
1

A Fast Algorithm for Constructing Inverted Files on
Heterogeneous Platforms

Zheng Wei and Joseph JaJa
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies, University of Maryland
College Park, U. S. A

{zwei, joseph}@umiacs.umd.edu

Abstract—Given a collection of documents residing on a disk,
we develop a new strategy for processing these documents and
building the inverted files extremely fast. Our approach is
tailored for a heterogeneous platform consisting of a multicore
CPU and a highly multithreaded GPU. Our algorithm is based
on a number of novel techniques including: (i) a high-
throughput pipelined strategy that produces parallel parsed
streams that are consumed at the same rate by parallel
indexers; (ii) a hybrid trie and B-tree dictionary data structure
in which the trie is represented by a table for fast look-up and
each B-tree node contains string caches; (iii) allocation of
parsed streams with frequent terms to CPU threads and the
rest to GPU threads so as to match the throughput of parsed
streams; and (iv) optimized CUDA indexer implementation
that ensures coalesced memory accesses and effective use of
shared memory. We have performed extensive tests of our
algorithm on a single node (two Intel Xeon X5560 Quad-core)
with two NVIDIA Tesla C1060 attached to it, and were able to
achieve a throughput of more than 262 MB/s on the
ClueWeb09 dataset. Similar results were obtained for widely
different datasets. The throughput of our algorithm is superior
to the best known algorithms reported in the literature even
when compared to those run on large clusters.

Keywords- indexer; inverted files; multicore; GPU; pipelined
and parallel parsing and indexing

I. INTRODUCTION

A critical component of all information retrieval systems
including web search engines is the set of inverted files
generated typically from a very large collection of
documents. A considerable amount of research has been
conducted to deal with various aspects related to inverted
files. In this paper, we are primarily concerned with methods
to generate the inverted files as quickly as possible. All the
recent fast indexers use the simple MapReduce framework
on large clusters, which enables quick development of
parallel algorithms dealing with internet scale datasets
without having to deal with the complexities of parallel
programming. Such framework leaves the details of
scheduling, processor allocation, and communication to the
underlying run time system, and hence relieves programmers
from all the extra work related to these details. However
such an abstraction comes at a significant price in terms of

performance, especially when using the emerging multicore
processors. In this paper, we take the different approach that
does try to exploit the common features present on current
processors, both general CPUs and GPUs, to obtain a very
fast algorithm for generating the inverted files.

Current trend in CPUs or GPUs increasingly includes
more core processors on a single chip. It is expected that the
number of cores will double every 18 to 24 months, and such
trend is likely to continue in the foreseeable future. While the
architectures of current and emerging multiprocessors vary
significantly, they all include several levels of memory
hierarchy, SIMD or vector type operations, and
multithreaded cores. These processors offer unprecedented
opportunities for speeding up demanding computations on a
single processor if the available resources can be effectively
used.

In this paper we consider a heterogeneous processor
consisting of a CPU and two GPUs. The CPU consists of
two Quad-Core Intel Xeon X5560 with 24 GB of main
memory and each quad core shares a 8MB L3 cache. Two
NVIDIA Tesla C1060 GPUs are attached to our processor.
The CPU offers a multithreaded environment with a shared
memory programming model. In this model, communication
is carried out through the shared memory, and hence a
careful management of the shared memory coupled with load
balancing among the cores is critical to achieve good
performance.

On the other hand, The basic architecture of our GPU
consists of a set of Streaming Multiprocessors (SMs), each
of which containing eight Streaming Processors (SPs or
cores) executing in a SIMD fashion, 16,384 registers, and a
16KB of shared memory. All the SMs have access to a very
high bandwidth Device Memory; such a bandwidth is
achieved only when simultaneous accesses are coalesced into
contiguous 16-word lines. However the latency to access the
device memory is quite high and is around 400-600 cycles.
In our work, we have used the NVIDIA Tesla C1060 that has
30 SMs coupled to a 4GB device memory with a peak
bandwidth of 102 GB/s.

The CUDA programming model [1] of the NVIDIA
GPUs envisions phases of computations running on a host
CPU and a massively data parallel GPU acting as a co-
processor. The GPU executes data parallel functions called

2

kernels using thousands of threads. Each GPU phase is
defined by a grid consisting of all the threads that execute
some kernel function. Each grid consists of a number of
thread blocks such that all the threads in a thread block are
assigned to the same SM. Several thread blocks can be
executed on the same SM, but this will limit the number of
threads per thread block since they all have to compete for
the resources (registers and shared memory) available on the
SM. Programmers need to optimize the use of shared
memory and registers among the thread blocks executing on
the same SM.

Each SM schedules the execution of its threads into
warps, each of which consists of 32 parallel threads. Half-
warp (16 threads), either the first or second half of a warp, is
introduced to match the 16 banks of shared memory. When
all the warp’s operands are available in the shared memory,
the SM issues a single instruction for the 16 threads in a half-
warp. The eight cores will be fully utilized as long as
operands in the shared memory reside in different banks of
the shared memory (or access the same location from a bank).
If a warp stalls, the SM switches to another warp resident in
the same SM. Optimizing performance of multithreaded
computations on CUDA requires careful consideration of
global memory accesses (as few as possible and should be
coalesced into multiple of contiguous 16-word lines); shared
memory accesses (threads in a warp should access different
banks); and partitioning of thread blocks among SMs; in
addition to carefully designing highly data parallel
implementations for all the kernels involved in the
computation.

The rest of the paper is organized as follows. In the next
section, we provide a brief background about the typical
strategy used to build inverted files and a summary of the
work that is most related to our paper. Section III provides a
detailed description of our algorithm, including our new
dictionary data structure, the organization of the parallel
parsers and parallel indexers, and a high performance CUDA
implementation of the indexer. Section IV provides a
summary of our test results on three very different
benchmarks, and we conclude in Section V.

