# Actions of tori and finite fans

Sonia L. Rueda
Departamento de Matemáticas. E.T.S. Arquitectura
Universidad Politécnica de Madrid
Madrid, Spain
E-mail:srueda@aq.upm.es

February 17, 2004

#### Abstract

Let k be an algebraically closed field of characteristic 0,  $X = k^r \times (k^\times)^s$  and let G be an algebraic torus acting diagonally on X. We construct a fan  $\Delta$  such that the quotient  $Y/\!/G$  is isomorphic to the toric variety determined by  $\Delta$  and  $\mathcal{D}(X) = \mathcal{D}(Y)$ , for a distinguished G-invariant open subset Y of  $k^n$ . The main goal of this construction is to give necessary and sufficient conditions on  $\Delta$  for  $\mathcal{D}(X)^G$  to have enough simple finite dimensional modules.

Let G be a reductive group acting on the smooth affine variety  $X = k^r \times (k^\times)^s$ , with k an algebraically closed field k of characteristic 0. We denote the ring of regular functions on X by  $\mathcal{O}(X)$  and the ring of differential operators by  $\mathcal{D}(X)$ . Let  $\mathcal{D}(X)^G$  be the subring of  $\mathcal{D}(X)$  of invariants under the action of G. There are several papers where actions of tori and finite fans are related, [4], Chaper VI, [5], [11] and more recently [2], [3]. We would like to associate a finite fan of cones to the action of G on X, in such a way that the study of the fan will allow us to get conclusions about the finite dimensional  $\mathcal{D}(X)^G$ -modules.

Suppose that n = r + s. Given a fan  $(N, \Delta)$ , we consider the following open subset of  $k^n$ ,  $Y = \{x \in k^n | x_i \neq 0 \text{ for } i \notin \{1, \ldots, r\}\}$ , where r is the number of one dimensional cones of  $\Delta$ . We say that a finite fan  $\Delta$  is associated to the action of G on X, if the following conditions hold,

- 1. (A1) the quotient variety Y//G is isomorphic to the toric variety determined by the fan  $\Delta$ ,  $X(\Delta)$ ,
- 2. (A2) codim  $X \setminus Y \geq 2$ .

In this paper, G will be a finite dimensional algebraic torus acting diagonally on X.

**Proposition A** There exists a fan  $\Delta$  associated to the action of the algebraic torus G on X.

The proof of Proposition A is constructive, we give a method to obtain a fan associated to the action of G on X. This result was motivated by the work of I.M. Musson in [11]. Given a finite fan  $\Delta$  he gives an action of G on Y such that the variety of closed orbits Y//G is isomorphic to the toric variety determined by  $\Delta$ . A similar result was proved by D.A. Cox in [5]. We consider Proposition A a converse of this results, since our point of departure is the action of G on X. The variety Y is relevant to us because it serves as a bridge between the action of G on X and the fan G, condition (A1) explains this connection. In fact, we define G as in [11]. Furthermore, G is a subtorus of G, which is a toric variety for a dense torus G and G is a subtorus of G. The variety G admits a good quotient by the action of G. The existence of good quotients of a toric variety by a subtorus action was studied in a recent paper by A. A'Campo-Neuen and J. Hausen, [2]. Also, the open subsets of a normal variety which admit a good quotient by a torus action have been described in [9].

We call  $V = k^r, W = (k^{\times})^s$  then  $X = V \times W \subseteq k^n$ , where n = r + s. Let us suppose that G acts transitively on X. The connected component  $H^o$  of the identity in H is a torus but we may have  $H \neq H^o$  and then  $H/H^o$  is a finite group. Let H be the stabilizer of W in W. The following result reflects the connection existing between the action of G on X and the action of H on V.

**Proposition B**  $\Delta$  is a fan associated to the action of G on X if and only if  $\Delta$  is a fan associated to the action of H on V.

The main goal of this paper is to give necessary and sufficient conditions on  $\Delta$  for  $\mathcal{D}(X)^G$  to have a nonzero finite dimensional module. In a recent work with Musson [13], we show that if  $\mathcal{D}(X)^G$  has a nonzero finite dimensional module then  $\mathcal{D}(X)^G$  has enough simple finite dimensional modules. We say that a k-algebra R has enough simple finite dimensional modules if  $\cap ann_R M = 0$ , where the intersection is taken over all simple finite dimensional R-modules, [13].

Condition (A2) implies that  $\mathcal{D}(X) = \mathcal{D}(Y)$ , so we can transfer our attention to the study of  $\mathcal{D}(Y)^G$ -modules. We say that a finite fan is contained in a half-space if the intersection of its dual cones is not zero.

**Proposition C** The  $\mathcal{D}(Y)^G$ -module  $\mathcal{O}(Y)^G$  is finite dimensional if and only if the fan  $\Delta$  is not contained in a half-space.

This will allow us to prove the following theorem.

**Theorem D** The following conditions are equivalent.

- 1.  $\mathcal{D}(X)^G$  has a nonzero finite dimensional module.
- 2. There exists a fan  $\Delta$  not contained in a half-space and associated to the action of G on X.

When  $V^{H^o} = 0$ , we can modify a fan associated to the action of G on X to get

a fan which is not contained in a half-space and it is associated to an action that is different from the original one but gives the same invariant differential operators. This fact allowed us to realize that  $V^{H^o}=0$  is a necessary and sufficient condition for  $\mathcal{D}(X)^G$  to have a nonzero finite dimensional module, as proved in [13] without the use of fans.

The paper is organized as follows. In § 1, we introduce some notation about actions of tori, finite fans and rings of differential operators. Section 2 contains a method to construct fans that will be proved to be associated to the action of G on X. We prove Proposition B in § 3. In § 4, we prove Proposition C and Theorem D. The last section, contains a description of the members of the family of finite dimensional simple  $\mathcal{D}(X)^G$ -modules  $\{\mathcal{O}(Y)_\chi\}_{\chi\in\mathbb{Z}^m}$ , in terms of the fan. This family was proved to have enough members in [13]. We show that the dimension of  $\mathcal{O}(Y)_\chi$  is the number of lattice points inside a certain polytope (i.e. a bounded polyhedron). This computation can be done with LattE.

