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Chapter 1

Motivation

1.1 Turbulence

These lectures are an introduction to world of quantum fluids and to phe-
nomena which take place at very low temperatures near absolute zero: su-
perfluidity, quantised vortices, Bose–Eintein condensation. The focus is on
quantised vortices and quantum turbulence.

To motivate the study of quantum turbulence one has to appreciate the
problem of turbulence in ordinary fluids first. Turbulence is not something
which we experience only during bumpy flights. Turbulence is around us and
inside us: the air in the room and the flow of blood in the aorta are turbulent.
Turbulent flows range from tiny, gentle wakes created by a dragonfly (Fig. 1.1)
to roaring pyroclastic flows caused by volcanic eruptions (Fig. 1.2).

Turbulence is perhaps the major unsolved problem of classical physics. Its
difficulty arises from the nonlinearity of the governing Navier–Stokes equa-
tions. Another major difficulty is that turbulence involves a huge range of
length scales.

Understanding turbulence is not only a challenge to our mathematical
and physics understanding; it has also practical applications, ranging from
engineering (flow around airfoils or inside jet engines) to atmospheric sci-
ence (weather and climate models). The study of turbulence is therefore
interdisciplinary, and involves mathematicians, physicists and engineers.

1.2 Vortices

The building block of turbulence are eddies (or swirls, or vortices). This fact
was first recognized by Leonardo da Vinci, whose famous drawing of turbulent
water consists of an ensemble of small swirls, see Fig. 1.3. By the way, vortices
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have always fascinated artists. An example is the sea monster Charybdis,
who lurked with another monster, Scylla, on either side of the Straits of
Messina and threatened to swallop the ship of Ulysses in Homer’s ”Odyssey”.
Another example is the mytical Maelstrom, a swirl off the Lofoten Islands in
Norway (Fig. 1.4), which was described by Edgar Allan Poe in the short story
”A descent into the Maelstrom” and by Jules Verne in the novel ”Twenty
thosands leagues under the sea”.

Vortices in ordinary fluids can be weak or strong, big or small. Examples
are galaxies (Fig. 1.5), hurricanes (Fig. 1.6), tornadoes (Fig. 1.7) and wingtip
vortices (Fig. 1.8).

Numerical simulations of classical turbulence show that a turbulent flow
contains a great number of tubular regions where the vorticity ω = ∇×v is
concentrated (Fig. 1.9).

The situation is simpler if we consider quantum fluids. These fluids are
special fluids which exist only at very low temperature, near absolute zero,
and which have undergone a phase transition called Bose–Einstein conden-
sation. Although macroscopic, quantum fluids are governed by the laws of
quantum mechanics rather than classical physics. Quantum mechanics in-
troduces a strict constraint on the rotational motion, for which vorticity
can only take the form of discrete, filamentary vortices, like mini-tornadoes,
called vortex lines. Unlike classical vortices, the strength and the core struc-
ture of these quantum vortices is fixed, and the flow which spins about the
axis is a superflow, thus it does not decay because there it does not suffer
viscous forces like an ordinary fluids.

The turbulent state of such superfluid vortex lines is is therefore a tangle
of filaments, as shown in Fig. 1.10. Despite being much simpler than ordi-
nary turbulence, the vortex tangle shares some important properties with it.
For example, recent studies suggest that in quantum turbulence the kinetic
energy is distributed over the lengthscale according to the same celebrated
Kolmogorov law of ordinary turbulence. The study of quantum turbulence is
this not only exciting and interesting per se, but it may give us more insight
into the difficult turbulence problem.
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Figure 1.1: Turbulent flow created by a dragonfly (Adrian Thomas, Dept.
Zoology, Oxford University)

.

Figure 1.2: Pyroclastic flow generated by the Mayon Volcano, Philippines,
1984.
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Figure 1.3: Leonardo da Vinci’s drawing of turbulence generated by a small
waterfall.

Figure 1.4: The Maelstrom in Olaus Magnus’s Carta Marina (1539), Univer-
sity of Tromso, Norway.
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Figure 1.5: The Whirpool galaxy.

Figure 1.6: A hurricane.
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Figure 1.7: Tornado.

Figure 1.8: Trailing vortices created by wingtips.

8



Figure 1.9: Regions of concentrated vorticity in numerical calculation of
classical turbulence (E. Leveque)

.

Figure 1.10: Tangle of quantum vortices in numerical calculation of quantum
turbulence (CFB).
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Chapter 2

Absolute Zero

2.1 The race to absolute zero

The first scientist who thought of an absolute zero of temperature was prob-
ably the French physicists and instrument maker Guillaume Amontons

(1663-1705) (see Fig. 2.1). He measured the pressure of air at constant vol-
ume when the temperature was reduced (starting from the temperature of
boiling water). He noticed that equal drops of temperature resulted in equal
drops of pressure. Since, he argued, the pressure cannot become negative,
further cooling would eventually bring the air to a state of zero pressure
which would correspond to the lowest possible temperature. Amontons esti-
mated that this temperature is -240 C. He thought that absolute zero should
be a state of total rest, at which any motion has ceased.

This idea was further developed by the Swiss mathematician Daniel

Bernouilli (1700-1782) (see Fig. 2.2), who postulated that all fluids con-
sists of particles in constant irregular motion, continually colliding with each
other (see Fig. 2.3). Since the collisions are elastic, he argued, this motion
never runs down. Amontons and Bernouilli had the first insight into what is
called now the kinetic theory of gases. They correctly interpreted the temper-
ature of a gas as the average kinetic theory of the molecules. Unfortunately,
the caloric theory of gases soon became very popular. According to this
theory, proposed by the French chemist Antoine Lavoisier (the discoverer
of oxygen), heat is a substance, called caloric which flows from one body to
another.

During the XIX century the caloric theory was put aside, the study of
heat developed greatly and the science of thermodynamics was born. Scien-
tists realised that indeed there must be a limit to the degree of cold which
is possible. Matter consists of particles (molecules and atoms), and tem-
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Figure 2.1: Guillaume Amontons.

perature measures their average velocity; therefore, if these particles can be
brought to rest, temperature cannot be reduced any further, exactly as first
envisaged by Amontons and Bernoulli. The interest in achieving lower and
lower temperatures was also motivated by the fact that if the temperature is
reduced there is less thermal disorder, hence the fundamental properties of
matter become more apparent. The temperature scale which starts from the
lowest possible temperature (absolute zero) is now called the Kelvin scale.
One Kelvin degree is equal to one degree of the usual Centigrade scale, and
absolute zero, T = 0 K, corresponds to T = −273.15 C.

Low temperature physics laboratories, competing against each other in
the race toward absolute zero, developed techniques to liquefy all known
gases, cooling matter to lower and lower temperatures. Oxygen was turned
into a liquid at T = 90 K. Nitrogen required 77 K. In 1898 James Dewar

(1842-1923) succeeded in liquefying hydrogen at T = 20 K (see Fig. 2.4).
The only gas which resisted being liquefied was helium.

Although helium is the second most common element in the Universe, it
was identified only in the late XIX century, first in the spectrum of solar radi-
ation, and then, by William Ramsay (1852-1916), in rocks containing ura-
nium. The competition between Dewar in London and his main rival, Heike

Kamerlingh Onnes (1953-1926) in Leiden, was won by Onnes (Fig. 2.5),
who succeeded in creating the first sample of liquid helium at T = 4 K in
1908. Three years later, in 1911, Onnes also discovered superconductivity,
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Figure 2.2: Daniel Bernouilli.

which is the property of some metals (e.g. mercury, tin, lead) and alloys to
sustain electrical currents without any electrical resistance. He was awarded
the Nobel prize for this discovery.

2.2 Helium I and helium II

Onnes and his collaborator Dana found that liquid helium is transparent
and that its density is ρ = 0.145 g/cm3, approximately 1/6 of water’s. They
also noticed that liquid helium has unusual properties. Upon cooling the
liquid helium by pumping on its vapour, the bubbling ceases when helium’s
temperature drops below a critical value (approximately 2 K); they found
that the specific heat Cv has a sharp peak at the same temperature. They
called the critical temperature Tλ, after the shape of the specific heat curve.
The value of Tλ on the current Kelvin temperature scale is Tλ = 2.1768 K at
saturated vapour pressure (SVP).

More experiments revealed that liquid helium below Tλ behaves very dif-
ferently from liquid helium above it. The unusual low temperature liquid
phase of helium was called helium II, to distinguish it from the high tem-
perature liquid phase, called helium I. Helium II is a quantum fluid, whereas
helium I is an ordinary fluid.

It is instructive to compare the phase diagram of an ordinary substance
against that of liquid helium. In the case of an ordinary substance, see
Figure 2.6, there is a point in the pressure vs temperature plane, called the
triple point, which marks the equilibrium co-existence of gas, liquid and solid
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Figure 2.3: A gas consists of colliding molecules.

phases. In the case of liquid helium, see Figure 2.7, the triple point is missing,
and the liquid phase extends down to absolute zero. To obtain solid helium,
a large pressure (about 25 bars) must be applied. The boundary between
helium I and helium II is called the lambda line; the intersection of the
lambda line with the saturated pressure curve (along which most experiments
are performed) is the lambda point.

The most striking property of helium II is superfluidity, which is the
ability to flow without any viscous dissipation. Superfluidity was discovered
independently by Kapitza and by Allen and Misener in 1938, for which (con-
troversially) only Kapitza was awarded the Nobel prize. Superfluidity and
superconducitvity are similar phenomena which could not be understood in
the context of classical physics; both lacked a theoretical explanation for
decades, although as early as 1938 Fritz London suggested a link between
superfluidity and Bose–Einstein condensation, an effect speculated by Ein-
stein and Bose in 1924.

2.3 Quantised vorticity

In the 1940’s Landau and Tisza developed the two–fluid model, which ac-
counts for the observed flow of helium II, at least at small velocities. Landau
was awarded the Nobel prize for his work on superfluidity. The two–fluid
model predicts an unusual mode of oscillation, called second sound to distin-
guish it from ordinary (first) sound; second sound was observed by Peshkov
in 1941.

Experiments with rotating helium II revealed more surprises. The quanti-
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Figure 2.4: James Dewar.

sation of the circulation, predicted by Onsager (1948) and Feynman (1955),
both Nobel prize winners, explained these experiments. It became clear that
quantum mechanics constrains the rotational motion of helium II to discrete
mini–tornadoes (quantised vortex filaments). The quantum of circulation
was actually observed by Vinen in 1961. Vinen also performed the first ex-
perimental investigations of quantum turbulence and developed the theory
of mutual friction, which extends the two–fluid model to quantised vortic-
ity. Quantum turbulence limits the otherwise ideal properties of helium II
to transfer heat, so it is important in the engineering applications of liquid
helium. Current research in helium II is concerned with the similarities and
difference between classical turbulence and quantum turbulence.

2.4 4He and 3He

The nucleus of ordinary helium (4He) consists of two protons and two neu-
trons. Naturally occurring helium gas contains a small fraction (approxi-
mately 1 part in 107) of the rare isotope 3He, whose nucleus contains only
one neutron. In 1972 Richardson, Lee and Osheroff were awarded the
Nobel prize for the discovery that pure liquid 3He becomes superfluid too,
but at much colder temperatures (of the order of few milliKelvins) than 4He.
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Figure 2.5: Self–portrait of Heike Kamerlingh Onnes.

