Actions of tori and finite fans

Sonia L. Rueda
Departamento de Matemáticas. E.T.S. Arquitectura
Universidad Politécnica de Madrid
Madrid, Spain
E-mail:srueda@aq.upm.es

February 17, 2004

Abstract

Let k be an algebraically closed field of characteristic $0, X=k^{r} \times\left(k^{\times}\right)^{s}$ and let G be an algebraic torus acting diagonally on X. We construct a fan Δ such that the quotient $Y / / G$ is isomorphic to the toric variety determined by Δ and $\mathcal{D}(X)=\mathcal{D}(Y)$, for a distinguished G-invariant open subset Y of k^{n}. The main goal of this construction is to give necessary and sufficient conditions on Δ for $\mathcal{D}(X)^{G}$ to have enough simple finite dimensional modules.

Let G be a reductive group acting on the smooth affine variety $X=k^{r} \times\left(k^{\times}\right)^{s}$, with k an algebraically closed field k of characteristic 0 . We denote the ring of regular functions on X by $\mathcal{O}(X)$ and the ring of differential operators by $\mathcal{D}(X)$. Let $\mathcal{D}(X)^{G}$ be the subring of $\mathcal{D}(X)$ of invariants under the action of G. There are several papers where actions of tori and finite fans are related, [4], Chaper VI, [5], [11] and more recently [2], [3]. We would like to associate a finite fan of cones to the action of G on X, in such a way that the study of the fan will allow us to get conclusions about the finite dimensional $\mathcal{D}(X)^{G}$-modules.

Suppose that $n=r+s$. Given a fan (N, Δ), we consider the following open subset of $k^{n}, Y=\left\{x \in k^{n} \mid x_{i} \neq 0\right.$ for $\left.i \notin\{1, \ldots, r\}\right\}$, where r is the number of one dimensional cones of Δ. We say that a finite fan Δ is associated to the action of G on X, if the following conditions hold,

1. (A1) the quotient variety $Y / / G$ is isomorphic to the toric variety determined by the fan $\Delta, X(\Delta)$,
2. (A2) codim $X \backslash Y \geq 2$.

In this paper, G will be a finite dimensional algebraic torus acting diagonally on X.

Proposition A There exists a fan Δ associated to the action of the algebraic torus G on X.

The proof of Proposition A is constructive, we give a method to obtain a fan associated to the action of G on X. This result was motivated by the work of I.M. Musson in [11]. Given a finite fan Δ he gives an action of G on Y such that the variety of closed orbits $Y / / G$ is isomorphic to the toric variety determined by Δ. A similar result was proved by D.A. Cox in [5]. We consider Proposition A a converse of this results, since our point of departure is the action of G on X. The variety Y is relevant to us because it serves as a bridge between the action of G on X and the fan Δ, condition (A1) explains this connection. In fact, we define Y as in [11]. Furthermore, Y is a toric subvariety of X, which is a toric variety for a dense torus T and G is a subtorus of T. The variety Y admits a good quotient by the action of G. The existence of good quotients of a toric variety by a subtorus action was studied in a recent paper by A. A'Campo-Neuen and J. Hausen, [2]. Also, the open subsets of a normal variety which admit a good quotient by a torus action have been described in [9].

We call $V=k^{r}, W=\left(k^{\times}\right)^{s}$ then $X=V \times W \subseteq k^{n}$, where $n=r+s$. Let us suppose that G acts transitively on X. The connected component H^{o} of the identity in H is a torus but we may have $H \neq H^{o}$ and then H / H^{o} is a finite group. Let H be the stabilizer of w in W. The following result reflects the connection existing between the action of G on X and the action of H on V.

Proposition B Δ is a fan associated to the action of G on X if and only if Δ is a fan associated to the action of H on V.

The main goal of this paper is to give necessary and sufficient conditions on Δ for $\mathcal{D}(X)^{G}$ to have a nonzero finite dimensional module. In a recent work with Musson [13], we show that if $\mathcal{D}(X)^{G}$ has a nonzero finite dimensional module then $\mathcal{D}(X)^{G}$ has enough simple finite dimensional modules. We say that a k-algebra R has enough simple finite dimensional modules if $\cap a n n_{R} M=0$, where the intersection is taken over all simple finite dimensional R-modules, [13].

Condition (A2) implies that $\mathcal{D}(X)=\mathcal{D}(Y)$, so we can transfer our attention to the study of $\mathcal{D}(Y)^{G}$-modules. We say that a finite fan is contained in a half-space if the intersection of its dual cones is not zero.

Proposition C The $\mathcal{D}(Y)^{G}$-module $\mathcal{O}(Y)^{G}$ is finite dimensional if and only if the fan Δ is not contained in a half-space.

This will allow us to prove the following theorem.
Theorem D The following conditions are equivalent.

1. $\mathcal{D}(X)^{G}$ has a nonzero finite dimensional module.
2. There exists a fan Δ not contained in a half-space and associated to the action of G on X.

When $V^{H^{o}}=0$, we can modify a fan associated to the action of G on X to get
a fan which is not contained in a half-space and it is associated to an action that is different from the original one but gives the same invariant differential operators. This fact allowed us to realize that $V^{H^{o}}=0$ is a necessary and sufficient condition for $\mathcal{D}(X)^{G}$ to have a nonzero finite dimensional module, as proved in [13] without the use of fans.

The paper is organized as follows. In § 1, we introduce some notation about actions of tori, finite fans and rings of differential operators. Section 2 contains a method to construct fans that will be proved to be associated to the action of G on X. We prove Proposition B in $\S 3$. In $\S 4$, we prove Proposition C and Theorem D. The last section, contains a description of the members of the family of finite dimensional simple $\mathcal{D}(X)^{G}$-modules $\left\{\mathcal{O}(Y)_{\chi}\right\}_{\chi \in \mathbb{Z}^{m}}$, in terms of the fan. This family was proved to have enough members in [13]. We show that the dimension of $\mathcal{O}(Y)_{\chi}$ is the number of lattice points inside a certain polytope (i.e. a bounded polyhedron). This computation can be done with LattE.

1 Notation

1.1 Actions of Tori

Set $\mathbb{X}(G)=\operatorname{Hom}\left(G, k^{\times}\right), \mathbb{Y}(G)=\operatorname{Hom}\left(k^{\times}, G\right)$, the groups of characters and oneparameter subgroups of G, respectively.