## 1 Notation

### 1.1 Actions of Tori

Set  $\mathbb{X}(G) = Hom(G, k^{\times})$ ,  $\mathbb{Y}(G) = Hom(k^{\times}, G)$ , the groups of characters and one-parameter subgroups of G, respectively.

A diagonal action of a torus G on X is an action that extends to a diagonal action on  $k^n$ . Such an action is given by an embedding of G into the group T of diagonal matrices in GL(n). Details about this action are given in [13], §1.1 and the following concepts are described. There exist  $\eta_1, \ldots, \eta_n \in \mathbb{X}(G)$  such that G acts on X with weights  $\eta_1, \ldots, \eta_n$ . Identify G with  $(k^{\times})^m$  and  $\mathbb{X}(G)$  with  $\mathbb{Z}^m$ . We think of  $\mathbb{X}(G)$  as a space of column vectors with integer entries. We call L the  $n \times m$  matrix whose i-th column vector is  $\eta_i$ ,  $i = 1, \ldots, n$ . We say that G acts on X by the matrix L.

Let  $\psi : \mathbb{X}(T) \longrightarrow \mathbb{X}(G)$  be the restriction map. This map is given by multiplication by L. There is a natural bilinear pairing

$$(\ ,\ ): \mathbb{X}(T) \times \mathbb{Y}(T) \longrightarrow \mathbb{Z}.$$
 (1)

defined by the requirement that

$$(a \circ b)(\lambda) = \lambda^{(a,b)} \tag{2}$$

for all  $a \in \mathbb{X}(T)$ ,  $b \in \mathbb{Y}(T)$  and  $\lambda \in k^{\times}$ .

We will assume that G acts faithfully on X. Therefore L has rank m. Let l=n-m.

**Lemma 1.1.** Assume that  $\{\eta_{r+1}, \ldots, \eta_n\}$  are linearly independent. There exist matrices  $\Gamma \in GL_m(\mathbb{Z})$ ,  $\Delta \in GL_n(\mathbb{Z})$  such that

$$\Gamma L \Delta = \begin{bmatrix}
b_{11} & \dots & b_{1l} & d & 0 & \dots & 0 \\
b_{21} & \dots & b_{2l} & 0 & d & \dots & 0 \\
\vdots & \ddots & \vdots & & \ddots & \vdots \\
b_{m1} & \dots & b_{ml} & 0 & 0 & \dots & d
\end{bmatrix}.$$
(3)

where d is a nonzero integer.

Proof. Let m' = m - s. Since  $\{\eta_1, \ldots, \eta_n\}$  contains m linearly independent vectors, there exist  $\eta_{i_1}, \ldots, \eta_{i_{m'}} \in \{\eta_1, \ldots, \eta_n\}$  such that  $\eta_{i_1}, \ldots, \eta_{i_{m'}}, \eta_{r+1}, \ldots, \eta_n$  are linearly independent. There exists  $\Delta \in GL_n(\mathbb{Z})$  such that the last m' columns of  $L\Delta$  are  $\eta_{i_1}, \ldots, \eta_{i_{m'}}$ . Let  $\Gamma'$  be the  $m \times m$  matrix whose i-th column vector is the (l+i)-ith column of  $L\Delta$ ,  $i = 1, \ldots, m$ . Then  $d := |det\Gamma'| \neq 0$ . Let  $\Gamma = d\Gamma'^{-1}$ , then the  $m \times n$  matrix with integer coefficients  $\Gamma L\Delta$  will look like (3).

If  $\{\eta_{r+1}, \ldots, \eta_n\}$  are linearly independent, by Lemma 1.1 and [13], equations (15) and (16), we assume that the matrix L has the special form (3).

#### 1.2 Finite fans

As far as possible we follow the notation of [8], Chapter 1. Let  $N \simeq \mathbb{Z}^l$  be the l-dimensional lattice. Let  $(N, \Delta)$  be a fan in N. Recall that each  $\sigma \in \Delta$  is a strongly convex rational polyhedral cone in  $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ . Let  $M = Hom_{\mathbb{Z}}(N, \mathbb{Z})$  and  $\langle -, - \rangle : M \times N \to \mathbb{Z}$  the natural bilinear pairing. For each  $\sigma \in \Delta$ , let

$$\Lambda_{\sigma} = M \cap \sigma^{\vee} = \{ u \in M | \langle u, v \rangle \ge 0 \text{ for all } v \in \sigma \}$$
 (4)

and  $U_{\sigma} = Speck[\Lambda_{\sigma}]$  is a semigroup algebra. By [8], Theorem 1.4 we can glue  $U_{\sigma}$  to obtain a toric variety  $X(\Delta)$ .

Denote by  $\Delta(1)$  the set of cones of  $(N, \Delta)$  with dimension one. Given  $v \in N$  let  $\tau_v = \mathbb{R}_+ v$  be the ray generated by  $v \in N$ . Let  $v, v' \in N$ , if v = cv' with c > 0 then  $\tau_v = \tau_{v'}$ . Suppose that  $\Delta(1) = \{v_1, \ldots, v_r\}$ . Given  $\sigma \in \Delta$  we define  $[\sigma] = \{i \in \{1, \ldots, r\} | \tau_{v_i} \text{ is a face of } \sigma\}$ . Then  $\sigma = \sum_{i \in [\sigma]} \tau_{v_i}$ .

If  $u \in M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ , a subset of the form

$$H_u = \{ v \in N_{\mathbb{R}} | < u, v > \ge 0 \}$$
 (5)

with  $u \neq 0$  is called a half-space in  $N_{\mathbb{R}}$ , see [12], §1. We will say that the fan  $(N, \Delta)$  is contained in a half-space if we can find  $0 \neq u \in M_{\mathbb{R}}$  such that  $\sigma \subseteq H_u$  for all  $\sigma \in \Delta$ . Equivalently, if the intersection of its dual cones is not zero.

