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Software-product-line engineering is an efficient means to generate a family of program variants for a domain from a single
code base. However, because of the potentially high number of possible program variants, it is difficult to test them all and
ensure properties like type safety for the entire product line. We present a product-line–aware type system that can type check
an entire software product line without generating each variant in isolation. Specifically, we extend the Featherweight Java
calculus with feature annotations for product-line development and prove formally that all program variants generated from
a well-typed product line are well-typed. Furthermore, we present a solution to the problem of typing mutually exclusive
features. We discuss how results from our formalization helped implementing our own product-line tool CIDE for full Java
and report of experience with detecting type errors in four existing software-product-line implementations.
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1. INTRODUCTION

Software-product-line engineering is an efficient means to create a family of related programs for
a domain [Bass et al. 1998; Pohl et al. 2005]. Instead of implementing each program from scratch,
product-line engineering facilitates reuse by modeling a domain with features (increments in func-
tionality relevant for stakeholders) and generating program variants from common assets [Kang
et al. 1990; Bass et al. 1998; Czarnecki and Eisenecker 2000]. Hence, from a common code base,
we can generate different variants that are tailored to specific usage scenarios. Product-line engi-
neering is typically split into two phases: domain engineering (development of a common code
base) and application engineering (variant generation reusing the common code base) [Czarnecki
and Eisenecker 2000; Bass et al. 1998; Pohl et al. 2005].

Although the flexibility of software product lines to generate different tailored variants is an
important strength [Bass et al. 1998; Pohl et al. 2005], it comes at a price of increased complexity.
Instead of a single program, developers implement potentially millions of variants in parallel. To
ensure correctness, testing a single program is no longer sufficient; out of millions of variants,
errors may occur in few variants that offer a certain feature or feature combination [Pohl et al. 2005;
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Thaker et al. 2007; Czarnecki and Pietroszek 2006; Batory and Geraci 1997]. As some variants are
never or rarely generated (e.g., only late after initial development when a new customer requests
such a variant), potential errors may go undetected for a long time, until they are expensive to fix.
A brute force strategy of generating, compiling, and testing all variants is not feasible for most
product lines due to the high number of potential variants; therefore, novel approaches are needed
that check the entire product line during domain engineering instead of checking each individual
variant in isolation during application engineering.

There are many different approaches to implement variability in software product lines. Here,
we focus on a simple mechanism, which is very common in industry: Developers annotate code
fragments inside a common code base, for example, using #ifdef statements or similar directives;
to generate a variant, annotated code fragments are removed from the common code base, depend-
ing on a stakeholder’s feature selection. Support for annotations (a.k.a. conditional compilation)
is available in many environments or languages such as C, C#, Visual Basic, Pascal, Fortran, and
Erlang, and Java ME; when not supported natively, it can be added with lightweight tools.

We present a product-line–aware type system that statically and efficiently detects type errors
in annotation-based product-line implementations. Type errors are a class of common errors that
can be detected statically in many languages, typically during compilation. Product-line implemen-
tations are especially prone to type errors, such as dangling method invocations, because variant
generation may conditionally remove code. In contrast to conventional product-line approaches that
generate and check variants in isolation during application engineering, a product-line–aware type
system detects type errors in the entire software product line in a single pass already during domain
engineering.

As goals, we want our type system to be both sound and practical. We formalize the type system
for a subset of Java on top of the Featherweight Java calculus [Igarashi et al. 2001] and provide
a solution for the problem of type checking alternative (mutually exclusive) features. We guaran-
tee that a well-typed software product line produces only well-typed variants (generation preserves
typing) and prove this property with the proof assistant Coq.1 We deliberately design a backward
compatible solution that does not introduce new language constructs but can reuse existing tool
infrastructures and can be applied to existing source code. Based on our formalization and gained
insights, we implemented a type system for full Java on top of our annotation-based product-line
tool CIDE (as extensions to existing type checks in Eclipse). In three case studies, we found that
a product-line–aware type system can efficiently detect errors in existing product-line implementa-
tions. In all three analyzed product lines, which were developed using #ifdef directives by others
(between 4 600 and 45 000 lines of code), CIDE found type errors that occur only when a variant
with a specific feature combination is generated.

Our type-checking approach is part of a bigger endeavor to detect various kinds of errors in
product lines as early as possible. It builds on top of our prior efforts to prevent syntax errors with
disciplined annotations in our tool CIDE [Kästner et al. 2008; Kästner et al. 2009] and is inspired
by prior work on type checking entire product lines [Czarnecki and Pietroszek 2006; Thaker et al.
2007; Huang et al. 2005; 2007; Delaware et al. 2009; Apel et al. 2010] (see Sec. 9).

This paper is a revised and extended version of [Kästner and Apel 2008]. We make the following
contributions (of which only the second was made in [Kästner and Apel 2008]):

— We provide an overview of typing problems and discuss design goals for practical application
and reuse of existing tool infrastructures.

— We formalize a product-line–aware type system and a variant generation mechanism on top of
Featherweight Java.

— We provide a solution to the problem of typing alternative features.
— We proof soundness (generation preserves typing).

1http://www.lix.polytechnique.fr/coq/
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— We implement type checks for full Java in CIDE and conduct a series of case studies to evaluate
practicality and efficiency of the type system.

2. SOFTWARE-PRODUCT-LINE IMPLEMENTATION

The idea behind software-product-line engineering is to analyze an entire domain and document
commonalities and variabilities of different programs of that domain. Then, instead of implementing
a single program, developers implement common artifacts from which they can generate different
program variants. For example, in the domain of embedded database systems, different program
variants are needed depending on different usage scenarios: in some embedded systems transactions
are required, in others recovery is needed, others are read-only, and only some need support for ad-
hoc queries.

There are many approaches to implement software product lines, ranging from simple ad-hoc
mechanisms to sophisticated architectures and specialized languages. In practice, developers often
use simple tools such as the C preprocessor to implement variability. In a common code base, devel-
opers annotate code fragments with #ifdef X and #endif directives or similar constructs, in which X
represents a feature such as transactions. Based on a feature selection provided as configuration file
or command line parameters, developers can later include or exclude the annotated code fragments
during variant generation.

Beyond languages that support some form of annotations natively, such as C, C#, and Pascal,
there are several independent, partly configurable preprocessors such as GPP,2 GNU M4,3 or the
preprocessors included in the Version Editor [Atkins et al. 2002]. Also the commercial product-line
tools pure::variants [Beuche et al. 2004] and Gears [Krueger 2002] provide their own preproces-
sors.

In literature, annotation-based approaches are heavily criticized as summarized in the claim
“#ifdef considered harmful” [Spencer and Collyer 1992] and in the colloquial term “#ifdef
hell” [Lohmann et al. 2006]. Numerous studies discuss the negative effect of preprocessor usage on
code quality and maintainability [Spencer and Collyer 1992; Krone and Snelting 1994; Favre 1997;
Ernst et al. 2002]. Despite this criticism, practitioners implement many software product lines with
preprocessors. Examples are HP’s product line Owen for printer firmware [Pearse and Oman 1997],
Danfoss’ product line of frequency converters [Jepsen and Beuche 2009], the NASA’s product line
of flight control systems [Ganesan et al. 2009], and the Linux kernel [Tartler et al. 2009; She et al.
2010].

In academia, however, annotation-based approaches received little attention. Instead, academics
typically recommend to limit or entirely abandon their use and to implement software product lines
with “modern” implementation techniques that encapsulate features in some form of modules (such
as components [Szyperski 1997], frameworks [Johnson and Foote 1988], feature modules [Prehofer
1997; Batory et al. 2004], aspects [Kiczales et al. 1997], and others).

Nevertheless, adoption of modern implementation techniques in practice is slow, and we ex-
pect that annotation-based product-line implementation will dominate practice at least in the mid-
term future. We even discuss that (with some improvement, disciplined usage, and tool support)
annotation-based approaches can be considered as viable long-term alternative to module-based ap-
proaches [Kästner et al. 2008; Kästner and Apel 2009]; however that discussion is outside the scope
of this paper. Here, we provide a type system for annotation-based implementations intended for
current and at least mid-term practical use.

3. TYPE ERRORS IN SOFTWARE PRODUCT LINES

Before we start with a formal discussion of our type system, we provide a quick overview of product-
line development using annotations, different type errors that can occur, and desirable properties of
the type system that we want to guarantee. We provide examples of annotations that result in ill-

2http://www.nothingisreal.com/gpp/
3http://www.gnu.org/software/m4/
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typed program variants, which are simplified for conciseness almost to the edge of triviality, but
which stem from earlier experience in developing product lines for embedded database applica-
tions [Kästner et al. 2007]. Our examples are written in Java and variability is implemented with the
well-known syntax of the C preprocessor;4 however, the same problems occur in other languages
and when using other forms of annotations.

