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Abstract

Let k be an algebraically closed field of characteristic 0, X = k" x (k*)* and
let G be an algebraic torus acting diagonally on X. We construct a fan A such
that the quotient Y//G is isomorphic to the toric variety determined by A and
D(X) =D(Y), for a distinguished G-invariant open subset Y of k. The main
goal of this construction is to give necessary and sufficient conditions on A for
D(X)% to have enough simple finite dimensional modules.

Let G be a reductive group acting on the smooth affine variety X = k" x (k*)*,
with k£ an algebraically closed field k of characteristic 0. We denote the ring of
regular functions on X by O(X) and the ring of differential operators by D(X).
Let D(X)% be the subring of D(X) of invariants under the action of G. There are
several papers where actions of tori and finite fans are related, [4], Chaper VI, [5],
[11] and more recently [2], [3]. We would like to associate a finite fan of cones to
the action of G on X, in such a way that the study of the fan will allow us to get
conclusions about the finite dimensional D(X)%-modules.

Suppose that n = r + s. Given a fan (N, A), we consider the following open
subset of k", Y = {z € k"|x; # 0 for i ¢ {1,...,r}}, where r is the number of one
dimensional cones of A. We say that a finite fan A is associated to the action of G
on X, if the following conditions hold,

1. (A1) the quotient variety Y//G is isomorphic to the toric variety determined
by the fan A, X (A),

2. (A2) codim X\Y > 2.

In this paper, G will be a finite dimensional algebraic torus acting diagonally on
X.

Proposition A There exists a fan A associated to the action of the algebraic
torus G on X.



The proof of Proposition A is constructive, we give a method to obtain a fan
associated to the action of G on X. This result was motivated by the work of I.M.
Musson in [11]. Given a finite fan A he gives an action of G on Y such that the
variety of closed orbits Y//G is isomorphic to the toric variety determined by A . A
similar result was proved by D.A. Cox in [5]. We consider Proposition A a converse
of this results, since our point of departure is the action of G on X. The variety
Y is relevant to us because it serves as a bridge between the action of G on X and
the fan A, condition (A1) explains this connection. In fact, we define Y as in [11].
Furthermore, Y is a toric subvariety of X, which is a toric variety for a dense torus
T and G is a subtorus of T'. The variety Y admits a good quotient by the action
of G. The existence of good quotients of a toric variety by a subtorus action was
studied in a recent paper by A. A’Campo-Neuen and J. Hausen, [2]. Also, the open
subsets of a normal variety which admit a good quotient by a torus action have been
described in [9].

We call V.= k", W = (k*)® then X =V x W C k", where n = r + s. Let us
suppose that G acts transitively on X. The connected component H of the identity
in H is a torus but we may have H # H° and then H/H? is a finite group. Let
H be the stabilizer of w in W. The following result reflects the connection existing
between the action of G on X and the action of H on V.

Proposition B A is a fan associated to the action of G on X if and only if A
s a fan associated to the action of H on V.

The main goal of this paper is to give necessary and sufficient conditions on A for
D(X)% to have a nonzero finite dimensional module. In a recent work with Musson
[13], we show that if D(X) has a nonzero finite dimensional module then D(X)%
has enough simple finite dimensional modules. We say that a k-algebra R has enough
simple finite dimensional modules if NannrM = 0, where the intersection is taken
over all simple finite dimensional R-modules, [13].

Condition (A2) implies that D(X) = D(Y), so we can transfer our attention to
the study of D(Y)%-modules. We say that a finite fan is contained in a half-space if
the intersection of its dual cones is not zero.

Proposition C The D(Y)%-module O(Y)% is finite dimensional if and only if
the fan A is not contained in a half-space.

This will allow us to prove the following theorem.

Theorem D The following conditions are equivalent.