2.5 Bose–Einstein condensation

The fundamental physical mechanism which is responsible for superfluidity
is Bose–Einstein condensation (BEC). According to quantum mechanics, a
particle has a characteristic wavelength, λ, associated with its momentum, p.
In an ordinary gas, λ is much smaller than the average separation between the
atoms of the gas, d. If the temperature of the gas is reduced, λ increases. At
some critical temperature Tc, λ becomes of the order of d. In 1924 Bose and

Einstein showed that a gas of non–interacting bosons (particles with integer
spin) undergoes a phase transition at Tc. Phase transitions which we are more
familiar with (e.g. the transition from water vapour to liquid water, or the
transition from liquid water to ice) arise from the interaction between the
molecules. The phase transition which Bose and Einstein identified is caused
by the (quantum) statistics of the particles of the gas, not by their interaction,
and takes place in momentum space rather than in physical space.

BEC in liquid helium is complicated by the fact that helium is a strongly
interacting liquid, not the ideal gas of Bose and Einstein or a weakly inter-
acting gas. Only in the 1990’s, when techniques became available to trap and
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Figure 2.6: Phase diagram of an ordinary substance.

Figure 2.7: Phase diagram of liquid helium.
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cool atomic gases using magnetic fields and lasers, Bose–Einstein condensa-
tion in its pure form was achieved experimentally by Wiemann, Cornell

and Ketterlee, who were awarded the Nobel prize in 1995.
The following table gives an idea of the phenomena which take place at

various order of magnitude for temperature.
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K item
10−10 K Lowest temperature produced (in rhodium at Helsinki)
4.5 × 10−10 K Sodium BEC (MIT)
2.5 × 10−3 K Superfluid 3He
1 K Boomerang nebula
2.1768 K Superfluid4He
2.725 K Cosmic microwave background radiation
4.1 K Superconducting point of mercury
4.2 K Boiling point of helium
7.2 K Superconducting point of lead
14 K Melting point of hydrogen
20 K Boiling point of hydrogen
53 K Mean temperature on Neptune
44 K Mean temperature on Pluto
63 K Melting point of nitrogen
68 K Mean temperature on Uranus
77 K Boiling point of nitrogen
90 K Boiling point of oxygen
92 K Superconducting point of Y-Ba-Cu-oxide (YBCO)
184 K Coldest air recorded on Earth (−89 C)
195 K Sublimation point of dry ice (carbon dioxide, −79 C)
210 K Mean temperature on Mars (−63 C)
234 K Melting point of mercury (−38 C)
273.15 K Melting point of water (0 C)
278 K Food refrigerators
287 K Mean temperature on Earth (14 C)
293 K Room temperature (20 C)
294 K Lowest human body temperature survived
304 K Melting point of butter (31 C)
310 K Human body temperature (37 C)
315 K Fatal human body temperature (42 C)
331 K Hottest temperature recorded on Earth (58 C)
373.15 K Boiling point of water (100 C)
1800 K Melting point of iron
3680 K Melting point of tungsten
3820 K Melting point of diamond
5600 K Earth’s inner core boundary
5800 K Surface of Sun
6000 K Universe 300,000 years after Big Bang
13.6 × 106 K Sun’s core
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Figure 2.8: The Crab Nebula.

2.6 Neutron stars

Besides liquid 3He, liquid 4He and ultra–cold Bose–Einstein condensed atomic
gases, there is a more exotic superfluid: neutron stars (also called pulsars).
They are small (10 Km size) compact objects left over by supernova explo-
sions Their interior consists of superfluid nuclear matter. The best–known
pulsar is located at the centre of the Crab Nebula (Fig. 2.8). The Crab
Pulsar is a source of gamma rays and radio waves. It is the remnant of the
supernova explosion which was visible in daylight as recorded by Arab and
Chinese astronomers in 1054.

2.7 Cryogenic engineering

The race toward absolute zero had a great impact on society. The techniques
which were deeloped to produce low temperatures revolutionised the food
industry (e.g. refrigerators).

Nowdays a common application of liquid helium is cooling superconduct-
ing magnets. The coils of these magnets are made of alloys which become
superconducting if the temperature is less than a critical value. Supercon-
ducting magnets are routinely used in hospitals to make scans. They are also
used in high energy physics laboratories to accelerate beams of elementary
particles. An example is CERN’s Large Hadron Collider (see Fig. 2.9). Along
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Figure 2.9: View of CERN, Lake Ginevra and the Alps. The circle denotes
the location of the LHC.

the 27 km long ring of the LHC there are more than one thousand supercon-
ducting magnets; to provide a magnetic field strength of 80, 000 Gauss, each
magnet is held at the operating temperature of T = 1.8 K. Liquid helium is
also used by astrophysicists to cool infrared detectors; for example, the IRAS
satellite (Fig. 2.10) carried 720 litres of liquid helium held at T = 1.6 K.
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Figure 2.10: The IRAS satellite.
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Chapter 3

Bose–Einstein Condensation

3.1 Waves

The wave character of matter has been at the heart of quantum mechanics
since the early 1900’s, when Planck and Einstein realised that light (more
in general electromagnetic radiation) comes in discrete lumps, or packets, of
energy

E = hf = h̄ω, (3.1)

where f is the light’s frequency, ω = 2πf the angular frequency, h = 6.626×
10−27 erg s is Planck’s constant, h̄ = h/(2π) and τ = 1/f = 2π/ω is the
light’s period. Following de Broglie, it became clear that a particle of
momentum

p = mv, (3.2)

where m is the mass and v the velocity, corresponds to a wave of wavelength

λ =
h

p
, (3.3)

Another useful quantity is the wavenumber k, defined as k = 2π/λ. Thus
p = h̄k.

A 1–dimensional plane wave of amplitude A, wavenumber k and angular
frequency ω has the form

ψ(x, t) = A sin (kx− ωt), (3.4)

If we plot ψ as a function of t at fixed x, or ψ as a function of x at fixed t,
we obtain a sinusoidal shape. If we ”surf” with the wave we hold its phase
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φ = kx − ωt constant, hence ∆φ = k∆x − ω∆t = 0, which means that we
move with speed v = ∆x/∆t = ω/k. This quantity is called the phase speed
of the wave.

3.2 Energy Levels

Let us consider for simplicity motion along the x direction only. According
to quantum mechanics, a particle of mass m in the presence of a potential
V (x) obeys Schroedinger’s equation

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ VΨ, (3.5)

where the wavefunction Ψ(x, t) (which is interpreted as a probability density)
is normalised:

∫

∞

−∞

|Ψ|2dx = 1. (3.6)

Looking for solutions of the form Ψ(x, t) = f(t)ψ(x), we separate the
variables and obtain two equations:

ih̄
df

dt
= Ef, (3.7)

and

− h̄2

2m

∂2ψ

∂x2
+ V ψ = Eψ, (3.8)

where E is a separation constant. The first equation implies that

f(t) = e−iEt/h̄ (3.9)

hence Ψ(x, t) = ψ(x)e−iEt/h̄ where ψ(x) is a solution of the second equation,
which is an eigenvalue equation for ψ.

Let us suppose that the particle is free to move inside a box −a ≤ x ≤ a
but cannot escape from it; then the potential is an infinitely deep well of the
form V (x) = 0 for |x| < a and V (x) = ∞ for |x| > a. Inside the well the
particle is free (V = 0), and the eigenvalue equation reduces to simply

− h̄2

2m

∂2ψ

∂x2
= Eψ, (3.10)

The general solution is

ψ(x) = A sin kx+B cos kx, (3.11)
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where A and B are constant. If we impose the boundary conditions ψ(±a) =
0 we find two families of solutions: ψ = B cos kx, which is even in x, and ψ =
A sin kx, which is odd in x, corresponding respectively to kn = ±(n−1/2)π/a
and kn = ±nπ/a and ±(n− 1/2)π/a, with n = 1, 2, .... We also find that

E =
h̄2k2

2m
, (3.12)

This equation shows the main result that, because of the discrete nature of
k, the energy is quantised.

The energy levels which correspond to the even solutions are

En =
h̄2π2

2ma2
(n− 1

2
)2, (3.13)

and the levels corresponding to the odd solutions are

En =
h̄2π2

2ma2
n2, (3.14)

where n = 1, 2, .... The lowest energy level, called the ground state energy, is

E1 =
h̄π2

8ma2
. (3.15)

3.3 Quantum Statistics

In the 1920’s it became apparent that elementary particles are, in principle,
not distinguishable from each other (in the way we distinguish ordinary par-
ticles from each other), and that they belong to two categories: fermions and
bosons. What characterizes fermions and bosons is a quantum mechanical
property called the spin. Bosons have integral spin (0, 1, etc in units of h̄);
examples of bosons are photons and 4He atoms. Fermions have half integral
spin (1/2, 3/2 etc in units of h̄); examples of fermions are electrons, protons,
neutrons and 3He atoms. Fermions’s wavefunctions are antisymmetric if one
exhanges the coordinates of two particles, whereas bosons’ are symmetric.

The distribution of particles in the accessible energy states for a system in
thermal equilibrium is very different in the two cases. No fermion is allowed
to occupy the same quantum state of another fermion, so there can be only
one fermion on each energy level (Pauli’s exclusion principle). This is the
origin of the rules of chemistry and the periodic table of the elements. On
the contrary, there is no constraint on the number of bosons which we can
put in the same energy state.
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Figure 3.1: Satyendra Nath Bose (left) and Albert Einstein (right).

In 1924 a young Indian physicist from Decca called Bose wrote to Einstein,
(who was already very famous) about his ideas on bosons. Einstein became
interested, helped Bose in publishing his results, and worked on the problem.
Bose and Einstein realised that if the temperature is sufficiently low, a gas
of bosons behaves strangely: they discovered the phenomenon called Bose–
Einstein condensation (BEC).

Suppose that we have a gas of only two particles, A and B, and that
each particle can be in only three possible quantum states, s = 1, 2, 3. We
distinguish between the classical Maxwell–Boltzmann statistics, which is re-
sponsible for ordinary thermodynamics, and two quantum statistics, called
the Bose–Einstein and the Fermi–Dirac statistics:

• Maxwell-Boltzmann. In the case of an ordinary gas at room tem-
perature we think that we can distinguish (label) each particle, at least
in principle; particles are distinguishable, and can go into any quantum
state. Fig. 3.2 (top) shows that there are 9 possible states for the whole
gas.

• Bose–Einstein. If the particles are indistinguishable and any number
of particles can be in any state, then we are in the situation described
by Fig. 3.2 (middle): there are only 6 possible states for the whole gas.

• Fermi–Dirac. If the particles are indistinguishable and no more than
one particle can be in any one state, then we have the situation of
Fig. 3.2 (bottom): there are only 3 possible states for the whole gas.