Method invocation. As a first example, consider the following code fragment of a class Storage
used by another class Database.

1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock());
4 }
5 }
6 class Storage {
7 #ifdef WRITE
8 boolean set(Object key, Object data, Lock l) {...}
9 #endif

10 }

In a read-only database variant, setting values in the storage class is not supported, so the
according code is annotated to be removed unless a feature WRITE is selected (#ifdef ). Al-
though this code is well-typed for all variants that actually select the feature WRITE, the
method invocation of set in Line 3 (underlined) cannot be resolved in variants in which
WRITE is not selected. In these cases, the method invocation remains but the correspond-
ing method declaration is removed. If read-only databases are not generated during develop-
ment, this error may go undetected. In some cases, it may be detected only after develop-
ment, when a customer actually requests a variant without WRITE. To type check the entire
product line, we need to make sure that the method invocation can reach a method decla-
ration in every variant in which the invocation itself is present. One of many possible solu-
tions to eliminate the error in our example is to annotate the insert method with WRITE as
well.

Referencing types. There are numerous similar type errors, for example, when an entire class is
annotated as in the example below. If a database without transactions is generated, compilation will
fail because the parameter’s type Txn (underlined) cannot be resolved. Similar type errors can occur
when the class is referenced as return type or as supertype, when new objects are instantiated, and
in several other cases.

1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock()); }
4 }
5 #ifdef TRANSACTIONS
6 class Txn { ... }
7 #endif

Parameters. To fix the previous error, we could annotate the parameter txn of the method insert
as well, as shown below, such that in database variants without transactions insert has a different
signature. To avoid a problem when accessing the local variable txn, we annotate the invocation
‘txn.getLock()’. If a database without transactions is generated, typing this variant still fails, because
the method invocation ‘storage.set(...)’ has only two parameters, but the method declaration expects
three.

4For the sake of concise examples, we use a slightly relaxed notation of the C preprocessor throughout this paper. First, we
allow #ifdef instructions inside a line, instead of breaking the source code into multiple lines. Second, we allow boolean
operators in the condition as “#ifdef X ∧ Y” and “#ifdef X ∨ Y” as alternative to nested #ifdef directives or “#if defined(X) ||
defined(Y)”.
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1 class Database {
2 void insert(Object key, Object data
3 #ifdef TRANSACTIONS, Txn txn #endif ) {
4 storage.set(key, data #ifdef TRANSACTIONS, txn.getLock() #endif );
5 }
6 }
7 class Storage {
8 boolean set(Object key, Object data, Lock l) {...}
9 }

Again, there are different solutions to make all variants in this example well-typed: we can anno-
tate the lock parameter of set (and all occurrences in the method’s body not shown here), or we can
overload the method declaration of set. Either way, when type checking the entire product line, we
must make sure that the provided parameters match the expected formal parameters in all variants.

Feature model and alternative features. The previous examples were relatively simple because
they contained only annotations with a single optional feature. However, a software product line
can have hundreds of features and not all combinations of features may make sense. For example,
transactions are not necessary in a read-only database; therefore, we do not need to consider a
variant with TRANSACTION but without WRITE during type checking. Furthermore, two features
like PERSISTENT and IN-MEMORY for data storage can be alternative (mutually exclusive); every
variant must select one of them but not both at the same time. Even more complex constraints like
‘feature A can be selected only when B or C but not D are selected’ occur in practice [Mendonça
et al. 2009; Thüm et al. 2009].

Features and their relationships in product lines are described in a feature model (also known as
variability model). There are different forms of how to describe feature models; a common form
is a feature diagram [Kang et al. 1990; Czarnecki and Eisenecker 2000], but it is also possible to
enumerate all allowed variants, or use logics to describe constraints on the feature selection [Batory
2005; Benavides et al. 2005; Schobbens et al. 2006]. Based on a feature model, we can decide which
feature combinations are valid and can be used to generate a variant. When type checking a software
product line, we need to consider all valid variants.

The following code sample shows a code fragment which is only well-typed if we know (a) that
PERSISTENT and IN-MEMORY are mutually exclusive (otherwise a variant with both features would
be ill-typed because class Storage would contain two methods with the same signature) and (b) that
WRITE can only be selected if either PERSISTENT or IN-MEMORY is selected (otherwise an ill-
typed variant could be generated with a method invocation of set but no according declaration).
This example illustrates that we need to consider complex constraints between features for type
checking product lines.

1 class Database {
2 #ifdef WRITE
3 void insert(Object key, Object data, Txn txn) {
4 storage.set(key, data, txn.getLock()); }
5 #endif
6 }
7 class Storage {
8 #ifdef PERSISTENT
9 boolean set(Object key, Object data, Lock lock) {

10 return /* implementation A */;
11 }
12 #endif
13 #ifdef INMEMORY
14 boolean set(Object key, Object data, Lock lock) {
15 return /* implementation B */;
16 }
17 #endif
18 }
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4. DESIRED PROPERTIES OF THE TYPE SYSTEM

Overall there are two properties that we want to ensure with a type system for software product
lines: generation preserves typing and backward compatibility. The first is the necessary core of
this paper and the second is fundamental design decision targeted at better tool support as we will
explain.

Generation preserves typing: We want to guarantee that every variant which we can generate
from a well-typed product line is well-typed. If a product line allows ill-typed variants, we want an
error message upfront during domain engineering, without actually generating every single variant.
We call a product line well-typed if all variants it can generate are well-typed. This is the main goal
we want to achieve with our type system.

Backward compatibility: We want that a product line that we strip of all its annotations is a well-
typed program (not necessarily a variant with reasonable runtime semantics). For our work with
Java, this implies two things: (a) our type system is an extension of Java’s type system and not a
replacement, and (b) we do not introduce new language constructs, because this would be no longer
be a Java program. This desired property may appear arbitrary but has a rationale from a tool devel-
oper’s perspective. As soon as we introduce a new keyword, or just allow multiple methods with the
same name as in the previous code example, existing tool infrastructures can no longer be used and
must be rewritten. For example, this problem was experienced by the AJDT and Scala teams that
provided commercial-quality Eclipse plug-ins for AspectJ and Scala. Because AspectJ and Scala
extend the Java syntax, the existing editors with syntax highlighting, outline views, navigation, and
code completion could not be reused, but the entire tool infrastructure had to be rewritten (often
through ‘coping and editing’) [Chapman 2006; McDirmid and Odersky 2006]. On the other hand,
adopting a new language for product lines without adequate tool support is difficult for developers
who are used to the comfort of modern IDEs. Therefore, we design a mechanism and enforce certain
restrictions, so that our type system is backward compatible. For example, we do not directly sup-
port an implementation as in the previous example, but require a different encoding of alternative
features, which we discuss in Section 6.

Backward compatibility is not necessary and can be discussed controversially. On the one hand,
if we drop backward compatibility, we can build a more expressive language, especially regarding
alternative features. On the other hand, if we retain backward compatibility and design a type system
as extension, we can leave the existing type checker and tool infrastructure as is, and just add the
additional conditions on top. In fact, in a parallel line of work, we designed a different product-line–
aware type system FFJPL that drops backward compatibility, introduces new language constructs,
and supports alternative features directly [Apel et al. 2010]. The type system is very expressive, but
also very complex. Its applicability and ability to scale to realistic product-line implementations has
not been shown yet. From our perspective backward compatibility is desirable; it influenced many
of our design decisions, which we discuss in the respective sections. We focus on type systems that
can be used for industrial-size product-line development and demonstrate the suitability in four case
studies in Section 8.

5. COLORED FEATHERWEIGHT JAVA (CFJ)

With Colored Featherweight Java (CFJ), we introduce a calculus of a language and type system
for software product lines. We designed CFJ for a subset of Java on top of disciplined annotations.
It fulfills both desired properties: generation preserves typing and backward compatibility. (The
calculus is named colored due to a peculiarity of our product-line tool CIDE, which uses background
colors to represent annotations.)

We decided to provide a formalization and proof for both properties, after an initial implementa-
tion of our type system for Java. We soon found that our implementation was unsound: We could
not give a guarantee and sometimes generated ill-typed variants from a product-line that our imple-
mentation had considered well typed, because we forgot some checks. We found similar problems
in other product-line–aware type systems (see Sec. 9). At the same time, a formalization of our type
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checks for the entire Java language is not feasible because of Java’s complexity and rather informal,
textual specification (688 pages!) [Gosling et al. 2005]. Instead, we formalize product-line–aware
type checking mechanism for Featherweight Java (FJ), a subset of Java, and describe how we im-
plemented and extended it toward full Java and other languages in Section 7.

