GB 

Node 
Number 

1 99 8 

Total CPU 
Cores 
Used 

8 198 24 

File 
System 

Remote File 
System via 

1Gb Ethernet

Hadoop 
Distributed File 

System 

Hadoop 
Distributed File 

System 

 
Figure 12.  Comparison to Recent MapReduce Implementations 

 The pipelined and parallel strategy that matches 
maximum possible parsing throughput with parallel 
indexing on available resources. 

 The hybrid trie and B-tree dictionary data structure, in 
which the logical trie is implemented as a table for fast 
look-up and each B-Tree includes character caches to 
expedite term string comparisons; 

 Parallel parsers that scale well with the number of 
threads, in addition to the fact that the file reading and 
decompression are carefully optimized to boost the I/O 
bandwidth; 

 The regrouping operation that is integrated into the 
parsing stage with little overhead but that noticeably  
increases CPU cache performance; 

 The allocation of unpopular trie collections to the 
GPU where cache sensitive computations remain on 
the CPU; and  

 The careful organization of memory accesses on the 
GPU in such a way as to exploit coalesced memory 
accesses and shared memory. 
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V. CONCLUSION 

In this paper, we presented a high performance pipelined 
and parallel indexing system based on a heterogeneous CPU 
and GPU architecture. We have shown how to optimize the 
performance of the pipeline by using parallel parsers and 
indexers in such a way that the streams produced by the 
parsers are consumed by the indexers at the same rate, and 
that rate is optimized. Several new techniques were 
introduced including a hybrid trie and B-trees data structure 
and optimized CUDA algorithm for indexing. The 
experimental tests reveal that our implementation on a single 
multicore processor shows scalable parallel performance in 
terms of the number of cores with a resulting throughput 
higher than most recent published algorithms on large 
clusters. 
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