Let P be the probability that two particles are found in the same state
divided by the probability that two particles are found in different states.
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Figure 3.2: Maxwell–Boltzmann (top), Bose–Einstein (middle) and Fermi–
Dirac (bottom) statistics of 2 particles, A and B, and 3 possible quantum
states
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1 2 3 4 5 M =6sstate

Figure 3.3: Ns = 9 particles and Ms = 6 levels

We have

PMB =
3/9

6/9
=

1

2
, (3.16)

PBE =
3/6

3/6
= 1, (3.17)

PFD =
0/3

3/3
= 0. (3.18)

We conclude that in the BE case there is a greater relative tendency for
particles to ”bunch up together” than in a classical system. Fermi–Dirac
particles are the most ”antisocial” of all, and avoid each other !

3.4 The Ideal Bose Gas

Suppose that we have Ns non–interacting particles which obey BE statistics
and Ms available quantum states. We represent each state by a box rather
than a level, and each individual particle by a dot, as in Fig. 3.3.

We want to count the number of possible available states for the whole
gas. Note that we have Ns dots and Ms − 1 walls between the boxes which
we can arrange along a line in any order. In each box we can put as many
dots as we want. Essentially we have Ns + Ms − 1 objects (dots and walls)
of which Ns are dots and Ms − 1 are walls.

If we had Ns +Ms − 1 distinguishable objects we could arrange them in
(Ns +Ms −1)! ways. But we cannot distinguish a wall from a wall and a dot
from a dot, so we must reduce the above number by Ns!(Ms − 1)!

We conclude that if we have Ns bosons and Ms quantum states the num-
ber of configurations in which we can arrange them is

Ws =
(Ns +Ms − 1)!

Ns!(Ms − 1)!
, (3.19)
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Consider a gas of N non–interacting bosons in the volume V = LxLyLz.
Each boson is in a plane–wave quantum state

Ψ(r) =
1

V 1/2
eik·r, (3.20)

where r = (x, y, z), k = (kx, ky, kz), and

∫

V

|Ψ|2dV = 1, (3.21)

Consider the x direction. To fit the boundary condition, the wavelength
along x, λx, must be such that nxλx = Lx; since λx = 2π/kx, we have
kx = 2πnx/Lx. Proceeding in the same way along y and z we conclude that
the wavevector is

k = (
2πnx

Lx
,
2πny

Ly
,
2πnz

Lz
), (3.22)

Since kx = 2πnx/Lx, there are ∆nx = (Lx/2π)∆kx waves such that the
wavenumber is in the range ∆kx. Thus the number of quantum states in the
infinitesimal volume d3k = dkxdkydkz of k–space is

dnxdnydnz =
LxLyLz

(2π)3
dkxdkydkz =

V

(2π)3
d3k (3.23)

Each of these single particles quantum states has energy

ǫs =
h̄2k2

s

2m
. (3.24)

Now consider the 3–dimensional k-space (see Fig. 3.4) and divide up the
available single-particle states into a number of thin shells of thickness δks.
The number of single-particle quantum states contained in a shell of radius
ks and thickness δks is

Ms =
V

(2π)3
d3ks =

V

(2π)3
4πk2

sδks, (3.25)

Using Eq. 3.24, we can express δks and ks in terms of ǫs, and find that the
number of available states between energy ǫs and ǫs + δǫs is

Ms = V D(ǫs)δǫs, (3.26)

where the function

D(ǫ) =
m3/2ǫ1/2

√
2π2h̄3

, (3.27)

is the density of states per unit volume.
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Figure 3.4: k–space

According to statistical physics, the entropy S of gas of N particles is

S = kB lnW, (3.28)

where kB = 1.381 × 10−16 erg/K is Boltzmann’s constant and W is the
number of available states of total energy E. To determine W we must
find how the N atoms are distributed among the k–space shells of different
energies.

Suppose that there are Ns bosons in the shell s. This shell contains Ms

quantum states. From Eq. 3.19 we know that the number of available states
for the whole shell is

Ws =
(Ns +Ms − 1)!

Ns!(Ms − 1)!
. (3.29)

The total number of available states for the whole gas is simply the product
of the number of available states in each shell:

W =
∏

s

Ws =
∏

s

(Ns +Ms − 1)!

Ns!(Ms − 1)!
. (3.30)

Substituting Eq. 3.30 into Eq. 5.3 we get

S = kB lnW = kB

∑

s

ln

(

(Ns +Ms − 1)!

Ns!(Ms − 1)!

)

, (3.31)

To evaluate this expression we use the fact that Ns >> 1, Ms >> 1, then
apply Stirling’s formula lnx! ≈ x ln x− x for x >> 1. We obtain
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S = kB

∑

s

((Ns +Ms) ln (Ns +Ms) −Ns lnNs −Ms lnMs) . (3.32)

In thermal equilibrium the particles will distribute themselves so that
the number Ns of particles in each energy shell will maximize the entropy S.
The maximization of S must take place under the constraint that the total
number of particles, N , and the total energy of the gas, E, are constant. We
find

Ns =
Ms

eβ(ǫs−µ) − 1
. (3.33)

The average number of particles occupying the state s is Ns/Ms:

ns =
Ns

Ms

=
1

eβ(ǫs−µ) − 1
. (3.34)

We conclude that in general the average number of particles in a state of
energy ǫ is

n(ǫ) =
1

eβ(ǫ−µ) − 1
, (3.35)

The quantity n(ǫ) is called the occupation number. It can be shown that

β =
1

kBT
, (3.36)

and that µ is the chemical potential. The chemical potential appears in the
first law of thermodynamics dU = TdS − pdV + µdN , where where p is the
pressure.

It is useful to introduce the fugacity

z = eβµ, (3.37)

and rewrite Eq. 3.35 as

n(ǫ) =
1

z−1 eβǫ − 1
(3.38)

The lowest energy state, the ground state, has wavector k = 0 and energy
ǫ = 0, hence its occupation number is

n(0) =
1

z−1 − 1
=

z

1 − z
, (3.39)

Since n(0) cannot be negative, we conclude that z ≤ 1 and that the chemical
potential is negative.
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3.5 Condensation in Momentum Space

Using the Bose–Einstein distribution, Eq. 3.35, the total number of particles
of the gas is

N =
∑

k

n(ǫk) =
∑

k

1

eβ(ǫk−µ) − 1
, (3.40)

In the thermodynamic limit (V → ∞) in which the density n = N/V is held
constant we replace the sum with an integral:

∑

k

→
∫

V

(2π)3
d3k =

V

(2π)3

∫

∞

0

4πk2dk, (3.41)

The particle density is thus

n =
N

V
=

1

(2π)3

∫

∞

0

4πk2dk

eβ(ǫ−µ) − 1
=

∫

∞

0

1

eβ(ǫ−µ) − 1
D(ǫ)dǫ, (3.42)

After some algebra we obtain

n =

(

mkBT

2πh̄2

)3/2

g3/2(z), (3.43)

which can be written

n =
g3/2(z)

λ3
, (3.44)

where

λ =

(

h2

2πmkBT

)1/2

, (3.45)

is the thermal de Broglie wavelength. The function g3/2(z), shown in Fig. 3.5,
is defined as

g3/2(z) =

∞
∑

p=1

zp

p3/2
, (3.46)

The function g3/2 has the following properties:

g3/2(0) = 0, g3/2 ≈ z for z << 1, (3.47)

g3/2(1) = 2.612,
dg3/2

dz
(1) = ∞. (3.48)
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Now we go to the heart of the matter. Consider the following inequality:

n =
g3/2(z)

λ3
≤ g3/2(1)

λ3
= 2.612

(

2πmkBT

h3

)3/2

, (3.49)

Eq. 3.49 shows that there is a problem in what we have done until now.
Consider a gas of bosons of fixed density n. If we decrease T , eventually we
reach a temperature Tc below which the inequality cannot be satisfied because
the left hand side of Eq. 3.49 is fixed and the right hand side becomes too
small. This critical temperature Tc, which corresponds to z = 1 and µ = 0,
is

Tc =
( n

2.612

)2/3 2πh2

mkB
, (3.50)

How to solve the problem ? Bose and Einstein noticed that in writing Eq. 3.41
we gave weight 4πk2/(2π)3 to states with nonzero wavevector k, and gave
zero weight to the state with wavevector k = 0, the ground state. But as T
decreases, more and more bosons occupy the ground state because it has the
lowest energy. The solution of the problem is that, in approximating the sum
with an integral, the ground state must be treated separately. Thus Eq. 3.42
must be replaced by

n =
n(0)

V
+

1

(2π)3

∫

∞

0

dk4πk2n(ǫk) (3.51)
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where n(0) is the occupation number of the ground state. The first term at
the right hand side becomes important when V → ∞ but n(0)/V remains
finite, that is, when a macroscopic fraction of bosons occupy the ground
state. We have

n =
n(0)

V
+
g3/2(z)

λ3
= n0 +

g3/2(z)

λ3
, (3.52)

where

n0 =
n(0)

V
. (3.53)

is the density of bosons in the ground state.

Consider a gas with fixed n. At high T we can always choose z so that
n = g3/2(z)/λ

3 and n0 = 0. But if we cool the gas, when T < Tc, it is
necessary to have n0 > 0. Since n(0) = z/(1 − z) we can write

n =
z

(1 − z)

1

V
+
g3/2(z)

λ3
, (3.54)

If T > Tc we can find a solution of this equation for z < 1; in the
thermodynamic limit V → ∞ the first term at the right hand side vanishes,
so there are no bosons in the ground state.

As we cool the gas and let T → Tc, we have z → 1, and as V → ∞,
the first term at the right hand side of Eq. 3.54 remains finite to give the
additional needed density n0 at T < Tc, which is

z

(1 − z)

1

V
= n0 = n− g3/2(1)

λ3
, (3.55)

The temperature Tc is the critical temperature at which Bose–Einstein
condensation takes place. Below Tc a gas has a finite density n0 of particles
in the ground state. The quantity n0 is called the condensate’s density, and
the atoms in the ground state are called the condensate.

In summary, for T → Tc we have z(T ) → 1 and µ(T ) → 0, whereas for
T ≤ Tc we have z(T ) = 1 and µ(T ) = 0.

Consider Eq. 3.55:

n0 = n− g3/2(1)

λ3
= n− 2.612

(

2πmkBT

h2

)3/2

, (3.56)
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From Eq. 3.50 we have

n = 2.612T 3/2
c

(

2πmkB

h2

)3/2

, (3.57)

hence

n0 = n

(

1 −
(

T

Tc

)3/2
)

. (3.58)

This result is shown in Fig. 3.6. If T = 0 all the particles are in the ground
state (n = n0); increasing T put more and more particles in states of higher
energy, until, at T = Tc, the condensate’s density is zero: n0 = 0.

Using these results one can compute the total internal energy of the gas,
U , and the average energy per particle, u = U/N . Then we can compute the
specific heat

Cv =
∂u

∂T
, (3.59)

The result is shown in Fig. 3.7: note the cusp at T = Tc.

3.6 BEC in ultra–cold atomic gases

Experiments in the 1930’s showed that liquid helium (4He) becomes a su-
perfluid if cooled below a critical temperature Tc ≈ 2.2 K. The atom of 4He
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Figure 3.7: Specific heat Cv vs T

contains two protons and two neutrons in the nucleus surrounded by two
electrons, so it is a boson with zero spin. Measurements of the specific heat
Cv of liquid helium showed a spike at the critical temperature Tc, which is
fairly close to the prediction of BEC in an ideal gas (using helium’s param-
eters we would get Tc = 3.1 K). A relation between BEC and superfluidity
was suggested by Fritz London. However, the fact that superfluid helium is
a liquid with relatively high density means that that the interaction between
the bosons cannot be neglected.