5.1. Featherweight Java

FJ is a minimal functional subset of Java for which typing and evaluation are specified formally
and proved to be sound with the FJ calculus [Igarashi et al. 2001; Pierce 2002]. It was designed to
be compact; its syntax, typing judgments and operational semantics fit on a single sheet of paper.
FJ strips Java of many advanced features such as interfaces, abstract classes, inner classes, and
even assignments, while retaining the core features of Java typing. There is a direct correspondence
between FJ and a purely functional core of Java, such that every FJ program is literally an executable
Java program.

The motivation behind FJ was to experiment with formal extensions of Java, while focusing only
on the core typing features and neglecting many special cases that would require a larger calculus,
without raising substantially different typing issues. Because of its simplicity even proofs for sig-
nificant extensions remain manageable. For the same reasons, we chose FJ over other formalized
Java subsets such as Classic Java [Flatt et al. 1998], Javalight [Nipkow and von Oheimb 1998], or
Lightweight Java [Strniša et al. 2007].

We do not repeat the FJ calculus; however, its mechanisms will become clear from our formal-
ization as we highlight our modifications and repeat unmodified rules.

5.2. Syntax and Annotations

First, we describe CFJ’s syntax and how feature annotations are introduced in the calculus. For
CFJ, we use the original FJ syntax without casts, as shown in Figure 1.5 As in FJ, we use the
following notational conventions: x denotes a list of elements x1 x2 . . .xn. In conditions of type
rules, relations and operations on lists are applied to all entries; for example, f (x) = y is short for(

f (x1)= y
)
∧
(

f (x2)= y
)
∧ . . .∧

(
f (xn)= y

)
and f (x)= g(y) is short for

(
f (x1)= g(y1)

)
∧
(

f (x2)=

g(y2)
)
∧ . . .∧

(
f (xn) = g(yn)

)
. Finally, also as in FJ, we require elements of lists to be named

uniquely; for example, there may not be two methods with the same name in a class.
As in FJ, a class table CT maps each class’ name to its declaration and has the sanity conditions:

(a) CT (C) = class C... for every C ∈ dom(CT ); (b) Object /∈ dom(CT ); (c) for every class name C
(except Object) appearing anywhere in CT , we have C ∈ dom(CT ); and (d) there are no cycles in
the subtype relation (see below) induced by CT .

Next, we need to define which code fragments can be annotated and how. There are different
ways to model annotations, for example, we could introduce #ifdef and #endif statements into
CFJ’s syntax. In fact, the C preprocessor works on plain text without considering the underlying
language. Nevertheless, for type checking, we need a higher level of abstraction; we are interested
in annotations of code elements such as classes, methods, terms, or parameters. Therefore, we use
a different solution: Independent of their actual storage, we provide an external mapping of code
elements to features.

In our formalization, we manage annotations using an annotation table AT that maps each code
fragment to an annotation, similar to the class table CT which maps a class name to the correspond-
ing declaration. There are different ways to present annotations to the developer; in the simplest
case we can use contemporary preprocessors directives: We parse textual annotations like #ifdef of

5An earlier version of our type system included casts [Kästner and Apel 2008]. Although casts were essential in the original
Featherweight Java publication for the discussion about parametric polymorphism [Igarashi et al. 2001], casts do not add
anything new for type checking product lines. We decided to remove casts to streamline presentation and proofs.

We make slight modifications to the notation in [Igarashi et al. 2001]: We use C f instead of C f to emphasize that it is a list
of pairs rather than a pair of lists; the same for C x and this.f=f. Note that this.f=f is one syntactic expression and not a relation
between two. Additionally, although it is technically not a syntax rule in FJ, we explicitly introduce the program P into the
syntax for symmetry in the generation process and proofs later.
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P ::=(L, t) program/product line
L ::=class C extends C { C f; K M } class declaration
K ::=C(C f) { super(f); this.f=f; } constructor decl.
M::=C m(C x) { return t; } method declaration
t ::= terms:

x variable
t.f field access
t.m(t) method invocation
new C(t) object creation

Fig. 1. CFJ syntax

some surface syntax into the annotation table and remove them from the product line’s code base
during type checking.

Next, we need to decide what code fragments can be annotated. The C preprocessor can language-
independently annotate arbitrary tokens, even just the class keyword of a class declaration or its
constructor. This makes such preprocessors prone to syntax errors that must be fixed before type
checking [Kästner et al. 2009]. Therefore, we map annotations only to code elements that can be re-
moved without invalidating the syntax, in line with our prior work on disciplined annotations [Käst-
ner et al. 2008; Kästner et al. 2009]; we simply disallow to annotate in isolation the class keyword
or other fragments that could cause syntax errors when removed. In CFJ, disciplined annotations
are (printed bold in Fig. 1) elements of the class list (L), of field and parameter lists (C f and C x),
method lists (M), term lists (t), super call parameter lists (f), or field assignments (this.f=f). When
filling the annotation table from a preprocessor, we have to make sure that annotations map only to
these code elements and reject all other annotations.

The annotation table is used the following way: AT (L) returns the annotation of a class declara-
tion, AT (C f) returns the annotation of a field, AT (C x) returns the annotation of a parameter, AT (M)
returns the annotation of a method, AT (t) returns the annotation of a term, AT (f) and AT (this.f=f)
return annotations of parameters and field initializations inside the constructor. Furthermore, we
use AT (C) as syntactic sugar for AT (CT (C)) to look up annotations of a class from its name. Note
that AT maps annotations from code elements (e.g., identified by their location) to annotations, not
from names as CT does. For example, AT can map two methods foo in different classes to different
annotations; in this case, the result of AT (foo) depends on which declaration of foo is referenced.
The annotation table is equivalent to introducing annotations into the syntax (which we actually
did for our formalization in Coq), but makes the formalization easier to read and is closer to our
implementation, in which we avoided to extend the syntax to achieve backward compatibility.

5.3. Reasoning about Annotations

So far, we did not discuss the nature of feature annotations and the feature model. As illustrated in
our examples in Section 3, we are interested in reachability conditions like the following: ‘whenever
code fragment a is present, then also code fragment b is present’. (We use the metavariables a and
b to refer to arbitrary annotatable code fragments.) Reachability is necessary, for example, to check
whether a method invocation always references a method declaration, in all variants in that the
invocation is present. To determine reachability between code elements a and b, we have to consider
the annotations of a and b and the constraints of the feature model. Therefore, we need to define
what kind of annotations are possible and how they are evaluated using a feature model.

A feature model describes a set of features and their constraints. A feature selection F is a subset
of all features and considered valid if the selection fulfills all constraints described in the model. In
some formalisms, features can additionally have numeric or textual attributes. For example a feature
model may specify that “feature A is mutually exclusive with feature B and A additionally requires
that the attribute x of feature C is larger than 10”. There are many different ways to describe
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feature models, for example, simply enumerating all valid feature combinations, using graphical
feature diagrams [Kang et al. 1990; Czarnecki and Eisenecker 2000], or using logics to describe
constraints on the feature selection [Batory 2005; Benavides et al. 2005; Schobbens et al. 2006].

Based on features defined in a feature model, different kinds of annotations can decide when to
include a code fragment for a feature selection F :

(1) In Thaker’s safe composition approach [Thaker et al. 2007], each code fragment is (implicitly)
annotated with exactly one feature; a code fragment is removed if the annotated feature is not
selected in F .

(2) In our prototype CIDE, by default, each code fragment can be annotated by one feature or
a set of features. This is equivalent to #ifdef directives and nested #ifdef directives of the C
preprocessor. For a feature selection F , an annotated code fragment is removed if one of the
annotated features is not selected in F .

(3) In fmp2rsm [Czarnecki and Pietroszek 2006] and some preprocessors such as Antenna, arbitrary
propositions such as ‘(A or B) and not C’ can be annotated. An annotated code fragment is
removed if the formula evaluates to false for the feature assignment from F .

(4) Some tools additionally support features with attributes and annotations can reason about at-
tributes (e.g., include code fragment only if text attribute title is not “default” or if numerical
attribute max-weight < 10). Examples are the C preprocessor (#if directive) and the commercial
product-line tool pure::variants [Beuche et al. 2004]. Again, the code fragment is removed if the
expression evaluates to false given a feature selection (with attributes).

In our implementation, we use propositional formulas for feature models and for annotations,
but in our formalization, we abstract from concrete formalisms. AT (a) generally returns some ex-
pression that evaluates to false for a variant with feature selection F (i.e., eval(AT (a),F) = false)
when the code fragment a should be removed, while each tool has to provide some (decidable)
implementation of eval. The empty annotation always evaluates to true, thus elements without an-
notations are never removed. Throughout this paper, we use the term ‘a code fragment is present’
for “the code fragment’s annotation evaluates to true, therefore the element is not removed in the
given variant(s)”.

