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Abstract

We present PROTON, a reasoner for managing temporal information over
OWL ontologies. We adopt the so called 4d-fluent or 4-dimensionalist ap-
proach for representing temporal information in ontologies ie. for time points
or intervals and for events that occur in time points or intervals. Also, we
propose an extension to the situation calculus in order to encapsulate time.
PROTON is implemented using this extension.

Key words: Ramification problem; Temporal Ontologies; Knowledge
representation and reasoning;

1. Introduction

The Semantic Web, information is given a well-defined meaning, aiming
at improving the communication between humans and computers. The first
steps in weaving the Semantic Web onto the structure of the existing Web
are already under way. In the near future, developers will use this new
functionability as machines will be able to proccess and “understand” the
data that they merely display at present. Two important techologies for
developing the Semantic Web are already in place: XML and RDF. XML
lets everyone create his their tags - hidden labels or to annotate Web pages.

Dealing with time and with the way information changes as time pro-
gresses is a well known problem in knowledge representation. Ontology rep-
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resentation languages like OWL and RDF are typically based on binary rela-
tions. Although temporal information (e.g. being an employee of company)
can be directly represented in termporal ontologies, the fact that such rela-
tionships may change in time cannot directly be represented in OWL or RDF.
Consequently, reasoning with ontology information represented in OWL or
RDF cannot take temporal information into account. Assume for example
a company share that has a price. The main problem is the representation
of information that changes over time and that we need to represent the
time and the value of the share at all time instances. Subsequently, we need
to represent information changes as a result of time and to reason on such
changes. This is exactly the problem this work is dealing with.

We introduce PROTON, a reasoning system for temporal ontologies in
OWL. Answering queries about events that change in time is a distinguish-
ing feature of PROTON. The system takes as input a temporal ontology in
OWL and transforms it to triplets of the form (subject predicate object)
using SWI-Prolog. Then the triplets are transformed into Prolog clauses.
Proton is implemented using temporal situation calculus [21]. Subsequently,
PROTON takes advantage of mechanisms inherent in Prolog for implement-
ing the reasoner.

For existing OWL reasoners (like [8, 9, 10]) to deal with information about
time, the information must explicitly be represented in the knowledge base.
They cannot deal with temporal information and, subsequently, they cannot
answer queries on temporal information that can be inferred from existing
information. Specifically, an event record describing the event at the time
specified by the query must exist in the knowledge base. The reasoner cannot
deal with queries specifying the same event in a future time even though its
value remains the same (the reasoner cannot infer an event value from its
existing value). For instance, the question“what is the value of share X
at time t1 can be answered only if the value of X at time t1 exists in the
database. Existing (non temporal reasoners) cannot handle such common
sense knowledge. PROTON handles all these problems.

The rest of the paper is organized as follows: In section 2 we describe
how time is represented at the ontology layer in OWL. Also we present the
formalisms for reasoning using an extension to Event Calculus for supporting
temporal reasoning. Section 3 describes the main components of the proposed
reasoner and its supported functionability followed by conclusions and issues
for futher work in Section 4.



2. Related Work and Background
2.1. Time Representation in Ontologies

There are two main approaches for representing changes in information
as a result of time in ontologies: Versioning [11] (the classic approach) and
the more recent “perduranlist” approach [12]. Approaches such as OWL-
TIME are only capable for representing temporal concepts and temporal
relations rather than events and how they evolve in time. At the same
time, they serve as “low-end” representations for other high semantic level
representation approaches based on “concrete-domains” for the definition of
new temporal languages such as TOWL [5, 6, 7].