It was only in 1995 that BEC was realized in very dilute systems of
atomic gases, in conditions similar to those envisaged by Bose and Einstein.
This breakthrough was made possible by new techniques to trap and cool
gases using lasers and magnetic fields. Fig. ?? shows velocity distributions
of trapped ultra–cold atoms at temperature above the critical temperature
Tc (left), just below Tc (middle) and well below Tc. The left figure shows
the classical broad Maxwell–Boltzmann velocity distribution; the sharp peak
which appears in the middle figure denotes that some atoms have zero veloc-
ity; the narrow peak in the right figure shows that almost all atoms have zero
velocity. The figures are obtained by suddenly switching off the trap which
confines the atoms. The distance the atoms move is measured by illuminat-
ing the atoms with a laser, hence their velocity can be inferred. The size of
the Bose–Einstein condensates produced is small, of the order of 0.1 mm; the
number od atoms in the condensate is typically 104 to 106, and the critical
temperature Tc is of the order of 10−6 K.
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Figure 3.8: Velocity distributions of atoms for T < Tc (left), just below Tc

(middle) and well below Tc (right). The sharp peak at zero velocity marks
the appearance of the condensate.

The gases which were found to undergo Bose–Einstein condensation con-
sist of alakine atoms (lithium, sodium potassium, rubidium), in which there
is a single electron in the outer energy orbital. Inner orbitals are full, with
total orbital angular momentum and spin equal to zero. The only other con-
tribution to the total spin of the atom is from the nucleus. If the sum of
protons and neutrons is an odd number, the spin will be half–integer. In this
case the sum of the nuclear spin and the spin of the valence electron will be
an integer, so the atom will be a boson.

The gases in questions are different from the ideal gas of the theory of
Bose and Einstein because they interact rather strongly, repelling each other
almost as hard balls at short distances. Since these collision events are rela-
tively rare, the atoms of the gases do not form clusters of atoms. Moreover,
these interactions are events involving only two atoms, as three–body in-
teractions are extremely rare. The two–body interaction of atoms can be
described by the potential

V (r1 − r2) ≈ gδ(r1 − r2), (3.60)

where δ is Dirac’s delta function. Essentially the interaction is controlled by
the parameter

g =
4πah̄2

m
, (3.61)

where a is called the s–wave scattering length. In most cases a and g are
positive, which corresponds to repulsive interaction between the bosons.
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In can be shown that the such relatively weakly interacting Bose gases
undergo the same transition as an ideal gas of bosons. In the limit of zero
temperature the gas is governed by the Gross–Pitaevskii equation (GP):

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + gΨ|Ψ|2 + VtrapΨ, (3.62)

The equation contains the mean–field contribution to the interaction po-
tential V (r) = gn(r) = g|Ψ(r)|2, where n(r) is the density

n(r) = |Ψ(r)|2, (3.63)

and Vtrap(r) is the potential which confines the atoms. The GP equation
is also called the Nonlinear Schroedinger Equation (NLSE) because it is a
Schroedinger equation with cubic nonlinearityi; the potential depends on the
particle density n(r) which depends on the wave function Ψ(r) itself.

The solution of the GP equation is normalised by the condition that the
total number of atoms in the trap is N :

∫

|Ψ(r)|2d3r = N. (3.64)
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Chapter 4

The GP Equation

4.1 Inhomogeneous condensate

We have seen that a trapped atomic BEC consiting of an ultra cold gas is
described by the GP equation 3.62 for Ψ(r, t).

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + gΨ|Ψ|2 + VtrapΨ, (4.1)

Assuming

Ψ(r, t) = ψ(r, t)e−iµt/h̄, (4.2)

where µ is called the chemical potential, or energy per boson, the GP equation
becomes

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + gψ|ψ|2 + Vtrapψ − µψ, (4.3)

where ψ is normalised by the condition that the total number of atoms in
the trap is N :

∫

|Ψ(r)|2d3r = N. (4.4)

This is the case of the inhomogeneous condensate, because (as we shall
see) the density of the condensate in the trap is not constant, and depends
very much on the position.
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4.1.1 Fermi–Thomas approximation to the ground state

Consider the harmonic, spherically symmetric potential

Vtrap =
mω2

trapr
2

2
, (4.5)

where r2 = x2 + y2 + z2 is the radius in spherical coordinates and ωtrap is
the trap’s frequency. For a sufficiently large cloud of atoms, an approximate
solution ψFT for the ground state ψ0 can be obtained by assuming ∂/∂t = 0
and by neglecting the first term at the right hand side of Eq. 4.3; assuming
that ψ is real, we find

gψ3 + Vtrapψ − µψ = 0, (4.6)

The solution is

ψFT =

{

√

(µ− Vtrap)/g =
√

mω2
trap(r

2
FT − r2)/(2g) r ≤ rFT

0 r > rFT

(4.7)

This approximation is called the Fermi-Thomas approximation. The Fermi–
Thomas radius rFT is given by the condition µ− Vtrap = 0, thus

µ =
mω2

trapr
2
FT

2
. (4.8)

To relate rFT and to N we apply the normalization
∫

d3r|ψ|2 = N. (4.9)

We find

4π

∫

∞

0

dr r2|ψ|2 = 4π

∫ rF T

0

dr r2
mω2

trap

2g
(r2

FT − r2) = N, (4.10)

from which we get

rFT =

(

15Nh̄2a

m2ω2
trap

)1/5

. (4.11)

Finally we relate µ to N :

µ =
mω2

trap

2

(

15Nh̄2a

m2ω2
trap

)1/5

. (4.12)

The same analysis can be sone in the simpler case of the two–dimensional
and the one–dimensional condensates, ψ = ψ(x, y) and ψ = ψ(x).
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Figure 4.1: The Fermi–Thomas approximation ψFT (x) (red curve), the exact
ground state ψ0(x) (green curve), and the trapping potential Vtrap(x) (dashed
blue line).

4.1.2 Ground state

The exact ground state solution ψ0(r) of Eq. 4.3 must be found numerically.
It is not much different from the Fermi–Thomas approximation ψFT (r): the
main difference is that it decays slowly at the edge of the condensate, rather
than suddenly becoming zero at the Fermi–Thomas radius.

Fig. 4.1 illustrates the difference between the Fermi-Thomas approxima-
tion and the exact ground state solution ψ0 in a one–dimension condensate.

4.1.3 Quantisation of the circulation

We have seen that at sufficiently small temperatures the single particle wave-
function ψ0 = e−ik·r/

√
V with k = 0 becomes occupied with a macroscopic

number of particles. This wavefunction, ψ0 = 1/
√
V , is constant. In quan-

tum mechanics the wavefunction is defined up to an arbitray phase factor θ,
so ψ0 = eiθ/

√
V is an equally valid solution. However, if θ = θ(r), that is to

say θ varies in space, the situation is different and we have a superflow.

Let us write ψ0(r) in terms of its amplitude,
√

n0(r), and its phase, θ(r):
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ψ0(r) =
√

n0(r)e
iθ(r). (4.13)

According to quantum mechanics, the current density (the number of parti-
cles flowing per unit area per unit time) is

j0 =
h̄

2im
(ψ0∇ψ∗

0 − ψ∗

0∇ψ0), (4.14)

We obtain

j0 =
h̄

m
n0∇θ. (4.15)

.
Since j has the dimensions of a density times a velocity, we define the super-
fluid velocity as

vs =
h̄

m
∇θ, (4.16)

We shall see that this flow is a movement of particles without dissipation of
energy, unlike what happens in an ordinary flow.

Note that, since the curl of a gradient is always zero, the superflow is irrota-
tional:

∇× vs = 0, (4.17)

Now consider the circulation of vs along a closed path C:

Γ =

∮

C

vs · dr, (4.18)

If C is a simply connected region, we apply Stokes’s Theorem, use ∇×vs = 0,
and conclude that

Γ =

∮

C

vs · dr =

∫

S

∇× vs · dS = 0. (4.19)

where S is the surface enclosed by th path C. If C is is multiply connected
region, Stokes’s Theorem is invalid, and we have

Γ =

∮

C

vs · dr =
h̄

m

∮

C

∇θ · dr =
h̄

m
∆θ, (4.20)

where ∆θ is the change of the phase θ as we go around the path C. But the
wavefunction must be defined in a unique way, so

ψ0(r) = ψ0(r)e
i∆θ, (4.21)
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Figure 4.2: Left: profile of a 2–dimenensional trapped BEC with (solid) and
without (dashed) a vortex. Middle: density n(x, y) in the x, y plane. Right:
phase θ(x, y) in the x, y plane.

thus ∆θ = 2πn where n is an integer. We conclude that the circulation Γ is
quantised in units of the quantum of circulation κ = h/m:

Γ =
h

m
n = nκ, (n = 1, 2, · · · ) (4.22)

This important result makes the superflow very different from an ordinary
flow, in which the circulation can take any arbitrary value.

Fig. 4.2 shows the profile of a trapped 2–dimensional condensate with
and without a vortex in the middle (left), the density n(x, y) (middle) and
the phase (right) in the x, y plabe. Note that on the axis of the vortex the
density is zero.

4.1.4 Dimensionless variables

It is convenient to write the GP equation in dimensionless for. In this way
the number of independent parameters becomes apparent and the numerical
solution can be computed avoiding numbers which are too big or too small.

The quantity

δ =

(

h̄

mωtrap

)1/2

, (4.23)

is called the harmonic oscillator’s length. We use a prime to distinguish
dimensionless variables (e.g. x′ and t′) from dimensional ones (e.g. x and t).
We introduce

t =
t′

ωtrap
, x = x′ δ, y = y′ δ, z = z′ δ, (4.24)
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Derivatives are computed using the chain rule, for example

dψ

dx
=
dψ

dx′
dx′

dx
=

1

δ

dψ

dx′
. (4.25)

d

dt
= ωtrap

d

dt′
, ∇2 =

1

δ2
∇′2, (4.26)

Note that ∇′2 contains derivatives with respect to x′, y′, z′, whereas ∇ con-
tains derivatives with respect to x, y, z. The normalization condition Eq. 4.4
suggests the introduction of

ψ′ = ψ

(

δ3

N

)1/2

, (4.27)

Eq. 4.4 becomes

∫

dx′ dy′ dz′|ψ′|2 = 1, (4.28)

and the GP equation becomes

i
∂ψ′

∂t′
=

(

−1

2
∇′2 + C|ψ′|2 + V ′

trap − µ′

)

ψ′, (4.29)

where

C =
4πNa

δ
, µ′ =

µ

h̄ωtrap
, V ′

trap =
r′2

2
r′ =

r

δ
. (4.30)

4.2 Homogeneous condensate

The GP equation is also a convenient model of superfluid helium. Since
helium experiments usually involve large numbers of atoms (many liters of
liquid in some cases), it is useful to learn properties of the solutions of the GP
equations which do not depend on a specific trapping potential Vtrap, which
we set equal to zero. This is the case of the homogeneous condensate: apart
from small regions near the walls of the container, the condensate’s density
is constant. The governing GP equation is

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + gψ|ψ|2 − µψ, (4.31)
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4.2.1 Uniform solution

The simplest solution of the homogeneous GP equation is that of a uniform
condensate, for which the solution ψ∞ does not depend on t or r. Assuming
that ψ∞ is real, Eq. 4.31 reduces to

gψ3
∞
− µψ∞ = 0, (4.32)

The solution is
ψ∞ =

√

µ/g, (4.33)

hence the number density is n∞ = |ψ∞|2 = µ/g.