We can now define reachability (denoted as →) between a and b as logical implication in the
ordinary sense between AT (a) and AT (b): “whenever AT (a) evaluates to true then also AT (b) must
evaluate to true”:

AT (a)→ AT (b) ::= ∀F ∈ valid feature selections :
eval(AT (a),F)⇒ eval(AT (b),F)

In other words, the variants in which code fragment a is included are a subset of (or are the same
as) the variants in which code fragment b is included. Bi-implication (AT (a)↔ AT (b)) is defined
analogously.

A naive approach of determining reachability by iterating over all valid selections does not scale,
since there could be millions of valid variants. Still, there are several ways to evaluate the reachabil-
ity formula efficiently using a SAT solver, a constraint-satisfaction-problem solver, or satisfiability-
modulo-theories solvers, depending on how valid feature models, feature selections, and annotations
are specified. In the common case that constraints between features can be represented by a proposi-
tional formula CFM (e.g., most feature models can be transformed directly into propositional formu-
las [Batory 2005; Thüm et al. 2009]), and when all annotations can be transformed into propositional
formulas (which is possible in most tools), then we can automatically evaluate AT (a)→ AT (b) with
a SAT solver as described by Thaker et al. [2007]: If the formula ¬(CFM ⇒ (AT (a)⇒ AT (b))) is
not satisfiable then b is always reachable from a. For technical details how to reason about feature
models and annotations using a SAT solver, see [Batory 2005; Thaker et al. 2007]. As Mendonça
et al. [2009] and Thüm et al. [2009] have shown, reasoning about feature models with SAT solvers
is tractable for even very large feature models.
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5.4. Annotation Rules

Before we model annotation checks formally as extensions in CFJ’s typing judgments and prove
them complete, we first introduce informally the annotation rules that are to be checked. In gen-
eral, we need to check code fragments that reference other code fragments. The code fragments –
references and targets – must be annotated such that the target is always reachable from the refer-
ence. Otherwise, dangling references that typically result in ill-typed programs can occur. We have
identified checks for thirteen different pairs of references and targets:6

(L.1) A class L can extend only a class that is reachable.
(L.2) A field C f can have only a type C of a class L that is reachable.
(K.1) A super constructor call (i) can pass only those parameters that are bound to constructor

parameters and (ii) must pass exactly the parameters expected by the super constructor.
(K.2) A field assignment this.f=f in a constructor can (i) access only present fields C f in the same

class and (ii) assign only values that are bound to constructor parameters.
(K.3) A constructor parameter C f can have only a type C of a class L that is reachable.
(M.1) A method declaration C m(C x) { return t; } can have only a return type C of a class L that is

reachable.
(M.2) A method declaration overriding another method declaration must have the same signature

in all variants in which both are present.
(M.3) A method declaration parameter C x can have only a type C of a class L that is reachable.
(T.1) A variable x must be bound to a reachable parameter C x of its enclosing method.
(T.2) A field access t.f can access only a field C f that is reachable in the enclosing class or its

superclasses.
(T.3) A method invocation t.m(t) (i) can invoke only a method M that is reachable and (ii) must

pass exactly the parameters t expected by this method.
(T.4) An object creation new C(t) (i) can create only objects from a class L that is reachable and

(ii) must pass exactly the parameters t expected by the target’s constructor.

Furthermore, there are some rules that deal with the removal process of children from their parent
element. For example, if a class is removed also all methods therein must be removed, if a method
is removed also its parameters and its term must be removed. These rules seem obvious and are
actually enforced in #ifdef -like preprocessors by nesting annotations. However, when formalizing
the calculus with arbitrary annotations, we either have to always take all parent annotations into
considerations, or we have to make these rules explicit for all elements that can be annotated. We
decide for the latter because it provides more flexibility for future extensions.

(SL.1) A field is present only when the enclosing class is reachable.
(SL.2) A method is present only when the enclosing class is reachable.
(SK.1) A constructor parameter is present only when the enclosing class is reachable.
(SK.2) A super constructor invocation parameter is present only when the enclosing class is reach-

able.
(SK.3) A field assignment in a constructor is present only when the enclosing class is reachable.
(SM.1) A method parameter is present only when the enclosing method is reachable.
(ST.1) A method invocation parameter is present only when the enclosing term is reachable.
(ST.2) An object creation parameter is present only when the enclosing term is reachable.

In the remainder of this section, we highlight changes compared to the original FJ calculus for
the annotation rules (L.1–T.5) in light gray and changes for the subtree rules (SL.1–ST.2) in darker
gray.

6The names reference the according productions in CFJ’s syntax in Figure 1. For example, K.1 is the first check that addresses
the constructor.
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C <: C
C <: D D <: E

C <: E
class C extends D { . . . }

C <: D

Fig. 2. CFJ subtyping.

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M } fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈M A → AT (M)

mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈M ¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A ∧¬AT (M))

CT (C) = class C extends D { C f; K M } m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Overriding override(m,C,C x→C0,A)

override(m,Object,C x→C0,A)

CT (C) = class C extends D { D f; K M }
override(m,D,C x→C0,A) M = B0 m(B g) { return t; }

M ∈M implies C = B and C0 = B0 and (A ∧AT (M))→ (AT (C x)↔ AT (B g))

override(m,C,C x→C0,A)

Fig. 3. CFJ auxiliary functions.

5.5. Typing

5.5.1. Subtyping. CFJ’s subtyping relation <:, shown in Figure 2, is identical to FJ’s. Though we
could check the annotation rule (L.1) here, we decided to postpone this check to FJ’s typing judg-
ments instead (see T-CLASS).

5.5.2. Auxiliary Functions. As in FJ, we need some auxiliary definitions for the typing judgments
shown in Figure 3. Although we try to perform most annotation checks in the typing judgments,
there are cases in which already the auxiliary functions – that are used in FJ to recursively look up
fields or methods across the inheritance hierarchy – need to evaluate annotations. We use A as a
metavariable for annotations and use • to denote an empty sequence.

Field lookup. First, a fields determines all fields of a class C including fields inherited from su-
perclasses. In CFJ, the function fields is identical to the one in FJ. Annotations on fields are checked
later in the typing judgments.
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Method lookup. Second, similar to the field lookup, the mtype finds methods with a given name
m in a class C or its superclasses.7 In contrast to fields, the method lookup needs to be adapted
because of the possibility of method overriding (in contrast to overshadowing fields, which is not
allowed in FJ [Igarashi et al. 2001]). Thus, it could be possible that a method m in class C is not
always reachable for a given annotation A , but another method m in a superclass of C is. Therefore,
we cannot check annotations only in the typing judgments but have to adapt the auxiliary function
mtype as shown in Figure 3.

In FJ, there are two possible cases, either the method is found in class C, then its signature
is returned, or the method is not found, then the search proceeds to the superclass. In CFJ, we
additionally have to distinguish whether found method is always reachable or not. Reachability is
checked against a given annotation that is provided as a parameter A (i.e., A → AT (M)). In case
it is not always reachable, the search is continued in the superclass for the remaining variants with
a reduced annotation (A ∧¬AT (M)). Note that auxiliary function override, as described below,
checks that all these methods have compatible signatures; here, we check overridden methods only
regarding reachability.

Overriding. Finally, the third auxiliary function override checks valid method overriding in FJ. In
the presence of annotations, checking valid overriding is trickier than expected. We need to ensure
that the return type and parameter types match in every variant in which two methods with the
same name appear in the inheritance hierarchy of a class. This is complicated, because we allow
developers to annotate both methods and their parameters.

Method overriding is the first and most important rule for which considerations regarding the
desired backward compatibility – every CFJ product-line implementation stripped of its annotation
should be a well-typed FJ program – have influenced design decisions. We describe our solution
fulfilling this property first and discuss possible alternatives later.

Our function override works in the following way: for a given method m with annotation A and
type C→C0, we iterate over all superclasses until we reach Object. Whenever we find a method
in a superclass with the same name, we perform the two checks. First, for backward compatibility,
the return type and all parameter types must match independent of any annotation (C0 = B0 and
C = B); this implies also that both methods have the same number of parameters. Second, for (M.2),
in all variants in which both methods are present (i.e., for which both A and AT (M) both evaluate to
true) the annotations on parameters must be equivalent (formalized as

(
A ∧AT (M)

)
→
(
AT (C f)↔

AT (B g)
)
). Taking both checks into account, we define the auxiliary function override as shown in

Figure 3.
Due to our design decision for backward compatibility, our override function does not allow

different signatures of a method in mutually exclusive features. For example, although the following
code fragment generates only well-typed variants given that features X and Y are mutually exclusive,
it is rejected by our override function.8

1 class D extends E { #ifdef X C f(C x) {...} #endif }
2 class C extends D { C f(#ifdef Y D y, #endif C x){...}}

Different typing judgments would be possible that drop backward compatibility in exchange for
increased expressiveness. In such case, we would need to check valid overriding only when two
methods can occur in the same variant. Since we pursue backward compatibility, we keep our sim-
pler version of override. For developers this restricted expressiveness is not limiting since simple
workarounds can be used; in the code example above, we could add a parameter D y to the first
method declaration and annotate it such that it is never present in any variant (e.g., ‘#if 0’).