1. D(X)Y has a nonzero finite dimensional module.

2. There exists a fan A not contained in a half-space and associated to the action
of G on X.

When V° =0, we can modify a fan associated to the action of G on X to get



a fan which is not contained in a half-space and it is associated to an action that
is different from the original one but gives the same invariant differential operators.
This fact allowed us to realize that VH° = 0 is a necessary and sufficient condition
for D(X)% to have a nonzero finite dimensional module, as proved in [13] without
the use of fans.

The paper is organized as follows. In § 1, we introduce some notation about
actions of tori, finite fans and rings of differential operators. Section 2 contains a
method to construct fans that will be proved to be associated to the action of G on
X. We prove Proposition B in § 3. In § 4, we prove Proposition C and Theorem
D. The last section, contains a description of the members of the family of finite
dimensional simple D(X)%-modules {O(Y )y }yezm, in terms of the fan. This family
was proved to have enough members in [13]. We show that the dimension of O(Y'),
is the number of lattice points inside a certain polytope (i.e. a bounded polyhedron).
This computation can be done with LattE.

1 Notation

1.1 Actions of Tori

Set X(G) = Hom(G,k*), Y(G) = Hom(k™,G), the groups of characters and one-
parameter subgroups of GG, respectively.

A diagonal action of a torus G on X is an action that extends to a diagonal
action on k™. Such an action is given by an embedding of G into the group T of
diagonal matrices in GL(n). Details about this action are given in [13], §1.1 and the
following concepts are described. There exist 11, ..., 7, € X(G) such that G acts on
X with weights n1,...,n, . Identify G with (k)™ and X(G) with Z™. We think of
X(G) as a space of column vectors with integer entries. We call L the n x m matrix
whose i-th column vector is 7;, ¢ = 1,...,n. We say that G acts on X by the matrix
L.

Let ¢ : X(T') — X(G) be the restriction map. This map is given by multiplica-
tion by L. There is a natural bilinear pairing

(,):X(T)xY(T)— Z. (1)
defined by the requirement that
(aob)(N) =A@ (2)

for all a € X(T'), b € Y(T') and \ € k*.
We will assume that G acts faithfully on X. Therefore L has rank m. Let
l=n—m.

Lemma 1.1. Assume that {n,41,...,nn} are linearly independent. There exist ma-
trices I' € GLy(Z), A € GLp(Z) such that
b1 bu d 0 0
b oo by 0 d ... 0
roa=| , . (3)



where d is a nonzero integer.

Proof. Let m' =m — s. Since {n,...,n,} contains m linearly independent vectors,
there exist n;,,...,m , € {n1,...,Mn} suchthat n;,...,m ,,741,...,7, are linearly
independent. There exists A € GL,(Z) such that the last m’ columns of LA are

Niys- -+, .- Let I” be the m x m matrix whose i-th column vector is the (I +i)-ith
column of LA, i =1,...,m. Then d := |detI'| # 0. Let I' = dI'~!, then the m x n
matrix with integer coefficients I'LA will look like (3). O

If {mr41,...,mn} are linearly independent, by Lemma 1.1 and [13], equations
(15) and (16), we assume that the matrix L has the special form (3).

1.2 Finite fans

As far as possible we follow the notation of [8] , Chapter 1. Let N ~ Z! be the
l-dimensional lattice. Let (IV, A) be a fan in N. Recall that each o € A is a strongly
convex rational polyhedral cone in Ng = N ®z R. Let M = Homgyg(N,Z) and
< _,_>: M x N — 7Z the natural bilinear pairing. For each o € A, let

Ao =Mno' ={ue M| <u,v>>0foralwveo} (4)

and U, = Speck[A,] is a semigroup algebra. By [8], Theorem 1.4 we can glue U, to
obtain a toric variety X (A).