II. BACKGROUND AND PREVIOUS RELATED WORK

We start by giving a brief overview of the process of
building inverted files given a collection of documents
residing on a disk. The overview will be followed by a
summary of previous work on parallel and distributed
implementations of this strategy.

The overall process essentially converts a collection of
documents into inverted files consisting of a postings list for
each of the terms appearing in the collection as follows. The
strategy starts by parsing each document into a “bag of
words” of the form <term, document ID> tuples, followed by
constructing a postings list for each term such that each
postings contains the ID of the document containing the term,
term frequency, and possibly other information. Parsing
consists of a sequence of simple steps: tokenization,
stemming, and removal of stop words. Tokenization splits a
document into individual tokens; stemming converts
different forms of a root term into a single common one (e.g.

parallelize, parallelization, parallelism are all based on
parallel); and removal of stop words consists of eliminating
common terms, such as “the”, “to”, “and”, etc. The overall
parsing process is well understood, and follows more or less
the same linguistic rules, even though there exist different
stemming strategies.

The next phase consists of constructing the inverted
index. All <term, document ID> tuples belonging to the
same term are combined together to form the postings list of
that term. During the construction, a dictionary is usually
built to maintain the location of the postings list of each term
and to collect some related statistics. Postings on the same
list are usually organized in a sorted order of document IDs
for faster look up. Indexing is a relatively simple operation—
group tuples for the same term together and then carry out
sorting by document IDs—but it is always by far the most
time consuming part given the typical size of the collection
to be indexed.

In [2], postings lists are written as singly linked lists to
disk and the dictionary containing the locations of the linked
lists remains in main memory; however, another run is
required as post-processing to traverse all these linked lists to
get the final contiguous postings lists for all terms. Moffat
and Bell proposed sort-based indexing in [3] for limited
memory. Their strategy builds temporary postings lists in
memory until the memory space is exhausted, sorts them by
term and document ID and then writes the result to disk for
each run. When all runs are completed, it merges all these
intermediate results into the final postings lists file. The
dictionary is kept in memory; however as the size grows,
there may be insufficient space for temporary postings lists.
Heinz and Zoble [4] further improved this strategy to a
single-pass in-memory indexing version by writing the
temporary dictionary to disk as well at the end of each run.
Dictionary is processed in lexicographical term order so
adjacent terms are likely to share the same prefix and front-
coding compression is employed to reduce the size.

We now turn to a review of the major parallel strategies
that appeared in the literature. In [5], the indexing process is
divided into loading, processing and flushing; these three
stages are pipelined by software in such a way that loading
and flushing are hidden by the processing stage. The
Remote-Buffer and Remote-Lists algorithm in [6] is tailored
for distributed systems. In the first run, the global vocabulary
is computed and distributed to each processor and in the
following runs, once a <term, document ID> tuple is
generated, it is sent to a pre-assigned processor where it is
inserted into the destination sorted postings list.

Today, MapReduce based algorithms are prevalent. First
proposed in [7], the MapReduce paradigm provides a
simplified programming model for distributed computing
involving internet scale datasets on large clusters. The Map
workers emit <key, value> pairs to Reduce workers defined
by Master node, and the runtime would automatically group
incoming <key, value> pairs received by a Reduce worker
according to key field and pass <key, list of values
associated with this key> to the Reduce function. A
straightforward MapReduce algorithm for indexing is to use
term as key and document ID as value, in which case the

3

Reduce workers can directly receive unsorted postings lists.
Since there is no mechanism for different Map workers to
communicate with each other, creating a global dictionary is
not possible. McCreadie et.al let Map worker emit <term,
partial postings list> instead to reduce the number of emits
and the resultant total transfer size between Map and Reduce
since duplicate term fields are less frequently sent. Their
strategy has achieved a good speedup relative to the number
of processors and cores [8]. Around the same time, Lin et.al
[9] developed a scalable MapReduce Indexing algorithm by
switching <term, posting{document ID, term frequency}> to
<tuple{term, document ID}, term frequency>. By doing so,
there is at most one value for each unique key, and moreover
it is guaranteed by the MapReduce framework that postings
arrive at Reduce worker in order. As a result, a posting can
be immediately appended to the postings list without any
post processing. Their algorithm seems to achieve the best
known throughput rate for full text indexing.

We note that almost all the above strategies perform
compression on the postings lists for otherwise the output
file would be quite large. Because document IDs are stored
in sorted order in each postings list, a basic idea used is to
encode the gap between two neighbor document IDs instead
of their absolute values combined with a compression
strategy such as variable byte encoding, γ encoding and
Golomb compression.

III. DESCRIPTION OF OUR ALGORITHM

Our main goal in this paper is to present a very fast
indexing algorithm for today’s common platform – a
multicore CPU augmented by a GPU accelerator. More
specifically, we use the Intel Processor Xeon X5560
consisting of two quad-core processors and two NVIDIA
Tesla processors each consisting of 240 streaming cores and
4GB of device memory. Our algorithm can easily be adapted
to any other such heterogeneous configuration.

A. Overall Approach

The cores on the CPU offer opportunities for a limited
amount of parallelism on highly irregular computations. On
the other hand, the streaming cores on the GPU are ideally
suited for a very high number of fine grain data parallel
computations. Our approach attempts to exploit both
capabilities simultaneously, carefully orchestrating which
tasks are assigned to the CPU cores and which are assigned
to the GPU streaming cores. This approach is illustrated in
Fig. 1.