7For technical reasons, we return the entire parameter list B x instead only their types, so that we can later (in rule T-INVK)
reason about annotations on parameters.
8We leave out the constructor for conciseness in this example.
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Term typing Γ ` t : C
x : C with A ′ ∈ Γ A → A ′

A ;Γ ` x : C
(T-VAR)

A ;Γ ` t0 : C0 fields(C0) = C f A → AT (Ci fi)

A ;Γ ` t0.fi : Ci
(T-FIELD)

A ;Γ ` t0 : C0 mtype(m,C0,A) = D y→C AT (t);Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D y)

)
AT (t)→ A

A ;Γ ` t0.m(t) : C
(T-INVK)

fields(C) = D f AT (t);Γ ` t : C C <: D
A → AT (C) A →

(
AT (t)↔ AT (D f)

)
AT (t)→ A

A ;Γ ` new C(t) : C
(T-NEW)

Method typing M OK in C

M = C0 m(C x) { return t0; } AT (M) = A A → AT (C0) AT (C x)→ AT (C)
CT (C) = class C extends D { . . . } override(m,D,C→C0,A)

Γ = x : C with AT (C x), this : C with AT (C) A ;Γ ` t0 : E0 E0 <: C0
AT (C x)→ A

M OK in C
(T-METHOD)

Class typing L OK

K = C(D g, C f
′
) { super(g′); this.f=f; } M OK in C fields(D) = D g′′

C f = C f
′

D g = D g′′ g = g′

AT (C) = A A → AT (D) AT (C f)↔ AT (this.f=f) AT (C f)↔ AT (C f
′
)

A →
(
AT (D g)↔ AT (D g′′)

)
AT (D g)↔ AT (g′) AT (C f)→ AT (C)

AT (C f)→ A AT (M)→ A AT (D g)→ A
class C extends D { C f; K M } OK

(T-CLASS)

Product-line typing P OK

L OK ;` t : C

(L, t) OK
(T-SPL)

Fig. 4. CFJ typing.

5.5.3. Typing Judgments. For term typing and well-formedness rules, we revisit each typing judg-
ment in FJ and adapt it for CFJ to incorporate annotations as shown in Figure 4. For brevity, we
discuss only changes compared to FJ.9

For all typing judgments for terms, we need an environment that is extended by annotations.
The environment Γ is a finite mapping from variables to pairs of a type and an annotation written

9Technically, it is possible to separate the CFJ type system into two parts: the original FJ type system and an extension
for reachability checks on annotations. Such separation would follow our implementation and the idea behind backward
compatibility. However, separated reachability checks replicate and adjust many mechanisms from FJ; it would almost double
the length of the calculus. We present the shorter, integrated description of the CFJ type system instead.
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x : C with A . Additionally, the current annotation A is stored as environment. For the outermost term
in a method, the current annotation is the annotation of a method (see T-METHOD); for inner terms,
the current annotation may differ because parameters can be annotated individually (see T-INVK
and T-NEW). The typing judgment for terms has the form A ;Γ ` t : C and reads “in the environment
Γ with annotation A , term t has the type C”.

When typing a variable (T-VAR), we need to ensure that the variable is reachable in all variants
in which x is accessed. This means that we check reachability between the current annotation of the
variable access A and the annotation A ′ of the parameter (or this) passed through the environment
Γ from T-METHOD.

For typing field accesses (T-FIELD), we require that the target field declaration is reachable (T.2).
Therefore, we check reachability between the current annotation A and the annotation of the target
field (AT (Ci fi)). The typing judgment for classes (see T-CLASS) ensures that the class correspond-
ing to each field’s type (Ci) is reachable (L.2).

For typing method invocations (T-INVK), we similarly check that a target method is present
(T.3i) using the filtering of mtype. Parameters in method invocations can be annotated individually,
so we need to check that the invocation parameters match the expected parameters of the method
declaration in every variant (T.3ii). We use the same mechanism A → (AT (t)↔ AT (D y)) as for
the override function (with the same implications for backward compatibility). Actually, in the
presence of method overriding, there can be different target methods in different variants; mtype
ensures that always at least one of these methods is available, and override (called in T-METHOD)
ensures that overriding methods have compatible type signatures and compatible annotations on
parameters. Furthermore, when typing a parameter, the annotation context is set to the annotation
of this parameter (AT (ti);Γ ` ti : Ci). Finally, the subtree rule (ST.1) is checked: There must not be
a variant in which the invocation is removed but not its parameter (AT (t)→ A).

Typing an object creation term (T-NEW) is similar to typing a method invocation. First, the target
class must be present (T.4i), which is checked explicitly with A → AT (C). Additionally for rule
(T.4ii), we ensure that the provided parameters match the expected constructor parameters in every
variant (A → (AT (t)↔ AT (D f))). Finally, the subtree rule (ST.2) is checked.

The typing judgment for method declarations (T-METHOD) has the form M OK in C and reads
“method declaration M is well-formed, when it occurs in class C”. We make several extensions
shown in Figure 4: First, we check valid overriding in all variants (M.2) by passing the method’s
annotation to auxiliary function override. Second, we check that the class corresponding to the
return type and all parameters of the method (C0 and C) are reachable (M.1, M.3).10 Third, we
provide the annotations of parameters in the type context to be checked in T-VAR later (T.1), and
use the current annotation of the method A as annotation context. Finally, we check the subtree rule
(SM.1).

The typing judgment for class declarations (T-CLASS) has the form L OK. At first, it appears
very complex because it covers many annotation rules, but each rule by itself is simple. To dis-
tinguish the occurrences of g as constructor parameters, super invocation parameters, and fields
of the superclass – which can all have different annotations – we distinguish g, g′ and g′′ but
still assume that all g’s are named the same (g = g′ = g′′). The same for C f that is used both
for fields and constructor parameters (C f = C f

′). First, rule (L.1) checks that the superclass is
always reachable (A → AT (D)); thus, from every reachable class, we can reach all its super-
classes. Second, rule (K.1) specifies that the super-constructor call receives exactly those param-
eters from the constructor’s parameter list that are defined as fields in the superclass in all variants
(AT (D g)↔AT (g′) and A→ (AT (D g)↔AT (D g′′))). Third, rule (K.2) specifies that the remaining
constructor parameters match the field assignments and that those match the fields declared in the
class (AT (C f)↔ AT (this.f=f) and AT (C f)↔ AT (C f

′
)). Fourth, we check that the class correspond-

ing to the type of each field in this class is reachable when the field is reachable (AT (C f)→ AT (C)),

10Thüm proved that the check A → AT (C0) is actually redundant [Thüm 2010]. Still, we leave it for readability.
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remove(a,F), short 〈〈a〉〉

remove(a,F) =

{
a1,remove(a2 . . .an,F) if eval(AT (a1),F)
remove(a2 . . .an,F) else

remove(•,F) = •

variant(a,F), short [[a]]

[[x]] = x (G.1)
[[t.f]] = [[t]].f (G.2)

[[t.m(t)]] = [[t]].m([[〈〈t〉〉]]) (G.3)

[[new C(t)]] = new C([[〈〈t〉〉]]) (G.4)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]];} (G.5)

[[C(C f) {super(f); this.f=f;}]] = C(〈〈C f〉〉) {super(〈〈f〉〉); 〈〈this.f=f;〉〉} (G.6)

[[class C extends D { C f; K M }]] = class C extends D { 〈〈C f〉〉; [[K]] [[〈〈M〉〉]] } (G.7)

[[(L, t)]] = ([[〈〈L〉〉]], [[t]]) (G.8)

Fig. 5. CFJ variant generation with remove and variant.

which indirectly covers rules (L.2) and (K.3). Fifth, subtree rules for fields, methods and constructor
parameters (SL.1–2, SK.1–3) are checked.

Finally, we are able to define when a software product line is well-typed (T-SPL): A software
product line is well-typed if all of its classes are well-formed and the typing judgment returns a type
for the start term t (provided an empty environment with an empty annotation, written as “;` t : C”).

5.6. Variant Generation

Although technically possible, we do not execute product lines written in CFJ directly. Thus, there
are no evaluation rules for CFJ, and it is not possible or necessary to prove type soundness with
the standard theorems progress and preservation [Wright and Felleisen 1994]. Instead, with a valid
feature selection, we generate a tailored FJ programs by removing certain annotated code fragments.
The resulting FJ program can be evaluated with FJ’s evaluation rules (see [Igarashi et al. 2001]). For
FJ, type soundness has already been proved [Igarashi et al. 2001]. Hence, we describe the variant
generation mechanism and subsequently prove that generation preserves typing in Section 5.7.