## 1.3 Coordinate rings and rings of differential operators.

In this section, we gather some definitions and results from [13], §2. Note that X is a toric variety with a dense torus  $T = (k^{\times})^n \subseteq X$ . Write  $Q_i$  for the character  $e_i$  considered as a regular function on T. Then

$$\mathcal{O}(X) = k[Q_1, \dots, Q_r, Q_{r+1}^{\pm 1}, \dots, Q_n^{\pm 1}]. \tag{6}$$

We consider the action of G on  $\mathcal{O}(T)$  (or  $\mathcal{O}(X)$ ) given by right translation. This convention implies that  $Q_i$  has weight  $\eta_i$ . Let  $P_i = \partial/\partial Q_i$ ,

$$\mathcal{D}(X) = k[Q_1, \dots, Q_r, Q_{r+1}^{\pm 1}, \dots, Q_n^{\pm 1}, P_1, \dots, P_n]. \tag{7}$$

If  $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{N}^r \times \mathbb{Z}^s, \mu = (\mu_1, \dots, \mu_n) \in \mathbb{N}^n$ , set  $Q^{\lambda} = Q_1^{\lambda_1} \dots Q_n^{\lambda_n}$ , and  $P^{\mu} = P_1^{\mu_1} \dots P_n^{\mu_n}$ . The elements  $Q^{\lambda} P^{\mu} \in \mathcal{D}(X)$ , with  $L\lambda = L\mu$ , form a basis of  $\mathcal{D}(X)^G$ .

Let Y be an open subset of X. Define the codimension of  $X \setminus Y$  in  $k^n$ , to be

$$\operatorname{codim} X \backslash Y = \dim k^n - \dim X \backslash Y.$$

**Proposition 1.2.** If  $codim X \setminus Y \geq 2$ , then  $\mathcal{O}(X) = \mathcal{O}(Y)$  and  $\mathcal{D}(X) = \mathcal{D}(Y)$ .

*Proof.* The result follows from [10], Proposition II.2.2.

# 2 Fans associated to the action of G.

Let us describe Y in detail.

#### 2.1 The set Y.

Let  $(N, \Delta)$  be a finite fan. For every  $\sigma \in \Delta$  we define  $x^{\hat{\sigma}} = \prod_{i \notin [\sigma]} x_i$  and we consider the T-invariant open sets

$$V_{\sigma} = k^n - Z(x^{\hat{\sigma}}) \tag{8}$$

where  $Z(x^{\hat{\sigma}}) = \{x \in k^s | x^{\hat{\sigma}} = 0\}$ . Let

$$Z = \bigcap_{\sigma \in \Delta} Z(x^{\hat{\sigma}}). \tag{9}$$

Hence Z is closed and T-invariant. We have an open subset

$$Y = k^n - Z = \bigcup_{\sigma \in \Delta} V_{\sigma} \tag{10}$$

of an affine space  $k^n$ . Note that Y might no longer be affine. These sets were introduced in [11], §1.3. See also [5], Theorem 2.1.

We determine the irreducible components of Z. For  $I \subseteq \{1, ..., n\}$  set  $Z_I = \{x \in k^n | x_i = 0 \text{ if } i \in I\}.$ 

**Lemma 2.1.** Any T-invariant irreducible closed set in  $k^n$  is some  $Z_I$ .

Proof. See [8], 
$$\S 3.1$$
.

By Lemma 2.1, Z is a union of irreducible closed subsets  $Z_I$ . Observe that when  $I \subseteq J$  then  $Z_J \subseteq Z_I$  for  $I, J \subseteq \{1, \ldots, n\}$ . Therefore, the irreducible components that occur in Z are the ones in the family  $\mathcal{I}$  of subsets of  $\{1, \ldots, n\}$  verifying the following statements.

- 1.  $Z_I \subseteq Z$  and;
- 2. I is minimal verifying the previous condition, i.e. there is no  $J \subseteq \{1, \ldots, n\}$ ,  $J \subsetneq I$  such that  $Z_J \subseteq Z$ .

Thus,  $Z = \bigcup_{I \in \mathcal{I}} Z_I$ .

#### 2.2 Construction of the fan associated to the action.

We will use the following lemma to develop our construction.

**Lemma 2.2.** There exists an  $n \times l$  matrix E that satisfies the following statements.

- 1. The rows of E generate N as a group.
- 2. The columns of E are a  $\mathbb{Z}$ -basis of ker  $\psi$ .

*Proof.* By [1], Theorem 12.4.3, there exist matrices  $Q \in GL_m(\mathbb{Z})$  and  $P \in GL_n(\mathbb{Z})$  such that

$$L' = QLP = \begin{bmatrix} d_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & d_2 & & 0 & & & \\ \vdots & & \ddots & \vdots & \vdots & & \vdots \\ 0 & \dots & & d_m & 0 & \dots & 0 \end{bmatrix}$$
(11)

with  $d_i \neq 0$  for all i = 1, ...m. Let  $I_l$  be the identity  $l \times l$  matrix and E' the  $n \times l$  matrix with  $I_l$  in the last l rows and zeroes in the first m rows. Then L'E' = 0. We define E := PE'. Let us prove that E satisfies statements 1 and 2.

- 1. Let  $\bar{P}$  be the matrix obtained by deleting the first m rows of  $P^{-1}$ . From the definition of E we get easily that  $I_l = \bar{P}E$ . This proves that the rows of E generate N as a group.
- 2. The columns of E are elements of ker  $\psi$  because LE = 0. Given any  $\lambda \in \ker \psi$  then  $L'P^{-1}\lambda = 0$ . The columns of E' are a  $\mathbb{Z}$ -basis of the kernel of L'. Then there exist  $z_1, \ldots, z_l \in \mathbb{Z}$  such that

$$P^{-1}\lambda = E' \left[ \begin{array}{c} z_1 \\ \vdots \\ z_l \end{array} \right], \text{ therefore } \lambda = E \left[ \begin{array}{c} z_1 \\ \vdots \\ z_l \end{array} \right].$$

This proves that the columns of E generate ker  $\psi$  as a group and since ker  $\psi$  has rank l the result follows.