Versioning suffers from information redundancy as it is based on infor-
mation repetition. Also, changes in time can only be inferred by comparing
the present and past states and cannot be directly represented in the on-
tology. The 4-dimensionalist (perdurandist) approach [12] solves both these
problems. This approach distinguishes the world into two basic categories of
entities: the endurants (physical objects such as cars, companies and people)
and the occurants (events such as buying a car). The endurants represent
time independent information (information that exists at all times) while the
occurants have temporal parts. Endurants are represented by a set of prop-
erties that do not change over time (e.g. someone’s DNA) and by a set of
properties with values that depend on time. Concepts in time are represented
as 4-dimensional objects with the 4th dimension being time. Time instances
and time intervals are represented as instances of a time interval class which
in turn is related with time concepts varying in time. Changes occur on
the properties of the temporal part keeping the entities unchanged. Fig.1
illustrates a share management ontology with investors and shares. There
are two actions (events): InvestorSellShare and InvestorBuyShare. The time
slice instances of a share have (at any instance of time) the value of the share

as property.
This world can be described by the ontology that has an Investor class,

a Share class, an Event class (with the two actions described above as sub-
classes) and a FourDFluents class that has the TimeSlice and Timelnterval
subclasses. The TimeSlice class holds all the time slices and the Timelnterval
class holds the time intervals. When a new share is created, a new instance of
the Share class is created as well. Whenever the price of this share changes,
a new instance of the TimeSlice class is created and it is connected to the
instance of the Share class. The datatype property value holds the new share
value and it is connected to the new instance of the TimeSlice class. Finally,
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new instance of the TimeSlice class.

Assume that at time T an investor decides to sell a share. When such an
event occurs (InvestorSellShare) three new instances of the TimeSlice class
are created. The first one is connected to the investor, the second to the
share and the third to the event (InvestorSellShare). The timeslice of the
InvestorSellShare is also connected to the timeslice of the Investor through
the object property shareSeller and it is also connected to the timeslice of
the Share through the object property shareSell. Finally an instance of the
Timelnterval class is created (which holds the time that the InvestorSellShare

Figure 1: The Share Management Example

occurred) and it is connected to all the new instances of TimeSlice.



2.2. Formalisms

The most important formalisms for reasoning about actions and changes
are: Situation calculus [21], fluent calculus [22], event calculus [13], action
languages and action calculus, and temporal action logic (TAL) [20]. Situ-
ation calculus is the most popular approach. It is a second order language
which has been designed for representing changes taking place in a world of
interest. All changes that happen in a world are the result of the execution of
some actions. The world is described by fluents (predicates and functions).
A likely evolution of the world is a sequence of actions that is represented by
a first order term which is called a situation.

Description Logic languages are viewed as the core of knowledge repre-
sentation systems, considering both the structure of a DL knowledge base
and its associated reasoning services. The standard inference problems that
a DL reasoner is able to provide an answer for, are: subsumption, satisfiabil-
ity, consistency and instantiation.The performance of reasoning algorithms
depends on the expressiveness of the logic implemented.

2.3. A Temporal Description Logic

In this subsection we briefly introduce a class of interval-based temporal
Description Logic, TL-ALCEF, proposed by Artale and Franconi [1, 2]. They
show that the subsumption problem is decidable and supply sound and com-
plete procedures for computing subsumption. TL-ALCF is composed by the
temporal logic TL which is able to express temporally quantified terms and
the non-temporal Description Logic ALCF extending ALC with features
(i.e., functional roles). In this formalism an action is represented through
temporal constraints on world states where each state is a collection of prop-
erties of the world holding at a certain time. The intended meaning of TL-
ALCEF is explained in the following share managment system example:

InvestorBuyShare=¢(x y) (f f x)(f m y). ((*x SHARE : Available)@x
M (x SHARE : Bought)@Qy)

InvestorBuyShare

R P ——
#

Available(SHARE) Bought{SHARE)

-

¥y

*
Figure 2: Temporal dependencies of the intervals in which InvestorBuyShare holds

Fig. 2 shows the temporal dependencies of the intervals in which the
concept InvestorBuyShare holds. InvestorBuyShare denotes any action oc-

6



curring at some interval involving a x SHARE that was once available and
then it was bought (by an investor), where x SHARE is a parametric fea-
ture and Avaiable and Bought are non-temporal concepts. The parametric
feature x SHARE plays the role of formal parameter of the action, mapping
any individual action of type InvestorBuyShare to the SHARE to be bought,
independently from time. Temporal variables are introduced by the tempo-
ral existential quantifier ¢ excluding the special temporal variable f, usually
called now, and intended as the occurring time of the action type being de-
fined. The temporal constraints (f f x)(f m y) state that the interval denoted
by x should finish with the interval denoted by f and that f§ should meet vy,
where f and m are Allen’s temporal relations of Fig. 3.