To generate a program variant, we define a function variant that takes a CFJ product line P and
a feature selection F as input and returns an FJ program. The function variant descends recursively
through the code of the product line and applies a function remove to all code fragments that can be
annotated. The function remove evaluates possible annotations (as described in Section 5.3): those
code fragments, for which the annotation evaluates to false are removed, all other code fragments
remain in the code.11

We define the generation rules (bottom-up) in Figure 5. For brevity, we write variant(a,F) as
[[a]] and remove(a,F) as 〈〈a〉〉 (we omit parameter F in the short form, because it is only propagated
without modification).

11Since we describe annotations externally, we do not have to remove annotations explicitly during generation. Furthermore,
in an implementation for a concrete language, remove must address the tokens used to separate list items (especially commas
between parameters). In our tool CIDE, remove is implemented using transformations of the abstract syntax tree [Kästner
et al. 2009].
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5.7. Properties of CFJ

In Section 4, we discussed two desired properties: backward compatibility and generation preserves
typing. With the presented type system and variant generation rules, we can now prove both prop-
erties for CFJ. Backward compatibility is straightforward to prove. Generation preserves typing is
more complex, so we performed the proof with the proof assistant Coq; for brevity, here, we describe
only the theorem and proof strategy.12

THEOREM 5.1 (BACKWARD COMPATIBILITY). Every well-typed CFJ product line stripped of
the feature model and all annotations (without removing any code fragments) is a well-typed FJ
program.

PROOF. CFJ has the same syntax as FJ. For stripping annotations, we assume that all annotations
evaluate to true for all variants (i.e., ∀F ∀a : eval(AT (a),F); called empty annotation). Now, we can
prove that with empty annotations, the type systems of FJ and CFJ are equivalent: All reachability
checks are always fulfilled; mtype in CFJ and FJ are equivalent considering that CFJ’s override
ensures the same method signature for all methods with the same name in a class hierarchy; and the
remaining differences are straightforward to prove to be equivalent as well.

THEOREM 5.2 (GENERATION PRESERVES TYPING). Every variant that is generated from a
well-typed software product line P with a valid feature selection F is a well-typed FJ program.

PROOF STRATEGY. We prove the theorem by induction on the structure of CFJ product lines,
that is, induction over all possible CFJ class tables and all possible CFJ terms. Using induction,
we recursively iterate over all elements of the CFJ class table (classes, methods, fields, parameter
lists and terms) and the start term. For every CFJ element, if well-typed, we do an induction over
the variant generation rules to determine all possibly generated FJ elements and prove that they are
well-typed according to the FJ type system.13 The proof that the generated element is a well-typed
FJ element is specific for each different kind of element (e.g., class or method invocation). Generally
speaking, we use the CFJ typing rules (including reachability conditions) and the variant generation
mechanism to prove that all code elements needed to type a generated FJ element (e.g., referenced
classes or methods) are part of the generated FJ program.

To illustrate the proof mechanism, consider the following example for the smallest element: an
access to a variable. Variant generation for variables (G.1) is independent of the feature selection
F and just returns this variable. Still, we have to prove that any generated FJ variable access is
well-typed according to FJ’s typing rules. FJ’s typing rule T-VAR for variable access requires two
conditions: (1) the provided environment Γ must not contain duplicates, and (2) the environment
must contain the analyzed variable. For both conditions, we need to consider the FJ environment,
which is formed by the enclosing generated method. Hence, we have to consider variant generation
for methods, in which parameters can be removed (G.5). We can prove both conditions of FJ’s
T-VAR using induction on the environment:

(1) CFJ’s type system forbids duplicates in parameter lists (cf. Sec. 5.2); thus, it forbids dupli-
cates in the CFJ environment; variant generation can only remove entries (cf. Fig. 5); hence, all
parameter lists generated from well-typed CFJ product lines are duplicate free.

(2) The generated variable always occurs in the FJ environment. This can be proved as follows: The
variable access has been generated from a well-typed CFJ product line. In the well-typed CFJ
product line, CFJ’s T-VAR ensures that the variable occurs in the CFJ environment A ;Γ and that
A→A ′, in which A ′ is the annotation of the corresponding CFJ method parameter. Additionally,

12Proof script available at http://fosd.de/cfj/; Thüm’s Master’s Thesis [Thüm 2010] contains a detailed description
of the proof, its structure, and its strategies.
13In line with FJ, to support Java’s mutually recursive types, we assume a fixed CFJ class table. For the same reason, we
also assume that the feature selection is fixed so that variant generation produces a unique, fixed FJ class table. Still, since
the proof covers arbitrary CFJ class tables and arbitrary feature selections, it holds for all CFJ product lines and all feature
selections.
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we know that eval(A ,F) is true, because otherwise we would not have reached the current point
(G.1) of variant generation (variant generation would have stopped in G.3, G.4, G.7, or G.8).
Consequently, reachability A → A ′ implies that eval(A ′,F) is also true, so the parameter is not
removed during variant generation; it is part of the FJ environment.

The proofs for other elements follows a similar pattern. They are often more complex, because
more context information (other classes, methods, and fields) has to be considered. For example, due
to overriding, a method invocation can point to different methods in different FJ variants; hence, the
proof considers information from auxiliary function overriding in T-Method, which ensures that
overriding methods always have compatible signatures. Nevertheless, the general proof pattern is
the same: induction over well-typed CFJ elements and variant generation rules, proving that each
generated FJ element is well-typed with information from the induction steps (and often induction
over other elements). The entire proof is available as a script for Coq (see above).

A third interesting property of CFJ’s type system is completeness: Given a software product line P
and given that all valid feature selections F yield well-typed FJ programs according to Theorem 5.2,
is P well-typed according to the CFJ typing judgments? Unfortunately, this property does not hold
due to backward compatibility. It is possible to find an ill-typed CFJ product line, of which only
well-typed variants are generated; for an example consider the discussion about different parameters
in Section 5.5.2. That is, due to our decision for backward compatibility, CFJ is stricter than actually
necessary. Nevertheless, as discussed before, we decided to enforce these restrictions for the benefit
of tool developers. Still, with tests and our case studies (see Section 8), we confirm that CFJ is not
too strict for practical applications.

6. ALTERNATIVE FEATURES

Our tool CIDE has its roots in decomposing legacy applications. In the formalization of CFJ, these
roots are visible. It is possible to make code fragments optional and to express annotations like ei-
ther FeatureA or FeatureB must be selected. However, in CFJ it is difficult to have two alternative
(mutually exclusive) implementations of the same class or method, similar to the persistent vs. in-
memory storage example in Section 3. Since we want CFJ to be backward compatible, we cannot
simply allow multiple classes or members with the same name (and signature) because this is not
supported by FJ (and Java). Nevertheless, alternative features are used in software product lines,
when a common implementation expects to reach exactly one (of multiple alternative) implementa-
tions of a class or method. Thus, for product-line development in general, we need to provide a way
to implement and type check alternative features.

Alternative features may influence the implementation in different locations:

(1) Alternative Classes. Depending on the feature selection, there may be entirely alternative im-
plementations of a class. Different implementations may contain different methods, common
methods, or different implementations of the same method. They may even have nothing in
common except the class’s name, as long as both classes are annotated to be mutually exclusive.

(2) Alternative Members. There can be different methods with the same name, but different bod-
ies, parameters, and return types. Thus, depending on the feature selection, a method may be
implemented differently, even with different signatures.

(3) Alternative Terms. There can be different implementations of a method body, or alternative
terms passed as parameters of a method invocation depending on the feature selection. Thus, it is
also necessary to discuss alternative implementations of a term, not only of classes or methods.

6.1. Reduction to Alternative Terms

There are different strategies how to deal with alternative features (in CFJ and in practice). One
useful strategy is to reduce alternative implementations to alternatives at the term level (respectively
at statement level in Java). For CFJ, the reduction proceeds in two steps – merging classes and
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1 class Database { ... }
2 #ifdef PERSISTENT
3 class Storage {
4 boolean save() { /* impl. A */ }
5 boolean clear() { /* impl. B */ }
6 boolean set(Object key, Object data, Lock lock) {
7 return /* impl. C */; }
8 }
9 #endif

10 #ifdef INMEMORY
11 class Storage {
12 boolean clear() { /* impl. B */ }
13 boolean set(Object key, Object data) {
14 return /* impl. D */; }
15 }
16 #endif

⇓
1 class Database { ... }
2 #ifdef PERSISTENT ∨ INMEMORY
3 class Storage {
4 #ifdef PERSISTENT
5 boolean save() { /* impl. A */ }
6 #endif
7 boolean clear() { /* impl. B */ }
8 boolean set(Object key, Object data
9 #ifdef PERSISTENT, Lock lock#endif) {

10 return #ifdef PERSISTENT/* impl. C */#endif
11 #ifdef INMEMORY/* impl. D */#endif;
12 }
13 }
14 #endif

Fig. 6. Reducing alternative classes and alternative methods to alternative terms

merging members – and can be done by the developer or be automated by a tool (limitations of
these steps are written in square brackets and discussed subsequently):

— Merging classes. When there are two or more classes with the same name [and same superclass,
see below] but different implementations and annotations, they can be all merged into one class.
The new class is annotated with a disjunction of all individual annotations (A1∨A2∨ . . .∨An),
so that it is present in a variant if any of the original classes would be present. All members from
the original classes are moved into the merged class and keep their annotations (the subtree rules
(SL.1) and (SL.2) are automatically fulfilled). This step reduces alternative classes to alternative
methods in a single merged class.