Briefly, a number of parsers run in parallel on the CPU,
where each parser reads a fixed size block of the disk
containing the documents, executes the parsing algorithm,
and then writes the parsed results onto a buffer. A number of
indexers, some running on CPU cores and the rest running
on GPU cores, pull parsed results from the buffer as soon as
they are available and jointly construct the postings lists,
which are written into a disk as soon as they are generated.
The dictionary remains in the CPU memory until the whole
process is completed.

Figure 1. Dataflow of Pipelined and Parallel Indexing

There are many details that need to be carefully worked
out for this approach to achieve optimal throughput. Before
providing details about the parsing and indexing tasks and
how they are allocated to the available cores, we describe the
dictionary data structure used since it plays a central role
through which the various tasks coordinate their work.
This will be followed by a description of the parsing and
indexing tasks allocated to the various cores available on our
heterogeneous platform, and how coordination between the
CPU and GPU cores is carried out.

B. Dictionary Data Structure

The structure of the dictionary plays a critical role in the
performance of our indexing algorithm since multiple
concurrent threads have to access the dictionary and hence
conflicts among the corresponding parallel threads must be
properly resolved in such a way to ensure correctness and
achieve high performance. The B-Tree is the typical data
structure used in many information retrieval systems due to
its balanced structure and small height. In particular, the

height of any n-key B-Tree is at most
1

log
2t

n
 where t is

the degree of the tree. Such a structure is not in general
suited for operations such as multiple threads attempting to
insert a new term into the same node or any other operations
with similar conflicts. Locks can be used to prevent such
hazards but the overhead is extremely high since many
threads may have to wait until a thread completes its
modification of the B-Tree. In our implementation, we
introduce a combination of a trie at the top level and a B-
Tree attached to each of the leaves of the trie. A similar data
structure was used in [10] to achieve compact size and fast
search; however in our case we will exploit this hybrid data
structure to achieve a high degree of parallelism and load
balancing among the heterogeneous processor cores.

1) A Hybrid Data Sructure
Our hybrid data structure for the dictionary is shown in

Fig. 2. Essentially, terms are mapped into different groups,
called trie collections, followed by building a B-tree for each
trie collection.

4

Figure 2. Hybrid of Trie and B-Tree Structure of Dictionary

The main reason we use a trie at the top level is to
generate many independent B-trees instead of a single B-
Tree. Each B-tree is then handled by a single thread,
independently of the other B-trees. For our platform, we fix
the height of the trie to three, which means that the first three
letters in a term are used to determine the corresponding the
index of the trie collection. In fact, the index category of
each leaf of the trie is specified in Table I. Clearly, the
number of terms belonging to different trie collections varies
significant; for example, there are many words with prefix
“the” and hardly any terms with prefix “zzz”. The height of
three for the trie seems to work best since a smaller height
will lead to a wide variety of trie collections, some very large
and some very small, which will be hard to allocate to the
different core processors in such a way as to achieve a good
load balance. A larger value for the trie height will generate
many small trie collections, which will be again hard to
manage. Since the trie height is constant here, we don’t need
to actually build the trie structure but we use a table to map a
trie index directly into the root location of the corresponding
B-Tree.

TABLE I. TRIE-COLLECTION INDEX DEFINITION

Index Term Category Example

Special 0
Terms can’t fall into other
categories

“-80”, “3d”,
“Česky”

1 Numbers starts with ‘0’ “01”,“0195”

… … … Pure Numbers
(10 entries)

10 Numbers starts with ‘9’ “9”, “954”

11

Terms start with ‘a’ and
(1) with ≤3 letters and or
(2) with special letter in
the first 3 letters

“a”, “at”,
“act”,
“añonuevo”

… … …

Terms with ≤3
letters or special

letter in the first 3
letters

(26 entries)
36

Terms start with ‘z’ and
(1) with ≤3 letters and or
(2) with special letter in
the first 3 letters

“z”, “zoo”,
“zoé”

37
Terms with >3 letters and
starts with ‘aaa’

“aaat”,
“aaaé”

38
Terms with >3 letters and
starts with ‘aab’

“aabomycin”

… … …

Terms with >3
letters and no

special letter in
the first 3 letters
(26*26*26=17576

entries) 17612
Terms with >3 letters and
starts with ‘zzz’

“zzzy”

In addition to allowing a high degree of parallelism
through the independent B-trees, our hybrid data structure
achieves two more benefits. Since we replace a big B-tree by
many small B-trees, the heights of the B-trees are smaller,
implying that the time to search or insert a new term is
reduced as well. Another advantage of the trie lies in the fact
that terms belonging to the same trie index share the same
prefix (except trie index 0) and hence we can eliminate such
common prefix, save memory space for term strings and
reduce string comparison time in B-tree operations. The
average length of a stemmed token is 6.6 in the ClueWeb09
dataset and hence removing the first three letters results in
almost doubling the string comparison speed. An alternative
option to the trie is to use a hash function, but a hash
function will still require comparisons and searches on full
strings and hence won’t be as effective as the trie.

2) Special Node Structure in B-tree
The structure of a B-tree node is illustrated in Table II.

The degree of B-tree is 16, that is, each node can hold up to
31 terms, and this number is selected to match the CUDA
warp size. Since the length of a term string is not fixed but
varies over a wide range, it is impossible to store the strings
within a fixed B-Tree node; instead, pointers are used to
indicate the memory location of the actual strings. During a
search or insert operation into one of the B-trees, strings are
accessed through these pointers, and such operations can be
quite expensive on both the CPU and the GPU. To get
around this problem, we include 31 four-byte caches in each
node. These caches are used to store the first four bytes of
the corresponding term strings. Consider for example the
term “application”—the first 3-byte “app” is not needed
since it is already captured by the trie, so we only have to
store the term string “lication” into the B-Tree, and hence
“lica” is stored in the cache, and the remaining string is
stored in another memory location indicated by the term
string pointer.

