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Abstract
A number of important methodological issues in statistical modeling and

inference depend crucially on the notion of statistical induction adopted. An
attempt is made to articulate the notion of statistical induction underlying
modern frequentist inference going back to Fisher (1922). The paper brings out
the differences in the nature of inductive inference associated with estimation
and prediction on one hand and testing on the other; the former based on factual
and and the latter on counterfactual reasoning. Induction by enumeration is
placed in a formal statistical context in order to bring out its crucial weaknesses.
Particular emphasis is placed on the role of pre-data type I and II error

probabilities, as measures of the ‘trustworthiness’ of test procedures. Post-data,
error probabilities can be used to render the traditional coarse accept/reject
decision more informative by evaluating the severity with which a hypothesis or
a claim passes a particular test, with data x. The discussion emphasizes the na-
ture of the severity assessment and the associated post-data error probabilities,
as they relate to the pre-data error probabilities. Supplementing N-P testing
with the severity evaluation gives rise to the error-statistical account of infer-
ence which constitutes the most complete description of frequentist statistical
induction.
The evaluation of error probabilities (pre-data and post-data) assumes the

validity of the statistical premises, because any departures will render the in-
ductive inference unreliable by creating a divergence between the nominal and
actual error probabilies. The paper discusses the importance of ensuring statis-
tical adequacy using thorough misspecification testing and respecification. It
also demonstrates how statistical adequacy can be used to shed light on a num-
ber of methodological problems such as model validation vs. model selection
and statistical vs. substantive adequacy.

∗Section 3 of the paper relies heavily on joint work with Deborah Mayo.
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1 Introduction

A number of important methodological issues in statistical inference and modeling,
including criticisms of Neyman-Pearson testing and Bayesian vs. frequentist method-
ological debates, depend crucially on the notion of statistical induction adopted. In
view of the fact that the conception of statistical induction is often implicit in statisti-
cal discussions, an attempt is made to articulate the notion underlying the frequentist
approach to inference going back to Fisher (1922), and consider a number of method-
ological issues that revolve around statistical induction. Particular emphasis is placed
on:
(i) the form and structure of the premises of induction,
(ii) the nature of ‘objectivity’ in frequentist inference,
(iii) the role of pre-data error probabilities in determining the optimality of an
inference procedure,
(iv) the role of post-data error probabilities in providing an inferential
interpretation of the accept/reject decision, and
(iv) the role of statistical adequacy in ensuring the reliability of the inference.
The aim of statistical modeling and inference is to learn about certain aspects of

real world phenomena exhibiting chance regularity. Elucidating the form and struc-
ture of the premises of statistical induction is particularly important for a variety of
reasons including the fact that it holds the key to resolving certain chronic method-
ological problems in statistics. This can also shed light on the claim that defining
these premises in terms of probabilistic assumptions invariably involves subjective
judgements which taint the objectivity of inference. It is argued that the statistical
premises can and should be specified in terms of the probabilistic structure of the ob-
servable processes involved, rendering the assumptions testable vis-a-vis a particular
data x =(x1, . . . ,xn).
It is long-familiar that pre-data the type I and II error probabilities provide a

way to appraise the probativeness of the test procedure — its capacity of to detect
discrepancies from the null hypothesis — and define its optimality. What is less well-
known is that error probabilities can be used post-data to render the coarse Neyman-
Pearson (N-P) accept/reject decision more informative by evaluating the severity
with which a hypothesis or a claim passes a particular test, with given data x. The
same post-data error probabilities can be used to guard against perpetrating the
well-known fallacies of acceptance and rejection.
A crucial precondition for the cogency of error probabilities (pre and post-data)

is the validity of the statistical premises vis-a-vis data x. Any departure from the
premises will render the inductive inference unreliable to a greater or lesser extent, by
inducing a difference between the nominal and actual error probabilities. The paper
reflects on this problem and discusses different ways to address the statistical ade-
quacy issue. The recommendation is thorough misspecification testing and discerning
respecification to account for the systematic information in the data. Using statistical
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adequacy the paper brings out certain weaknesses in model selection procedures and
discusses the difference between statistical and substantive adequacy.

2 Statistical Induction: pre-data

2.1 Early 20th century

For Karl Pearson statistical modeling would begin with data x :=(x1, x2, ..., xn) in
search of a descriptive model which would be in the form of a frequency curve f(x; bθ),
chosen from the Pearson family f(x;θ), after applying the method of moments to
estimate θ (see Pearson, 1895).

Data x =⇒ Histogram =⇒ Fitting of a frequency curve
from the Pearson family f(x;θ)

Fig. 1: The Pearson method of moments

The problem of statistical induction was understood by Karl Pearson (1920) in
terms of being able to ensure the ‘stability’ of the estimation results in subsequent
samples, by invoking ‘uniformity’ and ‘representativeness’ assumptions. This is a
form of induction by enumeration, which attempts to generalize observed events:
‘80% of A’s in this data are B’s’, beyond the data in hand; see Salmon (1967).

2.2 Fisher’s initiating the recasting of statistical induction

Fisher’s most enduring contribution to modern statistics is his pioneering the recast-
ing of statistical induction. Instead of starting with data x in search of a descriptive
model, he would interpret the data as a representative sample from a pre-specified
‘hypothetical infinite population’; Fisher (1922, 1925). This might seem like a triv-
ial re-arrangement of Karl Pearson’s procedure, but in fact constitutes a complete
reformulation of statistical induction from generalizing observed ‘events’ relating to
the data, to modeling the underlying ‘process’ that gave rise to the data. This way
Fisher was able to quantify the uncertainty associated with the inductive inference
in the form of ‘ascertainable error probabilities’.
In particular, Fisher devised a general way to quantify this uncertainty by (a)

embedding thematerial experiment into a statistical model, and then (b) use the latter
to ascertain the (frequentist) error probabilities associated with particular inferences
in its context. These error probabilities are deductively derived from the statistical
model, and provide a measure of the ‘trustworthiness’ of the inference procedure: how
often a certain method will give rise to reliable inferences concerning the underlying
actual Data Generating Mechanism (DGM). The form of induction envisaged by
Fisher, and even earlier by Peirce (see Mayo, 1996, ch. 12), is one where the reliability
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of the inference stems from the ‘trustworthiness’ of the procedure used to arrive at
the inference. As argued by (Fisher, 1935, p. 14):
“In order to assert that a natural phenomenon is experimentally demonstrable
we need, not an isolated record, but a reliable method of procedure.”
The inference is reached by an inductive procedure which, with high probability,

will reach true conclusions (estimation, testing, prediction) from true (or approxi-
mately true) premises (statistical model).
For Fisher the process of statistical modeling begins with a prespecified parametric

statistical model M (‘a hypothetical infinite population’), chosen to ensure that the
observed data x can be viewed as a random sample from that ‘population’:
“The postulate of randomness thus resolves itself into the question, "Of what
population is this a random sample?" which must frequently be asked by every
practical statistician.” (Fisher, 1922, p. 313)
Fisher initiated the recasting of statistical induction that rendered its premises

testable, by viewing data x as a ‘random sample’ from a prespecified population. Using
Neyman’s generalization of Fisher’s notion of a statistical model from an ‘infinite
population’ to a ‘chance mechanism’ defined in terms of a generic stochastic process
{Xk, k∈N}, and extending the notion of data x from being a ‘random sample’ to being
a ‘truly representative’ realization of such a process, one can define the Fisher-Neyman
probabilistic perspective (see Spanos, 2006a-c). From this perspective a statistical
model is viewed as a parameterization of a generic stochastic process {Xk, k∈N}
whose probabilistic structure is such that would render x ‘a truly typical realization’
thereof. To Fisher we also owe the notion of a parameter and a parametric statistical
model.
Fisher also recognized the fact that the trustworthiness of an inference procedure

depends crucially on the adequacy of the assumed statistical model vis-a-vis data x,
and suggested that it be tested:
“As regards problems of specification, ... the adequacy of our choice may be
tested a posteriori.” (p. 314)
Statistical adequacy secures the reliability of inference by ensuring that the actual

error probabilities approximate closely the nominal error probabilities. It is interest-
ing to note that the first tests discussed by Fisher (1925) were misspecification tests
concerned with assessing the Normality, Independence and Identically Distributed
assumptions.
In summary, Fisher pioneered the recasting of statistical induction in terms of

‘reliable procedures’ based on ‘ascertainable error probabilities’. The Fisher-Neyman
perspective provides a purely probabilistic construal of statistical models which can
be used to disentangle the respective roles of substantive and statistical information
in empirical modeling (see Lehmann, 1990, Cox, 1990). Although this issue is beyond
the scope of the present paper (see Spanos, 2006b), in what follows it is important to
note that in the context of the Probabilistic Reduction approach the roles of the sta-
tistical and substantive information are considered complementary. Hence, ab initio,
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the statistical information is captured by the statistical model and the substantive
information by a structural model. The connection between the two models is that
a structural model acquires statistical operational meaning when embedded into an
adequate statistical model. This perspective can been used to shed light on a num-
ber of methodological issues relating to specification, misspecification testing, and
respecification, including the role of preliminary data analysis, structural vs. statis-
tical models, model specification vs. model selection, and statistical vs. substantive
adequacy; see Spanos (2006a-c).