— Merging members. When there are two or more methods with the same name [and return type,
see below] in a single class declaration, they can be merged to a single method annotated with
a disjunction of all previous annotations. Parameters also are merged and annotated with a dis-
junction of all previous annotations of each parameter. If their bodies are not the same, we need
a way to represent alternative terms inside this method. Analogously, multiple fields with the
same name [and type, see below] can be merged. This way, we reduce alternative methods to
alternative terms.

In Figure 6, we show this reduction for an extended example of the persistent vs. in-memory storage
from Section 3. We reduce two alternative implementations of the class Database to a single class
and two alternative implementations of method set with different parameters to a single method
with alternative terms.

The reduction to alternative terms is limited regarding superclasses, return types, and field types.
That is, if two alternative classes with the same name do not have the same superclass, if two meth-
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1 class Storage1 extends Object {
2 #ifdef A1 boolean set() {return /*impl.1 */;} #endif
3 }
4 class Storage2 extends Storage1 {
5 #ifdef A2 boolean set() {return /*impl.2 */;} #endif
6 }
7 //...
8 class Storage extends Storagen−1 {
9 #ifdef An boolean set() {return /*impl.n */;} #endif

10 }

Fig. 7. Implementing alternative return terms with method overriding.

ods with the same name do not have the same return type, or if two fields with the same name do
not have the same type, they cannot always be merged. We can either accept this limitation and
disallow the three problematic cases, or we can search for mechanisms that support alternative im-
plementations beyond alternative terms. To retain backward compatibility and since such cases are
rare in practice (usually alternative implementations of a class still provide a common interface),
we accept the limitation and suggest workarounds instead of new language features such as mul-
tiple inheritance. A simple workaround, which works for all three problems, is to rename classes,
methods, or fields with fresh names. By renaming the target declarations, variability is again propa-
gated to alternative terms where depending on the feature selection either of the now distinguishable
methods is invoked, either of the fields is accessed, or either classes is instantiated. For CFJ and our
implementation for Java, we prefer to accept this limitation – enforcing constant superclasses, return
types, and field types in all alternative implementations of a class method or field – and use the re-
naming workaround (which can even be automated) for all other cases, instead of complicating the
type system. Nevertheless, other solutions without these limitations but with more complex typing
judgments are possible, see Section 9.

6.2. Handling Alternative Terms

So far, we reduced the problem of alternative implementations to alternative terms (in CFJ) or
alternative statements (in Java and many other languages). Now, we have to make sure that parser
and type checker understand alternative terms/statements and check them accordingly.

In CFJ, the situation is especially problematic, since every method must contain exactly one return
statement (i.e., a single term). We must make sure that in every variant exactly one (not none, not
multiple) of these terms remains. For CFJ, we discuss three solutions; although the first two have
significant drawbacks, we briefly summarize all three here:

— Method overriding. Without changes to the CFJ calculus, we found only one way to implement
alternative terms. The basic idea is to create an artificial superclass for each alternative term and
use method overriding to provide different terms in different classes as illustrated in Figure 7. In
such implementation, the target method has a different annotation in each subclass, and in a gen-
erated variant only one of these methods remains (auxiliary function mtype ensures that always
at least one of these methods is present). Although this approach can be used without modifica-
tion of CFJ and is backward compatible to FJ, it has the drawback of significantly obfuscating
the source code with boilerplate code.

— New language constructs. A whole group of solutions for alternative terms becomes available
once we drop backward compatibility and decide to change the syntax or typing judgments of
CFJ. For example, we could simply allow two methods with the same name or a method with
two return statements and adjust the syntax and typing judgments to ensure that at most one of
them remains in a generated variant. Another solution is to introduce new language constructs
which allow refinements of classes or methods. That is, we could integrate language mechanisms
such as mixins [Bracha and Cook 1990; Flatt et al. 1998], class refinements [Batory et al. 2004;
Apel et al. 2008], aspects [Kiczales et al. 1997], classboxes [Bergel et al. 2005], traits [Ducasse
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1 class Database { ... }
2 class Storage {
3 boolean set(Object key, Object data, Lock lock) {
4 boolean result;
5 #ifdef PERSISTENT
6 result = /* implementation A */
7 #endif
8 #ifdef INMEMORY
9 result = /* implementation B */

10 #endif
11 return result;
12 }
13 }
14 }

Fig. 8. Rewritten example of alternative return statements.

et al. 2006], hyperslices [Tarr et al. 1999], and others. These approaches are interesting when
designing a completely new language – in fact, in a different line of research, we designed a
product-line–aware type system for class refinements [Apel et al. 2010] – however in this work,
we prefer a backward compatible solution that is easier to adopt in practice.

— Metaexpressions. Czarnecki and Antkiewicz [2005] suggested metaexpressions as a mechanism
to support alternative values in a software product line of UML models. In their setting, they
did not have the opportunity to change the syntax of UML but sought for another way to express
alternatives. Metaexpressions are annotations, stored separately, which specify one or more alter-
native values for a language construct like the name of an UML association. This means, instead
of changing the syntax, alternatives are specified externally by a tool. Then, the generation mech-
anism does not only remove code fragments for which annotations evaluate to false, but it can
also replaces those elements with a metaexpression by their according value. The key difference
to additional language constructs is that alternatives are specified externally on a tool level, but
still checked by the type system (like the annotation table).

For full Java and many other languages, there are simpler solutions because these languages sup-
port multiple statements inside a method, so the desired backward compatibility does not impose
so many restrictions. Having two statements in a method with alternative annotations is still back-
ward compatible. In Java, only return statements are problematic, because of Java’s unreachable
code detection (code after a return statement results in a compiler error). Still, simple workarounds
are possible, for example, we can rewrite the persistent vs. in-memory example from Section 3 as
shown in Figure 8. In our experience with Java, all alternative features can be reduced to alternative
statements and implemented without language extensions using such rewrites.

Despite the practical solution in full Java, we take a closer and formal look at metaexpressions
for CFJ, to explore a solution for Featherweight Java and for potential other languages in which it
is not possible to use statements as described above.

6.3. Metaexpressions

We describe metaexpressions with an external metaexpression table MXT, similar to the annotation
table AT. Like annotations, we could introduce metaexpressions in the language’s syntax, but we
prefer to leave CFJ’s syntax unmodified for backward compatibility.

The metaexpression table provides a list of alternatives for each term (again able to distinguish
between multiple terms with the same name; e.g., identified by location); if a term does not have
alternatives, MXT returns the empty list. We use the following notation to access alternatives and a
specific alternative entry:

MXT (t) = t1, t2, ..., tn

MXT (t, i) = ti
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Fig. 9. Editor for metaexpressions: In a code fragment of an product line of graph data structures, we select the entire body of
a method and invoke the metaexpression editor from the context menu. In this editor, we specify alternative implementations
to the selected code fragment.

Each of the alternatives can be annotated the usual way. Additionally, for inner terms of an alterna-
tive, the metaexpression table may provide alternatives again; as sanity condition, we only require
that there are not cycles in the metaexpression table. In Figure 9, we illustrate how metaexpres-
sions may be represented in a source-code editor for full Java: The user selects a code fragment and
can provide alternative code fragments including annotations for these alternatives. Note that this
solution is entirely backward compatible; instead of introducing a language construct, we provide
alternatives externally with tool support.

During variant generation, for each term, we look up whether the term has alternatives; if it
has and the annotation of an alternative evaluates to true, we replace the term by this alternative.
Alternatives are ordered; in case annotations of multiple alternatives evaluate to true, the first is
chosen. Regarding term typing, we need to ensure that all alternatives have the same type as (or a
subtype of) the original term’s type; that is, we ensure that alternatives are always substitutable for
the original term.

6.3.1. Typing. To describe variant generation and typing formally, we have to make a number of
changes to the calculus. During term typing, every time we derive the type of a term (A ,Γ ` t : C)
we have to consider potential alternatives. We therefore introduce a metaexpression-aware typing
judgment written as A ,Γ `mx t : C; it reads “in the environment Γ with the current annotation A ,
term t and all its alternatives have a type that is a subtype of C”. Optionally, we may also report
a warning or an error, if annotations of two or more alternative terms evaluate to true in the same
variant, although the variant-generation mechanism already ensures that exactly one term is present
in every variant.

