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Abstract

Let k be an algebraically closed field of characteristic 0, X = kr× (k×)s and
let G be an algebraic torus acting diagonally on X. We construct a fan ∆ such
that the quotient Y//G is isomorphic to the toric variety determined by ∆ and
D(X) = D(Y ), for a distinguished G-invariant open subset Y of kn. The main
goal of this construction is to give necessary and sufficient conditions on ∆ for
D(X)G to have enough simple finite dimensional modules.

Let G be a reductive group acting on the smooth affine variety X = kr × (k×)s,
with k an algebraically closed field k of characteristic 0. We denote the ring of
regular functions on X by O(X) and the ring of differential operators by D(X).
Let D(X)G be the subring of D(X) of invariants under the action of G. There are
several papers where actions of tori and finite fans are related, [4], Chaper VI, [5],
[11] and more recently [2], [3]. We would like to associate a finite fan of cones to
the action of G on X, in such a way that the study of the fan will allow us to get
conclusions about the finite dimensional D(X)G-modules.

Suppose that n = r + s. Given a fan (N, ∆), we consider the following open
subset of kn, Y = {x ∈ kn|xi 6= 0 for i /∈ {1, . . . , r}}, where r is the number of one
dimensional cones of ∆. We say that a finite fan ∆ is associated to the action of G
on X, if the following conditions hold,

1. (A1) the quotient variety Y//G is isomorphic to the toric variety determined
by the fan ∆, X(∆),

2. (A2) codim X\Y ≥ 2.

In this paper, G will be a finite dimensional algebraic torus acting diagonally on
X.

Proposition A There exists a fan ∆ associated to the action of the algebraic
torus G on X.
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The proof of Proposition A is constructive, we give a method to obtain a fan
associated to the action of G on X. This result was motivated by the work of I.M.
Musson in [11]. Given a finite fan ∆ he gives an action of G on Y such that the
variety of closed orbits Y//G is isomorphic to the toric variety determined by ∆ . A
similar result was proved by D.A. Cox in [5]. We consider Proposition A a converse
of this results, since our point of departure is the action of G on X. The variety
Y is relevant to us because it serves as a bridge between the action of G on X and
the fan ∆, condition (A1) explains this connection. In fact, we define Y as in [11].
Furthermore, Y is a toric subvariety of X, which is a toric variety for a dense torus
T and G is a subtorus of T . The variety Y admits a good quotient by the action
of G. The existence of good quotients of a toric variety by a subtorus action was
studied in a recent paper by A. A’Campo-Neuen and J. Hausen, [2]. Also, the open
subsets of a normal variety which admit a good quotient by a torus action have been
described in [9].

We call V = kr,W = (k×)s then X = V ×W ⊆ kn, where n = r + s. Let us
suppose that G acts transitively on X. The connected component Ho of the identity
in H is a torus but we may have H 6= Ho and then H/Ho is a finite group. Let
H be the stabilizer of w in W . The following result reflects the connection existing
between the action of G on X and the action of H on V .

Proposition B ∆ is a fan associated to the action of G on X if and only if ∆
is a fan associated to the action of H on V .

The main goal of this paper is to give necessary and sufficient conditions on ∆ for
D(X)G to have a nonzero finite dimensional module. In a recent work with Musson
[13], we show that if D(X)G has a nonzero finite dimensional module then D(X)G

has enough simple finite dimensional modules. We say that a k-algebra R has enough
simple finite dimensional modules if ∩annRM = 0, where the intersection is taken
over all simple finite dimensional R-modules, [13].

Condition (A2) implies that D(X) = D(Y ), so we can transfer our attention to
the study of D(Y )G-modules. We say that a finite fan is contained in a half-space if
the intersection of its dual cones is not zero.

Proposition C The D(Y )G-module O(Y )G is finite dimensional if and only if
the fan ∆ is not contained in a half-space.

This will allow us to prove the following theorem.

Theorem D The following conditions are equivalent.