2.3 The notion of a statistical model

The cornerstone of modern statistics is the notion of a statistical model which can be
viewed as an internally consistent set of probabilistic assumptions aiming to provide
an ‘idealized’ (statistical) description of the stochastic mechanism that gave rise to the
observed data x := (x1, x2, ..., xn). The quintessential example is the simple Normal
model given in table 1, comprising a statistical Generating Mechanism (GM), and
the probabilistic assumptions [1]-[4].

Table 1 - Simple Normal Model

Statistical GM: Xk = μ+ uk, k ∈ N,

[1] Normality: Xk v N(., .),
[2] Mean homogeneity: E(Xk) := μ,
[3] Variance homogeneity: V ar(Xk) := σ2,

⎫⎬⎭ k ∈ N.

[4] Independence: {Xk, k ∈ N} k-independent process

(1)

Viewed from the Fisher-Neyman probabilistic perspective this model represents
a parameterization of the generic process stochastic process {Xk, k∈N} assumed to
be Normal, Independent and Identically Distributed (NIID). This suggests that this
is an appropriate statistical model to select in cases where data x =(x1, . . . ,xn) can
be realistically viewed as a realization of a generic NIID process.
To get some idea of what this selection involves consider figures 1-4 where figure 1

represents a typical realization of a NIID process, but figures 2-4 do not. In particular,
figure 2 shows a realization of a non-Normal (skewed) IID process, figure 3 exhibits a
realization of a Normal, Independent but non-ID (trending mean) process, and figure
4 depicts a typical realization of a Normal, Markov and Stationary process; the cycles
indicate positive Markov dependence; see Spanos (1999), ch. 5.
More formally the relationship between the stochastic process {Xt, t ∈ T} and

the simple Normal model in table 1, can be expressed in the form of a reduction that
connects the joint distribution D(X1,X2, ...,Xn;ϕ) to the distribution underlying
the model D(Xk;φ) =

1
σ
√
2π
exp{− 1

2σ2
(Xk−μ)2} via the probabilistic assumptions of
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NIID:

D(X1,X2, ..., Xn;ϕ)
I
=
Qn

k=1Dk(Xk;φk)
IID
=
Qn

k=1D(Xk;φ). (2)

Fig. 2: t-plot of xt Fig. 3: t-plot of xt

Fig. 4: t-plot of xt Fig. 5: t-plot of xt
The form and structure of a statistical model is specified entirely in terms of prob-

abilistic concepts that relate directly to the joint distribution D(X1,X2, ...,Xn;ϕ).
The reduction (probabilistic) assumptions come from three broad categories, Distri-
bution, Dependence and Heterogeneity, and specification can be viewed as the result
of partitioning the set of all possible models that could have given rise to the data;
see figure 6.

N o n - N o r m a l

D e p e n d e n t

               N o n - I D
I d e n t i c a l l y  D i s t r i b u t e d

P

I n d e p e n d e n t

N o r m a l

Fig. 6 - Specification by partitioning
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The statistical model is often denoted by:

Mθ(x) = {f(x;θ), θ ∈Θ}, x ∈X :=Rn
X , n > 1,

and viewed as a subset of P(x) the set of all possible statistical models that could
have given rise to data x0, i.e. Mθ(x) ⊂ P(x). P(x) provides the wider context for
statistical modeling because it brings out the fact thatMθ(x) is one of many (pos-
sibly infinite) statistical models which is characterized by the probabilistic structure
attributed to the underlying process {Xk, k∈N}.
By imposing different probabilistic assumptions from three broad categories, Dis-

tribution, Dependence and Heterogeneity, on the process {Xk, k∈N}, one can derive
numerous statistical models belonging to the set P(x), via reductions analogous to
(25); see Spanos (1986, 1995, 1999). In the context of P(x) one can view the prob-
lem of specification as the choice of the probabilistic assumptions for {Xk, k∈N}
that would render data x0 a truly typical realization thereof. The problem of Mis-
Specification (M-S) testing can be viewed as probing the complement P(x)−Mθ(x)
for possible departures, and that of respecification as choosing a more appropriate
statistical model within P(x), whenMθ(x) is found wanting.

2.4 Statistical inference

Statistical inference constitutes a special form of inductive inference with its particu-
larity emanating from the form of its premises. The premises of statistical induction
comprise a statistical model Mθ(x), x ∈X and a particular data x0, where x0 is
viewed as a ‘truly typical’ realization of the stochastic process {Xk, k∈N} underlying
Mθ(x). The inference is framed in terms of the unknown parameter(s) θ ∈ Θ, but
it is, in the final analysis, concerned with the underlying stochastic mechanism that
gave rise to data x0. The choice of the statistical model Mθ(x), θ ∈ Θ amounts
to reducing the set of all possible statistical models P(x) to a small subset, and in-
ductive inference is concerned with narrowing that subset even further in an attempt
to determine the ‘true’ stochastic mechanismMθ∗(x), which is a point in P(x); θ∗
being the true value of θ.
Statistical inference in frequentist statistics takes different forms:
(i) point estimation, (ii) interval estimation, (iii) hypothesis testing, and (iv)

prediction.
All forms of frequentist inference suppose at the outset that the ‘true’ DGM

belongs to the prespecified family of models {Mθ(x), θ ∈Θ, x ∈X}. Hence, it should
come as no surprise to learn that these inference procedures are based on mappings
of the form:

g(., .) : [Θ×X ]→ R,
in conjunction with the probabilistic structure of the model as summarized by the
distribution of the sample:

f(x;θ), x :=(x1, ..., xn) ∈ X .
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A point estimator of θ, say bθ = h(X1,X2, ...,Xn), can viewed as a mapping:

h(.) : X → Θ,

with a sampling distribution:

F (θ) = P(h(X1, ..., Xn) ≤ θ) =

n timesz }| {Z Z
· · ·
Z

{x: h(x)≤θ}

f(x1, ..., xn; θ) dx1 · · · dxn, for all θ∈Θ.

(3)
The idea is to use the data x0 to select the most representative value bθ = h(x0) for θ.
That yields the estimated modelMθ(x), x ∈X as the one element of the prespecified
family of models selected by data x0. Similarly, a test statistic associated with a null
hypothesis θ ∈ Θ0 ⊂ Θ, say T = h(X1,X2, ...,Xn;θ0), can viewed as a distance
mapping:

h(.) : X → R,

with a sampling distribution F (t) defined analogously to (3). The idea is to pose the
question whether data x0 provide evidence that the true modelMθ∗(x) belongs to a
subsetMθ(x), θ ∈ Θ0 of the prespecified model or not. That is, do the data warrant
narrowing down the original family of models to the subsetMθ0(x)?
Example. In the case of the simple Normal model, the statistics:

X = 1
n

Xn

k=1
Xk, s2 = 1

(n−1)
Pn

k=1(Xk−X)2, (4)

constitute ‘good’ estimators of (μ, σ2), with sampling distributions:

X v N
³
μ, σ

2

n

´
, (n−1)s2

σ2
v χ2(n−1). (5)

Moreover, for testing the hypotheses:

H0 : μ = μ0 vs. H1 : μ > μ0, (6)

the test statistic τ(X)=
√
n(X−μ0)

s
, with a sampling distribution:

τ(X) =
√
n(X−μ0)

s

H0v St(n−1),
can be used to define an optimal test when combined with the rejection region
C1(α)={x : τ(x) > cα}; see Cox and Hinkley (1974). Using the well-known du-
ality between hypothesis testing and interval estimation on can define the two-sided
Confidence Interval (CI) for μ :

P
³
X − cα

2
( s√

n
) ≤ μ ≤ X + cα

2
( s√

n
)
´
= 1− α.
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Prediction differs from the above inferences in so far as it is concerned with finding
the most representative value of Xk beyond the observed data, say Xn+1. A good
predictor of Xn+1 is given by:

bXn+1 = h(X), where h(X) =
½
1, if X ≥ 1

2
,

0, if if X < 1
2
.