A diagonal action of a torus G on X is an action that extends to a diagonal action on k^{n}. Such an action is given by an embedding of G into the group T of diagonal matrices in $G L(n)$. Details about this action are given in [13], $\S 1.1$ and the following concepts are described. There exist $\eta_{1}, \ldots, \eta_{n} \in \mathbb{X}(G)$ such that G acts on X with weights $\eta_{1}, \ldots, \eta_{n}$. Identify G with $\left(k^{\times}\right)^{m}$ and $\mathbb{X}(G)$ with \mathbb{Z}^{m}. We think of $\mathbb{X}(G)$ as a space of column vectors with integer entries. We call L the $n \times m$ matrix whose i-th column vector is $\eta_{i}, i=1, \ldots, n$. We say that G acts on X by the matrix L.

Let $\psi: \mathbb{X}(T) \longrightarrow \mathbb{X}(G)$ be the restriction map. This map is given by multiplication by L. There is a natural bilinear pairing

$$
\begin{equation*}
(,): \mathbb{X}(T) \times \mathbb{Y}(T) \longrightarrow \mathbb{Z} \tag{1}
\end{equation*}
$$

defined by the requirement that

$$
\begin{equation*}
(a \circ b)(\lambda)=\lambda^{(a, b)} \tag{2}
\end{equation*}
$$

for all $a \in \mathbb{X}(T), b \in \mathbb{Y}(T)$ and $\lambda \in k^{\times}$.
We will assume that G acts faithfully on X. Therefore L has rank m. Let $l=n-m$.

Lemma 1.1. Assume that $\left\{\eta_{r+1}, \ldots, \eta_{n}\right\}$ are linearly independent. There exist matrices $\Gamma \in G L_{m}(\mathbb{Z}), \Delta \in G L_{n}(\mathbb{Z})$ such that

$$
\Gamma L \Delta=\left[\begin{array}{ccccccc}
b_{11} & \ldots & b_{1 l} & d & 0 & \ldots & 0 \tag{3}\\
b_{21} & \ldots & b_{2 l} & 0 & d & \ldots & 0 \\
\vdots & \ddots & \vdots & & & \ddots & \\
b_{m 1} & \ldots & b_{m l} & 0 & 0 & \ldots & d
\end{array}\right]
$$

where d is a nonzero integer.
Proof. Let $m^{\prime}=m-s$. Since $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ contains m linearly independent vectors, there exist $\eta_{i_{1}}, \ldots, \eta_{i_{m^{\prime}}} \in\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ such that $\eta_{i_{1}}, \ldots, \eta_{i_{m^{\prime}}}, \eta_{r+1}, \ldots, \eta_{n}$ are linearly independent. There exists $\Delta \in G L_{n}(\mathbb{Z})$ such that the last m^{\prime} columns of $L \Delta$ are $\eta_{i_{1}}, \ldots, \eta_{i_{m^{\prime}}}$. Let Γ^{\prime} be the $m \times m$ matrix whose i-th column vector is the $(l+i)$-ith column of $L \Delta, i=1, \ldots, m$. Then $d:=\left|\operatorname{det} \Gamma^{\prime}\right| \neq 0$. Let $\Gamma=d \Gamma^{\prime-1}$, then the $m \times n$ matrix with integer coefficients $\Gamma L \Delta$ will look like (3).

If $\left\{\eta_{r+1}, \ldots, \eta_{n}\right\}$ are linearly independent, by Lemma 1.1 and [13], equations (15) and (16), we assume that the matrix L has the special form (3).

1.2 Finite fans

As far as possible we follow the notation of [8], Chapter 1. Let $N \simeq \mathbb{Z}^{l}$ be the l-dimensional lattice. Let (N, Δ) be a fan in N. Recall that each $\sigma \in \Delta$ is a strongly convex rational polyhedral cone in $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. Let $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ and $<_{-},>: M \times N \rightarrow \mathbb{Z}$ the natural bilinear pairing. For each $\sigma \in \Delta$, let

$$
\begin{equation*}
\Lambda_{\sigma}=M \cap \sigma^{\vee}=\{u \in M \mid<u, v>\geq 0 \text { for all } v \in \sigma\} \tag{4}
\end{equation*}
$$

and $U_{\sigma}=\operatorname{Speck}\left[\Lambda_{\sigma}\right]$ is a semigroup algebra. By $[8]$, Theorem 1.4 we can glue U_{σ} to obtain a toric variety $X(\Delta)$.

Denote by $\Delta(1)$ the set of cones of (N, Δ) with dimension one. Given $v \in N$ let $\tau_{v}=\mathbb{R}_{+} v$ be the ray generated by $v \in N$. Let $v, v^{\prime} \in N$, if $v=c v^{\prime}$ with $c>0$ then $\tau_{v}=\tau_{v^{\prime}}$. Suppose that $\Delta(1)=\left\{v_{1}, \ldots, v_{r}\right\}$. Given $\sigma \in \Delta$ we define $[\sigma]=\left\{i \in\{1, \ldots, r\} \mid \tau_{v_{i}}\right.$ is a face of $\left.\sigma\right\}$. Then $\sigma=\sum_{i \in[\sigma]} \tau_{v_{i}}$.

If $u \in M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$, a subset of the form

$$
\begin{equation*}
H_{u}=\left\{v \in N_{\mathbb{R}} \mid\langle u, v>\geq 0\}\right. \tag{5}
\end{equation*}
$$

with $u \neq 0$ is called a half-space in $N_{\mathbb{R}}$, see [12], $\S 1$. We will say that the fan (N, Δ) is contained in a half-space if we can find $0 \neq u \in M_{\mathbb{R}}$ such that $\sigma \subseteq H_{u}$ for all $\sigma \in \Delta$. Equivalently, if the intersection of its dual cones is not zero.