Let E be an  $n \times l$  matrix satisfying the statements of Lemma 2.2. We can identify  $B = \mathbb{Y}(T)$  with  $\mathbb{Z}^n$  and think of it as a space of row vectors with integer entries. Define

$$\varphi: B \longrightarrow N \tag{12}$$

by  $\varphi(e) = eE$  for all  $e \in B$ . By Lemma 2.2(1)  $\varphi$  is onto. Let  $K = \ker \varphi$ . Then K is a free abelian group of rank m.

Let  $e_i$  be the *i*th standard basis vector for B and call  $v_i = \varphi(e_i)$  the *i*th row vector of E,  $1 \le i \le n$ . The matrix E has rank l; hence the subset  $\{v_1, \ldots, v_n\}$  of  $N = \mathbb{Z}^l$  contains l linearly independent vectors. Observe that  $\{v_1, \ldots, v_n\}$  could contain elements that are equal and also the zero element.

Let  $\Delta$  be any fan in N with  $\Delta(1) = \{\tau_{v_i} | i = 1, ..., r\}$ . We will prove that such a fan is associated to the action of G on X.

**Example 2.3.** Let r = 4, s = 0, m = 2; then l = 2. Let

$$L = \begin{bmatrix} 3 & 3 & 2 & 0 \\ 4 & 4 & 0 & 2 \end{bmatrix} \qquad E = \begin{bmatrix} -1 & -2 \\ 1 & 0 \\ 0 & 3 \\ 0 & 4 \end{bmatrix},$$

hence  $v_1 = (-1, -2)$ ,  $v_2 = (1, 0)$ ,  $v_3 = (0, 3)$  and  $v_4 = (0, 4)$ . Then  $\Delta$  could be the fan with maximal cones  $\sigma_1, \sigma_2, \sigma_3$ , where  $[\sigma_1] = \{1\}$ ,  $[\sigma_2] = \{2\}$  and  $[\sigma_3] = \{3, 4\}$ .

### 2.3 Proof of Proposition A.

1. Let  $K^{\perp} = \{\lambda \in \mathbb{X}(T) | (\lambda, K) = 0\}$ . Then  $K^{\perp} = \ker \psi$ . There is an isomorphism  $w: M \to K^{\perp}$  given by

$$\langle x, \varphi(b) \rangle = (w(x), b) \tag{13}$$

for all  $x \in M$ ,  $b \in B$ . By equation (13), it can be proved in the same way as [11], Theorem 1 that the variety of closed orbits Y//G is isomorphic to  $X(\Delta)$ .

2. Consider the family  $\mathcal{I}' = \{I \in \mathcal{I} | |I| = 1\}$  and define

$$\hat{Z} := \bigcup_{I \in \mathcal{I}'} Z_I. \tag{14}$$

Since  $\bigcup_{\sigma \in \Delta} [\sigma] = \{1, \ldots, r\}$ , then  $X = k^n - \hat{Z}$  and  $X \setminus Y = Z \setminus \hat{Z}$ . By (14),  $X \setminus Y = \bigcup_{I \in \mathcal{I}''} Z_I$  with  $\mathcal{I}'' = \mathcal{I} \setminus \mathcal{I}' = \{I \in \mathcal{I} | |I| \geq 2\}$ . We also have codim  $\bigcup_{I \in \mathcal{I}''} Z_I = \inf_{I \in \mathcal{I}''} \operatorname{codim} Z_I$  and codim  $Z_I = |I| \geq 2$  for all  $I \in \mathcal{I}''$ . Therefore codim  $X \setminus Y \geq 2$ .

**Remark 2.4.** There is a canonical morphism  $p: Y \longrightarrow X(\Delta)$  such that  $X(\Delta)$  is isomorphic to the geometric quotient  $Y/\!/G$ . We have a covering  $U_{\sigma}$  of  $X(\Delta)$  with  $U_{\sigma}$  isomorphic to  $V_{\sigma}/\!/G$ , for each  $\sigma \in \Delta$ . Also,  $p_{|V_{\sigma}}: V_{\sigma} \longrightarrow U_{\sigma}$  is the categorical quotient of G restricted to  $V_{\sigma}$ . Therefore, the morphism p is a good quotient as defined in [2], §3.

## 3 Fans associated to the action of H on V.

Given a finite fan  $\Delta$ , for each  $\sigma \in \Delta$ , define  $V'_{\sigma} = \{x \in k^r | x_i \neq 0 \text{ if } i \notin [\sigma]\}$ . Then  $V_{\sigma} = V'_{\sigma} \times W$ , recall that n = r + s.

Suppose G is a torus acting faithfully on  $V_{\sigma}$  with weights  $\eta_1, \ldots, \eta_n$ . We assume that G acts transitively on W, then by [13], Lemma 3.1,  $\eta_{r+1}, \ldots, \eta_n$  are linearly independent. Let  $w = (w_{r+1}, \ldots, w_n)$  be an element of W. Then  $H = G_w = \bigcap_{i=r+1}^n \ker \eta_i$ . It can be proved in the same way as [13], Lemma 3.2, that the slice representation at w, [7], [15], is isomorphic to  $(H, V_{\sigma})$ .

Consider the *H*-invariant open subset of  $V, Y' = \bigcup_{\sigma} V'_{\sigma}$ . This is the variety defined in (10) for the case n = r.

**Theorem 3.1.** The varieties Y//G and Y'//H are isomorphic.

*Proof.* Given  $\sigma \in \Delta$ . Part of the Luna slice theorem states that there is a closed H-stable subvariety  $S_{\sigma}$  containing w and a G-equivariant étale map  $G \times^H S_{\sigma} \longrightarrow V_{\sigma}$ . Taking  $S_{\sigma} = V'_{\sigma} + w$  we get a G-equivariant isomorphism  $\delta_{\sigma} : G \times^H S_{\sigma} \longrightarrow V_{\sigma}$  and this map induces an isomorphism between  $V_{\sigma}/\!/G$  and  $V'_{\sigma}/\!/H$ , this can be proved as [13], Theorem 6.2.