1. D(X)G has a nonzero finite dimensional module.

2. There exists a fan ∆ not contained in a half-space and associated to the action
of G on X.

When V Ho
= 0, we can modify a fan associated to the action of G on X to get

2



a fan which is not contained in a half-space and it is associated to an action that
is different from the original one but gives the same invariant differential operators.
This fact allowed us to realize that V Ho

= 0 is a necessary and sufficient condition
for D(X)G to have a nonzero finite dimensional module, as proved in [13] without
the use of fans.

The paper is organized as follows. In § 1, we introduce some notation about
actions of tori, finite fans and rings of differential operators. Section 2 contains a
method to construct fans that will be proved to be associated to the action of G on
X. We prove Proposition B in § 3. In § 4, we prove Proposition C and Theorem
D. The last section, contains a description of the members of the family of finite
dimensional simple D(X)G-modules {O(Y )χ}χ∈Zm , in terms of the fan. This family
was proved to have enough members in [13]. We show that the dimension of O(Y )χ

is the number of lattice points inside a certain polytope (i.e. a bounded polyhedron).
This computation can be done with LattE.

1 Notation

1.1 Actions of Tori

Set X(G) = Hom(G, k×), Y(G) = Hom(k×, G), the groups of characters and one-
parameter subgroups of G, respectively.

A diagonal action of a torus G on X is an action that extends to a diagonal
action on kn. Such an action is given by an embedding of G into the group T of
diagonal matrices in GL(n). Details about this action are given in [13], §1.1 and the
following concepts are described. There exist η1, . . . , ηn ∈ X(G) such that G acts on
X with weights η1, . . . , ηn . Identify G with (k×)m and X(G) with Zm. We think of
X(G) as a space of column vectors with integer entries. We call L the n×m matrix
whose i-th column vector is ηi, i = 1, . . . , n. We say that G acts on X by the matrix
L.

Let ψ : X(T ) −→ X(G) be the restriction map. This map is given by multiplica-
tion by L. There is a natural bilinear pairing

( , ) : X(T )× Y(T ) −→ Z. (1)

defined by the requirement that

(a ◦ b)(λ) = λ(a,b) (2)

for all a ∈ X(T ), b ∈ Y(T ) and λ ∈ k×.
We will assume that G acts faithfully on X. Therefore L has rank m. Let

l = n−m.

Lemma 1.1. Assume that {ηr+1, . . . , ηn} are linearly independent. There exist ma-
trices Γ ∈ GLm(Z), ∆ ∈ GLn(Z) such that

ΓL∆ =




b11 . . . b1l d 0 . . . 0
b21 . . . b2l 0 d . . . 0
...

. . .
...

. . .
bm1 . . . bml 0 0 . . . d


 . (3)
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where d is a nonzero integer.

Proof. Let m′ = m− s. Since {η1, . . . , ηn} contains m linearly independent vectors,
there exist ηi1 , . . . , ηim′ ∈ {η1, . . . , ηn} such that ηi1 , . . . , ηim′ , ηr+1, . . . , ηn are linearly
independent. There exists ∆ ∈ GLn(Z) such that the last m′ columns of L∆ are
ηi1 , . . . , ηim′ . Let Γ′ be the m×m matrix whose i-th column vector is the (l + i)-ith
column of L∆, i = 1, . . . , m. Then d := |detΓ′| 6= 0. Let Γ = dΓ′−1, then the m× n
matrix with integer coefficients ΓL∆ will look like (3).

If {ηr+1, . . . , ηn} are linearly independent, by Lemma 1.1 and [13], equations
(15) and (16), we assume that the matrix L has the special form (3).

1.2 Finite fans

As far as possible we follow the notation of [8] , Chapter 1. Let N ' Zl be the
l-dimensional lattice. Let (N,∆) be a fan in N . Recall that each σ ∈ ∆ is a strongly
convex rational polyhedral cone in NR = N ⊗Z R. Let M = HomZ(N,Z) and
< , >: M ×N → Z the natural bilinear pairing. For each σ ∈ ∆, let

Λσ = M ∩ σ∨ = {u ∈ M | < u, v >≥ 0 for all v ∈ σ} (4)

and Uσ = Speck[Λσ] is a semigroup algebra. By [8], Theorem 1.4 we can glue Uσ to
obtain a toric variety X(∆).