1.3 Coordinate rings and rings of differential operators.

In this section, we gather some definitions and results from [13], $\S 2$. Note that X is a toric variety with a dense torus $T=\left(k^{\times}\right)^{n} \subseteq X$. Write Q_{i} for the character e_{i} considered as a regular function on T. Then

$$
\begin{equation*}
\mathcal{O}(X)=k\left[Q_{1}, \ldots, Q_{r}, Q_{r+1}^{ \pm 1}, \ldots, Q_{n}^{ \pm 1}\right] . \tag{6}
\end{equation*}
$$

We consider the action of G on $\mathcal{O}(T)$ (or $\mathcal{O}(X)$) given by right translation. This convention implies that Q_{i} has weight η_{i}. Let $P_{i}=\partial / \partial Q_{i}$,

$$
\begin{equation*}
\mathcal{D}(X)=k\left[Q_{1}, \ldots, Q_{r}, Q_{r+1}^{ \pm 1}, \ldots, Q_{n}^{ \pm 1}, P_{1}, \ldots, P_{n}\right] . \tag{7}
\end{equation*}
$$

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{r} \times \mathbb{Z}^{s}, \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{N}^{n}$, set $Q^{\lambda}=Q_{1}^{\lambda_{1}} \ldots Q_{n}^{\lambda_{n}}$, and $P^{\mu}=P_{1}^{\mu_{1}} \ldots P_{n}^{\mu_{n}}$. The elements $Q^{\lambda} P^{\mu} \in \mathcal{D}(X)$, with $L \lambda=L \mu$, form a basis of $\mathcal{D}(X)^{G}$.

Let Y be an open subset of X. Define the codimension of $X \backslash Y$ in k^{n}, to be

$$
\operatorname{codim} X \backslash Y=\operatorname{dim} k^{n}-\operatorname{dim} X \backslash Y
$$

Proposition 1.2. If codim $X \backslash Y \geq 2$, then $\mathcal{O}(X)=\mathcal{O}(Y)$ and $\mathcal{D}(X)=\mathcal{D}(Y)$.
Proof. The result follows from [10], Proposition II.2.2.

2 Fans associated to the action of G.

Let us describe Y in detail.

2.1 The set Y.

Let (N, Δ) be a finite fan. For every $\sigma \in \Delta$ we define $x^{\hat{\sigma}}=\prod_{i \notin[\sigma]} x_{i}$ and we consider the T-invariant open sets

$$
\begin{equation*}
V_{\sigma}=k^{n}-Z\left(x^{\hat{\sigma}}\right) \tag{8}
\end{equation*}
$$

where $Z\left(x^{\hat{\sigma}}\right)=\left\{x \in k^{s} \mid x^{\hat{\sigma}}=0\right\}$. Let

$$
\begin{equation*}
Z=\cap_{\sigma \in \Delta} Z\left(x^{\hat{\sigma}}\right) \tag{9}
\end{equation*}
$$

Hence Z is closed and T-invariant. We have an open subset

$$
\begin{equation*}
Y=k^{n}-Z=\cup_{\sigma \in \Delta} V_{\sigma} \tag{10}
\end{equation*}
$$

of an affine space k^{n}. Note that Y might no longer be affine. These sets were introduced in [11], §1.3. See also [5], Theorem 2.1.

We determine the irreducible components of Z. For $I \subseteq\{1, \ldots, n\}$ set $Z_{I}=$ $\left\{x \in k^{n} \mid x_{i}=0\right.$ if $\left.i \in I\right\}$.

Lemma 2.1. Any T-invariant irreducible closed set in k^{n} is some Z_{I}.
Proof. See [8], §3.1.
By Lemma 2.1, Z is a union of irreducible closed subsets Z_{I}. Observe that when $I \subseteq J$ then $Z_{J} \subseteq Z_{I}$ for $I, J \subseteq\{1, \ldots, n\}$. Therefore, the irreducible components that occur in Z are the ones in the family \mathcal{I} of subsets of $\{1, \ldots, n\}$ verifying the following statements.

1. $Z_{I} \subseteq Z$ and;
2. I is minimal verifying the previous condition, i.e. there is no $J \subseteq\{1, \ldots, n\}$, $J \subsetneq I$ such that $Z_{J} \subseteq Z$.

Thus, $Z=\cup_{I \in \mathcal{I}} Z_{I}$.

2.2 Construction of the fan associated to the action.

We will use the following lemma to develop our construction.
Lemma 2.2. There exists an $n \times l$ matrix E that satisfies the following statements.

1. The rows of E generate N as a group.
2. The columns of E are $a \mathbb{Z}$-basis of $\operatorname{ker} \psi$.

Proof. By [1], Theorem 12.4.3, there exist matrices $Q \in G L_{m}(\mathbb{Z})$ and $P \in G L_{n}(\mathbb{Z})$ such that

$$
L^{\prime}=Q L P=\left[\begin{array}{ccccccc}
d_{1} & 0 & \ldots & 0 & 0 & \ldots & 0 \tag{11}\\
0 & d_{2} & & 0 & & & \\
\vdots & & \ddots & \vdots & \vdots & & \vdots \\
0 & \ldots & & d_{m} & 0 & \ldots & 0
\end{array}\right]
$$

with $d_{i} \neq 0$ for all $i=1, \ldots m$. Let I_{l} be the identity $l \times l$ matrix and E^{\prime} the $n \times l$ matrix with I_{l} in the last l rows and zeroes in the first m rows. Then $L^{\prime} E^{\prime}=0$. We define $E:=P E^{\prime}$. Let us prove that E satisfies statements 1 and 2 .

1. Let \bar{P} be the matrix obtained by deleting the first m rows of P^{-1}. From the definition of E we get easily that $I_{l}=\bar{P} E$. This proves that the rows of E generate N as a group.
2. The columns of E are elements of ker ψ because $L E=0$. Given any $\lambda \in \operatorname{ker} \psi$ then $L^{\prime} P^{-1} \lambda=0$. The columns of E^{\prime} are a \mathbb{Z}-basis of the kernel of L^{\prime}. Then there exist $z_{1}, \ldots, z_{l} \in \mathbb{Z}$ such that

$$
P^{-1} \lambda=E^{\prime}\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{l}
\end{array}\right] \text {, therefore } \lambda=E\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{l}
\end{array}\right] .
$$

This proves that the columns of E generate ker ψ as a group and since ker ψ has rank l the result follows.

Let E be an $n \times l$ matrix satisfying the statements of Lemma 2.2. We can identify $B=\mathbb{Y}(T)$ with \mathbb{Z}^{n} and think of it as a space of row vectors with integer entries. Define

$$
\begin{equation*}
\varphi: B \longrightarrow N \tag{12}
\end{equation*}
$$

by $\varphi(e)=e E$ for all $e \in B$. By Lemma $2.2(1) \varphi$ is onto. Let $K=\operatorname{ker} \varphi$. Then K is a free abelian group of rank m.