If  $\tau$  is a face of  $\sigma$ , then  $V_{\tau} \subseteq V_{\sigma}$ ,  $V'_{\tau} \subseteq V'_{\sigma}$  and the isomorphism  $V_{\sigma}/\!/G \cong V'_{\sigma}/\!/H$  restricts to the isomorphism  $V_{\tau}/\!/G \cong V'_{\tau}/\!/H$ . Thus, we may identify  $Y/\!/G = \bigcup_{\sigma} V_{\sigma}/\!/G$  with  $Y'/\!/H = \bigcup_{\sigma} V'_{\sigma}/\!/H$ .

## 3.1 Proof of Proposition B

By Theorem 3.1, Y//G is isomorphic to  $X(\Delta)$  if and only if Y'//H is. Let as prove that  $\operatorname{codim} X \setminus Y \geq 2$  if and only if  $\operatorname{codim} V \setminus Y' \geq 2$ .

We have  $Y = \{x \in k^n | x_i \neq 0 \text{ for } i \notin \cup [\sigma] \}$  and  $Y' = \{x \in k^r | x_i \neq 0 \text{ for } i \notin \cup [\sigma] \}$ . If  $\operatorname{codim} X \setminus Y \geq 2$  then  $\mathcal{O}(X) = \mathcal{O}(Y)$ , therefore  $\cup [\sigma] = \{1, \ldots, r\}$ . By the proof of Proposition A (2) for the case n = r then  $\operatorname{codim} V \setminus Y' \geq 2$ . Conversely if  $\operatorname{codim} V \setminus Y' \geq 2$ , then  $\mathcal{O}(V) = \mathcal{O}(Y')$  so  $\cup [\sigma] = \{1, \ldots, r\}$  and the by proof of Proposition A (2) the result follows.

# 3.2 $\mathcal{D}(X(\Delta))$ -modules.

Set  $\mathfrak{h} = Lie(H) \subseteq \mathfrak{g} = Lie(G)$ . For  $\lambda \in \mathfrak{g}^*$ ,  $\mu \in \mathfrak{h}^*$  we set

$$\mathcal{B}_{\lambda}(X) = \mathcal{D}(X)^{G}/(\mathfrak{g} - \lambda(\mathfrak{g})), \qquad \mathcal{B}_{\mu}(V) = \mathcal{D}(V)^{H}/(\mathfrak{h} - \mu(\mathfrak{h})).$$
 (15)

Here  $(\mathfrak{g} - \lambda(\mathfrak{g}))$  is the ideal generated by all elements of the form  $x - \lambda(x)$ , with  $x \in \mathfrak{g}$ , and  $(\mathfrak{h} - \mu(\mathfrak{h}))$  is defined similarly. Let  $i^* : \mathfrak{g}^* \longrightarrow \mathfrak{h}^*$  be the map obtained from the inclusion  $i : \mathfrak{h} \longrightarrow \mathfrak{g}$ .

By [13], Proposition C, there is an injective algebra homomorphism  $\mathcal{D}(V)^H \longrightarrow \mathcal{D}(X)^G$ . If  $\lambda \in \mathfrak{g}^*$  and  $\mu = i^*(\lambda)$ , the previous map induces an isomorphism  $\mathcal{B}_{\mu}(V) \cong \mathcal{B}_{\lambda}(X)$  and by [11], Theorem 5 they are isomorphic to  $\mathcal{D}(X(\Delta))$ . Note that any simple  $\mathcal{D}(X)^G$ -module is a  $\mathcal{B}_{\lambda}(X)$ -module for some  $\lambda \in \mathfrak{g}^*$ . So we can reduce the study of finite dimensional simple  $\mathcal{D}(X)^G$ -modules to that of finite dimensional simple  $\mathcal{D}(V)^H$ -modules and also to the study of  $\mathcal{D}(X(\Delta))$ -modules.

In [14] it is shown that the category of  $\mathcal{D}(X(\Delta))$ -modules is equivalent to a category of graded  $\mathcal{D}(V)$ -modules modulo  $\mathfrak{b}$ -torsion, with  $\mathfrak{b}=Z$  defined by equation (9) for s=0.

# 4 Fans not contained in a half-space.

In this section we include some lemmas that will be used to prove Proposition C and Theorem D.

Suppose  $I \subseteq \{1, \ldots, r\}$ . For  $1 \le i \le n$ , set

$$\varsigma_i = \begin{cases}
-\eta_i & \text{if } i \in I \\
\eta_i & \text{if } i \notin I
\end{cases}$$
(16)

Let  $L_I$  be the matrix with columns  $\varsigma_1, \ldots, \varsigma_n$ . Then  $G_I$  denotes the m-dimensional torus acting on X by the matrix  $L_I$ . By [13], Lemma 5.2, the map  $\sigma_I : \mathcal{D}(X) \to \mathcal{D}(X)$  defined by

$$\sigma_I(Q_i) = \begin{cases} -P_i & \text{if } i \in I \\ Q_i & \text{if } i \notin I \end{cases} \qquad \sigma_I(P_i) = \begin{cases} Q_i & \text{if } i \in I \\ P_i & \text{if } i \notin I \end{cases}$$
 (17)

i = 1, ..., n is an isomorphism between  $\mathcal{D}(X)^G$  and  $\mathcal{D}(X)^{G_I}$ . Therefore  $G_I$  and G have the same invariant differential operators.

**Lemma 4.1.** When the matrix L is of the special kind (3), then  $v_1, \ldots, v_l$  are linearly independent.

*Proof.* By Lemma 2.2, LE = 0 and the rows  $v_1, \ldots, v_n$  of E generate N as a group. The equation LE = 0 means that for  $i = 1, \ldots, m$ 

$$dv_{l+i} = -\sum_{j=1}^{l} b_{ij} v_j. (18)$$

Thus  $v_{l+1}, \ldots, v_n$  belong to the  $\mathbb{R}$ -span of  $v_1, \ldots, v_l$ . The result follows from this.  $\square$ 

Let us suppose that L is of the special kind (3) and let  $\Delta$  be a fan as in § 2.2. By Lemma 4.1,  $\mathcal{B} = \{v_1, \ldots, v_l\}$  is a basis of  $N_{\mathbb{R}}$ . With respect to  $\mathcal{B}$  the vectors  $v_{l+1}, \ldots, v_n$  have coordinates

$$v_j = (-\frac{1}{d}b_{j-l,1}, \dots, -\frac{1}{d}b_{j-l,l}), \quad j = l+1, \dots, n.$$
 (19)

Let m' = r - l. For i = 1, ..., l, let  $\rho_i$  be the vector in  $\mathbb{Z}^{m'}$  obtained deleting the last m - m' entries of  $\eta_i$ .