Denote by A(1) the set of cones of (N, A) with dimension one. Given v € N
let 7, = Ryv be the ray generated by v € N. Let v,v’ € N, if v = v’ with
¢ > 0 then 7, = 7. Suppose that A(1) = {v1,...,v,.}. Given 0 € A we define
o] ={ie{l,...,r}m, is a face of o}. Then o =} ;c(,) To;-

If u € Mr = M ®z R, a subset of the form

H, ={v € Ng| < u,v >>0} (5)

with u # 0 is called a half-space in Ng, see [12], §1. We will say that the fan (N, A)
is contained in a half-space if we can find 0 # u € My such that ¢ C H, for all
o € A. Equivalently, if the intersection of its dual cones is not zero.

1.3 Coordinate rings and rings of differential operators.

In this section, we gather some definitions and results from [13], §2. Note that X
is a toric variety with a dense torus 7' = (k*)"™ C X. Write @; for the character e;
considered as a regular function on 7. Then

OX)=kQ1,...,Qr Q1. ..., Q. (6)

We consider the action of G on O(T') (or O(X)) given by right translation. This
convention implies that @; has weight n;. Let P; = 0/0Q);,

D(X)=k[Q1,...,Qr Q1. ..., QF  P1,..., P (7)



A= (A, hn) € N X Z5 5= (..., pn) € N, set QX = Q... Q), and

n

Pt = P{" .. P}". The elements Q*P* € D(X), with LA = Ly, form a basis of
D(X)C.
Let Y be an open subset of X. Define the codimension of X\Y in k", to be

codim X\Y = dim £" — dim X\Y.
Proposition 1.2. If codim X\Y > 2, then O(X) = O(Y) and D(X) =D(Y).

Proof. The result follows from [10], Proposition I1.2.2. O

2 Fans associated to the action of G.

Let us describe Y in detail.

2.1 The set Y.

Let (N, A) be a finite fan. For every o € A we define 27 = [Ti¢(s) xi and we consider
the T-invariant open sets A
V, = k" — Z(2%) (8)

where Z(2%) = {z € k®|2° = 0}. Let
Z = NgenZ(z?). (9)
Hence Z is closed and T-invariant. We have an open subset
Y =k"—Z =UyeaV, (10)

of an affine space k™. Note that Y might no longer be affine. These sets were
introduced in [11], §1.3. See also [5], Theorem 2.1.

We determine the irreducible components of Z. For I C {1,...,n} set Z; =
{rx € k"|x; =0if i € T}.

Lemma 2.1. Any T-invariant irreducible closed set in k™ is some Zj.
Proof. See [8], §3.1. O

By Lemma 2.1, Z is a union of irreducible closed subsets Z;. Observe that when
I C Jthen Z; C Z; for I,J C {1,...,n}. Therefore, the irreducible components
that occur in Z are the ones in the family Z of subsets of {1,...,n} verifying the
following statements.

1. Z; C Z and;

2. T is minimal verifying the previous condition, i.e. there is no J C {1,...,n},
J C I such that Z; C Z.

Thus, Z = Ujez 2.



2.2 Construction of the fan associated to the action.

We will use the following lemma to develop our construction.

Lemma 2.2. There exists an n x| matriz E that satisfies the following statements.
1. The rows of E¥ generate N as a group.
2. The columns of E are a Z-basis of ker 1.

Proof. By [1], Theorem 12.4.3, there exist matrices @ € GL,,(Z) and P € GL,(Z)
such that

d 0 ... 0 0 ... 0

, 0 d 0

L'=QLP= . S : (11)
o ... dnp 0 ... 0

with d; # 0 for all : = 1,...m. Let I; be the identity [ x [ matrix and E’ the n x [
matrix with ; in the last [ rows and zeroes in the first m rows. Then L'E’ = 0. We
define F := PE'’. Let us prove that I satisfies statements 1 and 2.

1. Let P be the matrix obtained by deleting the first m rows of P~1. From the
definition of F we get easily that I; = PE. This proves that the rows of F
generate N as a group.