Let e_{i} be the i th standard basis vector for B and call $v_{i}=\varphi\left(e_{i}\right)$ the i th row vector of $E, 1 \leq i \leq n$. The matrix E has rank l; hence the subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of $N=\mathbb{Z}^{l}$ contains l linearly independent vectors. Observe that $\left\{v_{1}, \ldots, v_{n}\right\}$ could contain elements that are equal and also the zero element.

Let Δ be any fan in N with $\Delta(1)=\left\{\tau_{v_{i}} \mid i=1, \ldots, r\right\}$. We will prove that such a fan is associated to the action of G on X.

Example 2.3. Let $r=4, s=0, m=2$; then $l=2$. Let

$$
L=\left[\begin{array}{llll}
3 & 3 & 2 & 0 \\
4 & 4 & 0 & 2
\end{array}\right] \quad E=\left[\begin{array}{cc}
-1 & -2 \\
1 & 0 \\
0 & 3 \\
0 & 4
\end{array}\right]
$$

hence $v_{1}=(-1,-2)$, $v_{2}=(1,0)$, $v_{3}=(0,3)$ and $v_{4}=(0,4)$. Then Δ could be the fan with maximal cones $\sigma_{1}, \sigma_{2}, \sigma_{3}$, where $\left[\sigma_{1}\right]=\{1\},\left[\sigma_{2}\right]=\{2\}$ and $\left[\sigma_{3}\right]=\{3,4\}$.

2.3 Proof of Proposition A.

1. Let $K^{\perp}=\{\lambda \in \mathbb{X}(T) \mid(\lambda, K)=0\}$. Then $K^{\perp}=$ ker ψ. There is an isomor$\operatorname{phism} w: M \rightarrow K^{\perp}$ given by

$$
\begin{equation*}
<x, \varphi(b)>=(w(x), b) \tag{13}
\end{equation*}
$$

for all $x \in M, b \in B$. By equation (13), it can be proved in the same way as [11], Theorem 1 that the variety of closed orbits $Y / / G$ is isomorphic to $X(\Delta)$.
2. Consider the family $\mathcal{I}^{\prime}=\{I \in \mathcal{I}| | I \mid=1\}$ and define

$$
\begin{equation*}
\hat{Z}:=\cup_{I \in \mathcal{I}^{\prime}} Z_{I} \tag{14}
\end{equation*}
$$

Since $\cup_{\sigma \in \Delta}[\sigma]=\{1, \ldots, r\}$, then $X=k^{n}-\hat{Z}$ and $X \backslash Y=Z \backslash \hat{Z}$. By (14), $X \backslash Y=\cup_{I \in \mathcal{I}^{\prime \prime}} Z_{I}$ with $\mathcal{I}^{\prime \prime}=\mathcal{I} \backslash \mathcal{I}^{\prime}=\{I \in \mathcal{I}| | I \mid \geq 2\}$. We also have codim $\cup_{I \in \mathcal{I}^{\prime \prime}}$ $Z_{I}=\inf _{I \in \mathcal{I}^{\prime \prime}} \operatorname{codim} Z_{I}$ and $\operatorname{codim} Z_{I}=|I| \geq 2$ for all $I \in \mathcal{I}^{\prime \prime}$. Therefore $\operatorname{codim} X \backslash Y \geq 2$.

Remark 2.4. There is a canonical morphism $p: Y \longrightarrow X(\Delta)$ such that $X(\Delta)$ is isomorphic to the geometric quotient $Y / / G$. We have a covering U_{σ} of $X(\Delta)$ with U_{σ} isomorphic to $V_{\sigma} / / G$, for each $\sigma \in \Delta$. Also, $p_{\mid V_{\sigma}}: V_{\sigma} \longrightarrow U_{\sigma}$ is the categorical quotient of G restricted to V_{σ}. Therefore, the morphism p is a good quotient as defined in [2], §3.

3 Fans associated to the action of H on V.

Given a finite fan Δ, for each $\sigma \in \Delta$, define $V_{\sigma}^{\prime}=\left\{x \in k^{r} \mid x_{i} \neq 0\right.$ if $\left.i \notin[\sigma]\right\}$. Then $V_{\sigma}=V_{\sigma}^{\prime} \times W$, recall that $n=r+s$.

Suppose G is a torus acting faithfully on V_{σ} with weights $\eta_{1}, \ldots, \eta_{n}$. We assume that G acts transitively on W, then by [13], Lemma $3.1, \eta_{r+1}, \ldots, \eta_{n}$ are linearly independent. Let $w=\left(w_{r+1}, \ldots, w_{n}\right)$ be an element of W. Then $H=G_{w}=$ $\cap_{i=r+1}^{n}$ ker η_{i}. It can be proved in the same way as [13], Lemma 3.2, that the slice representation at $w,[7],[15]$, is isomorphic to $\left(H, V_{\sigma}\right)$.

Consider the H-invariant open subset of $V, Y^{\prime}=\cup_{\sigma} V_{\sigma}^{\prime}$. This is the variety defined in (10) for the case $n=r$.

Theorem 3.1. The varieties $Y / / G$ and $Y^{\prime} / / H$ are isomorphic.

Proof. Given $\sigma \in \Delta$. Part of the Luna slice theorem states that there is a closed H-stable subvariety S_{σ} containing w and a G-equivariant étale map $G \times{ }^{H} S_{\sigma} \longrightarrow V_{\sigma}$. Taking $S_{\sigma}=V_{\sigma}^{\prime}+w$ we get a G-equivariant isomorphism $\delta_{\sigma}: G \times{ }^{H} S_{\sigma} \longrightarrow V_{\sigma}$ and this map induces an isomorphism between $V_{\sigma} / / G$ and $V_{\sigma}^{\prime} / / H$, this can be proved as [13], Theorem 6.2.

If τ is a face of σ, then $V_{\tau} \subseteq V_{\sigma}, V_{\tau}^{\prime} \subseteq V_{\sigma}^{\prime}$ and the isomorphism $V_{\sigma} / / G \cong$ $V_{\sigma}^{\prime} / / H$ restricts to the isomorphism $V_{\tau} / / G \cong V_{\tau}^{\prime} / / H$. Thus, we may identify $Y / / G=$ $\cup_{\sigma} V_{\sigma} / / G$ with $Y^{\prime} / / H=\cup_{\sigma} V_{\sigma}^{\prime} / / H$.