Relation Abbr. Inverse i J
before(i, j) b a
meets(i, j) m mi
overlaps(i, j) o oi —_—
starts(i, j) s si
during(i, j) d di
finishes(i, j) f fi

Figure 3: Allen’s interval relationships

As the evaluation of concept at the interval, (x SHARE : Available)@x
and (x SHARE: Bought)@Qy state that x SHARE: Available is qualified at
x and * SHARE: Bought is qualified at y. In the concept description, the
operator is the selection of feature, which is the role quantification that is
interpreted as a partial function. Details onTL-ALCF syntax can be found
in [1, 2].

2.4. DL Reasoners

Most current reasoners target the OWL-DL subset. Examples of well-
known DL reasoners are FaCT [8] and Racer [3]. An interesting category of
OWL-reasoners are based in Prolog. Other interesting categories of reasoners
are Bossam [9] and Pellet [10] whose reasoning algorithm is based on descrip-
tion logic. These reasoners implement a tableau-based decision procedure for
general TBoxes (subsumption, satisfiability, classification) and ABoxes (re-
trieval, conjunctive query answering). However, they cannot handle concepts
that evolve in time. For example, Bossam and Pellet handle time just like
every other property. Also, they do not support relations over time intervals
other than some basic ones such as comparissons between two time points,
e.g. func: after(time — constl,time — const2) returns true if time — const1
follows time — const and func : be fore(time — const1, time — const2) returns
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true if time — constl precedes time — const2, func : containedIn(time —
constl, time — begin, time — end) returns true if time — constl is in the du-
ration formed by time — begin and time — end. Racer combines description
logics reasoning with reasoning about temporal relations within the nRQL
A-box query language [3].

Another category of reasoners includes Golog [23] a high-level agent pro-
gramming language, Goncolog [24] (Concurrent Golog) which incorporates
concurrency, interrupts, and exogenous actions into Golog. Hence, it allows
the design of more flexible controllers for agents living in complex scenarios,
etc. IndiGolog(Incremental Deterministic (Con)Golog) [25] is a high-level
programming language where programs are executed incrementally to allow
for interleaved action, planning, sensing, and exogenous events. IndiGolog
provides a practical framework for real robots that must react to the en-
vironment and continuously gather new information from it. To account
for planning, IndiGolog provides a local lookahead mechanism with a new
language construct called the search operator.

GOLOG and CONGOLOG are two situation calculus based languages,
extended versions of which can represent time explicitly. They use a so-
phisticated logic of actions (based on Situation Calculus),which allows the
specification of effects of actions and constraints about the world, and can
also reason with incomplete information about the world. The GOLOG and
CONGOLOG [26, 27| interpreters are similar to hierarchical task networks
(or HTNs) as they both take a (usually incomplete specified) plan as input
and produces a complete plan as output. HTNs though , have some unique
features that are absent in GOLOG/CONGOLOG :

1. It is straight-forward to express partial ordering between actions in
HTN. In comparison the non-deterministic constructs in Golog/ConGolog
are limited and do not allow us to easily specify a partial order between
a set of actions and let the interpreter pick a particular total order.

2. Besides allowing pre and post conditions, HTNs also allow the spec-
ification of particular kind of temporal conditions, where fluents are
required to hold between two (not necessarily consecutive) action steps.

3. Finally, since HTNs have been used extensively in real planning sys-
tems, it is perhaps important that the later execution languages are
upward compatible with HTNs.

These temporal reasoners for KBs are ideaquate for OWL-time because

the based in specific format of KBs. We propose PROTON a complete system



which takes as input the knowldge in owl-time ontology and transform them
to prolog clauses (which are the KB for temporal reasoning).