4.2.2 Healing Length

The characteristic lenghscale ξ over which ψ changes in space is obtained by
balancing the kinetic energy and the interaction terms in Eq. 4.31. Replacing
∂2ψ/∂x2 with ψ/ξ2 where ξ is the lenghscale, we estimate

h̄2

2m

∂2ψ

∂x2
≈ h̄2

2m

ψ

ξ2
= g|ψ|2ψ = gnψ, (4.34)

hence

ξ =
h̄√

2mgn
. (4.35)

In a uniform condensate n = µ/g hence

ξ =
h̄√
2mµ

. (4.36)

The quantity ξ is called the healing length.

4.2.3 Wall solution

The second simplest solution of the homogeneous GP equation is that of a
steady (∂/∂t = 0), one–dimensional condensate in the presence of a wall,
which obeys

− h̄2

2m

∂2ψ

∂x2
+ gψ|ψ|2 − µψ = 0, (4.37)

in the range 0 ≤ x < ∞. The boundary condition ψ(0) = 0 represents
an infinite potential barrier at x = 0; the second boundary condition is
ψ = ψ∞ =

√

µ/g at x→ ∞. The solution is
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ψ(x) =
√

µ/g tanh(
x

2ξ
). (4.38)

4.2.4 Waves

The GP equation sustain wave solutions. If the uniform condensate ψ∞ =
√

µ/g is slightly disturbed, the dispersiona relation of perturbations of the
form eikx−iωt, where k is the wavenumber and ω the angular frequency, is

ω =

√

c2k2 +
h̄2k4

4m2
, (4.39)

where c =
√

µ/m is the sound speed.

4.3 Fluid dynamics interpretation

The previous section has shown that the condensate may contain fluid struc-
tures such as waves and vortices. In this section we show the deep link
between the GP equation and fluid dynamics. If we substitute the expres-
sion

ψ = Reiθ, (4.40)

(where R and θ are respectively the amplitude and the phase of ψ) into
Eq. (4.31), we obtain the classical continuity equation

∂ρs

∂t
+ ∇ · (ρsvs) = 0, (4.41)

which expresses conservation of mass, and the (quasi) Euler equation

ρs

(

∂vsj

∂t
+ vsk

∂vsj

∂xk

)

= − ∂p

∂xj

+
∂Σjk

∂xk

, (4.42)

where the usual convention applies of summation over repeated indices; in
these expressions we have introduced the fluid’s density

ρs = mR2 = m|ψ|2 = mn, (4.43)

the velocity

vs =
h̄

m
∇θ, (4.44)
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where vsk, k = 1, 2, 3 are the Cartesian components of vs. We attach the
subscript s to the velocity because we think of the condensate as a pure
superfluid (in the case of He II this identification is not correct: because of the
strong interaction, only a fraction of the superfluid is the actual condensate;
hereafter we shall ignore this difference).
In writing Eq. 4.42 we have also identified the fluid’s pressure

p =
V0

2m2
ρ2

s, (4.45)

and a quantity called the quantum stress

Σjk =

(

h̄

2m

)2

ρs
∂2 ln ρs

∂xj∂xk

. (4.46)

Note that, without the quantum stress, the GP equation describes a classical
inviscid Euler fluid.
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Chapter 5

Helium II

5.1 Thermal and mechanical effects

Early experiments showed that the motion of helium II has unusual proper-
ties. For example, consider a vessel A which contains helium and is linked to
the helium in the bath B via a superleak S, as in Figure 5.1(left). A superleak
is a very small hole (or holes); it can be realized, for example, by filling a
channel with very fine powder, so fine that any ordinary fluid could not go
through it. It was found that heating the helium in A with a resistor induces
not only a temperature difference ∆T = TA − TB, but also a flow from B to
A through the superleak S, hence a pressure difference ∆p, which is propor-
tional to the height difference between the liquid in A and the liquid in B.
This pressure difference can be large enough to create a small fountain, if A
is open at the top (fountain effect). Note that the velocity (into A) opposes
the flow of entropy (out of A), unlike what happens in an ordinary fluid.

Figure 5.1: Left: thermo–mechanical effect. Right: mechano–thermal effect.

A second unusual effect, discovered by Daunt and Mendelsson and shown
in Figure 5.1(right), is the following. If the vessel A is lifted above the bath
B and helium flows out of the superleak S, the temperature in A increases,
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whereas the temperature is B decreases. This phenomenon is called the
mechano–caloric effect.

Careful measurements by Kapitza of the chemical potential µ revealed
that in these experiments µ remains the same in A and B: µ(pA, TA) =
µ(pB, TB). Since dµ = −sdT + dp/ρ, where s is the specific entropy, we
conclude that

∆p = ρs∆T, (5.1)

In another set of experiments it was found if the temperature is reduced
from He I to He II, helium’s viscosity η seems to change abruptly at T < Tλ,
depending on how it is measured.

Figure 5.2: Left: the viscosity η, determined from the measurement of the
pressure drop in a thin pipe, is discontinuous when plotted versus the tem-
perature T . Right: if η is determined from the damping of an oscillating
disk, it is continuous with T .

If the viscosity is measured by pushing helium along a thin capillary using
bellows and detecting the pressure gradient along the capillary, then it is
found that η = 0 within experimental accuracy (see Figure 5.2 left). If the
viscosity is measured by observing the damping of an oscillating disk, then
it is found that η 6= 0 (see Figure 5.2 right).

5.2 Landau’s equations

The apparently paradoxical results described in the previous subsection are
explained by the Two-Fluid model of Landau and Tisza. In this model, he-
lium II is described as the intimate mixture of two fluids: the superfluid and
the normal fluid. The first is related to the quantum ground state, and has
zero viscosity and entropy. The second consists of thermal excitations and
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carries the total viscosity and entropy of the liquid. Each fluid has its own
velocity and density fields, vs and ρs for the superfluid and vn and ρn for the
normal fluid; the total density of helium II, ρ = ρn+ρs, is approximately tem-
perature independent. The table below summarises the Two–Fluid model:

component velocity density viscosity entropy
normal fluid vn ρn η s
superfluid vs ρs 0 0

The Two–Fluid model accounts for all experimental observations (at least
at small velocities). The superleak S is so small that the viscous normal fluid
cannot move through it: only the superfluid flows through S. The observation
that the chemical potential is constant across S both in the steady state (when
vs = 0 in the superleak) and during transients (when vs 6= 0) led Landau
to postulate that gradients of the chemical potential are responsible for the
acceleration of the superfluid.

Figure 5.3: Penetration depth.

The relative proportion of superfluid and normal fluid at a given temperature
was determined by Adronikashvili. He used the fact that the motion of an
oscillating boundary penetrates into a viscous fluid only a distance of the
order of

√

2ν/ω, where ν = η/ρ, ν is the kinematic viscosity, η the viscosity,
and ω the angular frequency of the oscillation - see Figure 5.3.

Figure 5.4: Adronikashvili’s pendulum.
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Adronikashvili’s apparatus, shown schematically in Figure 5.4, was a spe-
cial pendulum which consisted of a suspended stack of disks. Let ∆z be
the distance between the disks. If ∆z ≪ δ =

√

2η/(ρnω) the normal fluid
is trapped between the disks and contributes to the moment of inertia of
the pendulum, whereas the superfluid does not contribute (being inviscid,
it moves freely between the disks). By measuring the damping rate of the
torsional oscillations, Adronikashvili determined the ratios ρs/ρ and ρn/ρ as
functions of the temperature T , which are shown schematically in Figure 5.5.
Note that if the temperature is reduced the normal fluid fraction ρn/ρ de-
creases rapidly; below T ≈ 0.7 K the normal fluid can be neglected. Note also
that the rapid decrease of the superfluid fraction vs temperature is similar
to the decrease of the condensate’s density.

Figure 5.5:

The mathematical formulation of the Two–Fluid model consists of the
equations of mass and entrophy conservation, and the equations of momen-
tum conservation of the normal fluid and the superfluid, respectively. These
equations are

∂ρ

∂t
+ ∇ · (ρnvn + ρsvs) = 0, (5.2)

∂(ρs)

∂t
+ ∇ · (ρsvn) = 0, (5.3)

∂vn

∂t
+ (vn · ∇)vn = −1

ρ
∇p− ρs

ρn

s∇T +
η

ρn

∇2vn, (5.4)

∂vs

∂t
+ (vs · ∇)vs = −1

ρ
∇p+ s∇T. (5.5)

Equation 5.3 states that entropy flows with the normal fluid. In isothermal
conditions, the superfluid obeys the classical Euler equation, and the normal
fluid obeys the classical Navier–Stokes equation.
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Finally Landau recognised that, since vs is proportional to the gradient
of the phase of a quantum mechanical wavefunction, we must also have

∇× vs = 0. (5.6)

It must be stressed that Equation (5.4) and (5.5) are valid only at small
velocities. In the presence of quantised vortices Landau’s equation require
modifications.

5.3 Second sound

The existence of two separate fluid components has a striking consequence on
the oscillatory motion of helium II. Let us consider helium at rest (vn0 = 0,
vs0 = 0) with density ρ0 = ρs0+ρn0, pressure p0, temperature T0 and entropy
s0. We introduce small perturbations (indicated by primed quantities) ρ =
ρ0+ρ′, ρn = ρn0+ρ′n, ρs = ρs0+ρs, vn = v′

n, vs = v′

s, p = p0+p′, T = T0+T ′

and s = s0 + s′; neglecting quadratic terms in the perturbations, Landau’s
equations become

∂ρ′

∂t
+ ρn0∇ · v′

n + ρs0∇ · v′

s = 0, (5.7)

ρ0
∂s′

∂t
+ s0

∂ρ′

∂t
+ ρ0s0∇ · v′

n = 0, (5.8)

∂v′

n

∂t
= − 1

ρ0
∇p′ − ρs0

ρn0
s0∇T ′, (5.9)

∂v′

s

∂t
= − 1

ρ0
∇p′ + ρs0s0∇T ′. (5.10)

In writing these equations we have neglected the viscous term η∇2vn, because
we know already that its effect is simply to damp any motion. Assuming
solution of the form eiω(t−x/c), we find two values for the phase speed c:

c1 =

√

(

∂p

∂ρ

)

0

, (5.11)

c2 =

√

ρs0s2
0T0

ρn0CV
. (5.12)

We conclude that there are two modes of oscillation. The first mode is
a pressure and density wave at (almost) constant temperature and entropy,
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in which vn and vs move in phase. In analogy with ordinary sound, we call
this mode first sound. The second mode is a temperature and entropy wave
at (almost) constant pressure and density, in which vn and vs move in anti–
phase. We call this mode second sound. The speed of first sound is c1 ≈
200 m/s at all temperatures; the speed of second sound, c2, is approximately
ten times less, and drops to zero as T → Tλ.