Denote by ∆(1) the set of cones of (N, ∆) with dimension one. Given v ∈ N
let τv = R+v be the ray generated by v ∈ N . Let v, v′ ∈ N , if v = cv′ with
c > 0 then τv = τv′ . Suppose that ∆(1) = {v1, . . . , vr}. Given σ ∈ ∆ we define
[σ] = {i ∈ {1, . . . , r}|τvi is a face of σ}. Then σ =

∑
i∈[σ] τvi .

If u ∈ MR = M ⊗Z R, a subset of the form

Hu = {v ∈ NR| < u, v >≥ 0} (5)

with u 6= 0 is called a half-space in NR, see [12], §1. We will say that the fan (N, ∆)
is contained in a half-space if we can find 0 6= u ∈ MR such that σ ⊆ Hu for all
σ ∈ ∆. Equivalently, if the intersection of its dual cones is not zero.

1.3 Coordinate rings and rings of differential operators.

In this section, we gather some definitions and results from [13], §2. Note that X
is a toric variety with a dense torus T = (k×)n ⊆ X. Write Qi for the character ei

considered as a regular function on T . Then

O(X) = k[Q1, . . . , Qr, Q
±1
r+1, . . . , Q

±1
n ]. (6)

We consider the action of G on O(T ) (or O(X)) given by right translation. This
convention implies that Qi has weight ηi. Let Pi = ∂/∂Qi,

D(X) = k[Q1, . . . , Qr, Q
±1
r+1, . . . , Q

±1
n , P1, . . . , Pn]. (7)

4



If λ = (λ1, . . . , λn) ∈ Nr × Zs, µ = (µ1, . . . , µn) ∈ Nn, set Qλ = Qλ1
1 . . . Qλn

n , and
Pµ = Pµ1

1 . . . Pµn
n . The elements QλPµ ∈ D(X), with Lλ = Lµ, form a basis of

D(X)G.
Let Y be an open subset of X. Define the codimension of X\Y in kn, to be

codim X\Y = dim kn − dim X\Y.

Proposition 1.2. If codim X\Y ≥ 2, then O(X) = O(Y ) and D(X) = D(Y ).

Proof. The result follows from [10], Proposition II.2.2.

2 Fans associated to the action of G.

Let us describe Y in detail.

2.1 The set Y .

Let (N,∆) be a finite fan. For every σ ∈ ∆ we define xσ̂ =
∏

i/∈[σ] xi and we consider
the T -invariant open sets

Vσ = kn − Z(xσ̂) (8)

where Z(xσ̂) = {x ∈ ks|xσ̂ = 0}. Let

Z = ∩σ∈∆Z(xσ̂). (9)

Hence Z is closed and T -invariant. We have an open subset

Y = kn − Z = ∪σ∈∆Vσ (10)

of an affine space kn. Note that Y might no longer be affine. These sets were
introduced in [11], §1.3. See also [5], Theorem 2.1.

We determine the irreducible components of Z. For I ⊆ {1, . . . , n} set ZI =
{x ∈ kn|xi = 0 if i ∈ I}.
Lemma 2.1. Any T -invariant irreducible closed set in kn is some ZI .

Proof. See [8], §3.1.

By Lemma 2.1, Z is a union of irreducible closed subsets ZI . Observe that when
I ⊆ J then ZJ ⊆ ZI for I, J ⊆ {1, . . . , n}. Therefore, the irreducible components
that occur in Z are the ones in the family I of subsets of {1, . . . , n} verifying the
following statements.

1. ZI ⊆ Z and;

2. I is minimal verifying the previous condition, i.e. there is no J ⊆ {1, . . . , n},
J ( I such that ZJ ⊆ Z.

Thus, Z = ∪I∈IZI .
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2.2 Construction of the fan associated to the action.