Occasionally some memory space will be wasted when
caches are not fully occupied. However the advantages of
our scheme are substantial because:

 Short strings can be fully stored within the B-tree node;

 For long strings, even though only the first four bytes
are stored, it is highly likely that the required
comparison between two term strings can be done
with only these four bytes since it is a rare case that
two arbitrary terms share the same long prefix.

TABLE II. DATA STRUCTURE OF ONE B-TREE NODE

Field Number Data Size (Byte)

Valid term number 1 4

Pointer to term string 31 124

Leaf indicator 1 4

Pointer to postings lists 31 124

Pointer to children 32 128

4-Byte Cache for term string 31 124

Padding 1 4

Total Size 512

5

Figure 3. Data Flow of One Parser Thread

C. Parsers

As mentioned earlier, we will have several parsers
running in parallel, the number of which depends on the
number of CPU cores available and will be discussed further
later. Here we describe the sequence of operations executed
by each parser, illustrated in Fig. 3. Each such sequence will
be executed by a single CPU thread. The corresponding steps
are briefly described next.

 Step1 reads files from disk, decompresses them if
necessary, assigns local document ID to each
document, and builds a table containing <document
ID, document location on disk> mapping.

 Step2 performs tokenization, that is, parses each
document into tokens and determines the trie index of
each resulting term.

 Step3 performs Porter stemmer.

 Step4 removes stop words using a stop word list.

 Step5 rearranges terms with the same trie index so
that they are located contiguously. In addition, the
prefix of each term captured by the trie index is
removed.

The first four steps are standard in most indexing systems.
Step5 is special to our algorithm. Essentially, this step
regroups the terms into a number of groups, a group for each
trie collection index as defined by our dictionary data
structure. We note that the overhead of this regrouping step
is relatively small, about 5% of the total running time of the
whole parser in all our experiments. This is due to the fact
that tokenization scans input document character by
character and hence a trie index can be calculated as a by-
product using a minimal additional effort.

This regrouping is clearly needed for our parallel
indexing algorithm. However, even in the case when
indexing is carried out by a serial CPU thread, regrouping
results in approximately 15-fold speedup based on our tests.
The improved performance is due to improved cache
performance caused by the additional temporal locality. Now
we are processing a group of terms falling under the same
trie collection index, which are inserted into the same small
B-tree whose content stays in cache for a long time.

After processing a number of documents with a fixed
total size, e.g. 1GB, the parsed results organized according to
trie index values will be passed to the indexers. For trie
collection index i, the parsed results will look like:

Figure 4. A B-tree Corresponding to a Single Trie Collection Index

Figure 5. Work Assignments among Multiple Threads

Trie Collection corresponding to index i: (Doc_ID1,
term1, term2, …), (Doc_ID2, term1, term2, …), …..

Doc_IDs in the lists are local ones within this parser. A
global document ID offset will be calculated by the indexer;
thus the global document ID can be obtained by adding
Doc_ID and the global offset.

D. Indexers

As described in Section A, we will have a number of
indexers running in parallel, some on the CPU cores and the
rest on the GPU cores. In this section, we focus on
describing the algorithm for an indexer either for a single
CPU thread or for a single GPU kernel.

The purpose of an indexer is to construct all the B-Trees
and the postings lists corresponding to each input term as
shown in Fig. 4.

Clearly, the B-tree of each trie collection can be built
independently of the rest of the B-trees. To ensure load
balancing, a CPU thread or a GPU kernel will take care of
the B-trees of several trie collections as we will describe later.
However, we focus here on the algorithm used to build a
single B-tree.

1) CPU Indexer
A CPU indexer is executed by a single CPU thread,

which follows the commonly used procedures for building
the B-tree and the corresponding postings lists. The only
difference is to make use of the fact that a cache is included
within each B-tree node. Hence, when a new term is inserted
into a B-tree, the first 4-bytes of the string are stored in the

6

string cache field in the appropriate B-tree node. The
remaining bytes, if any, are stored in another memory
location, which can be reached via the string pointer for this
term. Multiple CPU threads can execute concurrently
without any modification to build B-trees corresponding to
different trie collection indices.

2) GPU Indexer
We allocate the work to build a single B-tree and the

related postings lists corresponding to a single trie collection
to a thread block consisting of 32 threads (forming a warp).
At this stage, we assume that our term strings are already
moved into the device memory and are represented as
indicated in Fig. 6. Without loss of generality, we also
assume that no term is longer than 255 bytes and hence one
byte will be sufficient to hold the length of the corresponding
string. We read these term strings in contiguous chunks
(512B) and store them into the shared memory
corresponding to the thread block handling this particular trie
collection. Hence we are making use of coalesced memory
accesses to move the data into the streaming multiprocessor
shared memory. The GPU threads will then access the shared
memory to process the corresponding terms instead of
accessing the device memory.

Each term is now inserted into the B-tree using the 32
threads as follows. Starting from the root and as we go down
the B-tree, we move the next B-tree node to be examined
into the shared memory using coalesced memory access. We
use the available threads to perform a comparison between
the term to be inserted and each of the terms stored in the
node in parallel. This parallel comparison operation followed
by a parallel reduction step [11] will enable us to identify the
location of the new term as indicated in Fig. 7. If this term
needs to be inserted in the current position of term (i+1),
then term (i+1) up to the current last term in the node must
be shifted to the right, which is achieved by a number of
parallel threads.

During B-tree insertion, three major operations inside a
B-Tree node can take place and they are all carried out in
parallel using coalesced device memory accesses.