It is interesting to notice that, in the case of second sound, temperature
perturbations obey the wave equation

∂2T ′

∂t2
≈ c22∇2T ′,

whereas in ordinary fluids (e.g. helium I) temperature perturbations obey
the heat equation

∂T ′

∂t
= κ∇2T ′.

5.4 Thermal counterflow

Another consequence of the Two Fluid model is the unusual form of heat
transfer. Consider Figure 5.6. A closed channel is open to the helium bath
at one end. A resistor, placed at the closed end, dissipates a known heat flux
Q̇. This heat flux is carried away by the normal fluid, vn = Q̇/(ρST ). With
the channel being closed, the mass flux is zero, ρnvn +ρsvs = 0, hence the su-
perfluid moves towards the resistor, vs = (ρn/ρs)vn, setting up a counterflow
velocity vns = vn − vs which is proportional to the applied heat flux:

vns = vn − vs =
Q̇

ρsST
. (5.13)

Figure 5.6: Laminar counterflow for Q̇ < Q̇crit.

Provided that Q̇ is less than a critical heat flux Q̇c, this form of heat transfer
is laminar. We shall see that at high heat flux the counterflow becomes
turbulent.
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Chapter 6

Critical velocity

6.1 Helium II

The normal fluid consists of thermal excitations of energy ǫ and momentum p.
Landau showed that the shape of the dispersion curve ǫ = ǫ(p), where p = |p|,
is responsible for the superfluid nature of helium II. Landau’s spectrum,
confirmed by neutron scattering experiments, is shown in Figure 6.1. Note
the minimum at momentum p0 and energy ∆. The excitations at low p (linear
part of the spectrum) are called phonons; the excitations in the quadratic
region near the minimum of the dispersion curve are called rotons.

Figure 6.1: Landau’s spectrum of the excitations. Note the roton minimum
at (p0,∆0).

Landau’s argument for superfluidity is the following. Consider an object
which moves in He II, for example a negative ion, which carves a little bub-
ble of radius ≈ 12 × 10−8cm and mass ≈ 100mHe. The object has mass m
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and moves with velocity V1, momentum p1 = mV1 and energy E1; the object
creates an excitation of energy ǫ and momentum p, changing its own en-
ergy and momentum to E2 and p2. Conservation of energy and momentum
requires E1 = E2 + ǫ and p1 = p2 + p, hence

P1p cos θ = mǫ+
1

2
p2, (6.1)

where θ is the angle between p1 and p. Thus the object can lose energy and
create an excitation if the initial velocity satisfies

V1 >
p

2m
+
ǫ

p
≈ ǫ

p
. (6.2)

Let us minimise this velocity ǫ/p:

d

dp

(

ǫ

p

)

= − 1

p2
ǫ+

1

p

dǫ

dp
= 0. (6.3)

We find:
dǫ

dp
=
ǫ

p
. (6.4)

The minimum of ǫ/p thus corresponds to the line from the origin to a point
slightly to the right of (p0,∆) on the dispersion curve; the critical velocity is
V1 = Vc = 58 m/s (at SVP). In conclusion, at sufficiently low temperature
such that the normal fluid is negligible, we expect the ion to experience no
drag for 0 < V1 < Vc.

At SVP, an ion moving in liquid helium creates a vortex ring at veloc-
ity smaller than Vc. Fortunately, at higher pressures the velocity of roton
creation is smaller than the velocity required to create a vortex ring, and
Landau’s argument can be tested directly, as done by McClintock and col-
laborators. Fig. 6.2 shows the measured drag as a function of the ion’s
velocity. The striking result is that at T = 0.35 K, in helium II, the drag
is zero for V1 < Vc within experimental accuracy. The second curve at the
left of the figure shows the drag measured at T = 4 K, in helium I, which is
a classical fluid. This experiment is thus a direct observation of superfluid
behaviour.

6.2 BEC and ideal gas

In the case of a Bose–Einstein condensate, we have seen that the dispersion
relation is

ω =

√

c2k2 +
h̄2k4

4m2
, (6.5)
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Figure 6.2: Measured drag in helium I (left curve) and helium II (right curve).
Note that in He II there is no drag (superfluidity) for V < Vc.

Since ǫ = h̄ω and p = h̄k, we can rewrite this expression as

ǫ =

√

c2p2 +
h̄2p4

4m2
≈ cp for p << 1, (6.6)

Thus for small p we have ǫ/p ≈ c and Landau’s argument applies: an object
which moves at velocity larger than ǫ/p = c creates a sound wave (phonon)
and loses energy. An object which moves at velocity less than c cannot lose
energy, hence the BEC is a superfluid.

Finally, let us consider the case of a classical ideal gas. In this case the
dispersion relation is given by ǫ = v2/(2m) where p = mv, hence

ǫ =
p2

2m
, (6.7)

This means that the minimum of ǫ/p occurs at p = 0. We conclude that
an ideal gas is not a superfluid, because an object moving at any nonzero
velocity in the gas loses energy.
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Chapter 7

Quantised vortex lines

7.1 Helium in rotation

Quantum mechanics introduces remarkable constraints on the rotational mo-
tion of helium II. It is instructive to consider the rotation of an ordinary,
classical fluid first. A bucket of water which rotates at constant angular
velocity Ω around the z axis has a height profile given by

z =
Ω2r2

2g
, (7.1)

as shown in Figure 7.1 left; the water’s velocity field is v = Ωφ̂ (solid body
rotation), and the vorticity is ω = ∇× v = 2Ωẑ, where ẑ and φ̂ are the unit
vectors along the axial and azimuthal direction respectively.

Figure 7.1: Left: classical fluid in rotation. Middle: rotating helium II.
Right: top view of the vortex lattice.

The rotation of helium II is very different, because quantum mechanics
introduces important constraints on the rotational motion. According to the
two–fluid model, ∇ × vs = 0, which means that the superfluid component
cannot rotate; we expect that the profile of rotating helium II is
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z =

(

ρn

ρ

)

Ω2r2

2g
. (7.2)

which is temperature dependent.
The observed profile did not agree with this prediction. The puzzle was

solved by Onsager (1949) and Feynmanni (1955), who argued that the su-
perfluid forms vortex lines (as in Figure 7.1, middle and right) around which
the circulation κ is quantised:

∮

C

vs · dℓ = κ, (7.3)

where h = 6.626×10−27ergs is Planck’s constant. The quantum of circulation
in helium II (measured by Vinen in 1961) is

κ =
h

m
= 9.97 × 10−4 cm2 s−1, (7.4)

where m = 6.648 × 10−24g is the mass of the helium atom.

Figure 7.2: Vortex line
.

Equation 7.3 can be used to determine the velocity field vs. Let C be a
circle of radius r around the axis of the vortex; using cylindrical coordinates
r, φ, z, the φ component of the superfluid velocity is

vs =
κ

2πr
, (7.5)

as shown in Figure 7.3.
Since the vortex core is hollow, Equation 7.5 is valid only for r ≥ a0 where

a0 ≈ 10−8 is the vortex core radius.
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Figure 7.3: Velocity field around a vortex line.

7.2 The first vortex

The critical angular velocity Ωc for the appearance of the first vortex line
can be determined in the following way. Thermodynamical equilibrium re-
quires minimisation of the free energy, F = E − TS in the rotating frame of
reference, which is

F ′ = F − Ω · L = E − TS −Ω · L, (7.6)

where E is internal energy, Ω the angular velocity, and L the angular mo-
mentum. Let T = 0 and consider helium II contained in a rotating cylinder
of radius R. The first vortex appears if

∆F ′ = F ′

vortex − F ′

no vortex = E − ΩL < 0, (7.7)

where the energy and the angular momentum (per unit length) are

E =

∫ 2π

0

dφ

∫ R

a0

ρsv
2
s

2
rdr, (7.8)

L =

∫ 2π

0

dφ

∫ R

a0

ρsrvsrdr. (7.9)

Substituting vs = κ/(2πr) we find that the critical velocity of vortex appear-
ance is

Ωc =
κ

2πR2
ln (R/a0), (7.10)

where a0 ≈ 10−8 cm is the vortex core radius.

7.3 Vortex lattice

If Ω is increased past Ωc, more and more vortex lines appear in the flow.
A bucket of helium rotating at constant angular velocity Ω > Ωc contains a

58



lattice of quantised vortex lines aligned along the axis of rotation as shown in
Figure 7.1. The lattice is steady in the rotating frame (see Figure 7.1 right;
the number of vortex lines per unit area is given by Feynman’s rule

n =
2Ω

κ
. (7.11)

Note that although the microscopic superflow is potential (vs ∼ 1/r), the
macroscopically–averaged flow which results from the vortex lattice corre-
sponds to solid body rotation (vs ∼ Ωr). In other words, by creating n
quantised vortices per unit area, helium II has the same (large–scale) vortic-
ity of a classical rotating fluid (2Ω = nκ).

Equation (7.11) has been tested by direct visualisation of quantised vor-
tices at low temperatures by Williams and Packard (1974); their technique
consisted in trapping electrons along the vortex lines and then collecting
them on electrodes at the top of the container. Fig. /reffig:packard shows
vortex lattices at increasing rotation rates Ω. More recently, direct visuali-
sation of quantised vorticity by tracer particles imaged by a laser (Fig. 7.5
was achieved by Bewley et al. (2006) and by Zhang and Van Sciver (2005).
Quantised vorticity in atomic Bose–Einstein condensates (Fig. 7.6) has also
been observed directly using lasers (Madison et al. 2000) by various groups.

7.4 Mutual friction

Quantised vortex lines interact with the phonons and rotons which make
up the normal fluid of helium II, thus coupling the superfluid component
with the normal fluid component (Barenghi, Donnelly and Vinen 1983). The
coupling force Fns, called mutual friction, is proportional to the relative
velocity between the two fluids, and acts as a friction on each fluid. Thus, in
the presence of quantised vorticity, the governing equations of the Two–Fluid
model become

ρn

(

∂vn

∂t
+ (vn · ∇)vn

)

= −ρn

ρ
∇p− ρss∇T,+η∇2vn + Fns, (7.12)

ρs

(

∂vs

∂t
+ (vs · ∇)vs

)

= −ρs

ρ
∇p+ ρss∇T − Fns. (7.13)

The precise form of the friction depends whether the vortex lines form a
disordered tangle or are aligned (by the rotation for example).

Consider a vessel which contains helium II and rotates at constant angular
velocity Ω. A second sound pulse or resonance which moves across helium
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Figure 7.4: The first direct visualization of quantised vortices by Packard’s
group at UC Berkely. What is shown are vortex lattices at increasing values
of Ω.