3. PROTON: A Prolog Reasoner for Temporal ONtologies

In the last five years we have conducted reasearch ”"the area of reasoning
about action and change in temporal settings [15, 16, 17, 18, 19]. More
specifically we have studied the frame, ramification and qualification problem
in temporal databases. In these previous work we have proposed an extension
the situation calculus in order to encapsulate time.

3.1. Our Extension to the Situation Calculus

In this work a temporal reasoner is built on situation calculus. Below we
presented our Extension to Situation Calculus [15] in order to encapsulate
time:

e In each fluent f, the argument L is added, where L is a list of time
intervals [a, b],a < b.

e Each [a, b] represents time instances x: {z{a < z < b}}.

e The fluent f holds true in all time intervals that are contained in list

L.

e We define functions start(a) and end(a), where a is an event(action).
The former returns the starting time point of action a while the later
returns its end.

e Events are ordered as following: a; < ay , when start(a;) < start(asg).

e The predicate eventHappen(a,t) means that action a is executed at
time moment ¢.

e The so called “temporal situation” is defined as a situation with the
list of time intervals for which the fluents are true.

e Function Holding(S,t) returns all fluents that are true at time ¢. For a
functional fluent the Holding(S,t) returns the value which the function
has at time point ¢. The situation S is a temporal situation.



e We define as a non-temporal situation S of a time point ¢ the situation

S = Holding(S’,t). !

e A transition from a situation to another could happen when the func-
tion Holding(S, t) returns a different set. 2

PROTON is based on the idea of transforming the representation of a
temporal ontology into a set of equivalent prolog predicates. Queries con-
cerning temporal information are addressed towards the prolog database.
PROTON is capable of manipulating relationships between time instances
or time intervals as well as for computing inferences

3.2. The Implemetation of PROTON

| Allen calculus| | Property l'unctions|
owL SWI-Prolog Triplets | | Temporal
ontology {Subject.Predicate.Object) Reasoner
| Event predicatesl | Rule predicatesl

Figure 4: PROTON Architecture

Figure 4 illustrates the architecture of PROTON. It takes a temporal on-
tology in OWL as input and transforms it into Prolog predicates. PROTON
consists of several modules, the most important of them being the following:

1. SWI-Prolog for transforming temporal OWL concepts to prolog clauses

2. Allen calculus for computing relations over time intervals

3. A set of functions for computing property values at any instance of
time

4. A set of predicates than determine when an event takes place and

5. A set of predicates which execute rules when an event takes place or
when a change in the value of a property occurs.

!'Notice that many different temporal situations could refer to the same situation at a
specific time point.

2For example {f1([[7,9]], = f1([[10, 00]]), ....} means that at time point 10 we have tran-
sition from one situation to another because the truth value of the fluent f; changes.
Notice that the transition happens without an action taking place.
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The Transformation from temporal OWL to clauses

PROTON is based on transforming OWL statements to facts of the
form “predicate(subject,object)”. First,we transform the OWL ontology to
triplets (subject predicate object) using SWI-Prolog.The following is the
list of possible transformations:

1. Triplets of the form: (S,’http://www.w3.0org/1999/02/22-rdf-syntax-
ns#type’,0) are transformed to O(S)

2. Triplets of the form: (X,Y literal(Z)) are transformed into Y(X,Z)

Triplets of the form: (X,Y,Z) are transformed into facts Y (X,Z)

4. Triplets of the form: (S, http://www.w3.0org/2000/01/rdf-schema#subClassOf’,0)
are transformed into O(X) :- S(X)

5. Triplets of the form: (S,’http:/www.w3.0rg/2000/1/rdf-schema#subPropertyOf’,0)
are transformed to O(X,Y) :- S(X,Y)

@

For example, an OWL entity of the form

<owl:ObjectProperty rdf:ID="tsTimelnterval” >
<rdfs:domain rdf:resource="#tsTimeSliceof” />
<rdfs:range rdf:resource="#Timelnterval” />

< Jowl:ObjectProperty>

is first transformed into the triple such as
(tsTimeSliceof, onproperty, ....)
(tsTimeSliceof, disjointwith,tsTimelnterval)
and then to the following KB facts:

fact(disjointwith('tsTimeSliceof’, tsTimelnterval’)).
fact(onproperty(’__Description2’ tsTimeSliceO f)).