Figure 6. String Representation: Term Length in the First Byte

Figure 7. Parallel Comparison in One GPU Thread Block

 Searching: the algorithm compares the new term with
existing terms inside the current B-Tree node and then
do one of the following: (1) if this term is already
present, we update the postings lists; (2) if this term is
not there and this node is not a leaf, we proceed to the
corresponding child node for searching; (3) if this term
is not there and this node is a leaf, we insert this term
into this node.

 Inserting: in order to insert a new term, we must first
shift those existing terms which are “larger” than the
new term so that a blank location is created to
accommodate this new term.

 Splitting: before accessing a B-Tree node, we check to
determine whether this node is full or not and if yes,
the node will be split into two nodes.

We now address the issue of how the trie collections
assigned to the GPU will be handled. Since the trie
collections are of different sizes and depend on the input
documents, any static allocation of these collections to the
available thread blocks is likely to incur a serious load
imbalance. In our algorithm we use a dynamic round-robin
scheduling strategy such as whenever a thread block
completes the processing of a particular trie collection, it
starts processing the next available trie collection.

E. Load Balancing between the CPU and GPU Indexers

In deciding how to allocate the trie collections among the
CPU and GPU, we exploit the strength of each
architecture—a large cache on the CPU and a high degree of
data parallelism on the GPU. We divide the trie collections
into two major groups. The first group, to be called popular
trie collections, consists of the trie collections containing the
most frequently occurring terms. In this group, a few
common terms dominate the entries in each corresponding
trie collection (by Zipf’s law [12]). In this case, the B-tree
nodes on the path from the root to these common terms will
be accessed frequently and hence it makes sense to store
such paths in cache, which would indeed happen if we
process such collections on the CPU.

The second group consists of the remaining collections.
Unlike the popular trie collections, this group contains
primarily infrequent terms and, again according to Zipf’s law,
the differences in their frequencies are relatively very small.
This means that every time we perform a B-tree operation
for a new term, the path taken is likely to be very different
than the previous one, and hence caching won’t be so useful.
However exploiting data parallelism in processing each node
(to perform all the comparisons in parallel) speeds up the
computation significantly, and this is exactly what we do
using CUDA thread blocks.

Therefore, we assign the popular trie collections to a
number of CPU indexers and unpopular ones to the GPU
indexers. To determine which collections belong to which
group, we extract a sample from the document collection, e.g.
1MB out of every 1GB, and run several tests on the sample
to determine membership. Since there are many trie
collections in this group and we have multiple GPUs, say N

7

(N=2 on our platform), we use a simple method of splitting
the unpopular trie collections among the N2 GPUs by
assigning the trie collection TCi with index i to the GPU
whose index is given by i mod N2. For example, if unpopular
trie collections have indices (0, 13, 27, 175, 384, 5810,
10041, 17316) and there are two GPU, then (0, 384, 5810,
17316) are assigned to GPU indexer 0 and (13, 27, 175,
10041) to GPU indexer 1.

However there are relatively very few popular trie
collections (around one hundred), and hence we split these
trie collections into N1 independent sets such that each
contains almost the same number of tokens, where N1 is the
number of CPU threads used.

Once a trie collection is assigned to a particular indexer,
it is bound with this indexer through the program lifetime.
That is to say, every indexer keeps an independent and
exclusive part of the global dictionary and will focus on this
part only.

In addition to the main indexing step, pre-processing
delivers input to the GPU device memory and post-
processing combines postings lists from all indexers,
compress them with variable bytes encoding and then write
the compact results to disk. These two steps are serialized.
We call such procedure beginning with input data in a parser
buffer and ending in postings lists as a single run, as shown
in Fig. 8.

F. Overall Pipelined Data Flow

In our setting, the input document data collection is
stored on a disk which is processed through our
heterogeneous platform to generate the postings lists residing
on a disk. The dictionary is kept in main memory until the
last batch of documents is processed, after which it is moved
to the disk. To avoid several parsers from trying to read from
the same disk at the same time, a scheduler is used to
organize the reads of the different parsers, one at a time. On
the other hand, an output buffer is allocated to each parser to
store the parsed results. The CPU and GPU indexers in the
next stage will read from these buffers in order, that is,
(buffer of Parser 0, buffer of Parser 1, …, buffer of Parser M-
1, buffer of Parser 0, …). Such read sequence is enforced to
ensure that document first read from disk will also be
indexed first so the postings lists are intrinsically in sorted
order. The number of parsers, the number of CPU indexers
and the number of GPU indexers devices are determined by
the physical resources available. In the next section, we
determine the best values of these parameters for our
platform.

We note that a separate output file is created for the
postings lists generated during a single run, whose header
contains a mapping table indicating the location and length
of each postings list. This mapping table is indexed by the
pointers to postings lists stored in the dictionary as shown in
Table I. To retrieve a postings list for a certain term string,
we look it up in the dictionary and use the corresponding
pointer to determine the location of the partial postings list in
each of the output files. This output format has some
additional benefits including:

Figure 8. Data Flow of One Single Run on Parallel CPU and GPU

Indexers

Figure 9. Pipelined Data Flow of Overall Indexing System

 faster search when narrowed down to a range of
document IDs since we can fetch only those partial
postings lists that overlap with this range. This is
possible since we include an auxiliary file containing
the mapping of document IDs to output file names;
and

 the possibility of parallel reading of the postings lists
because the output files can be written onto multiple
disks.

Although a postings list is divided into partial lists and
stored in separate files, the index is still monolithic for the
entire document collection. If necessary, we can combine the
partial postings lists of each term into a single list in a post-
processing step, with an additional cost of less than 10% of
the total running time.