3.1 Proof of Proposition B

By Theorem 3.1, $Y / / G$ is isomorphic to $X(\Delta)$ if and only if $Y^{\prime} / / H$ is. Let as prove that $\operatorname{codim} X \backslash Y \geq 2$ if and only if $\operatorname{codim} V \backslash Y^{\prime} \geq 2$.

We have $Y=\left\{x \in k^{n} \mid x_{i} \neq 0\right.$ for $\left.i \notin \cup[\sigma]\right\}$ and $Y^{\prime}=\left\{x \in k^{r} \mid x_{i} \neq 0\right.$ for $i \notin$ $\cup[\sigma]\}$. If codim $X \backslash Y \geq 2$ then $\mathcal{O}(X)=\mathcal{O}(Y)$, therefore $\cup[\sigma]=\{1, \ldots, r\}$. By the proof of Proposition A (2) for the case $n=r$ then $\operatorname{codim} V \backslash Y^{\prime} \geq 2$. Conversely if codim $V \backslash Y^{\prime} \geq 2$, then $\mathcal{O}(V)=\mathcal{O}\left(Y^{\prime}\right)$ so $\cup[\sigma]=\{1, \ldots, r\}$ and the by proof of Proposition A (2) the result follows.

$3.2 \mathcal{D}(X(\Delta))$-modules.

Set $\mathfrak{h}=\operatorname{Lie}(H) \subseteq \mathfrak{g}=\operatorname{Lie}(G)$. For $\lambda \in \mathfrak{g}^{*}, \mu \in \mathfrak{h}^{*}$ we set

$$
\begin{equation*}
\mathcal{B}_{\lambda}(X)=\mathcal{D}(X)^{G} /(\mathfrak{g}-\lambda(\mathfrak{g})), \quad \mathcal{B}_{\mu}(V)=\mathcal{D}(V)^{H} /(\mathfrak{h}-\mu(\mathfrak{h})) \tag{15}
\end{equation*}
$$

Here $(\mathfrak{g}-\lambda(\mathfrak{g}))$ is the ideal generated by all elements of the form $x-\lambda(x)$, with $x \in \mathfrak{g}$, and $(\mathfrak{h}-\mu(\mathfrak{h}))$ is defined similarly. Let $i^{*}: \mathfrak{g}^{*} \longrightarrow \mathfrak{h}^{*}$ be the map obtained from the inclusion $i: \mathfrak{h} \longrightarrow \mathfrak{g}$.

By [13], Proposition C, there is an injective algebra homomorphism $\mathcal{D}(V)^{H} \longrightarrow$ $\mathcal{D}(X)^{G}$. If $\lambda \in \mathfrak{g}^{*}$ and $\mu=i^{*}(\lambda)$, the previous map induces an isomorphism $\mathcal{B}_{\mu}(V) \cong$ $\mathcal{B}_{\lambda}(X)$ and by [11], Theorem 5 they are isomorphic to $\mathcal{D}(X(\Delta))$. Note that any simple $\mathcal{D}(X)^{G}$-module is a $\mathcal{B}_{\lambda}(X)$-module for some $\lambda \in \mathfrak{g}^{*}$. So we can reduce the study of finite dimensional simple $\mathcal{D}(X)^{G}$-modules to that of finite dimensional simple $\mathcal{D}(V)^{H}$-modules and also to the study of $\mathcal{D}(X(\Delta))$-modules.

In [14] it is shown that the category of $\mathcal{D}(X(\Delta))$-modules is equivalent to a category of graded $\mathcal{D}(V)$-modules modulo \mathfrak{b}-torsion, with $\mathfrak{b}=Z$ defined by equation (9) for $s=0$.

4 Fans not contained in a half-space.

In this section we include some lemmas that will be used to prove Proposition C and Theorem D.

Suppose $I \subseteq\{1, \ldots, r\}$. For $1 \leq i \leq n$, set

$$
\varsigma_{i}=\left\{\begin{array}{c}
-\eta_{i} \text { if } i \in I \tag{16}\\
\eta_{i} \text { if } i \notin I
\end{array}\right.
$$

Let L_{I} be the matrix with columns $\varsigma_{1}, \ldots, \varsigma_{n}$. Then G_{I} denotes the m-dimensional torus acting on X by the matrix L_{I}. By [13], Lemma 5.2, the map $\sigma_{I}: \mathcal{D}(X) \rightarrow$ $\mathcal{D}(X)$ defined by

$$
\sigma_{I}\left(Q_{i}\right)=\left\{\begin{array}{c}
-P_{i} \text { if } i \in I \tag{17}\\
Q_{i} \text { if } i \notin I
\end{array} \quad \sigma_{I}\left(P_{i}\right)=\left\{\begin{array}{l}
Q_{i} \text { if } i \in I \\
P_{i} \text { if } i \notin I
\end{array}\right.\right.
$$

$i=1, \ldots, n$ is an isomorphism between $\mathcal{D}(X)^{G}$ and $\mathcal{D}(X)^{G_{I}}$. Therefore G_{I} and G have the same invariant differential operators.
Lemma 4.1. When the matrix L is of the special kind (3), then v_{1}, \ldots, v_{l} are linearly independent.

Proof. By Lemma 2.2, LE $=0$ and the rows v_{1}, \ldots, v_{n} of E generate N as a group. The equation $L E=0$ means that for $i=1, \ldots, m$

$$
\begin{equation*}
d v_{l+i}=-\sum_{j=1}^{l} b_{i j} v_{j} \tag{18}
\end{equation*}
$$

Thus v_{l+1}, \ldots, v_{n} belong to the \mathbb{R}-span of v_{1}, \ldots, v_{l}. The result follows from this.
Let us suppose that L is of the special kind (3) and let Δ be a fan as in $\S 2.2$. By Lemma $4.1, \mathcal{B}=\left\{v_{1}, \ldots, v_{l}\right\}$ is a basis of $N_{\mathbb{R}}$. With respect to \mathcal{B} the vectors v_{l+1}, \ldots, v_{n} have coordinates

$$
\begin{equation*}
v_{j}=\left(-\frac{1}{d} b_{j-l, 1}, \ldots,-\frac{1}{d} b_{j-l, l}\right), \quad j=l+1, \ldots, n \tag{19}
\end{equation*}
$$

Let $m^{\prime}=r-l$. For $i=1, \ldots, l$, let ρ_{i} be the vector in $\mathbb{Z}^{m^{\prime}}$ obtained deleting the last $m-m^{\prime}$ entries of η_{i}.
Lemma 4.2. If $\rho_{i}=0$ for some $i \in\{1, \ldots, l\}$, then Δ is contained in a half-space.
Proof. Consider the basis \mathcal{B} in N. Let $u \in M_{\mathbb{R}}$ such that $<u, v_{j}>=0$ if $j \neq i$, $j \in\{1, \ldots l\}$ and $<u, v_{i}>=1$. Then $<u, v_{j}>=0$, for all $j=l+1, \ldots, n$. Therefore Δ is contained in the half-space H_{u}.