2. The columns of E are elements of ker v because LE = 0. Given any A € ker ¢
then L'P~'X\ = 0. The columns of E’ are a Z-basis of the kernel of L'. Then
there exist z1,..., 2 € Z such that

21 <1
P ']AN=FE'| : |, therefore \= F

] 2l

This proves that the columns of E generate ker ¢ as a group and since ker
has rank [ the result follows.

O

Let E be an n x [ matrix satisfying the statements of Lemma 2.2. We can
identify B = Y(T') with Z" and think of it as a space of row vectors with integer
entries. Define

0:B— N (12)

by p(e) = eE for all e € B. By Lemma 2.2(1) ¢ is onto. Let K = ker ¢. Then K
is a free abelian group of rank m.

Let e; be the ith standard basis vector for B and call v; = ¢(e;) the ith row
vector of £, 1 < i < n. The matrix F has rank [; hence the subset {vi,...,v,}
of N = 7' contains [ linearly independent vectors. Observe that {v1,...,v,} could
contain elements that are equal and also the zero element.

Let A be any fan in N with A(1) = {7, i = 1,...,r}. We will prove that such
a fan is associated to the action of G on X.



Example 2.3. Letr =4, s=0, m = 2; thenl = 2. Let

-1 -2
3320 1 0
L‘[4402} E=10 3|

0 4

hence v1 = (—1,-2), v2 = (1,0), v3 = (0,3) and vqa = (0,4). Then A could be the
fan with mazimal cones o1, 09,03, where [o1] = {1}, [02] = {2} and [o3] = {3,4}.

2.3 Proof of Proposition A.

1. Let K+ = {\ € X(T)|(\,K) = 0}. Then K = ker 1. There is an isomor-
phism w : M — K= given by

< z,¢(b) >= (w(x),b) (13)

for all x € M, b € B. By equation (13), it can be proved in the same way as
[11], Theorem 1 that the variety of closed orbits Y//G is isomorphic to X (A).

2. Consider the family 7' = {I € Z||I| = 1} and define

A~

Z :=Urep Z1. (14)

Since Uyealo] = {1,...,7}, then X = k" — Z and X\Y = Z\Z. By (14),
X\Y = Ujern Zy withZ” = I\Z' = {I € Z||I| > 2}. We also have codim Uyezr
Zr = infregrcodim Z; and codim Z; = |I| > 2 for all I € Z”. Therefore
codim X\Y > 2.

Remark 2.4. There is a canonical morphism p : Y — X(A) such that X(A) is
isomorphic to the geometric quotient Y//G. We have a covering U, of X(A) with
U, isomorphic to V, /|G, for each o € A. Also, Py, @ Vo — Us is the categorical
quotient of G restricted to V,. Therefore, the morphism p is a good quotient as
defined in [2], §3.

3 Fans associated to the action of H on V.

Given a finite fan A, for each o € A, define V] = {z € k"|z; # 0if i ¢ [o]}. Then
V, = VI x W, recall that n = r + s.

Suppose G is a torus acting faithfully on V, with weights n,...,n,. We assume
that G acts transitively on W, then by [13], Lemma 3.1, 9,41,...,7, are linearly
independent. Let w = (wyy1,...,w,) be an element of W. Then H = G, =
Nie, ker n;. It can be proved in the same way as [13], Lemma 3.2, that the slice
representation at w, [7], [15], is isomorphic to (H, V).

Consider the H-invariant open subset of V, Y/ = U,V./. This is the variety
defined in (10) for the case n = r.

Theorem 3.1. The varieties Y//G and Y'//H are isomorphic.



Proof. Given o € A. Part of the Luna slice theorem states that there is a closed
H-stable subvariety S, containing w and a G-equivariant étale map G x? S, — V.
Taking S, = V! + w we get a G-equivariant isomorphism §, : G x S, — V,, and
this map induces an isomorphism between V,,//G and V///H, this can be proved as
[13], Theorem 6.2.