IV. EXPERIMENTAL EVALUATION OF OUR ALGORITHM

Our parallel and pipelined indexing system is tested on a
single machine that holds two Intel Xeon X5560 Quad-core
CPUs and two NVIDIA Tesla C1060 GPUs each with a 4GB
device memory. We use three document collections to test
the performance of our algorithm. We start with the first
English segment of the ClueWeb09 collection, which has
been heavily utilized by the information retrieval community.
Crawled between January and February 2009 by Language
Technologies Institute at Carnegie Mellon University, this
data set includes 50,220,423 web pages packed into 1,492
files with a total size of 230GB compressed and 1.389 TB
uncompressed. The second data set is the Wikipedia01-07
data, which is derived from a publicly available XML dump
of Wikipedia articles created on January 3th 2008 with 83
monthly snapshots between February 2001 and December
2007. The third is the Congressional data set from the
Library of Congress, which includes weekly snapshots of
selected news and government websites crawled between
May 2004 and September 2005 by the Internet Archive.

8

Overall statistics about the three are given in Table III. These
document collections are stored on a disk connected to our
platform via a 1Gbs Ethernet. The generated output, postings
lists and dictionary, are written to either a remote disk (with
1Gbs connection) or to a local disk (resulting performance
differences are very small and insignificant). We report
results averaged over three trials and in all our tests the
differences between the fastest and slowest execution times
have been less than 2%.

In what follows, we start by determining the best values
on our platform for the following parameters: number of
parallel parsers, number of CPU indexers, and number of
thread blocks and number of threads per block for each of
the two GPUs. This will be followed by summarizing the
performance of our algorithm on the three document
collections. We end by comparing our performance to the
best reported results in the literature.

A. Optimal Numbers of Parallel Parsers and Indexers

In this section we focus on determining the best number
of parallel parsers and indexers. Note that our goal is not
only to speed up the parsing of the documents but also to
match it with the speed at which indexers are able to
consume the parsed data. Fig. 10 illustrates the performance
of our algorithm on the ClueWeb09 data set as a function of
the number of parsers under three scenarios: (1) M parsers
and 8-M CPU indexers without GPU indexers; (2) M parsers
and 8-M CPU indexers with 2 GPU indexers; and (3) M
parsers without any CPU or GPU indexers. The value of M
varies from 1 to 7 since there are only eight physical cores
available.

TABLE III. STATISTICS OF DOCUMENT COLLECTIONS

 ClueWeb09 1st
Eng Seg

Wikipedia
01-07

Library of
Congress

Compressed
Size

230GB 29GB 96GB

Uncompressed
Size

1422GB 79GB 507GB

Crawl Time 01/09 to 02/09
02/01 to

12/07
05/04 to 09/05

Document
Number

50,220,423 16,618,497 29,177,074

Number of
Terms

84,799,475 9,404,723 7,457,742

Number of
Tokens

32,644,508,255 9,375,229,726 16,865,180,093

Figure 10. Optimal Number of Parallel Parsers and Indexers

When the number of parsers is within the range of 1 to 5,
we observe similar performance among the three scenarios,
including an almost linear scalability as a function of the
number of parsers. This indicates that the indexers are
keeping up with the data generated by the parsers and hence
within this range the parsers constitute the slow stage of the
pipeline. The major limitations to speeding up the parsers
include the sequential access to our single disk and the
contention on cache and memory bandwidth resources.
Beyond 5 parsers, when the number of CPU indexers
decreases, the indexing pipeline stage is not able to catch up
with the parsing stage without the help of the GPU. On the
other hand, the streams generated by 6 parsers can be
consumed by the 2 CPU and 2 GPU indexers.

In other words, with acceleration from the GPU, when
six parsers are running in parallel, the total parsing
throughput achieved through the first pipeline stage
approximately matches the indexing throughput of the
second pipeline stage. When GPU is disabled, a ratio of 5:3
between parsers and indexers is the best possible.

We now clarify an issue related to the data format
processed by the parsers. A typical file of the ClueWeb09
data set is about 160MB compressed and 1GB uncompressed.
On average, it takes around 1.6 seconds to read such a
compressed file and 3.2 seconds to decompress it. On the
other hand, it takes about 10 seconds to read the
uncompressed file via the 1Gbs Ethernet. Therefore we load
the compressed files from disk and then decompress them in
memory before parsing. Two choices are possible here:
decompression can be folded into either the file read stage or
as a separate step after reading. The advantage of the former
is that decompression can be partially hidden by file access
time if decompression starts whenever there is any data
available in memory, so the overall time for reading and
decompressing a file takes 3.8 seconds on average, which
translates into 263MB/s intake bandwidth. The disadvantage
of this method is that the file access right cannot be released
to a parser until reading and decompression are both
completed. This causes a mismatch between the data
generated by the parsers and the data consumed by the
indexers. Hence we choose the second scheme in which
decompression starts after the file is fully transferred to
memory. In this case, the average time to read a compressed
file is (1.6+3.2/p) seconds where p is the number of parallel
parsers. When p=6 the intake bandwidth reaches as high as
469MB/s.

B. Scalability of the Number of Parallel Indexers

Given that we have already determined that the best
overall performance is achieved by using six parsers, we
now proceed to examine the scalability of CPU and GPU
indexers in combination with the six parser threads. We test
the performance of our algorithm using five configurations:
(i) no CPU indexer and two GPUs; (ii) one CPU indexer and
no GPUs; (iii) two CPU indexers and no GPUs; and (iv) two
CPU indexers and two GPUs. However we start by
discussing the best possible strategy for indexing on a single
GPU (Tesla C1060). As mentioned earlier we use thread
blocks each with 32 threads to match the number of keys in

9

each B-tree node and load each such node into shared
memory using the 32 threads to achieve coalesced access.
After extensive testing using a wide range of values for the
number of thread blocks, it turns out that the best
performance is achieved by using 480 thread blocks per GPU.
From now on, whenever we refer to a GPU indexer we mean
480 thread blocks are running on a single GPU, each with 32
threads.