**Lemma 4.2.** If  $\rho_i = 0$  for some  $i \in \{1, ..., l\}$ , then  $\Delta$  is contained in a half-space.

*Proof.* Consider the basis  $\mathcal{B}$  in N. Let  $u \in M_{\mathbb{R}}$  such that  $\langle u, v_j \rangle = 0$  if  $j \neq i$ ,  $j \in \{1, \ldots l\}$  and  $\langle u, v_i \rangle = 1$ . Then  $\langle u, v_j \rangle = 0$ , for all  $j = l+1, \ldots, n$ . Therefore  $\Delta$  is contained in the half-space  $H_u$ .

**Lemma 4.3.** If  $\mathcal{O}(Y)^G = k$ , then  $\eta_{r+1}, \ldots, \eta_n$  are linearly independent.

*Proof.* It follows from Proposition 1.2 and [13], Lemma 4.1.

## 4.1 Proof of Proposition C.

Let

$$\phi_{\sigma} := \{ \lambda \in K^{\perp} | (\lambda, e_i) \ge 0 \text{ for all } i \in [\sigma] \}.$$
 (20)

Then  $\mathcal{O}(V_{\sigma})^G = k[\phi_{\sigma}]$ . Hence  $\mathcal{O}(Y)^G = k$  if and only if  $\cap_{\sigma \in \Delta} \phi_{\sigma} = 0$ . Furthermore,  $w(\Lambda_{\sigma}) = \phi_{\sigma}$ . Hence  $0 \neq u \in \cap_{\sigma \in \Delta} \sigma^{\vee}$  if and only if  $\Delta$  is contained in the half-space  $H_u$ . This proves the result.

**Remark 4.4.** Let us call G' the m-dimensional torus acting on X by a matrix L'. Let  $\Delta'$  be a fan associated to the action of G'. Suppose that  $\mathcal{O}(X)^G = \mathcal{O}(X)^{G'}$ . By Proposition C,  $\Delta$  is contained in a half-space if and only if  $\Delta'$  is.

#### 4.2 Proof of Theorem D.

 $(1)\Rightarrow(2)$  By [13], Theorem B and Lemma 5.1, there is a subset I of  $\{1,\ldots,r\}$  such that  $\mathcal{O}(X)^{G_I}=k$ . By Proposition A, there exists a fan  $\Delta$  associated to the action of  $G_I$  on X. By Proposition C,  $\Delta$  is not contained in a half-space.

(2) $\Rightarrow$ (1) By Proposition C,  $\mathcal{O}(Y)^G = k$ . By Lemma 4.3, Remark 4.4, and Lemma 4.2,  $\rho_i \neq 0$  for all  $i = 1, \ldots, r$ . By [13], Lemma 3.3 and Theorem B the result follows.

#### 4.3 Construction of an associated fan not included in a half-space.

By [13], Theorem B, if  $V^{H^o}=0$  then  $\mathcal{D}(X)^G$  has a nonzero finite dimensional module and by Theorem D there exists a fan  $\Delta$  associated to the action of G on X and not contained in a half-space. By [13], Lemma 3.3.,  $V^{H^o}=0$  if and only if  $\rho_i\neq 0$  for all  $i=1,\ldots r$ .

Suppose that  $\rho_i \neq 0$  for all i = 1, ..., l, then L is of the special kind (3). We give a construction of a fan associated to the action of G and not contained in a half-space.

Let  $v_1^*, \ldots, v_l^*$  be the dual basis of  $\mathcal{B}$ . Given  $j \in \{l+1, \ldots, r\}$ , let

$$I_i^0 = \{ i \in \{1, \dots, l\} | \langle v_i^*, v_j \rangle = 0 \}, \tag{21}$$

$$I_i^+ = \{i \in \{1, \dots, l\} | \langle v_i^*, v_j \rangle > 0\},$$
 (22)

$$I_j^- = \{i \in \{1, \dots, l\} | < v_i^*, v_j > < 0\},$$
 (23)

and

$$I_j = I_j^+ \cup I_j^-. \tag{24}$$

Then there exists  $J \subseteq \{l+1,\ldots,r\}$  such that

$$\bigcup_{i \in J} I_i = \{1, \dots, l\} \tag{25}$$

because  $\rho_i \neq 0$ ,

$$\rho_i = \begin{bmatrix} b_{1i} \\ \vdots \\ b_{m'i} \end{bmatrix} \text{ and } \frac{-1}{d} b_{j-l,i} = \langle v_i^*, v_j \rangle, \ i = 1, \dots, l, \ j = l+1, \dots, r.$$

Take J to be minimal verifying (25), and let  $J = \{j_1, \dots, j_c\}$  with  $c \leq m'$  and

$$|I_{j_h}| \le |I_{j_{h+1}}| \quad h = 1, \dots, c-1.$$
 (26)

These two assumptions will make the next computation shorter. We take a subset I of  $\{1, \ldots, l\}$  in the following way:

$$I := I_{j_1}^+ \cup_{h=2}^c \left[ \left( \cap_{t=1}^{h-1} I_{j_t}^0 \right) \cap I_{j_h}^+ \right] = \tag{27}$$

$$=I_{j_1}^+ \cup (I_{j_1}^0 \cap I_{j_2}^+) \cup (I_{j_1}^0 \cap I_{j_2}^0 \cup I_{j_3}^+) \cup \ldots \cup (I_{j_1}^0 \cap \ldots \cap I_{j_{c-1}}^0 \cap I_{j_c}^+).$$
 (28)

Define

$$v_i^I = \begin{cases} -v_i & \text{if } i \in I \\ v_i & \text{if } i \notin I \end{cases}, i = 1, \dots, r.$$
 (29)

Let  $\Delta_I$  be a fan in N with  $\Delta_I(1) = \{\tau_{v_i^I} | i = 1, \dots, r\}$ . This fan is associated to the action of  $G_I$  on X.