(7)

2.5 The nature and forms of statistical induction

How do these inference procedures differ? It turns out that their differences arise from
the nature of induction involved. The traditional statistical literature distinguishes
between estimation (point and interval) and hypothesis testing. Chatterjee (2003)
refers to the former as open induction and to the latter as hypothetic induction para-
phrasing approvingly Day (1961): “Some philosophers regard hypothetic induction
more important than open induction for the progress in science ..., since one can give
free play to one’s imagination in framing the hypothesis.” (ibid. p. 65)
This is a very interesting point that it is not widely appreciated in statistics. In

point estimation one selects the most representative value (in view of the data) of the
unknown parameter θ; representativeness being defined in terms of optimal properties
such as unbiasedness, efficiency, sufficiency, consistency etc. The main problem with
this form of inductive inference is that the error probabilities associated with inferring
a point estimate are rather vague, rendering this form of inductive inference less
precise and effective. Ensuring that an estimator is consistent, unbiased or even fully
efficient does not provide one with enough information to evaluate the reliability of a
point estimate inference. Interval estimation remedies this deficiency by providing a
way to evaluate the relevant error probabilities associated with an interval estimator
covering the true value of the unknown parameter θ. Hypothesis testing poses even
more probative questions; whether particular hypothetical values of θ are warranted
in view of the data. The questions posed in estimation and testing as well as the
answers elicited are different because the form of reasoning underlying these two
forms of inferences is dissimilar.
The form of reasoning that underlies estimation is that of factual reasoning based

on evaluating the sampling distributions of estimators ‘under the true state of nature’
(TSN):

X
TSNv N

³
μ∗,

σ2∗
n

´
, (n−1)s2

σ2∗
TSNv χ2(n−1). (8)

That is, the sampling distributions are evaluated assuming that the unknown para-
meters take their ‘true’ values, say (μ∗, σ

2
∗) , whatever those happen to be.

In contrast to estimation, the reasoning underlying hypothesis testing is coun-
terfactual. The sampling distribution of a test statistic is evaluated under several
hypothetical scenarios based on ‘what if’ counterfactuals. In particular, what is the
sampling distribution of the test statistic if the null or the alternative hypotheses are
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true? In the above case these scenarios give rise to:
√
n(X−μ0)

s

H0v St(n−1),
√
n(X−μ0)

s

H1v St(δ;n−1), for any μ1 > μ0, (9)

where δ =
√
n(μ1−μ0)

σ
. The counterfactual reasoning in testing poses sharper questions

by assuming different hypothetical values for μ, and often elicits more informative
answers from the data.
This demarcation line between the two types of reasoning is best brought out

when one considers the sampling distribution underlying the two-sided confidence
interval (CI) for μ :

P
³
X − cα

2
( s√

n
) ≤ μ∗ ≤ X + cα

2
( s√

n
)
´
= 1− α,

which, despite the duality between hypothesis testing and CI, is not (9), but instead:

√
n(X−μ∗)

s

TSNv St(n−1). (10)

The difference in the underlying reasoning is important in understanding the nature
of the error probabilities associated with each inference as well as in interpreting the
results of these procedures.
The optimality of inference methods in frequentist statistics is defined in terms

of their capacity to give rise to valid inferences (trustworthiness), evaluated in terms
of the associated error probabilities: how often these procedures lead to erroneous
inferences.
In the case of Confidence Interval (CI) estimation the capacity is usually

assessed in terms of minimizing the coverage error probability:

P
³
X − cα

2
( s√

n
) ≤ μ ≤ X + cα

2
( s√

n
); μ 6= μ∗

´
= α,

the probability that the interval does not contain the true value μ∗ of μ, or maximizing
the coverage probability:

P
³
X − cα

2
( s√

n
) ≤ μ ≤ X + cα

2
( s√

n
); μ = μ∗

´
= 1−α.

In the case of hypothesis testing the capacity of a test procedure is evaluated
in terms of minimizing the type II error probability:

P(τ(X) ≤ cα;H1(μ1)) = β(μ1), for all μ1 > μ0,

the probability of accepting the null hypothesis when false, for a given type I error
(rejecting the null when true) probability:

P(x ∈ C1(α);H0) = P(τ(X) > cα;H0) = α.
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This is equivalent to maximizing the power of the test:

π(μ1) = P(τ(X) > cα;H1(μ1))=1−β(μ1), for all μ1 > μ0;

see Lehmann (1986), Cox and Hinkley (1974).
Prediction differs from estimation (point and interval) and hypothesis testing in

so far as it is concerned with particular events associated with the data generating
process as opposed to the process itself. The predictor bXn+1 = h(X), where h(.) is
defined in (7), for a given data x0 gives rise to an event associated with the statistical
GM Xk = μ + uk, k∈N. The associated error is defined by en+1 = (Xn+1 − bXn+1),
whose sampling distribution is directly related to (10). This suggests that the under-
lying reasoning in the case of prediction is also factual, as in the case of estimation.

2.6 Induction by enumeration

How do the above forms of statistical induction relate to the traditional induction by
enumeration in philosophy of science? A particularly simple example of induction by
enumeration is given by Salmon (1967):
“If the proportion of red marbles from a sample is (m/n), infer that approximately
(m/n) of all marbles in the urn are red.”
This can be given a precise statistical formulation in terms of the simple Bernoulli

model where the outcome X=1 denotes the event ‘the marble chosen is red’, with
P(X=1) = θ, and X=0 denotes the event ‘the marble chosen is not red’, with
P(X=0) = 1−θ. This model differs from the simple Normal in table 1 only in so
far as E(Xk) = θ, V ar(Xk) = θ(1−θ) and the underlying distribution is Bernoulli,
i.e.

Xk v BerIID (θ, θ(1−θ)) , k ∈ N.
This formulation transforms the ‘uniformity of nature’ and ‘representativeness’ as-
sumptions into the probabilistic assumptions of IID and renders them testable vis-a-
vis data x0.Moreover, the inference concerning the proportion of red marbles amounts
to choosing the point estimator bθ = X= 1

n

Xn

k=1
Xk, as providing a representative

value for θ; note that x =
¡
m
n

¢
, m being the number of red marbles in a sample of n

from an urn. The statistical justification of this form of induction in the early part of
the 20th century was based on bθ being a consistent estimator of θ as n→∞, under
a variety of circumstances.
This formulation of induction by enumeration brings out some of its weaknesses

most clearly. First, the inference in the form of point estimation is rather anemic
without any measures of reliability. Second, reliance on consistency by itself:

lim
n→∞

P
³¯̄̄bθn − θ

¯̄̄
<
´
= 1, (11)

does not provide a basis for evaluating the reliability of inference because no trust-
worthy error probabilities can be retraced on the basis of (11). One needs to use
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more effective inference procedures such as CI interval estimation or even testing,
to evaluate the reliability of the inference concerning θ based on finite sample error
probabilities such as: bθ v Ber³θ, θ(1−θ)

n

´
.

Third, the premises of inference cannot be established a priori but can be empirically
assessed a posteriori.
It is important to point out that the above explicit formulation of induction by

enumeration, in the form of a simple Bernoulli model, is general enough to accom-
modate the modeling of the mechanism that brings about any event A, as long as
the IID assumptions are appropriate. Moreover, it is crucial to distinguish between
modeling the mechanism that can give rise to and predicting the occurrence of event
A. For instance, predicting whether the next marble to be pulled out of the urn is
red relates to the outcome associated with Xn+1 whose best predictor is given in (7).

2.7 The role of pre-data error probabilities

In summary, the primary objective of statistical induction is to enable one to learn
about the stochastic mechanism that gave rise to the data. This learning process
begins with the choice of a statistical model (a family of models Mθ(x), θ ∈Θ)
within the set of all possible statistical models P(x) that could have given rise to
data x0. The selected statistical model, in conjunction with the data, constitute the
premises of inference. An important necessary condition for the reliability of any
inductive inference is the validity of the premises vis-a-vis data x0. Viewing the data
as a truly typical realization of a generic observable stochastic process {Xk, k∈N}
enables one to specify the premises in terms of testable probabilistic assumptions
underlying this process. This is an important component of the objectivity char-
acterizing the frequentist approach to inference. Securing the statistical adequacy
of the premises using probative misspecification tests ensures that the actual and
nominal error probabilities are approximately equal. Pre-data the error probabilities
associated with an inductive inference provide a measure of the trustworthiness of an
inference procedure: how often a certain procedure will give rise to valid inferences
concerning the underlying actual DGM. As such ascertainable error probabilities,
based on statistically adequate models, play a crucial role in statistical induction by
determining the capacity/trustworthiness of the inference procedure under all possi-
ble sample realizations x :=(x1, ..., xn) ∈ X , always within the prespecified family of
modelsMθ(x), θ ∈Θ. That is the reason why all sampling distributions of estimators
and test statistics are derived from the distribution of the sample f(x;θ) via (3); this
defines the domain of potential evidence. This role of pre-data error probabilities is
well understood and generally accepted.
What is often disputed is the role of error probabilities post-data; see Hacking