We will use the following lemma to develop our construction.

Lemma 2.2. There exists an n× l matrix E that satisfies the following statements.

1. The rows of E generate N as a group.

2. The columns of E are a Z-basis of ker ψ.

Proof. By [1], Theorem 12.4.3, there exist matrices Q ∈ GLm(Z) and P ∈ GLn(Z)
such that

L′ = QLP =




d1 0 . . . 0 0 . . . 0
0 d2 0
...

. . .
...

...
...

0 . . . dm 0 . . . 0


 (11)

with di 6= 0 for all i = 1, . . . m. Let Il be the identity l × l matrix and E′ the n× l
matrix with Il in the last l rows and zeroes in the first m rows. Then L′E′ = 0. We
define E := PE′. Let us prove that E satisfies statements 1 and 2.

1. Let P̄ be the matrix obtained by deleting the first m rows of P−1. From the
definition of E we get easily that Il = P̄E. This proves that the rows of E
generate N as a group.

2. The columns of E are elements of ker ψ because LE = 0. Given any λ ∈ ker ψ
then L′P−1λ = 0. The columns of E′ are a Z-basis of the kernel of L′. Then
there exist z1, . . . , zl ∈ Z such that

P−1λ = E′




z1
...
zl


 , therefore λ = E




z1
...
zl


 .

This proves that the columns of E generate ker ψ as a group and since ker ψ
has rank l the result follows.

Let E be an n × l matrix satisfying the statements of Lemma 2.2. We can
identify B = Y(T ) with Zn and think of it as a space of row vectors with integer
entries. Define

ϕ : B −→ N (12)

by ϕ(e) = eE for all e ∈ B. By Lemma 2.2(1) ϕ is onto. Let K = ker ϕ. Then K
is a free abelian group of rank m.

Let ei be the ith standard basis vector for B and call vi = ϕ(ei) the ith row
vector of E , 1 ≤ i ≤ n. The matrix E has rank l; hence the subset {v1, . . . , vn}
of N = Zl contains l linearly independent vectors. Observe that {v1, . . . , vn} could
contain elements that are equal and also the zero element.

Let ∆ be any fan in N with ∆(1) = {τvi |i = 1, . . . , r}. We will prove that such
a fan is associated to the action of G on X.
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Example 2.3. Let r = 4, s = 0, m = 2; then l = 2. Let

L =
[

3 3 2 0
4 4 0 2

]
E =




−1 −2
1 0
0 3
0 4


 ,

hence v1 = (−1,−2), v2 = (1, 0), v3 = (0, 3) and v4 = (0, 4). Then ∆ could be the
fan with maximal cones σ1, σ2, σ3, where [σ1] = {1}, [σ2] = {2} and [σ3] = {3, 4}.

2.3 Proof of Proposition A.

1. Let K⊥ = {λ ∈ X(T )|(λ,K) = 0}. Then K⊥ = ker ψ. There is an isomor-
phism w : M → K⊥ given by

< x, ϕ(b) >= (w(x), b) (13)

for all x ∈ M , b ∈ B. By equation (13), it can be proved in the same way as
[11], Theorem 1 that the variety of closed orbits Y//G is isomorphic to X(∆).

2. Consider the family I ′ = {I ∈ I||I| = 1} and define

Ẑ := ∪I∈I′ZI . (14)

Since ∪σ∈∆[σ] = {1, . . . , r}, then X = kn − Ẑ and X\Y = Z\Ẑ. By (14),
X\Y = ∪I∈I′′ZI with I ′′ = I\I ′ = {I ∈ I||I| ≥ 2}. We also have codim ∪I∈I′′
ZI = infI∈I′′codim ZI and codim ZI = |I| ≥ 2 for all I ∈ I ′′. Therefore
codim X\Y ≥ 2.

Remark 2.4. There is a canonical morphism p : Y −→ X(∆) such that X(∆) is
isomorphic to the geometric quotient Y//G. We have a covering Uσ of X(∆) with
Uσ isomorphic to Vσ//G, for each σ ∈ ∆. Also, p|Vσ

: Vσ −→ Uσ is the categorical
quotient of G restricted to Vσ. Therefore, the morphism p is a good quotient as
defined in [2], §3.