**Proposition 4.5.**  $\Delta_I$  is not contained in a half-space.

*Proof.* Suppose  $\Delta_I$  is contained in the half-space  $H_u$  for some  $u \in M_{\mathbb{R}}$ ,  $u \neq 0$ . Then  $v_i^I \in H_u$  for all  $i = 1, \ldots, r$ . Let  $u = u_1 v_1^* + \ldots + u_l v_l^*$ . Then  $u_i \geq 0$  for  $i \notin I$  and  $u_i \leq 0$  for  $i \in I$ .

Suppose  $1 \le i \le r$  and consider three cases:

If 
$$i \in I_{j_1}^0$$
, then  $\langle v_i^*, v_{j_1} \rangle = 0$ .  
If  $i \in I_{j_1}^+$ , then  $\langle v_i^*, v_{j_1} \rangle > 0$  and  $u_i \leq 0$ .  
If  $i \in I_{j_1}^-$ , then  $\langle v_i^*, v_{j_1} \rangle < 0$  and  $u_i \geq 0$ .

In all cases we have  $u_i < v_i^*, v_{j_1} > \le 0$ . Therefore  $< u, v_{j_1} > \le 0$ . But  $v_{j_1} \in H_u$  so  $< u, v_{j_1} > = 0$ . Thus  $u_i = 0$  for all  $i \in I_{j_1}$ .

Analogously we can prove that  $\langle u, v_{j_2} \rangle = 0$  and therefore  $u_i = 0$  for all  $i \in I_{j_2} \setminus I_{j_1}$ . Hence  $u_i = 0$  for all  $i \in I_{j_2} \cup I_{j_1}$ . In this way we get that  $u_i = 0$  for all  $\bigcup_{i \in J} I_i = \{1, \ldots, l\}$ .

**Example 4.6.** Let n = r = 6 and m = 2. The action of G on  $kQ_1 + \ldots + kQ_6$  is given by the matrix

$$L = \begin{bmatrix} 0 & -1 & 2 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 & 0 & 1 \end{bmatrix}. \tag{30}$$

Then  $v_1=(1,0,0,0),\ v_2=(0,1,0,0),\ v_3=(0,0,1,0),\ v_4=(0,0,0,1),\ v_5=(0,1,-2,0),\ v_6=(-1,0,1,1).$  Also  $J=\{5,6\}$  and  $I=I_5^+\cup (I_5^0\cap I_6^+),\ with\ I_5^+=\{2\},\ I_5^0=\{1,4\}$  and  $I_6^+=\{3,4\}.$  Therefore  $I=\{2,4\}.$ 

# 5 Finite Polytopes.

Let us suppose that  $\mathcal{D}(X)^G$  has a nonzero finite dimensional module. We can assume that L is of the special kind (3). Let  $\Delta$  be a fan associated to the action of G on X and not contained in a half-space. Let Y be as in § 2.1. Define  $\Lambda \subseteq \mathbb{Z}^m$  by  $\Lambda = \{L\alpha | \alpha \in \mathbb{N}^r \times \mathbb{Z}^s\}$ . For  $\chi \in \Lambda$  define

$$\mathcal{O}(Y)_{\chi} = span\{Q^{\lambda} \in \mathcal{O}(Y)|L\lambda = \chi\}.$$
 (31)

It is easy to see that

$$\mathcal{O}(Y) = \bigoplus_{\gamma \in \Lambda} \mathcal{O}(Y)_{\gamma}. \tag{32}$$

For each  $\chi = (\chi_1, \dots, \chi_m) \in \Lambda$ ,  $\mathcal{O}(Y)_{\chi}$  is a simple  $\mathcal{D}(Y)^G$ -module by [13], Lemma 4.3 and Lemma 1.2. By [13], Lemma 4.1.,  $\mathcal{O}(Y)_{\chi}$  is finite dimensional. Let

 $\varphi = (\varphi_1, \dots, \varphi_n) \in \mathbb{N}^r \times \mathbb{Z}^s$  such that  $L\varphi = \chi$ . Given  $\sigma \in \Delta$  and the  $\mathcal{D}(Y)^G$ -module  $\mathcal{O}(V_\sigma)$ , we can easily see that  $\mathcal{O}(V_\sigma) = \bigoplus_{\chi \in \Lambda} \mathcal{O}(V_\sigma)_{\chi}$ . Then

$$\mathcal{O}(V_{\sigma})_{\chi} = span\{Q^{\lambda} \in \mathcal{O}(V_{\sigma}) | \lambda \in \varphi + K^{\perp}\}. \tag{33}$$

Let

$$\phi_{\sigma,\chi} := \{ \lambda \in \varphi + K^{\perp} | (\lambda, e_i) \ge 0 \text{ for all } i \in [\sigma] \}.$$
 (34)

We can write

$$\phi_{\sigma,\chi} = \{ \varphi + \mu \in \varphi + K^{\perp} | (\mu, e_i) \ge -\varphi_i \text{ for all } i \in [\sigma] \}.$$
 (35)

Observe that  $\mathcal{O}(V_{\sigma})_{\chi} = k[\phi_{\sigma,\chi}]$ , by (8)  $V_{\sigma} = \{x \in k^n | x_i \neq 0 \text{ for all } i \notin [\sigma]\}$ ; see also (33) and (34). Therefore

$$\mathcal{O}(Y)_{\chi} = \cap_{\sigma \in \Delta} k[\phi_{\sigma,\chi}] \tag{36}$$

since  $Y = \bigcup_{\sigma \in \Delta} V_{\sigma}$ .