If 7 is a face of o, then V; C V,, V! C V! and the isomorphism V,//G =
V! //H restricts to the isomorphism V;//G = V! //H. Thus, we may identify Y//G =
U,V //G with Y'//H = U,V //H. O

3.1 Proof of Proposition B

By Theorem 3.1, Y//G is isomorphic to X (A) if and only if Y'//H is. Let as prove
that codimX\Y > 2 if and only if codimV\Y’ > 2.

We have Y = {z € k™|z; # 0fori ¢ Ulo]} and Y/ = {x € k"|z; # 0fori ¢
Ulo]}. If codimX\Y > 2 then O(X) = O(Y), therefore Ujo| = {1,...,r}. By the
proof of Proposition A (2) for the case n = r then codimV\Y’ > 2. Conversely
if codimV\Y’ > 2, then O(V) = O(Y’) so Ujg] = {1,...,r} and the by proof of
Proposition A (2) the result follows.

3.2 D(X(4))-modules.
Set h = Lie(H) C g = Lie(G). For A € g*, u € h* we set

BA(X)=D(X)“/(g— @),  Bu(V)=DV)"/(h— puh)). (15)

Here (g — A\(g)) is the ideal generated by all elements of the form = — A(z), with
x € g, and (h — u(h)) is defined similarly. Let i* : g* — bh* be the map obtained
from the inclusion i : h — g.

By [13], Proposition C, there is an injective algebra homomorphism D(V)# —
D(X)Y. If A € g* and p = i*()\), the previous map induces an isomorphism B,,(V') =
B)(X) and by [11], Theorem 5 they are isomorphic to D(X(A)). Note that any
simple D(X)%module is a By(X)-module for some A € g*. So we can reduce
the study of finite dimensional simple D(X)%-modules to that of finite dimensional
simple D(V)#-modules and also to the study of D(X(A))-modules.

In [14] it is shown that the category of D(X(A))-modules is equivalent to a
category of graded D(V')-modules modulo b-torsion, with b = Z defined by equation

(9) for s = 0.

4 Fans not contained in a half-space.

In this section we include some lemmas that will be used to prove Proposition C
and Theorem D.
Suppose I C {1,...,r}. For 1 <i < n, set

o —771le€]



Let L; be the matrix with columns ¢i,...,¢,. Then G; denotes the m-dimensional
torus acting on X by the matrix L;. By [13], Lemma 5.2, the map oy : D(X) —
D(X) defined by

o1(Qi) = { Qiitigr 1P = { Pifigl (17)
i=1,...,n is an isomorphism between D(X)“ and D(X)%. Therefore G; and G

have the same invariant differential operators.

Lemma 4.1. When the matriz L is of the special kind (3), then vi,...,u; are
linearly independent.

Proof. By Lemma 2.2, L. = 0 and the rows vy, ..., v, of E generate N as a group.
The equation LE = 0 means that fori=1,...,m

l
dvl+i = — Z bijvj. (18)
j=1

Thus vi41, . .., v, belong to the R-span of vy, ..., v;. The result follows from this. O

Let us suppose that L is of the special kind (3) and let A be a fan as in § 2.2.
By Lemma 4.1, B = {v1,...,v;} is a basis of Ng. With respect to B the vectors
Vi+1, - - .,V have coordinates

1 1 .
’Uj:(—abj,l’l,...,—g j*“)? Vi :H—l,...,n. (19)

Let m' =r—1. Fori=1,...,1, let p; be the vector in Z™ obtained deleting the
last m — m/ entries of ;.
Lemma 4.2. If p; =0 for some i € {1,...,1}, then A is contained in a half-space.

Proof. Consider the basis B in V. Let u € Mg such that < w,v; >= 0if j # 1,
je{l,...l} and < u,v; >=1. Then < u,v; >=0, for all j =[+1,...,n. Therefore
A is contained in the half-space H,,. ]
Lemma 4.3. If O(Y)G =k, then ny41,...,nn are linearly independent.