(1965). That is, once an inference is made what is the role of error probabilities, if
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any, post-data? Are error probabilities inextricably bound up with the frequentist
‘long-run’ metaphor?
It is long-familiar that one cannot attach the coverage probability, say .95, to

the observed CI (see Cox and Hinkley, 1974), and thus all points inside such an
interval are treated on par post-data. Similarly, using pre-data error probabilities to
go from the accept/reject decision to inferring the validity of the null or the alternative
hypotheses often gives rise to the well-known fallacies of acceptance and rejection,
respectively; see Mayo and Spanos (2006). The use of the well-known ‘long-run’
metaphor in interpreting such error probabilities has encouraged the view that error
probabilities are only useful pre-data and just in the context of Neyman’s behavioristic
interpretation of tests. This issue lies at the heart of the tension between Fisher’s
significance testing and the Neyman-Pearson (N-P) hypothesis testing. Fisher’s use of
the p-value to provide an inferential interpretation reflecting the strength of evidence
against the null, is often criticized as incompatible with N-P testing. Bayesians have
admonished the usefulness of the p-value by pointing to the large n problem; they
even dispute the interpretation of the p-value as a legitimate error probability (see
Berger and Selke, 1987). They also correctly criticize the misconstrual of the p-value
as assigning a degree of support or a posterior probability to the null hypothesis.
Despite these admonishments statistical practitioners have continued to use the

p-value and when challenged they usually justify it by invoking some vague inferen-
tial interpretation based on the observed significance level. In several applied fields
including Economics, Psychology, Epidemiology and Political Science, the behavior-
istic N-P accept/reject decision has been replaced by reporting a strange mixture of
asterisks (significance at 1% (***), 5% (**), 10% (*)) and p-values. That, more than
anything, suggests that practitioners are seeking ways to bridge the gap between the
coarse accept/reject decision and the evidence for or against the null warranted by
the data.
In the next section we will consider how an inferential construal of N-P tests can

be attained by extending the pre-data error probabilities to a ‘customized’, post-data
assessment of the severity with which specific inferences or claims pass the test in
question; see Mayo (1991).

3 Statistical Induction : post-data

3.1 Error probabilities and an inferential construal of N-P
tests

The type I and II error probabilities:
α = P(τ(X) > cα;μ0), β(μ1) = P(τ(X) ≤ cα;μ1), for all μ1 > μ0,

are by definition fundamentally pre-data notions because they include (i) the choice
of a predesignated α, giving rise to (ii) the critical value cα, and (iii) both types of
errors are relevant.
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Any attempt to construct a post-data assessment would need to amend these
notions in view of data x0 and the N-P accept/reject result. Crudely put, post-data
(i)* the relevant significance level is the p-value:

p(x0) = P(τ(X) > τ(x0);μ0),

(not α), and (ii)* the relevant threshold is τ(x0) (not cα); both are now data-specific.
Moreover, post-data (iii)* the notion of error itself is different in the sense that it
could only concern unwarranted claims associated with the accept/reject result. To
establish that one needs to investigate the post-data ‘trustworthiness’ of the test
procedure vis-a-vis such claims. The reasoning underlying this move is basically that
of learning from errors by applying highly probative procedures which would have
detected the error if it were present with very high probability.
In the same vain, data x0 provides evidence for a claim or a hypothesis H (H0

or H1) by applying a highly probative test which would have ruled out the ways the
claim that H is correct can be in error, and no such error is detected. This intuition
is formalized using the notion of a severe test; see Mayo (1981, 1996). A hypothesis
H passes a severe test T with data x0 if,
(S-1) x0 agrees with H, and
(S-2) with very high probability, test T would have produced a result that
accords less well with H than x0 does, if H were false.
This can be used to bridge the gap between accept/reject and an inferential in-

terpretation in so far as the result that H passes test T provides good evidence for
inferring H (is correct) to the extent that T severely passes H with data x0. By eval-
uating the severity of a test T , as it relates to claim H and data x0, we learn about
the kind and extent of errors that procedures were (and were not) highly capable of
detecting, thus informing us of errors ruled out and errors still in need of probing.
Thus, from the thesis of learning from error, it follows that a severity assessment
allows one to determine whether there is evidence for (or against) claims.
In statistical modeling a point null hypothesis is never exactly true, and when

it’s false one would like to ‘quantify’ the discrepancy from the null. With that in
mind, the evaluation of severity introduces a discrepancy parameter. In the case of
the hypotheses in the context of the simple Normal model:

H0 : μ = μ0 vs. H1 : μ > μ0. (12)

the discrepancy parameter γ is introduced via:

μ1 = μ0 + γ, for γ ≥ 0,
which is used to define the relevant inferential claims associated with H0 and H1.
In the case where Tα := {τ(X), C1(α)} has rejected H0 the relevant inferential

claim is:
μ > μ1 = μ0 + γ, γ ≥ 0,

and the idea is to establish the largest discrepancy γ from H0 licensed by data x0.
In the case where Tα has accepted H0 the relevant inferential claim is:

μ ≤ μ1 = μ0 + γ, γ ≥ 0,
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and the idea is to establish the smallest discrepancy γ from H0 licensed by data x0.
In this sense the severity evaluation has three arguments, the test Tα, data x0 and

a claim relating to the inference licensed by the data.

Case A. Reject H0

(S-1) takes the form: x0 agrees with H1,
(S-2) ‘a result that accords less well with H1 than x0 does’
can be formally written as {x : τ(x) ≤ τ(x0)}.
Hence, in the case where test Tα resulted in rejecting H0 (pass H1) with data x0,

the severity evaluation of the relevant claim μ > μ1 is:

Sev(Tα;x0;μ > μ1) := P(a result less in accord with H1 than τ(x0); H1 is false) =

= P(τ(X) ≤ τ(x0);μ > μ1 is false)=P(τ(X) ≤ τ(x0);μ ≤ μ1).

Example. To illustrate consider the case of the simple Normal model with σ=2
and the hypotheses in (6). Let α = .025, n=100, cα=1.96. For τ(x0)=4.0 (x=12.8),
then the severity of the claim μ > μ1=12.4 is:

(a) Sev(Tα;x0;μ > 12.4) = P(τ(X) ≤ 4;μ1=12.4) = .977.

On the other hand, for τ(x0)=2.0 (x=12.4), then the severity of the claim μ > μ1=12.4
is:

(b) Sev(Tα;x0;μ > 12.4) = P(τ(X) ≤ 2;μ1=12.4) = .5.

Our intuition here is that in case (b) one is not warranted in inferring so large a
discrepancy (μ > 12.4) on the basis of τ(x0)=2.0, because 50% of the time an outcome
as large as this would occur even if μ were no larger than 12.4. In case (a), however,
such an inference is warranted on the basis of τ(x0) = 4.0 because the severity is very
high. Hence, two outcomes that might lead to an identical N-P decision, say, ‘reject
H0 with a size α test’ may license different inferences according to how severely the
given rejection of H0 indicates a discrepancy γ.

Case B. Accept H0

(S-1) takes the form: x0 agrees with H0,
(S-2) ‘a result that accords less well with H0 than x0 does’
can be formalized by {x : τ(x) > τ(x0)}.
Hence, in the case where test Tα resulted in accepting H0 with data x0, the severity

evaluation of the relevant claim μ ≤ μ1 is:

Sev(Tα;x0;μ ≤ μ1) := P(a result less in accord with H0 than τ(x0); H0 is false) =

= P(τ(X) > τ(x0);μ ≤ μ1 is false)=P(τ(X) > τ(x0);μ > μ1).

Example. Continuing the same example consider the case where Tα yields ‘Ac-
cept H0’ with τ(x0) = 1.5 (x = 12.3). The severity of inferring μ ≤ 12.3:

(a) Sev(Tα;x0;μ ≤ 12.3) = P(τ(X) > 1.5;μ > 12.3) = .500,
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which indicates that no such claim is licensed by this data. On the other hand if the
sample realization yielded τ(x0) = −0.5 (x = 11.9) :

(b) Sev(Tα;x0;μ ≤ 12.3) = P(τ(X) > −.5;μ > 12.3) = .977.

For detailed discussions concerning severity vs. power, the use of severity to
circumvent the fallacies of acceptance and rejection and the large n problem, as well
as using severity to ameliorate the main shortcomings of the behavioral decision model
of N-P tests, see Mayo and Spanos (2006).

3.2 Severity and post-data error probabilities

The question that naturally arises at this stage is the extent to which the severity
evaluation can be viewed as a proper post-data error probabilistic assessment that
addresses Fisher’s concerns with the behavioristic construal of N-P tests and renders
the inference data-specific. The simple answer is that the severity evaluation is a
genuine post-data error probability which custom-tailors (in view of the data) the pre-
data trustworthiness of a test procedure in order to weave an inferential interpretation
out of the coarse accept/reject result and the relevant inferences warranted by data
x0. Let us unpack this claims by foregrounding the custom-tailoring on both the
sample and the parameter spaces.
Sample space custom-tailoring. N-P testing defines the pre-data error prob-

abilities based on partitioning the sample space into an acceptance and a rejection
region based on cα :

C0(α) = {x : τ(x) ≤ cα}, C1(α) = {x : τ(x) > cα}, C0(α) ∪ C1(α) = X .