After having transformed all OWL entities to facts, we can take advantage
of the mechanisms inherent to Prolog for the implementation of the reasoner.
As such, the KB in Prolog can be further enriched with the necessary infer-
ence rules for reasoning. The above process can be modified to produce a
knowledge base for the reasoning model in use (i.e., situation calculus in this
work).

In the following we discuss PROTON using the share management sys-
tem of Section 1 as an example. The KB consists of predicates produced
automatically, as discussed above. Some of these predicates are common for
all ontologies while others are application specific. The temporal relations
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of Allen (before, equals, meets, overlaps,during, starts,finishes) for handling
temporal relationships are also implemented. First, we introduce two time-
handling predicates:

date(D,t): . The first argument is a time interval and the second is a times-
tamp. In our implementation timestamps are strings of the form “yyyy —
mm — ddThh : mm : ss” and time intervals are lists of the form [t1,¢2]
where t1 is the starting timestamp of the time interval and ¢2 is the ending
timestamp. The predicate succeeds if t1 < t < 2 (if the second argument

belongs in the time interval D.

before(tl,t2): . Both arguments are timestamps. The predicate determines
the earlier between those two timestamps. It succeeds if timestamp t1 is
earlier than 2.

Next we show how property values are computed. For this, the following
predicates are defined:

value(X,Y, Z):. Argument X is the name of the share in a string format
(called a caption), argument Y is and integer (the value of caption X) and
argument Z is a timestamp. The predicate succeeds if the value of caption
X is Y at the timestamp Z. An example where the predicate succeds is
illustrated in Fig. ba.

VALLE VALUE VALUE

80 80 80

60 60 60

40 40 40

20 20 20

0 [4 0

Date('2006-12-10T12:34:00') e T E HE T BE TIME
value(share1',60,2006-12-10T12:34:00') hold ‘share1”, 60, [T, E]). hold( ‘share1”, 60 . [T, E]).
(a) {b} FAILS (€)

Figure 5: Examples of the hold and value predicates

hold(X,Y, D):. 3 Argument X is a string (caption), argument Y is the value
of the caption and D is a time interval. The predicate succeeds if the caption
X holds the value Y during the time interval D and change it’s value at the
end of D. More specifically,this means that Value(X,Y,t) succeeds for every

3Here we implemend our representation f(L) that we have defined in section 3.1
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t,t1 <t < t2and Value(X,Y,t2) fails. For example, in Fig. 5b, ‘sharel’ has
value 60 in the time interval [T, F] and the predicate evaluates true. while
in Fig. 5c¢ the predicate hold(‘sharel’, 60, [T, E]) evaluates to false because
the share doesn’t maintain it’s value during the time interval [T’ E].

In Fig. 6 we present predicates that handle events. In our share man-
agement system example an event occurs when an investor buys or sells a
share.Every event E is associated to a unique pair of an investor X and a
share/caption Y which are connected with timeSlices.

eventHappen(E,t,L):. * Tt takes as input an event F, a timestamp t and
returns list L (initially empty) in its output. The predicate succeeds if an
event F (e.g.,buying or selling a share) occurs at timestamp ¢. This means
that there is an investor I who buys or sells a share S at timestamp ¢. The
investor and share are connected with each other with time slices and then
they are connected to the event the same way (Fig.4). If the predicate is
succesfull then the investor and the share that are associated to the event

are added to list L (L = [1,5]).

sales(t,V, L):. this predicate is an example of how indirect effects of actions
(events) are captured. Takes as input a timestamp ¢, an integer value V' > 0
and a list L as in the previous predicate. The predicate succeeds if there
is at least one share S in the database that its price has increased by V%
(compared to its previous price) until the timestamp ¢. In order to check
which shares satisfy this constraint, all the shares in the database are scanned
one by one and those that make the predicate succeed are added to the L
list.