Proof. Tt follows from Proposition 1.2 and [13], Lemma 4.1. O

4.1 Proof of Proposition C.
Let
b ={N € K*|(\ e;) >0 for all i € [o]}. (20)

Then O(V,)% = k[¢,]. Hence O(Y)Y = k if and only if Nyea¢y = 0. Furthermore,
w(Ay) = ¢o. Hence 0 # u € Nyeao” if and only if A is contained in the half-space
H,,. This proves the result.

Remark 4.4. Let us call G' the m-dimensional torus acting on X by a matriz L'.
Let A be a fan associated to the action of G'. Suppose that O(X)% = O(X)". By
Proposition C, A is contained in a half-space if and only if A is.



4.2 Proof of Theorem D.

(1)=-(2) By [13], Theorem B and Lemma 5.1, there is a subset I of {1,...,7} such
that O(X)% = k. By Proposition A, there exists a fan A associated to the action
of Gy on X. By Proposition C, A is not contained in a half-space.

(2)=(1) By Proposition C, O(Y)® = k. By Lemma 4.3, Remark 4.4, and
Lemma 4.2, p; # 0 for all ¢ = 1,...,r. By [13], Lemma 3.3 and Theorem B the
result follows.

4.3 Construction of an associated fan not included in a half-space.

By [13], Theorem B, if V#’ = 0 then D(X)® has a nonzero finite dimensional
module and by Theorem D there exists a fan A associated to the action of G on
X and not contained in a half-space. By [13], Lemma 3.3., V#° = 0 if and only if
pi ZO0foralli=1,...r.

Suppose that p; # 0 for all i = 1,...,[, then L is of the special kind (3). We
give a construction of a fan associated to the action of G and not contained in a
half-space.

Let v}, ..., v be the dual basis of B. Given j € {{+1,...,r}, let

19= (i€ {1,....1}[ <vf,v; >=0}, 1)
IF={ief{l,... .1} <vj,v > >0} (22)
I ={ief{l,... . I}] <vj,v > <0}, (23)

and
L=1I7ul;. (24)

Then there exists J C {l + 1,...,r} such that

Ujesl; :{1,,l} (25)
because p; # 0,
b .
pi=|: and Fbj,m =<wvj,v; > i=1,...0l, j=1+1,...,r
bm’i

Take J to be minimal verifying (25), and let J = {j1,...,jc} with ¢ < m/ and

\Ijh\g\fj th,...,C—l. (26)

h+1|

These two assumptions will make the next computation shorter. We take a subset
I of {1,...,1} in the following way:

=TI Uiy (NS T) NI ] = (27)
S 0 + 0 0 + 0 0 +
=L Ul NI U NLUL)U. U NN NI (28)

10



Define

YT wifigl
Let A7 be a fan in N with A;(1) = {r,7]¢ = 1,...,r}. This fan is associated to the
action of Gy on X. '

i=1,....r (29)

Proposition 4.5. A; is not contained in a half-space.

Proof. Suppose Ay is contained in the half-space H,, for some u € Mg, u # 0. Then
v;’ € H,foralli=1,...,r. Let v =wuvj +... 4+ wv/. Then u; > 0 for i ¢ I and
u; < 0 foriel.
Suppose 1 <4 < r and consider three cases:
Ifi e I]Ql, then <wvj,vj >=0.

STt
Ifi e Ijl’

If i € I, then < vj,v;, > <0and u; > 0.

then < v;,v; >>0and u; <0.

In all cases we have u; < v7,v;;, >< 0. Therefore < u,v;, >< 0. But v;, € H, so
< wu,vj, >=0. Thus u; = 0 for all ¢ € [;,.