3 Fans associated to the action of H on V .

Given a finite fan ∆, for each σ ∈ ∆, define V ′
σ = {x ∈ kr|xi 6= 0 if i /∈ [σ]}. Then

Vσ = V ′
σ ×W , recall that n = r + s.

Suppose G is a torus acting faithfully on Vσ with weights η1, . . . , ηn. We assume
that G acts transitively on W , then by [13], Lemma 3.1, ηr+1, . . . , ηn are linearly
independent. Let w = (wr+1, . . . , wn) be an element of W . Then H = Gw =
∩n

i=r+1ker ηi. It can be proved in the same way as [13], Lemma 3.2, that the slice
representation at w, [7], [15], is isomorphic to (H,Vσ).

Consider the H-invariant open subset of V , Y ′ = ∪σV ′
σ. This is the variety

defined in (10) for the case n = r.

Theorem 3.1. The varieties Y//G and Y ′//H are isomorphic.
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Proof. Given σ ∈ ∆. Part of the Luna slice theorem states that there is a closed
H-stable subvariety Sσ containing w and a G-equivariant étale map G×H Sσ −→ Vσ.
Taking Sσ = V ′

σ + w we get a G-equivariant isomorphism δσ : G×H Sσ −→ Vσ and
this map induces an isomorphism between Vσ//G and V ′

σ//H, this can be proved as
[13], Theorem 6.2.

If τ is a face of σ, then Vτ ⊆ Vσ, V ′
τ ⊆ V ′

σ and the isomorphism Vσ//G ∼=
V ′

σ//H restricts to the isomorphism Vτ//G ∼= V ′
τ//H. Thus, we may identify Y//G =

∪σVσ//G with Y ′//H = ∪σV ′
σ//H.

3.1 Proof of Proposition B

By Theorem 3.1, Y//G is isomorphic to X(∆) if and only if Y ′//H is. Let as prove
that codimX\Y ≥ 2 if and only if codimV \Y ′ ≥ 2.

We have Y = {x ∈ kn|xi 6= 0 for i /∈ ∪[σ]} and Y ′ = {x ∈ kr|xi 6= 0 for i /∈
∪[σ]}. If codimX\Y ≥ 2 then O(X) = O(Y ), therefore ∪[σ] = {1, . . . , r}. By the
proof of Proposition A (2) for the case n = r then codimV \Y ′ ≥ 2. Conversely
if codimV \Y ′ ≥ 2, then O(V ) = O(Y ′) so ∪[σ] = {1, . . . , r} and the by proof of
Proposition A (2) the result follows.

3.2 D(X(∆))-modules.

Set h = Lie(H) ⊆ g = Lie(G). For λ ∈ g∗, µ ∈ h∗ we set

Bλ(X) = D(X)G/(g− λ(g)) , Bµ(V ) = D(V )H/(h− µ(h)). (15)

Here (g − λ(g)) is the ideal generated by all elements of the form x − λ(x), with
x ∈ g, and (h − µ(h)) is defined similarly. Let i∗ : g∗ −→ h∗ be the map obtained
from the inclusion i : h −→ g.

By [13], Proposition C, there is an injective algebra homomorphism D(V )H −→
D(X)G. If λ ∈ g∗ and µ = i∗(λ), the previous map induces an isomorphism Bµ(V ) ∼=
Bλ(X) and by [11], Theorem 5 they are isomorphic to D(X(∆)). Note that any
simple D(X)G-module is a Bλ(X)-module for some λ ∈ g∗. So we can reduce
the study of finite dimensional simple D(X)G-modules to that of finite dimensional
simple D(V )H -modules and also to the study of D(X(∆))-modules.

In [14] it is shown that the category of D(X(∆))-modules is equivalent to a
category of graded D(V )-modules modulo b-torsion, with b = Z defined by equation
(9) for s = 0.