The pre-data trustworthiness, in the sense of how often the test gives rise to the correct
decision, is defined by:

Accept H0 :
P(accept H0 when true)= 1− P(reject H0 when true)=
= P(τ(X) ≤ cα;H0) = 1− P(τ(X) > cα;H0) = 1−α

Reject H0 :
P(reject H0 when false)= 1− P(accept H0 when true)
= P(τ(X) > cα;H1(μ1))=1− P(τ(X) ≤ cα;H1(μ1))=1−β(μ1),

(13)
where α and β(μ1), μ1 > μ0 denote the type I and II errors, respectively. Notice that
the trustworthiness in the case of accept H0 and reject H0 is defined in terms of the
type I and type II error, respectively.
Post-data, severity re-partitions the sample space into an accordance and discor-

dance regions based on the threshold τ(x0) :

A0(x0)={x : τ(x) ≤ τ(x0)}, A1(x0)={x : τ(x) > τ(x0)}, A0(x0) ∪A1(x0) = X .

16



These regions formalize the severity notions of ‘accords as well as or better with H0

than x0 does’ and ‘accords less well with H0 than x0 does’; the reverse will be true
for H1.
Parameter space custom-tailoring. The second part of custom-tailoring in-

volves the partitioning of the parameter space Θ using a partial order defined by

μ1 = μ0 + γ, for all γ ≥ 0,
with a fixed reference point μ = μ0 and a varying discrepancy parameter γ ≥ 0.
Collecting the above pieces together, the severity evaluation custom-tailors the

pre-data trustworthiness to a post-data evidence-based assessment of the relevant in-
ferences as follows:

Sev(Tα;x0;μ ≤ μ1) =P(infer μ ≤ μ1 when warranted by x0)
=P(τ(X) ≤ τ(x0);μ ≤ μ1)

for μ1 = μ0 + γ, γ ≥ 0,
Sev(Tα;x0;μ > μ1) =P(infer μ > μ1 when warranted by x0)

=P(τ(X) > τ(x0);μ > μ1)

(14)

To show how the severity evaluation is directly related to post-data error probabilities
associated with inferential claims, one can re-write (14):

Sev(Tα;x0;μ ≤ μ1) =1−P(infer μ > μ1 when unwarranted by x0)
=1−P(τ(X) > τ(x0);μ ≤ μ1) > (1− α)

for μ1 = μ0 + γ, γ ≥ 0,
Sev(Tα;x0;μ > μ1) =1−P(infer μ ≤ μ1 when unwarranted by x0)

=1−P(τ(X) ≤ τ(x0);μ > μ1) > [1−β(μ1)] .

(15)

A comparison between (15) and the pre-data trustworthiness in (13) indicates
that the latter provide lower bounds (worst case scenarios) for the severity evalua-
tions, highlighting the importance of custom-tailoring in rendering the inference more
informative as well as data-specific.
The discrepancy parameter γ plays a crucial role in the severity assessment be-

cause it reflects the custom-tailored post-data trustworthiness of the test as it relates
to different claims associated with the original accept/reject result. In a sense the
counterfactual reasoning underlying N-P testing has been extended to cover the whole
of the parameter space using the discrepancy-based partitioning as it relates to the
relevant inference. In an important sense this intensive use of counterfactual rea-
soning provides the key to the data-specific inferential interpretation. Indeed, this
explains why Confidence Interval (CI) estimation, based on factual reasoning, cannot
discriminate among the points inside an observed CI.
Viewed from the severity perspective the p-value can be interpreted as a crude

post-data error probability that lacks the discrepancy parameter refinement. To see
this let us consider a severe-testing interpretation of using a small p-value, say p = .01,
to infer that data x0 provide evidence against H0.
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Severe-testing and p-value. Such a small p-value indicates that x0 accords with
H1, and the question is whether it provides evidence for H1. Using the severe-testing
interpretation one can argue that H1 has passed a severe test because the probability
that test Tα would have produced a result that accords less well with H1 than x0 does
(values of τ(x) less than τ(x0)), if H1 were false (H0 true):

Sev(Tα;x0;μ > μ0)=P(τ(X) ≤ τ(x0);μ ≤ μ0) =1−P(τ(X) > τ(x0);μ=μ0)=.99,

is very high. The severity construal of the p-value brings out its most crucial weakness:
it establishes the existence of some discrepancy γ ≥ 0, but provides no information
concerning the magnitude licensed by data x0; the warranted discrepancy could be
tiny or very large. Moreover, the dependence of the p-value on the sample size can
belie the warranted discrepancy. The severity evaluation addresses both of these
problems (Mayo and Spanos, 2006). This account is related to the principle for
evidential interpretation governing the implications of p-values in Mayo and Cox
(2006).
In summary, the severity-based inferential interpretation takes the form of ren-

dering the coarse accept/reject decision more informative as well as data-specific by
evaluating the discrepancy from the null that is licensed by the data in question.
The question, however, remains whether the severity-based inferential interpretation
addresses Fisher’s concerns. How does the severity assessment relate to the metaphor
of the ‘long run’ repetition of experiments used to conceptualize the pre-data error
probabilities? The answer is that severity takes the pre-data error probabilities as cal-
ibrating the general trustworthiness of the test procedure and custom-tailors that to
the particular case of data x0 and the relevant inferential claim, rendering the evalua-
tion: (i) test-specific, (ii) data-specific, (iii) inference-based, (iv) discrepancy-driven,
and (v) counterfactually-intensive.
The severity assessment allows for a post-data objective interpretation of any N-

P test result that bridges the gap between the coarse accept/reject decision and the
evidence for or against the null warranted by the data. When the severity evaluation
of a particular inferential claim, say μ ≤ μ0 + γ, is very high (close to one), it can
be interpreted as indicating that this claim is warranted to the extent that the test
has ruled out discrepancies larger than γ; the underlying test would have detected
a departure from the null as large as γ almost surely, and the fact that it didn’t
suggests that no such departures were present. Viewing N-P tests from the severe
testing perspective, suggests that the value of confining error probabilities at small
values is not only the desire to have a good track record in the long run, but also
because of how this lets us severely probe, and thereby learn about, the process that
gave rise to the particular data. This brings us back to learning from errors by
applying highly probative procedures.
In concluding this section, it is important to emphasize that the severity assess-

ment constitutes a general post-data supplement to N-P tests that provides a data-
specific inferential interpretation of the accept/reject result; it can be applied to all
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(properly defined) N-P tests. In particular, it does not require that the underlying
statistical model enjoys any special probabilistic structure such as the existence of
ancillary statistics, as in the case of conditional inference (see Lehmann, 1986, ch.
10). Moreover, it does not require any special partitioning of the sample space arising
from additional information that needs to be brought into the N-P framework, as in
the case of Kiefer’s (1977) conditional confidence set up.

4 Model validity and the reliability of Inference

As argued above, the sampling distributions, in terms of which the pre-data and
post-data error probabilities are evaluated, are derived from the distribution of the
sample. The distribution of the sample is the joint distribution of the stochastic
process defined by the statistical model; the premises of inference. Hence, it follows
that the reliability of any inductive inference depends crucially on statistical adequacy:
the model assumptions are valid vis-a-vis the data in question. The Fisher-Neyman
probabilistic perspective is particularly crucial in this context because it enables one
to specify the statistical model in terms of complete set of testable probabilistic
assumptions. The quintessential example of a statistical model is the simple Normal
model given in table 1.
Any departures from the model assumptions will give rise to a divergence between

the nominal error probabilities, derived under the assumption of valid premises, and
the actual error probabilities, derived taking into consideration the particular depar-
ture(s) from the premises, calling into question the reliability of inference. Indeed,
the discrepancy between the nominal and actual error probabilities provides a way
to assess the extent of the unreliability of inference. Because of that, statistical ad-
equacy is viewed as operationally equivalent to the condition that the nominal and
actual error probabilities are approximately equal, giving rise to statistically reliable
inferences.