Figure 7.5: Micron-size solid hydrogen particles trapped in a vortex lattice
in superfluid helium, as observed by Bewley et al. (2006).
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Figure 7.6: Vortex lattices in Bose–Einstein condensates at different values
of the rotation rate Ω observed by Ketterle’s group at MIT. What is shown
is the density profiles; vortices correspond to holes.

suffers a bulk attenuation. What concerns us here is the extra attenuation
which arises due to the presence of vortices, shown in Figure 7.7. This extra
attenuation can be used to measure the density of vortex lines.

Hall and Vinen (1956) showed that the mutual friction force is

Fns =
Bρnρs

ρ
Ω̂ × (Ω × q) +

B′ρnρs

ρ
Ω × q, (7.14)

where

q = vn − vs, (7.15)

and B and B′ are dimensionless temperature–dependent mutual friction co-
efficients which depend on the interaction of phonons and rotons with the
quantised vortices. Substituting q and F into the Equation (7.12) and Equa-
tion (7.13), we obtain the following second sound wave equation:

d2q

dt2
+ (2 − B′)Ω × dq

dt
−BΩ̂ × (Ω × d

dt
q) = c22∇(∇ · q) (7.16)

Let us assume that the second sound propagates in the x direction:

q = (qx, qy, 0)eikx−iωt, (7.17)

where k is the wavenumber and ω the angular frequency. In typical experi-
mental conditions we have Ω/ω ≪ 1, hence we obtain

k ≈ 1

c2
(ω + i

ΩB

2
). (7.18)

The attenuation coefficient α̃ is the imaginary part of k:
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α̃ =
BΩ

2c2
. (7.19)

In fact

q = (qx, qy, 0)e−α̃xeiω(x/c2−t), (7.20)

Note that angular velocity of rotation Ω is related to the vortex line
density L via Feynman’s rule, Equation (7.11), so, by measuring α̃, we can
recover the vortex line density.

It is therefore possible to perform an absolute measurement of the amount
of vortex lines which are present in a turbulent flow. First the vessel is
rotated, and the second sound signal is calibrated against the known vortex
line density (number of vortices per unit area) L = 2Ω/κ. Secondly, the
vessel is stopped, the turbulence experiment is performed, and the second
sound attenuation allows us to recover the vortex line density L (now to be
interpreted as the vortex length per unit volume). Finally, it must be noticed
that second sound is not attenuated by vortex lines which are parallel to the
direction of propagation. If we assume that the turbulence is isotropic, only
2/3 of the vortices will attenuate the second sound wave.

Figure 7.7: Left: second sound wave in a non–rotating vessel (no vortices).
Right: second sound wave in the presence of vortices in a rotating vessel
(vortices are present): note the reduced amplitude of the wave.

7.5 Vortex dynamics

7.5.1 The Biot–Savart law

In helium II the radius of the vortex core, approximately a ≈ 10−8 cm,
is much smaller than any length scale of interest (for example, the typical
distance between vortex lines), so it is a good idea to approximate vortex
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lines as space curves of infinitesimal thickness. This approach was introduced
by Schwarz. The curves must be either closed loops or end at a boundary
because a vortex cannot terminate in the middle of the flow.

Let s = s(ξ) be the position of a point on such a curve, where ξ is the arc
length. Following the classical theory of space–curves, we define the tangent
T̂, normal N̂ and binormal B̂ unit vectors:

s′ =
ds

dξ
= T̂, (7.21)

dT̂

dξ
= cN̂, (7.22)

B̂ = T̂ × N̂, (7.23)

where c = |s′′| is the curvature and R = 1/c the local radius of curvature.
The three vectors T̂, N̂ and B̂ form a right–handed system, as shown in
Figure 7.8.

Figure 7.8: Tangent, normal and binormal vectors.

The next step is to find the equation of motion of the vortex line. We
start from classical definition of vorticity field ω associated with a velocity
field v:

ω = ∇× v. (7.24)

Let us introduce the vector potential v = ∇×A; then A obeys the Poisson
equation

∇2A = −ω, (7.25)
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whose solution is

A(x) =
1

4π

∫

ω(x′)d3x′

r
, (7.26)

where r = |x − x′|. In our case the vorticity is formally concentrated on the
vortex filament, ω(x′)d3x′ = κdℓ(x′), thus

A =
κ

4π

∮

1

r
dℓ

′, (7.27)

from which we obtain the Biot–Savart law

v(x) = − κ

4π

∮

(x − x′)

r3
× dℓ

′. (7.28)

The Biot–Savart law is often too difficult for analytical purpose, and is also
computationally expensive. In many cases it is convenient to replace it with
the following Local Induction Approximation (LIA):

v(x) ≈ βs′ × s′′, (7.29)

where

β =
κ

4πR
ln (R/aeff), (7.30)

where aeff is an effective core radius and R = 1/|s′′|. It is apparent from
the LIA that a vortex filament at a given position moves in the binormal
direction with speed which is inversally proportional to radius of curvature
at that position.

7.5.2 The Schwarz equation

Now we take into account friction. Let vL be the vortex line velocity. The
forces acting on unit length of vortex line are the Magnus force fM and the
drag force fD:

fM = ρsκ × (vL − vs), (7.31)

fD = ρsκαs′ × [s′ × (vs − vn)] + α′s′ × (vs − vn), (7.32)

where κ = κs′ = κω̂. Both fM and fD are forces per unit length of vortex
line. The Magnus force arises in general when there is a flow past a body
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with circulation (in this case the vortex core); on one side of the body the
flow is faster, hence the pressure is lower, which causes a transverse force,
see Figure 7.9.

Figure 7.9: Magnus force.

The drag force consists of a parallel and transverse part, and is parametrised
by friction coefficients α and α′ which are related to the mutual friction co-
efficients B and B′ already introduced by

α =
Bρn

2ρ
, α′ =

B′ρn

2ρ
. (7.33)

Since the vortex core is very small, it has approximately no inertia, thus
fM + fD = 0. We obtain Schwarz’s equation (Schwarz 1988)

vL =
ds

dt
= vs − αs′ × (vs − vn) + α′s′ × [s′ × (vs − vn)], (7.34)

where we decompose

vs = vself
s + vext

s . (7.35)

Here vself
s is the self–induced velocity (Biot–Savart or LIA) and vext

s is an
externally applied superflow.

Under LIA, we have vself
s = βs′ × s′′ and Schwarz’s equation reduces to

ds

dt
= vext

s + βs′ × s′′ + αs′ × (vext
ns − βs′ × s′′)

−α′s′ × [s′ × (vext
ns − βs′ × s′′)],

where vext
ns = vext

n − vext
s

The numerical method to move vortex filaments (Schwarz 1988) consists
in dividing each filament into a large number of vortex points; each vortex
points moves according to Schwarz’s equation.
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7.5.3 Kelvin waves

Consider a vortex line which is straight and aligned in the z direction. Let
s = s(ξ) be the position of a point along the line. We use the LIA, Equa-
tion (7.29), to determine the self–induced motion of the vortex. Clearly if
the vortex is straight, then s′′ = 0 and vself

s = βs′ × s′′ = 0, that is to say
the vortex does not move.

Figure 7.10: Kelvin wave on a vortex line.

Now suppose that the vortex line is slightly perturbed away from the
straight position in the form of a helix as in Figure 7.10:

s = (ǫ cos φ, ǫ sinφ, z), (7.36)

where φ = kz − ωt, ǫ is the amplitude of the helical wave, and ω0 is the
angular frequency. If ǫ≪ 1 then z ≈ ξ. We have s′ = (−kǫ sin φ, kǫ cosφ, 1),
s′′ = (−k2ǫ cosφ,−k2ǫ sin φ, 0) and, neglecting terms proportional to ǫ2, we
conclude that the amplitude ǫ is constant and that the angular frequency is

ω = ω0 = βk2, (7.37)

which is the dispersion relation for Kelvin waves.
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Chapter 8

Quantum turbulence

8.1 The vortex tangle

Configurations of vortex lines can be either laminar or turbulent. An exam-
ple of laminar vortex configuration is the rotating vortex lattice, shown in
Figure 7.1 (middle). Turbulent vortex configurations are easily created in
the laboratory by applying a sufficiently large heat current, or by stirring the
liquid helium using grids or propellers. ccording to numerical simulations,
the resulting quantum turbulence consists of a tangle of quantised vortices,
as shown in Figure 8.1.

Figure 8.1: Vortex tangle (numerical simulation).

The tangle can be characterised by the vortex line density, L, which

67



is defined as the length of quantised vortex lines per unit volume. From
the vortex line density, a dimensional argument suggetsts that the typical
separatin between the vortices is ℓ ≈ L−1/2. Thus v ≈ κ/(2πℓ) is the typical
velocity inside the tangle.

8.2 Turbulent counterflow

The study of quantum turbulence was pioneered by Vinen (1957), who gen-
erated the turbulence by the application of a heat current. This form of
quantym turbulence, which has no classical analogy, is called counterflow
turbulence. We have seen that heat transfer in helium II takes the form of a
counter current of vn and vs. Vinen showed that if Q̇ (hence Vns = Vn − Vs)
exceeds a critical value Q̇c, then this laminar counterflow breaks down, and
a tangle of vortex lines appears, see Figure 8.2.

Figure 8.2: Turbulent counterflow for Q̇ > Q̇crit.

The vortex lines can be detected by monitoring the amplitude of a second
sound signal across the channel; the measured vortex line density is

L = γ2V 2
ns, (8.1)

where γ depends on temperature.
In the first approximation counterflow turbulence is homogeneous and

the only important length scale is the intervortex distance δ ≈ L−1/2, where
L is the vortex line density. Vinen argued that L is due to the balance of
production and destruction processes, which he modelled as the growth of
vortex rings and the annihilation of opposite oriented vortex lines, obtaining

dL

dt
=
χ1Bρn

2ρ
VnsL

3/2 − χ2κ

2π
L2, (8.2)

where χ1 and χ2 are dimensionless constants of order one. The steady state
solution to Equation (8.2) is indeed Equation (8.1) where

γ =
πBρnχ1

κρχ2

. (8.3)
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Tough (1987)(1987) discovered the existence of a second critical velocity,
past which the vortex line density is larger. He called this second state of
turbulence the T-2 state, to distinguish it from the less intense turbulent
regime at smaller values of Vns, called the T-1 state, see Figure 8.3.

Figure 8.3: Laminar and turbulent regimesin thermal counterflow.

The natural question that arises is what is the nature of the two turbulent
regimes. Melotte and Barenghi (1988) showed that the laminar normal fluid
profile in a channel can become unstable at relatively small velocity if there
are enough vortex lines. They considered a channel of circular cross section
and radius R and a parabolic normal fluid profile of amplitude Vax in the
presence of the vortex line density L. Using the following model equation for
the normal fluid,

ρn

(

∂vn

∂t
+ (vn · ∇)vn

)

= −ρn

ρ
∇p− ρsS∇T + η∇2vn (8.4)

−
(

Bρnρs

2ρ

)(

2

3

)

κL(vn − vs),

they performed a stability analysis. which showed that the normal fluid
profile becomes unstable at approximately the same critical value of L which
corresponds to the observed values of the T-1 to T-2 transition. This suggests
that in the T-1 state the superfluid is turbulent but the normal fluid is not,
and in the T-2 state both superfluid and normal fluid are turbulent.