IsTimeSliceOf  IsTimelnterval

EVENT shareBought ShareSlice ¥ timelnterval Z
investori GetSlice K [ Share Y ShareSlice Y "

| Sharel | . . ShareSlice ¥ Timelnterval
investor2 IsTimeSliceOf - - share Timelnterval Z
Share 2 TimeSlice DATED

- Share ¥
................ || GetSlice K shareSlice ¥

— InvestorXgetshareY shareBuyer sTimeSliceOf IsTimelnterval

Share ¥ TimeSlice I_ GetSlice K InvestorSlice X | | timelnterval
InvestorSlice X Investor X InvestorShare X
GetSlice K - n
TimeSlice Investor
Investor X

| InvestorSlice X

Figure 6: The correspondence among Time-Events and Situations

4Here we implemend the predicate eventHappen that we have defined in section 3.1
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holding(C'L, caption;, value;):. ®> Takes as input the caption list C'L which
is a list with all the captions in the database, a list with a pair of a caption
and a value (caption;,value;) and a timestamp t. The predicate determines
the value of all captions at a specific timestamp (This is very important in
order to address the frame problem ). The predicate scans the database
and determines the value of each caption using the following algorithm: If a
value(caption;, value;, t) predicate exists for timestamp ¢ then the captions
value is defined by this predicate. If there is not a value(caption;, value;,t)
for timestamp ¢, then the caption naturaly has the value that was determined
by the last occurance of the value predicate for this caption(the last time the
caption’s value was changed) at a timestamp t1 < ¢. To find this value the
holding/3 predicate calls the find_last value predicate.

find_last _value(C'P,V,T):. Takes as input a caption C'P,a value V and a
timestamp t. The predicate scans the knowledge base to find a past value V of
caption C'P with the precondition that the timestamp ¢1 when the caption
changed value is be fore the timestamp tand there is no other timestamp ¢2
so that 11 <12 < t.

The find_last_value. predicate implements one very important feature of
PROTON because it makes it capable to answer questions which cannot be
answered by other reasoners. For example let’s asume that we have a share
Share; and the following fact is registered in the database : value(Share;,50,"11-
5-2009T23:00:00"). 1f we wanted to determine the value of share; at ’12-5-
2009T23 :00:00° (which is after 11-5-2009T253:00:00) we would get a negative
answer from most reasoners while PROTON would be able to retrieve the
previous value of share; and answer 50’.

run :. It is the simulator of the share management system and it takes
not arguments The predicate scans the database for events and executes
the aproporiate actions for each event.This is illustrated in Fig. 7. For
every timestamp date_i,that exists in the knowledge base, the run predicate
determines:

1. The value of all the shares at this timestamp (using the Holding pred-
icate)
2. All the events that occur (using the EventH appen predicate)

SHere we implemend the predicate holding that we have defined in section 3.1
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3. All the shares that have raised there value for more than a specified
value (using the sales predicate).

For example lets assume that our database consists of the following :
Two date predicates ( ”20-5-2009T12:00:00” and ”20-5-2009T14:00:00” ),
two shares ( ”share_1” with value 7100” and ”share_2” with value 200) and
one investor ("investor_1” ). Also lets assume that the following two events
occur:

1. 7Investor_1” buys ”"share_1” at ”20-5-2009T12:00:00”.
2. "share_2” raises it’s value by 50%.

Now, by executing the run predicate , our reasoner will answer the fol-
lowing :

Date : 20-5-2009T12:00:00
share_1 100

share_2 200
[investor\_1,share\_1]

Date : 20-5-2009T14:00:00
share_1 100

share_2 300

[share_2]

This is a small example using only two date predicates.In a more realistic
simulation of the system,this process continues for every date predicate in
the knowledge base.

PROTON can be generalized to handle any application by supplying
predicates specific for the application in use. Notice that only application
specific predicates (such as sales) need to be changed.