4 Fans not contained in a half-space.

In this section we include some lemmas that will be used to prove Proposition C
and Theorem D.

Suppose I ⊆ {1, . . . , r}. For 1 ≤ i ≤ n, set

ςi =
{ −ηi if i ∈ I

ηi if i /∈ I
. (16)
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Let LI be the matrix with columns ς1, . . . , ςn. Then GI denotes the m-dimensional
torus acting on X by the matrix LI . By [13], Lemma 5.2, the map σI : D(X) →
D(X) defined by

σI(Qi) =
{ −Pi if i ∈ I

Qi if i /∈ I
σI(Pi) =

{
Qi if i ∈ I
Pi if i /∈ I

(17)

i = 1, . . . , n is an isomorphism between D(X)G and D(X)GI . Therefore GI and G
have the same invariant differential operators.

Lemma 4.1. When the matrix L is of the special kind (3), then v1, . . . , vl are
linearly independent.

Proof. By Lemma 2.2, LE = 0 and the rows v1, . . . , vn of E generate N as a group.
The equation LE = 0 means that for i = 1, . . . ,m

dvl+i = −
l∑

j=1

bijvj . (18)

Thus vl+1, . . . , vn belong to the R-span of v1, . . . , vl. The result follows from this.

Let us suppose that L is of the special kind (3) and let ∆ be a fan as in § 2.2.
By Lemma 4.1, B = {v1, . . . , vl} is a basis of NR. With respect to B the vectors
vl+1, . . . , vn have coordinates

vj = (−1
d
bj−l,1, . . . ,−1

d
bj−l,l), j = l + 1, . . . , n. (19)

Let m′ = r− l. For i = 1, . . . , l, let ρi be the vector in Zm′
obtained deleting the

last m−m′ entries of ηi.

Lemma 4.2. If ρi = 0 for some i ∈ {1, . . . , l}, then ∆ is contained in a half-space.

Proof. Consider the basis B in N . Let u ∈ MR such that < u, vj >= 0 if j 6= i,
j ∈ {1, . . . l} and < u, vi >= 1. Then < u, vj >= 0, for all j = l+1, . . . , n. Therefore
∆ is contained in the half-space Hu.

Lemma 4.3. If O(Y )G = k, then ηr+1, . . . , ηn are linearly independent.

Proof. It follows from Proposition 1.2 and [13], Lemma 4.1.

4.1 Proof of Proposition C.

Let

φσ : = {λ ∈ K⊥|(λ, ei) ≥ 0 for all i ∈ [σ]}. (20)

Then O(Vσ)G = k[φσ]. Hence O(Y )G = k if and only if ∩σ∈∆φσ = 0. Furthermore,
w(Λσ) = φσ. Hence 0 6= u ∈ ∩σ∈∆σ∨ if and only if ∆ is contained in the half-space
Hu. This proves the result.

Remark 4.4. Let us call G′ the m-dimensional torus acting on X by a matrix L′.
Let ∆′ be a fan associated to the action of G′. Suppose that O(X)G = O(X)G′. By
Proposition C, ∆ is contained in a half-space if and only if ∆′ is.
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4.2 Proof of Theorem D.

(1)⇒(2) By [13], Theorem B and Lemma 5.1, there is a subset I of {1, . . . , r} such
that O(X)GI = k. By Proposition A, there exists a fan ∆ associated to the action
of GI on X. By Proposition C, ∆ is not contained in a half-space.

(2)⇒(1) By Proposition C, O(Y )G = k. By Lemma 4.3, Remark 4.4, and
Lemma 4.2, ρi 6= 0 for all i = 1, . . . , r. By [13], Lemma 3.3 and Theorem B the
result follows.

4.3 Construction of an associated fan not included in a half-space.

By [13], Theorem B, if V Ho
= 0 then D(X)G has a nonzero finite dimensional

module and by Theorem D there exists a fan ∆ associated to the action of G on
X and not contained in a half-space. By [13], Lemma 3.3., V Ho

= 0 if and only if
ρi 6= 0 for all i = 1, . . . r.