8.3 Vortex reconnections and turbulence

The first numerical simulations of quantum turbulence were performed by
Schwarz (1988). His method consists in discretizing vortex filaments into
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a large (variable) number of points, and moving each point according to
Eq. 7.34, which is

vL =
ds

dt
= vs − αs′ × (vs − vn) + α′s′ × [s′ × (vs − vn)], (8.5)

where vs = vself
s + vext

s , vext
s is an externally applied superflow, and vself

s

is the self–induced velocity, obtained either from the Biot–Savart integral or
the LIA.

Schwarz realised that another feature is essential to understand and model
the dynamics of quantum turbulence: vortex reconnections, shown schemat-
ically in Figure 8.4. His numerical algorithm performed reconnections when
the distance between two vortex filaments was less then the discretization
distance along each filament. Schwarz’s insight was confirmed by Koplick
and Levine (1993) who demonstrated the existence of vortex reconnections
by directly solving the GP equation.

Figure 8.4: A vortex reconnection.

The typical initial condition of a numerical calculation of quantum tur-
bulence consists of few seeding vortex rings. In the presence of a counterflow
velocity Vns, the rings distort each other, reconnect, more loops are cre-
ated, until a random–looking vortex tangle is generated (Fig. 8.5) in which
the vortex line density oscillates around a non–zero statistical steady state
(Fig. 8.6).

8.3.1 The Donnelly–Glaberson instability

Besides vortex reconnections, an important ingredient for the dynamics of
turbulence is the Donnelly–Glaberson instability (Cheng, Cromar and Don-
nelly 1973, Ostermeir and Glaberson 1975). Consider the Schwarz equation
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Figure 8.5: Numerical calculation of quantum turbulence starting from few
vortex rings (Schwarz 1988).

ds

dt
= vself

s + αs′ × (vext
ns − vself

s ) − α′s′ × [s′ × (vns − vself
s )]. (8.6)

Let us assume that vns = vn − vs is in the direction parallel to the vortex
line: vext

ns = (0; 0;Vns). We obtain

ω = ω0 + α′(kVns − βk2), (8.7)

and

dǫ

dt
= σǫ. (8.8)

The first equation says that the friction changes the frequency of the Kelvin
wave, ω0. In the second equation σ = α(kVns − βk2) is the growth rate of
the Kelvin wave. The solution of Equation 8.8 is

71



Figure 8.6: Vortex line density vs time corresponding to Fig. 8.5 (Schwarz
1988).

ǫ(t) = ǫ(0)eσt, (8.9)

that is to say, if σ > 0 the amplitude of the Kelvin wave will grow exponen-
tially, as shown in Figure 8.7.

Figure 8.7: Donnelly–Glaberson instability.

In general, an arbitrary disturbances on a vortex line can be decomposed
over modes with wavenumbers k. Initially, at small amplitude, each mode
will grow or decay independently. We are interested in the mode which grows
faster, because it will dominate all other modes. The maximum growth rate,
σmax, is obtained by setting dσ/dk = 0; we find

σmax = α
V 2

ns

4β
, (8.10)
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corresponding to the wavenumber kmax = Vns/(2β).
This instability plays an important role in the dynamics of a vortex tangle

because it feeds energy from the normal fluid into quantised vorticity.

8.4 Classical aspects of quantum turbulence

Our understanding of ordinary homogeneous, isotropic turbulence (such as
the turbulence away from walls in a wind tunnel) is based on the idea that
energy is fed into the turbulence at large scale ℓ0, and transferred to smaller
and smaller scales by inertial instabilities (with no role played by viscous
forces). At sufficiently small scale ℓ1, called the Kolmogorov length scale,
viscous forces become of the same order of magnitude as inertial forces, and,
at scales smaller than ℓ1, viscosity dissipates kinetic energy into heat. It
is convenient to consider this process in the wavenumber space. Let k be
the magnitude of the wave vector k. It is found that the energy spectrum,
E(k), in the inertial range 1/ℓ0 ≪ k ≪ 1/ℓ1 obeys the Kolmogorov scaling
E(k) ∼ k−5/3, as shown in Fig. 8.8.

k−5/3

1/D 1/η

E
(k

)
lo

g

log k

Figure 8.8: Kolmogorov energy spectrum E(k) ∼ k5/3 vs wavenumber k.

A number of recent experiments have revealed many classical aspects of
quantum turbulence. For example, Walstron et al. (1998) forced helium II at
high velocities along pipes and channels and observed the same pressure drops
which are detected in ordinary turbulence. Smith et al. (1993) observed the
same drag crisis in helium II which is seen in an ordinary fluid when a sphere
moves at high velocity. Maurer and Tabeling (1998), who used counter–
rotating propellers to continually excite turbulence in helium II, measured
the energy spectrum, and found the classical Kolmogorov −5/3 scaling over
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the entire temperature range explored, from Tλ down to T = 1.4 K. Numer-
ical simulations of vortex tangles in the absence of friction produced similar
energy spectra, see Nore et al. (1997), Araki et al. (2002), Kobayashi and
Tsubota (2005). Experiments on the decay of quantum turbulence behind
a towed grid (Smith et al. 1993) found that the temporal decay of turbu-
lence in helium II behind a towed grid has the same t−3/2 power law which
is expected in an ordinary fluid from the Kolmogorov spectrum. The same
time dependence of turbulence decay was found in counterflow turbulence
(Barenghi and Skrbek 2007).

The current interpretation of these experiments is that at length scales
larger than the intervortex spacing, the normal fluid and the superfluid are
coupled by the friction and behave like a classical, ordinary fluid (Vinen and
Niemela 2002, Hulton et al. 2002).

8.5 Quantum turbulence at absolute zero

At temperatures below 0.7 K, the normal fluid is negligible and helium II
can be considered a pure superfluid. The question is what should be the
properties of this special kind of turbulence. For example, it is apparent from
numerical calculations of Tsubota that, without friction, the vortex tangle
looks more ”crinkled”. Quantum turbulence experiments at temperatures
as low as few mK were performed by Davis et al. (2000) using a vibrating
grid; they found that the turbulence decays rapidly. This result was at first
surprising. In ordinary fluids, turbulence decays without a continuous supply
of kinetic energy because energy is dissipated by viscous forces at very small
scales. In helium II, if the temperature is small enough that friction and
viscous effects are negligible, it was not clear what this energy sink should
be.

The numerical calculation by Nore et al. (1997) shed light onto the prob-
lem. They computed the evolution of a tangle of vortices using the GP
equation, and observed that the kinetic energy decreases with time, while
the sound energy increases (the total energy being constant). The sink of
kinetic energy was thus found: it the generation of sound.

Further work revealed more details of the generation of sound energy by
vortices and the classical aspect of the problem, i.e. vortex sound is well–
known in classical fluid dynamics. In the context of superfluids, numerical
simulations performed using the GP equation revealed that quantised vor-
tices radiate sound energy when they accelerate. For example, Barenghi et

al. (2005) found that a 2–dimensional vortex–antivortex pair which interacts
with an isolated vortex changes suddenly the direction of motion and emits
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a ripple of sound waves, as shown in Figure 8.9. After the interaction, the
vortex–antivortex is smaller because it has less kinetic energy.

Figure 8.9: Left: vortex–antivortex pair which approaches a third isolated
vortex and becomes deflected. Right: the sound ripple (small density oscilla-
tions) which are generated. The trajectory of the vortex pair is superimposed.

By studying numerically the collision of vortex rings in the GP equation
as in Figure 8.10, Leadbeater et al. (2001) discovered a more fundamen-
tal aspect of the transformation of kinetic energy into sound: a rarefaction
pulse is emitted at each vortex reconnection event. The pulse is short (few
healing lengths), intense (initially, at the reconnection, the density drops
to zero), and localized with respect to the angle of the reconnection. The
pulse removes kinetic energy from the vortex configuration. Unlike vortex
sound, this effect has no classical counterpart: vortices in a classical inviscid
Euler fluid cannot reconnect (changes in topology are forbidden by the con-
servation of helicity); vortices in a classical viscous Navier–Stokes fluid can
reconnect, but, being viscous, are not relevant to our problem. Figure 8.10
shows the collision of vortex rings, and Figure 8.11 the sound pulse which is
generated. Within a dense vortex tangle, quantised vortices lose energy both
ways, through radiation and reconnection pulses, as shown in Figure 8.12.

By studying numerically the collision of vortex rings in helium II, in typ-
ical experimental conditions, the vortex line density is not large enough for
the decay of kinetic energy to be explained by vortex reconnections alone.
Vinen considered the sound classically radiated by simple vortex configura-
tions such as vortex pairs and Kelvin waves. He found that the power which
is radiated per unit length by a co–rotating vortex–vortex pair separated by
the distance ℓ is proportional to ℓ−6. Taking for ℓ the average intervortex
spacing deduced from the observed vortex line density, Vinen concluded that
sound radiation by moving vortices cannot account for the observed decay
of superfluid turbulence: a much shorter length scale is necessary to radiate
enough sound and explain the measurements.

The mechanism to shift kinetic energy to shorter and shorter length scales,
short enough that sound can be radiated away, is the Kelvin wave cascade
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Figure 8.10: Collision of vortex rings. The time sequence shows two views of
the colliding rings. The dot visible at t = 120 is the rarefaction pulse.

.
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Figure 8.11: Density along the z–axis for a collision of two vortex rings ini-
tially offset with respect to each other. The curves correspond to different
times and are offset with respect to each other for clarity. Just before the
reconnection (bottom curve) the density is uniform except for a slight in-
crease near the origin indicating the approaching rings. At the reconnection
a rarefaction pulse is created at the centre of which the depth drops to zero.
As the pulse moves away, the depth decreases and the pulse becomes more
shallow

.

Figure 8.12: Vortex length vs time. The sudden drop corresponds to the
emission of a rarefaction pulse, the decaying oscillations to sound radiation.
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(Kivotides et al. 2001, Kozik and Svistunov 2005) The Kelvin wave cas-
cade has some analogy with the classical Richardson cascade. The following
numerical calculation by Kivotides et al. (2001) showed how vortex reconnec-
tions trigger the cascade. Figures 8.13, 8.14, 8.15 and 8.16 show four vortex
rings which collide and undergo vortex reconnections. The cusps produced
at the reconnections relax, and the nonlinear interaction of large amplitude
Kelvin waves generate Kelvin waves at shorter and shorter scales, until the
resulting energy spectrum saturates - see Figure 8.17. Current theoretical
work by L’vov et al. (2007) on the problem is concerned with the possibility
of a bottleneck between the classical Kolmogorov spectrum (at wavenumbers
k ≪ 1/ℓ) and the Kelvin wave spectrum (at wavenumbers k ≫ 1/ℓ).

Figure 8.13: Kelvin wave cascade, t = 0.0 s: just before vortex reconnections.

Figure 8.14: Kelvin wave cascade, t = 0.059 s: just after vortex reconnec-
tions.
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Figure 8.15: Kelvin wave cascade, t = 0.129 s: note the large amplitude
Kelvin waves.

Figure 8.16: Kelvin wave cascade, t = 0.129 s: note the very short wave-
lengths.

Figure 8.17: Kelvin wave cascade: the energy spectrum before the vortex
reconnections and after saturation.
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