4.1 Misspecification and the reliability of inference

The question which arises is how does one deal with departures from the statistical
premises? A widely used argument in defence of ignoring the problem of potential
misspecifications is the following:
“All models are misspecified to ‘a greater or lesser extent’ because they are just
approximations. Moreover, ‘slight’ departures from the assumptions will only
lead to ‘minor’ deviations from the ‘optimal’ inferences.”
What is misleading about this argument is that its persuasive force stems from its

vague references to ‘lesser’ and ‘slight’, and ‘minor’ which, when taken at face value,
seem plausible until one examines this an argument more closely.
Example. Consider the case of the simple Normal model with σ2 known (σ2 = 1)
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and the hypotheses of interest are:

H0 : μ = μ0 against H1 : μ > μ0, (16)

When assumptions [1]-[4] are valid the t-type test based on the sampling distributions:

d(X)=
√
n(X−μ0)

σ

H0v N(0, 1), d(X)
H1v N(δ, 1), for μ1 > μ0, (17)

where δ =
√
n(μ1−μ0)

σ
, together with the rejection region C1(α) = {x : d(x) > cα} is

UMP; see Lehmann (1986). As shown below, however, the presence of some depen-
dence of the form:

Corr(Xi,Xj) = ρ, 0<ρ<1, i 6= j, i, j = 1, ...n, (18)

will render this test unreliable. The unreliability of inference arises when one applies
this test thinking that there is only 5% chance of rejecting the null when true, when
in fact that probability could be as high as 100%; see Spanos and McGuirk (2001)
for several examples.
Let μ0 = 0, n = 100, α = .05, cα = 1.66. Table 2 shows that the presence of

even some tiny correlation (ρ = .05) will induce a sizeable discrepancy between the
nominal (α = .05) and actual type I error probability (α∗ = .25). In the above case
the unreliability stems from the fact that actual the sampling distributions are no
longer given by (17) but:

d(X)
μ=μ0v N (0, dn(ρ)) , d(X)

H1v N(δ, dn(ρ)), for μ1 > μ0, (19)

where dn(ρ)=(1+(n−1)ρ) > 1.

Table 2 - Type I error of t-test for different values of ρ
ρ 0.0 .05 .10 .20 .30 .50 .75 .80 .90

α∗-actual .05 .249 .309 .359 .383 .408 .425 .427 .431

Table 3 - Power π∗(μ1) of the t-test for different values of ρ
ρ π∗(.01) π∗(.02) π∗(.05) π∗(.1) π∗(.2) π∗(.3) π∗(.4)
0.0 .061 .074 .121 .258 .637 .911 .991
.05 .262 .276 .318 .395 .557 .710 .832
.1 .319 .330 .364 .422 .542 .659 .762
.2 .367 .375 .401 .443 .531 .616 .697
.3 .390 .397 .418 .453 .525 .596 .664
.5 .414 .419 .436 .464 .520 .575 .630
.75 .429 .434 .447 .470 .516 .562 .607
.8 .431 .436 .449 .471 .515 .560 .603
.9 .435 .439 .452 .473 .514 .556 .598
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Similarly affected will be the power of the t-test. As shown in table 3, as ρ→ 1 the
power of the t-test increases for small discrepancies from the null, but it decreases
for larger discrepancies. That is, the presence of correlation would render a powerful
smoke alarm into a faulty one, being triggered by burning toast but not sounding
until the house is fully ablaze; see Mayo (1996).
Misspecification renders CIs unreliable by inducing a discrepancy between nominal

and actual coverage probabilities analogous to the ones for tests considered above.
The two-sided (1− 2α) CI takes the form:

P
³
X − cα(

σ√
n
) ≤ μ∗ < X + cα(

σ√
n
)
´
= 1− 2α, (20)

with length: σ2cα√
n
.

Example. For x = 0.6, α = .025, cα = 1.96, σ = 1 and n = 100, the observed
95% CI is:

CI(x0) = [0.404, 0.796] , (21)

of length 0.392.However, when assumption [4] is false, and instead (18) is the ap-
propriate assumption, the actual sampling distribution of the relevant pivotal quantity
is: √

n(X−μ∗)
σ
√

dn(ρ)

tsnv N (0, 1) . (22)

Hence, the actual coverage probability of the CI becomes:

P
µ
X − cα(

σ
√

dn(ρ)√
n
) ≤ μ∗ < X + cα(

σ
√

dn(ρ)√
n
)

¶
= 1− 2α∗, (23)

of length:
σ2cα
√

dn(ρ)√
n

. As shown in table 4, the presence of the misspecification induces
a discrepancy, not only between nominal and actual coverage probabilities, but also
between the nominal and actual lengths.

Table 4 - CIs under Misspecification
ρ Actual CI Actual cover. prob.
0.0 [0.404, 0.796] .950
.05 [0.122, 1.078] .578
.1 [-.047, 1.247] .447
.2 [-.294, 1.494] .333
.3 [-.486, 1.686] .276
.5 [-0.793, 1.993] .217
.75 [-1.100, 2.300] .179
.8 [-1.155, 2.355] .173
.9 [-1.260, 2.460] .163

Given the potential serious consequences of statistical misspecifications, how does
one deal with the problem. First, one needs effective procedures which will detect the
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presence of misspecifications. This is the subject matter of misspecification testing.
Second, if any departures are detected, one needs a respecification strategy which will
lead to a statistical adequate model.

4.2 Misspecification Testing

MisSpecification (M-S) testing, understood as assessing the validity of the statistical
premises, raises several important methodological problems; see Mayo and Spanos
(2004). Some of these problems stem from the difference in nature between N-P and
M-S testing. In broad terms, N-P testing assumes that the prespecified statistical
model M includes the true model, say f0(x), and probes within the boundaries of
this model class by partitioning it into two subsets, the null and alternative:

H0 : f0(x) ∈M0 vs. H1 : f0(x) ∈M1,

whereM0 andM1 form a partition ofM. In contrast M-S testing probes outside the
boundaries of the prespecified model:

H0 : f0(x) ∈M vs. H0 : f0(x) ∈ [P−M] ,

where P denotes the set of all possible statistical models that can be specified in terms
of the joint distribution D(X1,X2, ..., Xn;φ). The problem with M-S testing is how
one can operationalize P−M in order to probe thoroughly for possible departures. In
view of the fact that H0 can take a (possibly) infinite number of forms, deriving a test
requires the modeler to provide a more restrictive (operational) form, P1 ⊂ [P−M] ,
where P1 can be as vague as a direction of departure from M or as specific as a
proper statistical model that encompassesM (M ⊂ P1). For an extensive discussion
of M-S testing in relation to the simple Normal model see Spanos (1999), ch. 15.
The severe testing reasoning is particularly useful in this context because M-

S testing is more susceptible to the fallacies of acceptance and rejection than N-P
testing because the stated alternative P1 can take many different forms, none of
which need to constitute an appropriate statistical model. In particular, inferring
that a specific misspecification error is ruled out, when the test had no chance to
detect such a departure, will be unwise but all too easy. Similarly, rejecting the null
in a M-S test does not warrant one to infer the validity of the specified alternative
P1. Detection of departures from M in the direction of P1 is sufficient to consider
the null as false but not to consider P1 as true. In both casesM and P1, respectively
have not passed a severe test ; see Spanos (2000), Mayo and Spanos (2004).
To guard against such fallacies the Probabilistic Reduction approach encourages

an exhaustively complete probing strategy for M-S testing, by using:
(i) the reduction assumptions to guide the probing in directions of potential
departures,
(ii) graphical techniques for informed probing,
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(iii) a judicious combination of ordered parametric and non-parametric tests to
avoid circular reasoning, and
(iv) joint M-S tests (testing several assumptions simultaneously) to avoid erro-

neous diagnoses.
The challenge is to arrive at a statistical model for the process underlying the data

and infer with severity (Mayo, 1996) that potential violations of its assumptions have
been well-probed! In Spanos (2005b) it is shown that one can do this effectively using
joint M-S tests based on artificial regressions constructed by employing orthogonal
polynomials; see empirical examples in Spanos (1986, 1995, 2006) and Spanos and
McGuirk (2001).