We now focus on the indexing time using the four
configurations mentioned above. First, we notice a speedup
by a factor of 1.77 when we use two CPU indexer threads
compared to single CPU indexer thread and an extra 37.7%
performance gain is achieved through the acceleration from
the two GPU indexers. Second, if we calculate the indexing
throughput by dividing uncompressed input data size by
indexing time, we notice that the throughput from
CPU+GPU combination in scenario (iv) is higher than
throughput of CPU in scenario (iii) plus throughput of GPU
in scenario (i) separately. This superlinear scalability comes
from our specific task partitioning strategy between CPU and
GPU so both processors are doing computation that they are
good at. Note that the performance of multiple GPU indexers
is limited by the time it takes to transfer the parsed input to
the GPU device memory and the time it takes to move the
output postings lists back to main memory at the end of each
single run. Another issue is the possibility of load imbalance
among the CUDA threads, which is hard to fully control.

If we calculate the difference between the total indexer
time and the sum of the pre-processing time, the indexing
time and the post-preprocessing time, we obtain the time
during which the indexers are waiting for results from the
parsers. This is due to the fluctuations between the two
pipeline stages, which are very hard to fully control since
they are input dependent. Note that this gap can be
occasionally severe during some runs.

Detailed running times of various steps are shown in
Table IV.

TABLE IV. RUNNING TIME OF INDEXERS

Time (second)

 6 Parsers
2 GPU

Indexers

6 Parsers
1 CPU

Indexers

6 Parsers
2 CPU

Indexers

6 Parsers
2 CPU

Indexers
&2 GPU
Indexers

Pre-Processing Time
(second)

107.01 93.44 111.74 104.15

Indexing Time
(second)

19313.6 11243.61 6357.67 4616.78

Post-Processing Time
(second)

417.21 416.66 521.52 464.04

Sum of above Three
(second)

19837.82 11753.71 6990.93 5184.97

Total Indexer Time
(second)

19858.69 11758.81 7019.87 5408.25

Indexing Throughput
(MB/s)

75.41 129.53 229.08 315.46

Total Indexer
Throughput (MB/s)

73.34 123.86 207.47 269.29

Figure 11. Scalability of Parallel Indexers

We now take a closer look at the indexing throughput
(not including pre-processing and post-processing since they
are serialized) of parallel indexers. We track the time of the
parallel indexers spent on each file in the document corpus
and compute the throughput for each file in scenario (ii), (iii)
and (iv) as shown in Fig. 11. Note that starting with file
index 1,200, we can see a significant drop in performance.
This can be explained by the fact that the files with indices
from 1,200 to 1,492 all belong to Wikipedia.org, and hence
they exhibit a totally different behavior than previous
documents. The combined CPU and GPU solution is
especially affected with a significant drop in throughput after
this point because our CPU and GPU parameters depend on
sampling the whole collection prior to indexing and since the
portion of the Wikipedia files is relatively small, the
resulting parameters do not effectively reflect the
characteristics of this small subset.

Note that overall slope is similar in all three scenarios:
sharp decrease near the beginning followed by a trend that
approaches a horizontal line. This pattern coincides with the
inverse of the depth of B-tree because as the B-trees grow
deeper, it takes more time to perform insert or search
operations.

Now let’s take a look at the contents processed by the
CPU and the GPUs during indexing when the configuration
consists of two CPU indexers and two GPU indexers. The
GPU indexers process almost 80% the number of tokens
compared to those processed by the CPU, while the numbers
of terms and characters are respectively 2.5 times and 2.16
times as those performed by the CPU. This shows that the
effectiveness of the way we split the work load between
CPU and GPU.

TABLE V. WORK LOAD BETWEEN CPU AND GPU

 CPU Indexers GPU Indexers

Token Number 14,465,084,050 18,179,424,205

Term Number 24,244,017 60,555,458

Character Number 239,433,858 513,640,554

10

TABLE VI. PERFORMANCE COMPARISON ON DIFFERENT DOCUMENT
COLLECTION

Time (second)

Time Type
ClueWeb09

ClueWeb09
 w/o

GPUs

Wikipedia
01-07

Library
of

Congress

Sampling Time 59.53 57.53 7.27 29.01

Parallel Parsers 5410.89 7024.86 999.45 2437.79

Parallel Indexers 5408.25 7019.87 1023.96 2458.64

Dictionary Combine 2.46 2.54 0.26 0.21

Dictionary Write 59.21 54.92 0.57 0.80

Total Time 5541.62 7126.77 1033.34 2495.29

Throughput (MB/s) 262.76 204.32 78.29 208.06

C. Performance of our Algorithm on Different Document
Collections

We show in Table VI the overall running times of our
algorithm on the three different document collections. For all
tests, six CPU parsers, two CPU indexers and two GPU
indexers are used to achieve the best performance. The
throughputs achieved on the ClueWeb09 and Library of
Congress datasets are comparable. For the Wikipedia01-07
collection, the HTML tags were removed, and the remainder
is just pure text. As we can see from Table III that although
the uncompressed sized is only 1/18th of ClueWeb09, the
numbers of documents and tokens are about one third to one
fourth compared to the ClueWeb09 dataset. Hence the
slower than 100MB/s throughput achieved on Wikipedia01-
07 actually amounts to a very high processing speed.