Lemma 4.3. If $\mathcal{O}(Y)^{G}=k$, then $\eta_{r+1}, \ldots, \eta_{n}$ are linearly independent.
Proof. It follows from Proposition 1.2 and [13], Lemma 4.1.

4.1 Proof of Proposition C.

Let

$$
\begin{equation*}
\phi_{\sigma}:=\left\{\lambda \in K^{\perp} \mid\left(\lambda, e_{i}\right) \geq 0 \text { for all } i \in[\sigma]\right\} \tag{20}
\end{equation*}
$$

Then $\mathcal{O}\left(V_{\sigma}\right)^{G}=k\left[\phi_{\sigma}\right]$. Hence $\mathcal{O}(Y)^{G}=k$ if and only if $\cap_{\sigma \in \Delta} \phi_{\sigma}=0$. Furthermore, $w\left(\Lambda_{\sigma}\right)=\phi_{\sigma}$. Hence $0 \neq u \in \cap_{\sigma \in \Delta} \sigma^{\vee}$ if and only if Δ is contained in the half-space H_{u}. This proves the result.

Remark 4.4. Let us call G^{\prime} the m-dimensional torus acting on X by a matrix L^{\prime}. Let Δ^{\prime} be a fan associated to the action of G^{\prime}. Suppose that $\mathcal{O}(X)^{G}=\mathcal{O}(X)^{G^{\prime}}$. By Proposition C, Δ is contained in a half-space if and only if Δ^{\prime} is.

4.2 Proof of Theorem D.

$(1) \Rightarrow(2)$ By [13], Theorem B and Lemma 5.1, there is a subset I of $\{1, \ldots, r\}$ such that $\mathcal{O}(X)^{G_{I}}=k$. By Proposition A, there exists a fan Δ associated to the action of G_{I} on X. By Proposition C, Δ is not contained in a half-space.
$(2) \Rightarrow(1)$ By Proposition $\mathrm{C}, \mathcal{O}(Y)^{G}=k$. By Lemma 4.3, Remark 4.4, and Lemma 4.2, $\rho_{i} \neq 0$ for all $i=1, \ldots, r$. By [13], Lemma 3.3 and Theorem B the result follows.

4.3 Construction of an associated fan not included in a half-space.

By [13], Theorem B, if $V^{H^{o}}=0$ then $\mathcal{D}(X)^{G}$ has a nonzero finite dimensional module and by Theorem D there exists a fan Δ associated to the action of G on X and not contained in a half-space. By [13], Lemma 3.3., $V^{H^{\circ}}=0$ if and only if $\rho_{i} \neq 0$ for all $i=1, \ldots r$.

Suppose that $\rho_{i} \neq 0$ for all $i=1, \ldots, l$, then L is of the special kind (3). We give a construction of a fan associated to the action of G and not contained in a half-space.

Let $v_{1}^{*}, \ldots, v_{l}^{*}$ be the dual basis of \mathcal{B}. Given $j \in\{l+1, \ldots, r\}$, let

$$
\begin{align*}
I_{j}^{0} & =\left\{i \in\{1, \ldots, l\} \mid<v_{i}^{*}, v_{j}>=0\right\}, \tag{21}\\
I_{j}^{+} & =\left\{i \in\{1, \ldots, l\} \mid<v_{i}^{*}, v_{j} \gg 0\right\}, \tag{22}\\
I_{j}^{-} & =\left\{i \in\{1, \ldots, l\} \mid<v_{i}^{*}, v_{j}><0\right\}, \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
I_{j}=I_{j}^{+} \cup I_{j}^{-} . \tag{24}
\end{equation*}
$$

Then there exists $J \subseteq\{l+1, \ldots, r\}$ such that

$$
\begin{equation*}
\cup_{j \in J} I_{j}=\{1, \ldots, l\} \tag{25}
\end{equation*}
$$

because $\rho_{i} \neq 0$,

$$
\left.\rho_{i}=\left[\begin{array}{l}
b_{1 i} \\
\vdots \\
b_{m^{\prime} i}
\end{array}\right] \text { and } \frac{-1}{d} b_{j-l, i}=<v_{i}^{*}, v_{j}\right\rangle, i=1, \ldots, l, j=l+1, \ldots, r .
$$

Take J to be minimal verifying (25), and let $J=\left\{j_{1}, \ldots, j_{c}\right\}$ with $c \leq m^{\prime}$ and

$$
\begin{equation*}
\left|I_{j_{h}}\right| \leq\left|I_{j_{h+1}}\right| \quad h=1, \ldots, c-1 . \tag{26}
\end{equation*}
$$

These two assumptions will make the next computation shorter. We take a subset I of $\{1, \ldots, l\}$ in the following way:

$$
\begin{gather*}
I:=I_{j_{1}}^{+} \cup \cup_{h=2}^{c}\left[\left(\cap_{t=1}^{h-1} I_{j_{t}}^{0}\right) \cap I_{j_{h}}^{+}\right]= \tag{27}\\
=I_{j_{1}}^{+} \cup\left(I_{j_{1}}^{0} \cap I_{j_{2}}^{+}\right) \cup\left(I_{j_{1}}^{0} \cap I_{j_{2}}^{0} \cup I_{j_{3}}^{+}\right) \cup \ldots \cup\left(I_{j_{1}}^{0} \cap \ldots \cap I_{j_{c-1}}^{0} \cap I_{j_{c}}^{+}\right) . \tag{28}
\end{gather*}
$$

Define

$$
v_{i}^{I}=\left\{\begin{array}{c}
-v_{i} \text { if } i \in I \tag{29}\\
v_{i} \text { if } i \notin I
\end{array}, i=1, \ldots, r .\right.
$$

Let Δ_{I} be a fan in N with $\Delta_{I}(1)=\left\{\tau_{v_{i}^{I}} \mid i=1, \ldots, r\right\}$. This fan is associated to the action of G_{I} on X.