Suppose that ρi 6= 0 for all i = 1, . . . , l, then L is of the special kind (3). We
give a construction of a fan associated to the action of G and not contained in a
half-space.

Let v∗1, . . . , v
∗
l be the dual basis of B. Given j ∈ {l + 1, . . . , r}, let

I0
j = {i ∈ {1, . . . , l}| < v∗i , vj >= 0}, (21)

I+
j = {i ∈ {1, . . . , l}| < v∗i , vj > > 0}, (22)

I−j = {i ∈ {1, . . . , l}| < v∗i , vj > < 0}, (23)

and
Ij = I+

j ∪ I−j . (24)

Then there exists J ⊆ {l + 1, . . . , r} such that

∪j∈JIj = {1, . . . , l} (25)

because ρi 6= 0,

ρi =




b1i
...
bm′i


 and

−1
d

bj−l,i =< v∗i , vj >, i = 1, . . . , l, j = l + 1, . . . , r.

Take J to be minimal verifying (25), and let J = {j1, . . . , jc} with c ≤ m′ and

|Ijh
| ≤ |Ijh+1

| h = 1, . . . , c− 1. (26)

These two assumptions will make the next computation shorter. We take a subset
I of {1, . . . , l} in the following way:

I := I+
j1
∪c

h=2 [(∩h−1
t=1 I0

jt
) ∩ I+

jh
] = (27)

= I+
j1
∪ (I0

j1 ∩ I+
j2

) ∪ (I0
j1 ∩ I0

j2 ∪ I+
j3

) ∪ . . . ∪ (I0
j1 ∩ . . . ∩ I0

jc−1
∩ I+

jc
). (28)
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Define

vI
i =

{ −vi if i ∈ I
vi if i /∈ I

, i = 1, . . . , r. (29)

Let ∆I be a fan in N with ∆I(1) = {τvI
i
|i = 1, . . . , r}. This fan is associated to the

action of GI on X.

Proposition 4.5. ∆I is not contained in a half-space.

Proof. Suppose ∆I is contained in the half-space Hu for some u ∈ MR, u 6= 0. Then
vI
i ∈ Hu for all i = 1, . . . , r. Let u = u1v

∗
1 + . . . + ulv

∗
l . Then ui ≥ 0 for i /∈ I and

ui ≤ 0 for i ∈ I.
Suppose 1 ≤ i ≤ r and consider three cases:

If i ∈ I0
j1 , then < v∗i , vj1 >= 0.

If i ∈ I+
j1

, then < v∗i , vj1 > > 0 and ui ≤ 0.

If i ∈ I−j1 , then < v∗i , vj1 > < 0 and ui ≥ 0.

In all cases we have ui < v∗i , vj1 >≤ 0. Therefore < u, vj1 >≤ 0. But vj1 ∈ Hu so
< u, vj1 >= 0. Thus ui = 0 for all i ∈ Ij1 .

Analogously we can prove that < u, vj2 >= 0 and therefore ui = 0 for all
i ∈ Ij2\Ij1 . Hence ui = 0 for all i ∈ Ij2 ∪ Ij1 . In this way we get that ui = 0 for all
∪j∈JIj = {1, . . . , l}.
Example 4.6. Let n = r = 6 and m = 2. The action of G on kQ1 + . . . + kQ6 is
given by the matrix

L =
[

0 −1 2 0 1 0
1 0 −1 −1 0 1

]
. (30)

Then v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1), v5 =
(0, 1,−2, 0), v6 = (−1, 0, 1, 1). Also J = {5, 6} and I = I+

5 ∪ (I0
5 ∩ I+

6 ), with
I+
5 = {2}, I0

5 = {1, 4} and I+
6 = {3, 4}. Therefore I = {2, 4}.