Analogously we can prove that < wu,v;, >= 0 and therefore v; = 0 for all
i € I;,\I;,. Hence u; = 0 for all + € I;, U I;,. In this way we get that u; = 0 for all
Ujejfj:{l,...,l}. O

Example 4.6. Let n =1 =6 and m = 2. The action of G on kQ1 + ... + kQg is

given by the matriz
0 -1 2 0 10
E=17 0 -1 210 1] (30)
Then v = (1,0,0,0), v2 = (0,1,0,0), vs = (0,0,1,0), vy = (0,0,0,1), vs =
(0,1,-2,0), v = (—1,0,1,1). Also J = {5,6} and I = I U (I9 N I{), with
I = {2}, I9 = {1,4} and I = {3,4}. Therefore I = {2,4}.

5 Finite Polytopes.

Let us suppose that D(X)% has a nonzero finite dimensional module. We can assume
that L is of the special kind (3). Let A be a fan associated to the action of G on
X and not contained in a half-space. Let Y be as in § 2.1. Define A C Z™ by
A ={Lala € N" x Z*}. For x € A define

O(Y)y = span{Q* € O(Y)|LA = x}. (31)

It is easy to see that
OY) = ®yenO(Y)y. (32)

For each x = (x1,.--,Xxm) € A, O(Y), is a simple D(Y)%module by [13],
Lemma 4.3 and Lemma 1.2. By [13], Lemma 4.1., O(Y), is finite dimensional. Let

11



©=(p1,...,¢n) € N" X Z* such that Ly = x. Given o € A and the D(Y)“-module
O(V,), we can easily see that O(V;) = ©,eaO(V5)y. Then

O(Vy)y = span{Q* € O(V,)]A € ¢ + K+}. (33)
Let
box i =N E @+ K*|(\e) >0 forall i € [0]}. (34)
We can write
Po =+ 1€+ K |(n,e;) > —p; forall i € [o]}. (35)

Observe that O(V;)y = ko], by (8) Vo = {x € k"|z; # 0 for all i ¢ [0]}; see also
(33) and (34). Therefore

O(Y)x = ﬂaeAkwa,x] (36)
since Y = UgeaVy.
Let us consider the following r x | matrix,

-1
-1
P =
b1 ... by
| bm’l e bm/l ]

We denote by P; the i-th row vector of P. Let b = (b1,...,b,) € N x Z* such that

- Jopiifie{l,...,1}
bz_{d(PiifiE{l-i-l,...,n} ' (37)

Theorem 5.1. The dimension of O(Y)y is the number of lattice points inside the
polytope
{r e Mg| <z,P, ><bj,i=1,...,r} (38)

Proof. Define the sets
Vox =N € KF|(\ e;) > —piy, foralli € [o]}. (39)

Then ¢g\ = ¢ + g Where ¢y, is the set given in (34). Also k[¢s,y] = Q¥k[Vs]-
Therefore O(Y), = Q¥(Ny k(Yo ]), by (36). Let

Aoy ={z € M| <z,v; >> —¢p;, for all i € [o]}. (40)

Then ¢y, = w(Agy), with w as in (13), and k[As,] = k[t)sy]. Therefore, the
dimension of O(Y'), is the number of lattice points in the set Nyc oAy . Henceforth
the dimension of O(Y), is the number of lattice points in the polytope

{x € Mg| < z,v; >> —p; foralli=1,... 7}
It can be easily seen that this polytope coincides with (38) setting B as Ng basis. [
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5.1 Example

Assume that dim G = 3 and X = k°. Then D(X) = Aj is the 5-th Weyl algebra.
Let the action of G on X be given by the matrix

22100
L=]113 01 0]. (41)
31001
We consider the AS-module O(Y), with y = (30,30,40). Then dim O(Y), =
108, the number of lattice points inside the polytope {(x1,72) € Z2|z1 > 0,29 >
0,221 + 2x9 < 30,21 + 3z2 < 30,321 + x2 < 40}. The number of points inside the
polytope was obtained with LattE, which is a recent computer package for lattice

point enumeration [6]. The following picture show this polytope.
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