Proposition 4.5. Δ_{I} is not contained in a half-space.
Proof. Suppose Δ_{I} is contained in the half-space H_{u} for some $u \in M_{\mathbb{R}}, u \neq 0$. Then $v_{i}^{I} \in H_{u}$ for all $i=1, \ldots, r$. Let $u=u_{1} v_{1}^{*}+\ldots+u_{l} v_{l}^{*}$. Then $u_{i} \geq 0$ for $i \notin I$ and $u_{i} \leq 0$ for $i \in I$.

Suppose $1 \leq i \leq r$ and consider three cases:

$$
\begin{aligned}
& \text { If } i \in I_{j_{1}}^{0} \text {, then }<v_{i}^{*}, v_{j_{1}}>=0 . \\
& \text { If } i \in I_{j_{1}}^{+} \text {, then }<v_{i}^{*}, v_{j_{1}} \gg 0 \text { and } u_{i} \leq 0 . \\
& \text { If } i \in I_{j_{1}}^{-} \text {, then }<v_{i}^{*}, v_{j_{1}}><0 \text { and } u_{i} \geq 0 .
\end{aligned}
$$

In all cases we have $u_{i}<v_{i}^{*}, v_{j_{1}}>\leq 0$. Therefore $<u, v_{j_{1}}>\leq 0$. But $v_{j_{1}} \in H_{u}$ so $<u, v_{j_{1}}>=0$. Thus $u_{i}=0$ for all $i \in I_{j_{1}}$.

Analogously we can prove that $\left\langle u, v_{j_{2}}\right\rangle=0$ and therefore $u_{i}=0$ for all $i \in I_{j_{2}} \backslash I_{j_{1}}$. Hence $u_{i}=0$ for all $i \in I_{j_{2}} \cup I_{j_{1}}$. In this way we get that $u_{i}=0$ for all $\cup_{j \in J} I_{j}=\{1, \ldots, l\}$.

Example 4.6. Let $n=r=6$ and $m=2$. The action of G on $k Q_{1}+\ldots+k Q_{6}$ is given by the matrix

$$
L=\left[\begin{array}{cccccc}
0 & -1 & 2 & 0 & 1 & 0 \tag{30}\\
1 & 0 & -1 & -1 & 0 & 1
\end{array}\right] .
$$

Then $v_{1}=(1,0,0,0), v_{2}=(0,1,0,0), v_{3}=(0,0,1,0), v_{4}=(0,0,0,1), v_{5}=$ $(0,1,-2,0), v_{6}=(-1,0,1,1)$. Also $J=\{5,6\}$ and $I=I_{5}^{+} \cup\left(I_{5}^{0} \cap I_{6}^{+}\right)$, with $I_{5}^{+}=\{2\}, I_{5}^{0}=\{1,4\}$ and $I_{6}^{+}=\{3,4\}$. Therefore $I=\{2,4\}$.

5 Finite Polytopes.

Let us suppose that $\mathcal{D}(X)^{G}$ has a nonzero finite dimensional module. We can assume that L is of the special kind (3). Let Δ be a fan associated to the action of G on X and not contained in a half-space. Let Y be as in \S 2.1. Define $\Lambda \subseteq \mathbb{Z}^{m}$ by $\Lambda=\left\{L \alpha \mid \alpha \in \mathbb{N}^{r} \times \mathbb{Z}^{s}\right\}$. For $\chi \in \Lambda$ define

$$
\begin{equation*}
\mathcal{O}(Y)_{\chi}=\operatorname{span}\left\{Q^{\lambda} \in \mathcal{O}(Y) \mid L \lambda=\chi\right\} . \tag{31}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\mathcal{O}(Y)=\oplus_{\chi \in \Lambda} \mathcal{O}(Y)_{\chi} \tag{32}
\end{equation*}
$$

For each $\chi=\left(\chi_{1}, \ldots, \chi_{m}\right) \in \Lambda, \mathcal{O}(Y)_{\chi}$ is a simple $\mathcal{D}(Y)^{G}$-module by [13], Lemma 4.3 and Lemma 1.2. By [13], Lemma 4.1., $\mathcal{O}(Y)_{\chi}$ is finite dimensional. Let
$\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in \mathbb{N}^{r} \times \mathbb{Z}^{s}$ such that $L \varphi=\chi$. Given $\sigma \in \Delta$ and the $\mathcal{D}(Y)^{G}$-module $\mathcal{O}\left(V_{\sigma}\right)$, we can easily see that $\mathcal{O}\left(V_{\sigma}\right)=\oplus_{\chi \in \Lambda} \mathcal{O}\left(V_{\sigma}\right)_{\chi}$. Then

$$
\begin{equation*}
\mathcal{O}\left(V_{\sigma}\right)_{\chi}=\operatorname{span}\left\{Q^{\lambda} \in \mathcal{O}\left(V_{\sigma}\right) \mid \lambda \in \varphi+K^{\perp}\right\} \tag{33}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi_{\sigma, \chi}:=\left\{\lambda \in \varphi+K^{\perp} \mid\left(\lambda, e_{i}\right) \geq 0 \text { for all } i \in[\sigma]\right\} . \tag{34}
\end{equation*}
$$

We can write

$$
\begin{equation*}
\phi_{\sigma, \chi}=\left\{\varphi+\mu \in \varphi+K^{\perp} \mid\left(\mu, e_{i}\right) \geq-\varphi_{i} \text { for all } i \in[\sigma]\right\} . \tag{35}
\end{equation*}
$$

Observe that $\mathcal{O}\left(V_{\sigma}\right)_{\chi}=k\left[\phi_{\sigma, \chi}\right]$, by (8) $V_{\sigma}=\left\{x \in k^{n} \mid x_{i} \neq 0\right.$ for all $\left.i \notin[\sigma]\right\}$; see also (33) and (34). Therefore

$$
\begin{equation*}
\mathcal{O}(Y)_{\chi}=\cap_{\sigma \in \Delta} k\left[\phi_{\sigma, \chi}\right] \tag{36}
\end{equation*}
$$

since $Y=\cup_{\sigma \in \Delta} V_{\sigma}$.
Let us consider the following $r \times l$ matrix,

$$
P=\left[\begin{array}{ccc}
-1 & & \\
& \ddots & \\
& & -1 \\
b_{11} & \ldots & b_{1 l} \\
\vdots & & \vdots \\
b_{m^{\prime} 1} & \ldots & b_{m^{\prime} l}
\end{array}\right]
$$