5 Finite Polytopes.

Let us suppose that D(X)G has a nonzero finite dimensional module. We can assume
that L is of the special kind (3). Let ∆ be a fan associated to the action of G on
X and not contained in a half-space. Let Y be as in § 2.1. Define Λ ⊆ Zm by
Λ = {Lα|α ∈ Nr × Zs}. For χ ∈ Λ define

O(Y )χ = span{Qλ ∈ O(Y )|Lλ = χ}. (31)

It is easy to see that
O(Y ) = ⊕χ∈ΛO(Y )χ. (32)

For each χ = (χ1, . . . , χm) ∈ Λ, O(Y )χ is a simple D(Y )G-module by [13],
Lemma 4.3 and Lemma 1.2. By [13], Lemma 4.1., O(Y )χ is finite dimensional. Let

11



ϕ = (ϕ1, . . . , ϕn) ∈ Nr×Zs such that Lϕ = χ. Given σ ∈ ∆ and the D(Y )G-module
O(Vσ), we can easily see that O(Vσ) = ⊕χ∈ΛO(Vσ)χ. Then

O(Vσ)χ = span{Qλ ∈ O(Vσ)|λ ∈ ϕ + K⊥}. (33)

Let

φσ,χ : = {λ ∈ ϕ + K⊥|(λ, ei) ≥ 0 for all i ∈ [σ]}. (34)

We can write

φσ,χ = {ϕ + µ ∈ ϕ + K⊥|(µ, ei) ≥ −ϕi for all i ∈ [σ]}. (35)

Observe that O(Vσ)χ = k[φσ,χ], by (8) Vσ = {x ∈ kn|xi 6= 0 for all i /∈ [σ]}; see also
(33) and (34). Therefore

O(Y )χ = ∩σ∈∆k[φσ,χ] (36)

since Y = ∪σ∈∆Vσ.
Let us consider the following r × l matrix,

P =




−1
. . .

−1
b11 . . . b1l
...

...
bm′1 . . . bm′l




.

We denote by Pi the i-th row vector of P . Let b = (b1, . . . , bn) ∈ Nr × Zs such that

bi =
{

ϕi if i ∈ {1, . . . , l}
dϕi if i ∈ {l + 1, . . . , n} . (37)

Theorem 5.1. The dimension of O(Y )χ is the number of lattice points inside the
polytope

{x ∈ MR| < x, Pi >≤ bi, i = 1, . . . , r}. (38)

Proof. Define the sets

ψσ,χ := {λ ∈ K⊥|(λ, ei) ≥ −ϕi,χ, for all i ∈ [σ]}. (39)

Then φσ,χ = ϕ+ψσ,χ where φσ,m is the set given in (34). Also k[φσ,χ] = Qϕk[ψσ,χ].
Therefore O(Y )χ = Qϕ(∩σ k[ψσ,χ]), by (36). Let

Λσ,χ := {x ∈ M | < x, vi >≥ −ϕi,χ for all i ∈ [σ]}. (40)

Then ψσ,χ = w(Λσ,χ), with w as in (13), and k[Λσ,χ] ∼= k[ψσ,χ]. Therefore, the
dimension of O(Y )χ is the number of lattice points in the set ∩σ∈∆Λσ,χ. Henceforth
the dimension of O(Y )χ is the number of lattice points in the polytope

{x ∈ MR| < x, vi >≥ −ϕi for all i = 1, . . . , r}.
It can be easily seen that this polytope coincides with (38) setting B as NR basis.
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5.1 Example

Assume that dim G = 3 and X = k5. Then D(X) = A5 is the 5-th Weyl algebra.
Let the action of G on X be given by the matrix

L =




2 2 1 0 0
1 3 0 1 0
3 1 0 0 1


 . (41)

We consider the AG
5 -module O(Y )χ with χ = (30, 30, 40). Then dim O(Y )χ =

108, the number of lattice points inside the polytope {(x1, x2) ∈ Z2|x1 ≥ 0, x2 ≥
0, 2x1 + 2x2 ≤ 30, x1 + 3x2 ≤ 30, 3x1 + x2 ≤ 40}. The number of points inside the
polytope was obtained with LattE, which is a recent computer package for lattice
point enumeration [6]. The following picture show this polytope.
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