4. An example of simulator

In this example we simulate some instant and periodic events that may
occur to a public employee. Instant events are events that may occur at a
random time point and periodic events are events that always occur after
a predefined period of time passes (e.g the employee receives salary every
month). Each of the events has direct and indirect effects on the employee’s
status. Below we describe the event predicates and their effects in more detail
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misdemeanor(P,t) : . When the employee P commits a misdemeanor his

status changes to illegal for a time period of [t,¢ + n]. During this period
the employee cannot receive salary and all the periodic events are postponed
by n time units. For example lets asume that an employee takes his salary
every 60 time unints and he commits a misdemeanor and becomes suspended
during the time interval [40,45]. As an indirect effect of his misdemeanor,
the employee will receive his salary 5 time unints later than usual, at time
point 65.

take_pardon(P,t) :. This event can only occur if the employee P is under

suspension. When it occurs the employee’s status turns to legal again. Using
the previous example , if the employee P is suspended during the period
[40,45] and he receives a pardon at the time momment 43, then he will
receive his salary at time momment 63.

good_grade(P,t):. When an employee P receives a good grade and he is not
suspended or has got a bad grade then he receives a bonus at time t.

bad_grade(P,t):. When an employee P receives a bad grade at time t then
he does not receive a bonus.
The following two predicates simulate the periodic events of our example

take;ncrease(P,t):. This predicate defines if the employee P can receive an
increase to his salary at time ¢. Every empoyee receives an increase to his
salary every t1 time units. The predicate is executed at every time momment
increasing an internal counter until the counter equals t1. When this happens
then ,as an direct effect, the employee receives an increase to his salary and
the counter is set to 0 again. The increase of the salary may be affected by
misdemeanor commitments of the employee. In such cases the increase is
postponed. For example let’s asume that the employee usually receives an
increase every 100 time units and that he commits a misdemeanor during the
intervals [30, 35] [60, 65]. Under ideal circumstances (if he had not commited
any misdemeanors) the employee would receive his first increase at time point
100 but now after two misdemeanors he will receive the increase at time point
110.

takey,romotion(P,t):. Similar to the take_increase predicate this predicate is
used to increase an employee’s ranking in the hierarchy after a predifined
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number of {2 time units. Again, if the employee has commited any misde-
meanors, the promotion is postponed. For example if the employee’s current
ranking is 0 and the promotion period is 100 time units if the employee com-
mits a misdemeanor and becomes suspendedfor the period [30,35] then he
will receive a promotion at time point 105.

After defining the application dependant predicates, we can use the run
predicate which we described before as a simulator. The run predicate will
go through all the date predicates of the knowledge base executing the ap-
proporiate rules for each date. In the following lines we show an example of
such a simulation test :

Before the test we need to make some clarifications about the events and
the employees.

1. We use 3 employees in this test : p1,p2,p3.
2. The test is ran in the time interval [0,100]
3. Every employee is considered to be legal and also a good employee
at the beginning of the test so the legal and good_employee initial
predicates look like that :
(a) pl:legal(pl,[[0,100]]).good_employee(pl, [[0, 100]]).
(b) p2:legal(p2, ][0, 100]]).good_employee(p2, [0, 100]]).
(c) p3:legal(p3,][0,100]]).good_employee(p3, [0, 100]]).
4. The initial predicates for the salary and promotion status for the em-
ployees are :
(a) pl: salary(pl,500,0).pl : position(pl,0,0).
(b) p2: salary(p2,600,0).p2 : position(pl,1,0).
(¢) p3: salary(p3,700,0).p3 : position(pl,2,0).
The salary and position values are incremented by one every time the
take_increase and take_promotion events occur.
5. The initial time intervals for this test are :
(a) timelnterval([0,19], timelInterval 1").
(b) timelnterval([20,39], timelnterval 2').
(c) timelnterval([40, 54] timelnterval 3').
(d) timelnterval([55,79], timelInterval 4").
) [30,99] )

(e) timelnterval([8 J/ timelInterval 5').