Let us consider the following  $r \times l$  matrix,

$$P = \begin{bmatrix} -1 & & & & \\ & \ddots & & & \\ & & -1 & \\ b_{11} & \dots & b_{1l} & \\ \vdots & & \vdots & \\ b_{m'1} & \dots & b_{m'l} \end{bmatrix}.$$

We denote by  $P_i$  the i-th row vector of P. Let  $b = (b_1, \ldots, b_n) \in \mathbb{N}^r \times \mathbb{Z}^s$  such that

$$b_i = \begin{cases} \varphi_i \text{ if } i \in \{1, \dots, l\} \\ d\varphi_i \text{ if } i \in \{l+1, \dots, n\} \end{cases}$$
 (37)

**Theorem 5.1.** The dimension of  $\mathcal{O}(Y)_{\chi}$  is the number of lattice points inside the polytope

$$\{x \in M_{\mathbb{R}} | \langle x, P_i \rangle \le b_i, i = 1, \dots, r\}.$$
 (38)

*Proof.* Define the sets

$$\psi_{\sigma,\gamma} := \{ \lambda \in K^{\perp} | (\lambda, e_i) \ge -\varphi_{i,\gamma}, \text{ for all } i \in [\sigma] \}.$$
 (39)

Then  $\phi_{\sigma,\chi} = \varphi + \psi_{\sigma,\chi}$  where  $\phi_{\sigma,m}$  is the set given in (34). Also  $k[\phi_{\sigma,\chi}] = Q^{\varphi}k[\psi_{\sigma,\chi}]$ . Therefore  $\mathcal{O}(Y)_{\chi} = Q^{\varphi}(\cap_{\sigma} k[\psi_{\sigma,\chi}])$ , by (36). Let

$$\Lambda_{\sigma,\gamma} := \{ x \in M \mid \langle x, v_i \rangle \ge -\varphi_{i,\gamma} \text{ for all } i \in [\sigma] \}. \tag{40}$$

Then  $\psi_{\sigma,\chi} = w(\Lambda_{\sigma,\chi})$ , with w as in (13), and  $k[\Lambda_{\sigma,\chi}] \cong k[\psi_{\sigma,\chi}]$ . Therefore, the dimension of  $\mathcal{O}(Y)_{\chi}$  is the number of lattice points in the set  $\cap_{\sigma \in \Delta} \Lambda_{\sigma,\chi}$ . Henceforth the dimension of  $\mathcal{O}(Y)_{\chi}$  is the number of lattice points in the polytope

$$\{x \in M_{\mathbb{R}} | \langle x, v_i \rangle > -\varphi_i \text{ for all } i = 1, \dots, r\}.$$

It can be easily seen that this polytope coincides with (38) setting  $\mathcal{B}$  as  $N_{\mathbb{R}}$  basis.  $\square$ 

## 5.1 Example

Assume that dim G=3 and  $X=k^5$ . Then  $\mathcal{D}(X)=A_5$  is the 5-th Weyl algebra. Let the action of G on X be given by the matrix

$$L = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 \\ 1 & 3 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 1 \end{bmatrix}. \tag{41}$$

We consider the  $A_5^G$ -module  $\mathcal{O}(Y)_{\chi}$  with  $\chi=(30,30,40)$ . Then dim  $\mathcal{O}(Y)_{\chi}=108$ , the number of lattice points inside the polytope  $\{(x_1,x_2)\in\mathbb{Z}^2|x_1\geq 0,x_2\geq 0,2x_1+2x_2\leq 30,x_1+3x_2\leq 30,3x_1+x_2\leq 40\}$ . The number of points inside the polytope was obtained with LattE, which is a recent computer package for lattice point enumeration [6]. The following picture show this polytope.



#### ACKNOWLEDGEMENTS

This is part of the author's PhD thesis written at the Mathematics Department of the University of Wisconsin-Milwaukee under the supervision of Professor Ian M. Musson. I would like to thank him for helpful comments on earlier drafts of this paper.

## References

- [1] M. Artin, Algebra (Prentice Hall, 1991).
- [2] A. A'Campo-Neuen and J. Hausen, Quotients of toric varieties by the action of a subtorus, *Tohoku Math. Journal* **51** (1999).

- [3] A. A'Campo-Neuen and J. Hausen, Toric prevarieties and subtorus actions, *Geom. Dedicata* 87 (2001), 35-64.
- [4] M. Audin, *The Topology of Torus Actions on Symplectic Manifolds*, Progress in Mathematics, Vol. 93 (Birkhäuser, Basel, 1991).
- [5] D.A. Cox, The homogeneous coordinate ring of a toric variety, *J. Algebraic Geom.* 4 (1995), no. 1, 17-50.
- [6] J.A. De Loera, R. Hemmecke, J. Tauzer and R. Yoshida, Effective Lattice Point Counting in Rational Convex Polytopes, available via http://www.math.ucdavis.edu/latte/theory.html.
- [7] D. Luna, Slices étales. Sur les groupes algébriques, Bull. Soc. Math. France 33 (Soc. Math. France, Paris, 1973), 81-105.
- [8] W. Fulton, Introduction to toric varieties (Princeton University Press, 1993).
- [9] J. Hausen, Geometric invariant theory based on Weil divisors. Preprint available at (arXiv:amth.AG/0301204v2) 2003.
- [10] T. Levasseur, Anneaux d'opérateurs différentiels, in: P. Dubreil et M.-P. Malliavin, eds., Séminaire d'Algébre, Lecture Notes in Mathematics 867 (Springer, 1981) 157-173.
- [11] I.M. Musson, Differential operators on toric varieties, *J. Pure and Applied Algebra* **95** (1994), 303-315.
- [12] I.M. Musson, Rings of differential operators on invariant rings of tori, *Trans. Amer. Math. Soc.* **303** (1987), 805-827.
- [13] I.M. Musson and S.L. Rueda, Finite dimensional representations of invariant differential operators, *Trans Amer. Math. Soc.*, (accepted for publication). Preprint available at (arXiv:amth.RT/0305279v1) 2003.
- [14] M. Mustaţă, G.G. Smith, H. Tsai and U. Walther,  $\mathcal{D}$ -modules on smooth toric varieties, J. of  $Algebra\ \mathbf{240}\ (2001)$ , 744-770.
- [15] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen (pp. 89–113); Algebraische Transformationsgruppen und Invariantentheorie. Edited by H. Kraft, P. Slodowy and T. A. Springer. DMV Seminar, **13**. Birkhuser Verlag, Basel, 1989.