D. Comparison with Fastest Known Indexers

In this section, we compare our algorithm to the best
known algorithms that appeared in the literature, namely
Ivory MapReduce [9] and Single-Pass MapReduce [8]. Both
of these algorithms are implemented using the MapReduce
framework, and hence the comparison is a bit unfair since
these are high level algorithms that do not exploit the
underlying architectures. The Ivory MapReduce tests are
conducted on exactly the same ClueWeb09 collection using
a cluster of 99 nodes each with two cores. Positional postings
lists are generated by the Ivory MapReduce algorithm, which
will add some extra cost but we don’t believe this will alter
the overall throughput numbers significantly. The Single-
Pass MapReduce result uses a cluster of 8 nodes with a total
of 24 cores on the .GOV2 collection. ClueWeb09
and .GOV2 are well-known collections in the information
retrieval community. Detailed platforms comparison can be
found in Table VII. The throughput numbers presented in
Fig. 12 correspond to the uncompressed collection size
divided by total running time.

It is clear that our pipelined and parallel indexing
algorithm achieves the best raw performance with or without
GPUs even when compared to much larger clusters. A
number of factors contribute to the superior performance of
our algorithm including:

TABLE VII. PLATFORM CONFIGURATION COMPARISON

 This Paper
Ivory

MapReduce
SP MapReduce

Processors
per Node

Two Intel
Xeon 2.8GHz

Quad-core
CPUs

Two NVIDIA
Tesla C1060

GPUs

Two Intel
Single-core

2.8GHz CPUs

One Intel Xeon
2.4GHz Quad-

core CPUs
(one core

reserved for
distributed file

system)
Memory
per Node

24GB 4GB 4GB

Node
Number

1 99 8

Total CPU
Cores
Used

8 198 24

File
System

Remote File
System via

1Gb Ethernet

Hadoop
Distributed File

System

Hadoop
Distributed File

System

Figure 12. Comparison to Recent MapReduce Implementations

 The pipelined and parallel strategy that matches
maximum possible parsing throughput with parallel
indexing on available resources.

 The hybrid trie and B-tree dictionary data structure, in
which the logical trie is implemented as a table for fast
look-up and each B-Tree includes character caches to
expedite term string comparisons;

 Parallel parsers that scale well with the number of
threads, in addition to the fact that the file reading and
decompression are carefully optimized to boost the I/O
bandwidth;

 The regrouping operation that is integrated into the
parsing stage with little overhead but that noticeably
increases CPU cache performance;

 The allocation of unpopular trie collections to the
GPU where cache sensitive computations remain on
the CPU; and

 The careful organization of memory accesses on the
GPU in such a way as to exploit coalesced memory
accesses and shared memory.

11

V. CONCLUSION

In this paper, we presented a high performance pipelined
and parallel indexing system based on a heterogeneous CPU
and GPU architecture. We have shown how to optimize the
performance of the pipeline by using parallel parsers and
indexers in such a way that the streams produced by the
parsers are consumed by the indexers at the same rate, and
that rate is optimized. Several new techniques were
introduced including a hybrid trie and B-trees data structure
and optimized CUDA algorithm for indexing. The
experimental tests reveal that our implementation on a single
multicore processor shows scalable parallel performance in
terms of the number of cores with a resulting throughput
higher than most recent published algorithms on large
clusters.

ACKNOWLEDGMENT

We would like to thank Jimmy Lin for providing us
access to the ClueWeb09 dataset and discussing with us the
details on his MapReduce implementation. We would also
like to thank the Library of Congress and the Internet
Archive for making the congressional dataset available to us.
We would like to also give credit to Dr. Sangchul Song who
developed the version of Wikipedia04-09 dataset which was
used in our experimental evaluation. This research was
supported by the NVIDIA Research Excellence Center at the
University of Maryland and by an NSF Research
Infrastructure award, grant number CNS 0403313.

REFERENCES
[1] NVIDIA Corporation, “NVIDIA CUDA C Programming Guide

Version 3.1.1”, 2010.

[2] D. Harman and G. Candela, “Retrieving records from a gigabyte of
text on a minicomputer using statistical ranking”, Journal of the
American Society for Information Science, vol. 41(8), pp. 581-589,
Dec. 1990

[3] A. Moffat and T. A. H. Bell, “In situ generation of compressed
inverted files”, Journal of the American Society for Information
Science, vol. 46(7), pp. 537-550, Aug. 1995.

[4] S. Heinz and J. Zobel, “Efficient single-pass index construction for
text databases”, Journal of the American Society for Information
Science and Technology, vol. 54(8), pp. 713-729, June 2003.

[5] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina, “Building a
distributed full-text index for the Web”, ACM Transactions on
Information Systems, Vol. 19(3), pp. 217-241, July 2001.

[6] B. Ribeiro-Neto, E. S. Moura, M. S. Neubert, and N. Ziviani,
“Efficient distributed algorithms to build inverted files”, SIGIR '99:
Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 105-112,
1999.

[7] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing
on large clusters”, In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, Dec.
2004.

[8] R. McCreadie, C. Mcdonald, and I. Ounis, “Comparing Distributed
Indexing: To MapReduce or Not?”, 7th Workshop on Large-Scale
Distributed Systems for Information Retrieval, 2009.

[9] J. Lin, D. Metzler, T. Elsayed, and L. Wang. “Of Ivory and Smurfs:
Loxodontan MapReduce Experiments for Web Search”. Proceedings
of the Eighteenth Text REtrieval Conference (TREC 2009),
November 2009.

[10] S. Heinz, J. Zobel, and H. E. Williams, “Burst tries: A fast, efficient
data structure for string keys”, ACM Transactions on Information
Systems, vol 20(2), pp. 192–223, 2002.

[11] M. Harris, “Optimizing Parallel Reduction in CUDA”, available at
http://developer.download.nvidia.com/compute/cuda/1_1/Website/pro
jects/reduction/doc/reduction.pdf. Access date: 09/01/2010.

[12] G. K. Zipf, Human Behavior and the Principle of Least Effort : An
Introduction to Human Ecology. Addison Wesley, Cambridge, Mass.,
1949.