4.2.1 M-S testing and double-use of data

Worrall (2002) defines use-novelty by ‘you can’t use evidence in the construction of
a theory and then again in its support’. Could the use of graphical techniques in,
specification and M-S testing be considered as an example of violating use-novelty or
double use of data?
M-S testing raises the issue of double use of data in the sense that data x0 is

initially used (i) to probe the statistical adequacy of the model, and then (ii) to test
the primary hypotheses or claims. Does this constitute a pejorative double use of
data? The answer to that question is twofold.
The methodological answer is that the questions posed to the data in (i) and (ii)

are very different. In (i) one assesses the appropriateness of the statistical model by
probing the claim that ‘data x0 constitute a truly typical realization of the stochastic
process {Xk, k∈N} underlying this statistical model’. Hence, it concerns this partic-
ular data x0 vis-a-vis the selected statistical model. In contrast, (ii) assesses a claim
about the underlying data-generating process itself. When one tests the hypothesis
μ = 12, in the context of the simple Normal model with σ known, one is asking the
question whether:

Xk = 12 + σεk, εk v N(0, 1), k∈N,
captures (statistically) the true data-generating process; see Spanos (2000).
There is also a related formal statistical answer which concerns how (i) and (ii)

depend on different information, rendering them unrelated. It can be shown that in
the case of the simple Normal model (M), one can reduce the distribution of the
sample into two unrelated components:

f(x;θ) = |J | · f(s;θ) · f(r) for all (r, s) ∈ Rn
X , (24)

where s = (X, s) :

X = 1
n

Pn
i=1Xi, s2 = 1

n(n−1)
Pn

i=1(Xi −X)2,

constitute minimal sufficient statistics for θ = (μ, σ2) and r :=(bv3, .., bvn) :bvk = (Xk−X)
s

, k = 3, 4, .., n,
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are maximal ancillary statistics. This defines a one-to-one transformation:

(X1,X2, ..., Xn)←→ (X, s, bv3, .., bvn),
with |J | the Jacobian of this transformation. When these conditions hold one can
argue formally that (a) any inference concerning θ should be based solely on f(s;θ)
because it’s the only factor that involves θ in a way which ensures no loss of informa-
tion, and (b) since f(r) is free of the unknown parameters θ, it can be used to assess
the statistical adequacy of modelM; see Spanos (2006) for the details.
A related issue raised by both specification and M-S testing is that the observed

data, depicted in terms of graphical techniques, play an important role at these facets
of modeling. After all, the specified statistical modelM is so chosen so as to render
data x0 a truly typical realization of the stochastic process {Xk, k∈N} underlying
M. Graphs of the data indicate recurring patterns that reflect the structure of
the underlying stochastic process, and thus studying these graphs can contribute
significantly to the ‘economy of thought’ required to choose an appropriate statistical
model.

4.3 Respecification

What happens if some of the model assumptions are found wanting? Respecify: select
another statistical model whose appropriateness will be assessed by how well it can
account for the systematic statistical information the original model could not.
In the context of the PR approach, respecification (theoretically) takes the form of

tracing the results of the misspecification tests back to the reduction assumptions and
then changing the reduction assumptions judiciously to account for the information
in the detected departures in order to specify a more appropriate statistical model.
To illustrate this, let us return to the specification of the simple Normal model

as given in table 1. As argued above, the PR perspective considers this model as
a reduction of the joint distribution of the process {Xk k ∈ N} by imposing the
probabilistic assumptions of NIID:

D(X1,X2, ..., Xn;ϕ)
I
=
Qn

k=1Dk(Xk;φk)
IID
=
Qn

k=1D(Xk;φ). (25)

Consider the case where assumption [4] (see table 1) is false, and instead the sample
is Markov dependent:

[5] Corr(Xi, Xj) = ρ|i−j|, for − 1 < ρ < 1, for all i 6= j, i, j = 1, ...n. (26)

This departure suggests that the simple Normal model is no longer appropriate and
the question of respecification arises. As argued in Spanos (1999), ch. 15, under (26)
the appropriate statistical model suggested by the PR approach comes in the form of
the Autoregressive (AR(1)) model, as specified in table 5.
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The probabilistic reduction in (25) is no longer appropriate, and by replacing
Independence (I) with Markov (M) dependence and extending Identically Distributed
(ID) to Stationarity (S), the appropriate reduction takes the form:

D(X1,X2, · · · , Xn;φ)
M
= D1(X1;ψ1)

Qn
k=2Dk(Xk|Xk−1;ψk) =

M&S
= D1(X1;ψ1)

Qn
k=2D(Xk|Xk−1;ψ).

(27)

This gives rise to the Autoregressive (AR(1)) model (see table 5), where the statistical
parameterization of the unknown parameters (α0, α1, σ20) is:

α0=E(Xt)−α1E(Xt−1)=μ(1−α1)∈R, α1=
Cov(Xt,Xt−1)
V ar(Xt−1)

=σ(1)
σ(0)
=ρ ∈ (−1, 1),

σ20 = σ(0)− [σ(1)]2

σ(0)
= σ(0) (1− α21) ∈ R+.

(28)

Table 5 - Normal AutoRegressive Model

Statistical GM: Xk = α0 + α1Xk−1 + εt, k ∈ N.
[1] Normality: (Xk | Xk−1) v N(., .),
[2] Linearity: E (Xk | Xk−1) = α0 + α1Xk−1,
[3] Homoskedasticity: V ar (Xk | Xk−1) = σ20,
[4] Markov dependence: {Xk, k ∈ N} is a Markov process,
[5] k-invariance: (α0, α1, σ

2
0) are not changing with k,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ k ∈ N.

(29)
(28) brings out the relationship between the AR(1) parameters (α0, α1, σ20) and the
parameters of the simple Normal model (μ, σ2); see Spanos (1999). Note that the
presence of μ, as part of the implicit parametrization of (α0, α1) , enables one to test
the hypotheses (16) in the context of the AR(1) model (29). This can be done in the
context of the reparameterized model:

∆Xt = γ0 + β1 (Xt−1 − μ0) + ut, t ∈ T, (30)

H0 : γ0 = 0 vs. H1 : γ0 > 0. (31)

see Spanos (2005a) for the details.

4.4 Model specification vs. model selection

The problem of statistical model specification is often conflated with that of model
selection, as currently understood in the statistical literature; see Rao and Wu (2001).
Lehmann (1990) pointed out that the current model selection procedures do not
address the statistical model specification problem; indeed, one can make a strong case
that they assume the latter problem solved. The model selection procedure is applied
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to a particular family of parametric models which is assumed to be overparameterized,
but contains the ‘true’ model. Consider the classic example of using a model selection
procedure to choose the ‘optimal’ lag value p in the AR(p) model (table 6).
The problem addressed by such a procedure is to choose p ≥ 1 on the basis of some

criterion, say Akaike’s information criterion. This, however, presupposes (implicitly)
that assumptions [1]-[5] comprising the AR(p) family of models are valid for data
x := (x1, x2, ..., xn), and the only issue that remains is the choice of p. When any of
the assumptions [1]-[5] are invalid, however, the selection procedure is likely to lead
one astray because, both, the likelihood function and any error probabilities utilized,
are likely to be misleading. Indeed, this argument can be used to make a strong case
for Glymour’s (1981) position that ‘goodness of fit’ traded against ‘simplicity’, does
not provide an adequate procedure to choose the fittest model.

Table 6 - Normal AutoRegressive (AR(p)) Model

Statistical GM: yk = α0 +
Pp

i=1 αiyk−i + uk, k∈N.
[1] Normality:

¡
yk| y0k−1

¢
v N(., .), y0k−1:=(yk−1, ..., y1)

[2] Linearity: E
¡
yk| y0k−1

¢
= α0 +

Pp
i=1 αiyk−i,

[3] Homoskedasticity: V ar
¡
yk| y0k−1

¢
= σ20,

[4] Markov (p): {yk, k∈N} is a Markov (p) process,
[5] k-invariance: (α0, α1, σ

2
0) are not changing with k,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ k∈N.

(32)
In addition, when the statistical adequacy issue is addressed at the specification

stage, the problem solved by a model selection procedure becomes superfluous. Con-
sider the case where the statistical model specification problem is addressed using
thorough M-S testing and respecification to achieve statistical adequacy. Part of es-
tablishing statistical adequacy is the choice of the maximum needed p in order to cap-
ture the order of Markov dependence of the underlying process process {Xk, k∈N};
rendering the residuals non-systematic. This will solve the choice of p problem on
statistical adequacy grounds, rendering the model selection procedure redundant; see
Spanos (2006c) for further details.
The model selection methods based on information criteria, such as the AIC, would

often lead to erroneous inferences even in cases where the true model is a member of
the class of models chosen at the outset. The unreliability of these procedures stems
from the fact that their minimization procedures can be shown to be equivalent to
N-P testing but without controlling the error probabilities; see Spanos (2006c) for
the details.
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4.5 Statistical vs. Substantive adequacy

The relationship between statistical and substantive information in empirical mod-
eling is highly embrangled (see Lehmann, 1990, Cox, 1990 and Cox and Warmuth,
1996), and no attempt will be made in this paper to disentangle the intricate connec-
tions; see Spanos (2006a-c). However, it is important to discuss the issue of statistical
vs. substantive adequacy which is an important dimension of that relationship.
Broadly speaking, statistical adequacy concerns the validity of the statistical model

(the probabilistic assumptions constituting the model - table 1- vis-a-vis the observed
data. As argued above, statistical adequacy ensures that the actual error probabilities
provide a good approximation to the nominal error probabilities, rendering the infer-
ence based on such a model reliable. This, however, is not sufficient for substantive
adequacy. Substantive adequacy concerns the validity of the structural model (the in-
clusion of relevant and the exclusion of irrelevant variables, functional relationships,
confounding factors, causal claims, external validity, etc.) vis-a-vis the phenomenon
of interest that gave rise to the data. The two premises are related in so far as the sta-
tistical model provides the operational context in which the structural model can be
analyzed, but the nature of errors associated with the two premises is very different.
Moreover, a structural model gains statistical ‘operational meaning’ when embedded
into a statistically adequate model. In an attempt to illustrate some of these issues
we revisit Kepler’s first law using his original data.