1. 10. misdemeanor p3 : The employee p3 becomes suspended for the next
5 time units so we have a change in the data base , legal(p3, [[0, 100]])
changes to legal(p3, [[0, 10], [15, 100]])
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. 25. take increase pl,p2 : During the time interval [0-24] the salary
predicates of the employees pl,p2 were increased by one in every time
stamp salary(p,s,n) changes to salary(p,s,n+1) so when t=24 we have

(a) salary(pl,500,24) changes to salary(pl,501,0)

(b) salary(p2,600,24) changes to salary(p2,601,0)
So the employees pl and p2 receive their increase normally but p3 who
had been suspended for 5 time units has at this point this salary pred-
icate: salary(p3,700,19) because his salary increase counter stopped at
t=10 and started to count again at t=15.
. 30. take increase p3 : After 5 time units from the normal salary increase
time employee p3 receives an increase and his salary predicate changes
. salary(p3,700,24) changes to salary(p3,701,0)
. 41. misdemeanor p3 : Employee p3 commits a misdemeanor and turns
illegal for the next 5 time units. We have a change in the legal predicate
: legal(p3, ][0, 10], [15, 100]]) changes to legal(p3, [[0, 10], [15, 41], [46, 100]]).
. 43. Employee p3 (who is currently illegal) receives a pardon. So ,
he becomes legal again and we have a change in the legal predicate.
legal(p3, [[0—10], [15—41], [46—100]]) changes to legal(p3, [[0—10], [15—
41], 43 — 100]]).
. 50. Employees p1l and p2 receive their salary increase normally because
they havent turned illegal until now.

(a) salary(pl,501,24) changes to salary(pl, 502,0)

(b) salary(p2,601,24) changes to salary(p2,602,0)
Again here, employee p3 does not receive an increase cause he is post-
poned for 7 days because of his two misdemeanors.
. 57. Employee p3 receives his salary increase after 7 days of the time
when the normal increase occurred. This is because he committed
two misdemeanors (the first lasted 5 time units and the second only 2
because of the pardon that occurred). So : salary(p3,701,24) changes
to salary(p3,702,0)
. 60. misdemeanor pl: Employee p1 is suspended for 5 time units and the
legal predicate changes : legal(pl, [[0, 100]]) changes to legal(p1, [[0, 60], [65—
100]]). The employee pl was about to receive promotion in the next
time unit but this misdemeanor will postpone his promotion 5 time
units later.
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9. 61. take promotion p2 : This is the first time that the employees would
receive a promotion if they hadnt been committing misdemeanors. So ,
only p2 receives a promotion for now and the position predicate changes
as follows : position(p2,1,60) changes to position(p2,2,0)

10. 66. take promotion pl : After being postponed by 5 time units the
employee pl receives his promotion. position(pl,0,60) changes to
position(pl, 1,0)

11. 68. take promotion p3 : After 7 time units (5 +2 ) employee p3 receives
his promotion also: position(p3,2,60) changes to position(p3,3,0)

12. 75. take increase p2 : Employee p2 receives a salary increase : salary(p2,602,24)
changes to salary(p2,603,0)

13. 80. take increase pl : Employee pl receives a salary increase : salary(pl, 502, 24)
changes to salary(pl, 503, 0)

14. 82. take increase p3 : Employee p3 receives a salary increase : salary(p3, 702, 24)
changes to salary(p3,703,0)

15. 84. bad grade p2 : Employee p2 receives a bad grade and is considered
a bad employee. If an employee gets a bad grade he is not able to
receive bonuses.

16. 87. misdemeanor pl,p3 : Employees p1l,p3 both commit a misdemeanor
at the same time. So the legal predicates change like this :

(a) legal(pl,][0,60], [65—100]]) changes to legal(pl, [[0, 60], [65—87], [92, 100]])
(b) legal(p3,[[0 — 10], [15 — 41], [43 — 100]]) changes to legal(p3, [[0 —
10], [15 — 41], [43 — 87], 192, 100]]).

17. 90. good grade p2 : Employee p2 receives a good grade and is able to

receive bonuses from now on.

5. Conclusion

In this paper we presented PROTON a reasoner implemented in prolog
for managing temporal information over OWL ontologies. As future work we
intend to extend PROTON to handle the ramification problem (e.g., handle
the indirect consequences of actions) and also apply PROTON to application
domains such as medicine and finance.
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