We denote by P_{i} the i-th row vector of P. Let $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{r} \times \mathbb{Z}^{s}$ such that

$$
b_{i}=\left\{\begin{array}{l}
\varphi_{i} \text { if } i \in\{1, \ldots, l\} \tag{37}\\
d \varphi_{i} \text { if } i \in\{l+1, \ldots, n\}
\end{array}\right.
$$

Theorem 5.1. The dimension of $\mathcal{O}(Y)_{\chi}$ is the number of lattice points inside the polytope

$$
\begin{equation*}
\left\{x \in M_{\mathbb{R}} \mid<x, P_{i}>\leq b_{i}, i=1, \ldots, r\right\} \tag{38}
\end{equation*}
$$

Proof. Define the sets

$$
\begin{equation*}
\psi_{\sigma, \chi}:=\left\{\lambda \in K^{\perp} \mid\left(\lambda, e_{i}\right) \geq-\varphi_{i, \chi}, \text { for all } i \in[\sigma]\right\} \tag{39}
\end{equation*}
$$

Then $\phi_{\sigma, \chi}=\varphi+\psi_{\sigma, \chi}$ where $\phi_{\sigma, m}$ is the set given in (34). Also $k\left[\phi_{\sigma, \chi}\right]=Q^{\varphi} k\left[\psi_{\sigma, \chi}\right]$. Therefore $\mathcal{O}(Y)_{\chi}=Q^{\varphi}\left(\cap_{\sigma} k\left[\psi_{\sigma, \chi}\right]\right)$, by (36). Let

$$
\begin{equation*}
\Lambda_{\sigma, \chi}:=\left\{x \in M \mid<x, v_{i}>\geq-\varphi_{i, \chi} \text { for all } i \in[\sigma]\right\} \tag{40}
\end{equation*}
$$

Then $\psi_{\sigma, \chi}=w\left(\Lambda_{\sigma, \chi}\right)$, with w as in (13), and $k\left[\Lambda_{\sigma, \chi}\right] \cong k\left[\psi_{\sigma, \chi}\right]$. Therefore, the dimension of $\mathcal{O}(Y)_{\chi}$ is the number of lattice points in the set $\cap_{\sigma \in \Delta} \Lambda_{\sigma, \chi}$. Henceforth the dimension of $\mathcal{O}(Y)_{\chi}$ is the number of lattice points in the polytope

$$
\left\{x \in M_{\mathbb{R}} \mid<x, v_{i}>\geq-\varphi_{i} \text { for all } i=1, \ldots, r\right\}
$$

It can be easily seen that this polytope coincides with (38) setting \mathcal{B} as $N_{\mathbb{R}}$ basis.

5.1 Example

Assume that $\operatorname{dim} G=3$ and $X=k^{5}$. Then $\mathcal{D}(X)=A_{5}$ is the 5 -th Weyl algebra. Let the action of G on X be given by the matrix

$$
L=\left[\begin{array}{lllll}
2 & 2 & 1 & 0 & 0 \tag{41}\\
1 & 3 & 0 & 1 & 0 \\
3 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

We consider the A_{5}^{G}-module $\mathcal{O}(Y)_{\chi}$ with $\chi=(30,30,40)$. Then $\operatorname{dim} \mathcal{O}(Y)_{\chi}=$ 108, the number of lattice points inside the polytope $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \mid x_{1} \geq 0, x_{2} \geq\right.$ $\left.0,2 x_{1}+2 x_{2} \leq 30, x_{1}+3 x_{2} \leq 30,3 x_{1}+x_{2} \leq 40\right\}$. The number of points inside the polytope was obtained with LattE, which is a recent computer package for lattice point enumeration [6]. The following picture show this polytope.

ACKNOWLEDGEMENTS

This is part of the author's PhD thesis written at the Mathematics Department of the University of Wisconsin-Milwaukee under the supervision of Professor Ian M. Musson. I would like to thank him for helpful comments on earlier drafts of this paper.

References

[1] M. Artin, Algebra (Prentice Hall, 1991).
[2] A. A'Campo-Neuen and J. Hausen, Quotients of toric varieties by the action of a subtorus, Tohoku Math. Journal 51 (1999).
[3] A. A'Campo-Neuen and J. Hausen, Toric prevarieties and subtorus actions, Geom. Dedicata 87 (2001), 35-64.
[4] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Mathematics, Vol. 93 (Birkhäuser, Basel, 1991).
[5] D.A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50.
[6] J.A. De Loera, R. Hemmecke, J. Tauzer and R. Yoshida, Effective Lattice Point Counting in Rational Convex Polytopes, available via http://www.math.ucdavis.edu/ latte/theory.html.
[7] D. Luna, Slices étales. Sur les groupes algébriques, Bull. Soc. Math. France 33 (Soc. Math. France, Paris, 1973), 81-105.
[8] W. Fulton, Introduction to toric varieties (Princeton University Press, 1993).
[9] J. Hausen, Geometric invariant theory based on Weil divisors. Preprint available at (arXiv:amth.AG/0301204v2) 2003.
[10] T. Levasseur, Anneaux d'opérateurs différentiels, in: P. Dubreil et M.-P. Malliavin, eds., Séminaire d'Algébre, Lecture Notes in Mathematics 867 (Springer, 1981) 157-173.
[11] I.M. Musson, Differential operators on toric varieties, J. Pure and Applied Algebra 95 (1994), 303-315.
[12] I.M. Musson, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc. 303 (1987), 805-827.
[13] I.M. Musson and S.L. Rueda, Finite dimensional representations of invariant differential operators, Trans Amer. Math. Soc., (accepted for publication). Preprint available at (arXiv:amth.RT/0305279v1) 2003.
[14] M. Mustaţă, G.G. Smith, H. Tsai and U. Walther, \mathcal{D}-modules on smooth toric varieties, J. of Algebra 240 (2001), 744-770.
[15] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen (pp. 89-113); Algebraische Transformationsgruppen und Invariantentheorie. Edited by H. Kraft, P. Slodowy and T. A. Springer. DMV Seminar, 13. Birkhuser Verlag, Basel, 1989.