4.5.1 Kepler’s first law of planetary motion revisited

Historically this law was originally proposed by Kepler in 1609 as an empirical regu-
larity (a statistical model) that he ‘deduced’ from Brahe’s data. Almost 80 years later
Newton proposed a substantive explanation (structural model) for this regularity. In
what follows we will reverse this order for expositional purposes.
Structural Model. Kepler’s first law states that the loci of the motion in polar

coordinates can be approximated by (1/r) = α0 + α1 cosϑ, where r denotes the dis-
tance of the planet from the sun, and ϑ denotes the angle between the line joining the
sun and the planet and the principal axis of the ellipse; see figure 7.

Fig. 7: Elliptical motion of planets

Defining the observable variables, Y := (1/r) and X := cosϑ, one can specify the
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structural model:
Yk = α0 + α1Xk + (xk,ξk), k ∈ N, (33)

where the error term (xk,ξk) includes all the unmodeled effects and is assumed to
be white-noise.
The structural interpretation of Kepler’s first law, as given in (33), stems from

the fact that the parameters (α0, α1) enjoy a clear theoretical interpretation. This
interpretation is bestowed upon the parameters by Newton’s law of universal gravi-
tation: F = G(m·M)

r2
, where F is the force of attraction between two bodies of mass

m (planet) and M (sun); G is a constant of gravitational attraction, and r is the
distance between the two bodies. In particular, the parameters (α0, α1) are given the
following clear structural interpretation:

α0 =
MG
4κ2

, where κ denotes Kepler’s constant,
α1 = (

1
d
− α0), d denotes the shortest distance between the planet and the sun.

The error term (xk,ξk) also enjoys a structural interpretation in the form of ‘dis-
crepancies’ from the elliptic motion due to measurement errors and other unmodeled
effects. Hence, the white-noise error assumptions are inappropriate in cases where:
(i) the data suffer from ‘systematic’ observation errors,
(ii) the third body problem and/or the general relativity terms (see Lawden, 2002)
are significant.
In summary, the structural model (33) has the following crucial features:
(a) it depicts a ‘factual’ generating mechanism which aims to approximate
the actual Data Generating Mechanism, viewed as a ‘nearly isolated’ system where
the unmodeled effects are non-systematic,
(b) the parameters (α0, α1, σ2) enjoy a clear substantive interpretation,
(c) the error term is ‘autonomous’ and represents all unmodeled influences.
Statistical model. In order to assess the substantive adequacy of the structural

model (33) one needs to embed it into a statistical model. The obvious choice of a
statistical model is the Linear Regression given in table 7. Viewed in the context of
that model, Kepler’s law constitutes an empirical regularity if the estimated model
turns out to be statistically adequate.

Table 7 - The Normal/Linear Regression (LR) Model

Statistical GM: yt = β0 + β
>
1 xt + ut, t ∈ T,

[1] Normality: (yt| Xt= xt) v N(., .),
[2] Linearity: E(yt| Xt= xt) = β0 + β

>
1 xt, linear in xt,

[3] Homoskedasticity: V ar(yt| Xt= xt) = σ2, free of xt,
[4] Independence: {(yt| Xt= xt), t ∈ T} is an independent process,
[5] t-invariance: θ := (β0,β1, σ

2) do not vary with t.
β0 = μ1 − β>1 μ2, β1 = Σ−122 σ21, σ

2 = σ11 − σ>21Σ−122 σ21

(34)
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To assess that, consider embedding the structural model (33) into a statistical
(Linear Regression) model (table 7):

yt = 0.662062
(.000002)

+.061333
(.000003)

xt + but, n = 28, s=.0000111479, R2 = .9999, (35)

where bα0 = .662062 and bα1 = .061333. The M-S test results reported in table 8
are indicative of the thorough probing of assumptions [1]-[5], which included both
parametric and non-parametric tests. The numbers in square brackets denote the
relevant p-values, which indicate no departures from the model assumptions [1]-[5];
see Spanos and McGuirk (2001) for the details of the M-S tests. Note that the
residuals from (35) indicate no systematic departures from a realization of a NIID
process.

Table 8 - Misspecification tests
Non-Normality: D0AP = 5.816[.056]
Non-linearity: F (1, 25) = 0.077[.783]
Heteroskedasticity: F (2, 23) = 2.012[.156]
Autocorrelation: F (2, 22) = 2.034[.155]

In view of these M-S test results we can deduce that any inference based on
(35) will be statistically reliable. For instance, one can test Kepler’s first law of
motion being elliptical against Copernicus’s conjecture that the motion was circular
by testing:

H0 : α1 = 0, vs. H1 : α1 6= 0.
This is because the equation of a circle in polar coordinates is (1/r) = α0 6= 0.

Observation Order
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Fig. 8: Residuals from the Kepler regression

Substantive adequacy. The question is whether this estimated model is also
substantively adequate. To assess that one would need to modify the above structural
model to include the general relativity factor and any measurement errors. This factor
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arises from Einstein’s General Relativity Theory induced ‘correction’ of Newton’s law
of universal gravitation to:

F ∗ = G(m·M)
r2

+ A
r4
;

see Lawden (2002). The general relativity factors turns out to be tiny, but the poten-
tial of systematic measurement errors committed by Brahe remains a real possibility.
To assess this we use a variable known as the Julian date which can play the role of a
proxy for any omitted effects relating to the observation order, as a potentially omit-
ted variable; see Spanos (2006b). The inclusion of ξk is suggested by the t-plots of
the data which exhibit clear trends. Re-estimating (35), with the additional variables
yielded:

yt = .66206
(.000005)

+ .061328
(.000005)

xt + .00278
(.00226)

ξk + but, n = 28, s=.000011023, R2 = .9999.

(36)
Thorough misspecification testing of assumptions [1]-[5], reveals that (36) is indeed
statistically adequate; the results are very similar to those in table 8. The fact
that Kepler’s empirical relationship turned out to constitute a statistically adequate
model was primarily due to luck; a combination of accurate observations from Brahe
on Mars, and the long distance of Mars from the nearest planet which rendered the
third body problem effect negligible.
The data-acceptability of the structural model (33) can be assessed on the basis

of (36) by testing the statistical significance of β2, yielding: τ(y) = 1.230[.231], i.e.
the null hypothesis cannot be rejected. In this sense, the estimated structural model
(35) constitutes a reparameterization/restriction of the estimated statistical model
(36). Despite the small sample size the precision of the structural estimates, based
on their standard errors, is amazing!
It is interesting to note that on the basis of the estimates of (α0, α1) in (35), one

can proceed to derive indirect estimates of several other related structural parameters:

bγ0 = 1
α0
= 1.51043, bγ1 = bα1bγ0 = .0926392, d = 1

α0+α1
= 1.3824,

where γ0 denotes the semi-latus rectum, γ1 the eccentricity of the elliptical motion of
Mars around the sun. These indirect estimates are surprisingly very accurate, even
when compared with current estimates; see Spanos (2005d) for further details.

5 Summary and conclusions

A number of methodological problems and issues have been discussed using the Prob-
abilistic Reduction approach to empirical modeling. A central axis around which most
of these issues revolve is the notion of statistical induction adopted. The paper artic-
ulated the notion of statistical induction underlying the frequentist approach going
back to Fisher (1922), emphasizing the fact that the primary objective is to learn
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about the actual data-generating process that gave rise to the data. It was empha-
sized that the nature of induction underlying the different forms of inference relating
to estimation, testing and prediction is distinct; the reasoning underlying estimation
and prediction is factual but that of testing is counterfactual.
The discussion brought out the importance of supplementing the pre-data error

probabilities with a post-data severity assessment in order to bridge the gap between
the coarse N-P test accept/reject decision and a data-specific inferential interpretation
of the result. Supplementing N-P testing with the severity evaluation gives rise to
what Mayo (1996) calls the error-statistical account of inference which constitutes
the most well-rounded description of frequentist statistical induction.
An important aspect of statistical induction concerns the validity of the premises.

The reliability of inference depends crucially on the validity of the statistical premises.
When the statistical premises are misspecified the actual and nominal error probabil-
ities (pre-data and post-data) differ, giving rise to unreliable inferences. The crucial
role played by the notion of statistical adequacy in ensuring the statistical validity
of the inference was discussed at some length, and several methodological issues per-
taining to misspecification testing and respecification have been noted; severe testing
reasoning plays a crucial role in understanding these issues. The paper also argues
that the current literature on model selection ignores the statistical adequacy issue
with dire consequences for the reliability of such procedures. Kepler’s original data
are used to illustrate the statistical vs. substantive adequacy issue by revisiting his
first law of planetary motion.
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