The new typing judgment checks the original term t as before, but additionally determines the
type of all alternatives as shown in Figure 10 (first judgment). The judgment returns the type that
is the most-specific supertype of all alternatives (smallest upper bound, determined with function
sub with standard semantics). Finally, we have to adjust the typing judgments T-FIELD, T-INVK,
T-NEW, T-METHOD, and T-SPL to use `mx instead of `, as shown in Figure 10.

The type system with metaexpressions is stricter than the original type system of CFJ, because
we always type check the original statement, but additionally also check alternatives. Alternatives
can make the type of a term less specific (in the worst case, when all alternatives have unrelated
types, the term has the least-specific type Object).

The choice that the term of a type with alternatives is the most specific supertype of all alterna-
tives’ types was a deliberate design decision. It provides the same expressiveness as the implemen-
tation pattern in Figures 7 and 8. Beyond that, we could allow that a term can have alternative types
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A ;Γ ` t : C0 A ;Γ `MXT (t,1) : C1 . . . A ;Γ `MXT (t,n) : Cn

A ;Γ `mx t : sub(C0,C1, . . . ,Cn)

C1 <: C0 C2 <: C0 . . . Cn <: C0

sub(C0,C) = C0

CT (C0) = class C0 extends D ¬
(
C1 <: C0 C2 <: C0 . . . Cn <: C0

)
sub(C0,C) = sub(D,C)

A ;Γ `mx t0 : C0 fields(C0) = C f A → AT (Ci fi)

A ;Γ ` t0.fi : Ci
(T-FIELD)

A ;Γ `mx t0 : C0 mtype(m,C0,A) = D y→C AT (t);Γ `mx t : C C <: D
A →

(
AT (t)↔ AT (D y)

)
AT (t)→ A

A ;Γ ` t0.m(t) : C
(T-INVK)

fields(C) = D f AT (t);Γ `mx t : C C <: D
A → AT (C) A →

(
AT (t)↔ AT (D f)

)
AT (t)→ A

A ;Γ ` new C(t) : C
(T-NEW)

M = C0 m(C x) { return t0; } AT (M) = A A → AT (C0) AT (C x)→ AT (C)
CT (C) = class C extends D { . . . } override(m,D,C→C0,A)

Γ = x : C with AT (C x), this : C with AT (C) A ;Γ `mx t0 : E0 E0 <: C0
AT (C x)→ A

M OK in C
(T-METHOD)

L OK ;`mx t : C

(L, t) OK
(T-SPL)

Fig. 10. CFJ typing with metaexpressions (changes only).

depending on the feature selection (the metaexpression-aware typing judgment would return a list
of types). However, alternative types depending on the feature selection would make type checking
more complex and slower, and could lead to a combinatorial explosion of different alternatives. Al-
ternative types can propagate through the entire type derivation process, for example x.f can have
alternative types when x has alternative types. Furthermore, when a term can have one of many
types, type errors become difficult to understand for users. We have explored this path and its con-
sequences on complexity in an different product-line type system FFJPL [Apel et al. 2010] as we
discuss in Section 9. Here, we settle with the slightly less expressive, but simpler solution, which,
in our opinion, is easier to handle for developers.

6.3.2. Variant Generation. The variant generation mechanism is changed similarly to the type sys-
tem. In addition to the function variant(a,F) (short [[a]]), we need a metaexpression-aware function
for terms variantmx(t,F) (short [[t]]mx). The function variantmx replaces the original term by the first
alternative of which the annotation evaluates to true; if there is no alternative or all annotations of
alternatives evaluate to false, the original term remains. Again, as for term typing, we need to adjust
a number of variant generation rules (G.2, G.3, G.4, G.5, and G.8) to use the new variant function.
We show the new function variantmx and the changed generation rules in Figure 11.
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[[t]]mx =


[[MXT (t,1)]] if eval(AT (MXT (t,1)),F)
[[MXT (t,2)]] else if eval(AT (MXT (t,2)),F)
. . .
[[MXT (t,n)]] else if eval(AT (MXT (t,n)),F)
[[t]] else

[[t.f]] = [[t]]mx.f

[[t.m(t)]] = [[t]]mx.m(〈〈[[t]]mx〉〉)
[[new C(t)]] = new C(〈〈[[t]]mx〉〉)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]]mx;}

[[(L, t)]] = ([[〈〈L〉〉]], [[t]]mx)

Fig. 11. CFJ variant generation with metaexpressions (changes only).

6.3.3. Properties. Both properties backward compatibility and generation preserves typing still
hold. Backward compatibility is obvious, because we did not change the syntax and because the
type system behaves just as the original CFJ type system when the metaexpression table is empty.
Also generation preserves typing holds; the intuition is that `mx checks all alternatives that can be
generated by variantmx. Again, we formalized our extensions and proved the theorem generation
preserves typing with the proof assistant Coq.14

6.4. Summary

There are many different possibilities how alternative features can be implemented and type checked
in a product line. Merging alternative classes and methods is not necessary but reduces the difficulty
of finding mechanisms for implementation and type checking to alternative terms. In full Java, in
which a method can contain a list of statements, we can now use alternative statements without fur-
ther extensions. In FJ, we are more constrained because each method contains only a single return
statement. While already without modifications of CFJ method overriding can be used as a ‘hack’,
we prefer a dedicated extension of the type system. There are many novel language constructs we
could introduce – mixins, aspects, traits, and many more – but these require significant changes to
syntax and type system and are not backward compatible to FJ (and Java). To achieve backward
compatibility to keep existing tool support, we introduce and type check metaexpressions as origi-
nally suggested for UML models by Czarnecki and Antkiewicz [2005]. Metaexpressions are added
using an external metaexpression table and are backward compatible to Java in the sense that a
metaexpression can always be added and type checked on top of an existing program. The main
challenge remains to find an appropriate visualization for the editor that can convey the metaexpres-
sion concept to developers, potentially even including nested metaexpressions. However, a proper
visualization is outside the scope of this paper.

7. BEYOND FEATHERWEIGHT JAVA (IMPLEMENTATION)

Our formalization is based on Featherweight Java because it allows proving the feasibility of a
product-line–aware type system in a confined setting. Nevertheless, for a practical application, a
product-line–aware type system should be provided for full Java or other languages. Our experience
with CFJ guides the way for a more general implementation in our product-line tool CIDE.

CIDE is an Eclipse plug-in for product-line development. After specifying features in a feature
model, a developer can assign annotations to code fragments. CIDE follows a model of disciplined
annotations, in which annotations have to align with the underlying structure as outlined in Sec-

14Proof script available at http://fosd.de/cfj/
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tion 5.2. CIDE represents annotations visually with background colors and provides various forms
of additional tool support [Kästner et al. 2008], which are beyond the scope of this paper.

The formalization shows that backward compatibility is possible; we only have to add additional
reachability checks between pairs (or triples or quadruples) of code fragments and their annota-
tions. At a practical level, to achieve language independence (or at least extensibility toward new
languages), we implemented a framework for product-line–aware type checking in CIDE that pro-
vides a general mechanism to iterate over a project, check reachability conditions, and report errors.
CIDE displays detected errors like standard Java errors directly at their location (e.g., underlining a
method invocation), and provides suggestions for fixing them. Our framework can be extended with
plug-ins for specific languages. Each plug-in is responsible for determining which reachability con-
ditions to check in a given language; for example, it looks up method invocations and corresponding
method declarations. It is even possible check reachability conditions between elements of different
languages (inter-language typing).

Currently, we provide the following type-checking plug-ins for CIDE:

— Featherweight Java. We implemented the CFJ type system in CIDE, including a metaexpression
extension for alternative features (see Sec. 6.2). Specifically, Rosenthal [2009] implemented the
entire type system natively without reusing an existing implementation.

— Java. For Java, we implemented all checks from Featherweight Java and several additional
checks regarding local variables, interfaces, generics, imports, abstract classes, abstract meth-
ods, and others. This type system was implemented on top of Eclipse’s type checks for Java,
that is, we reused existing lookup mechanisms and added only reachability checks on top. To
be precise, we could not reuse all lookup mechanisms, but had to slightly adapt those that are
equivalent to mtype and override in Section 5.5.2. Although our implementation is probably not
complete (a guarantee is difficult to provide for full Java), we believe that we have covered the
most important causes of type errors and that our implementation is useful in practice.
The product-line–aware extension for Java is built on top of Eclipse’s standard Java compiler.
Thanks to backward compatibility, the existing syntax- and type checking mechanisms, the inter-
nal Java model, and the background compilation process of Eclipse remain untouched. Therefore,
Eclipse provides tool support such as syntax highlighting, code completion, and code navigation;
and Eclipse already detects all type errors of standard Java, we only add reachability checks on
top.

— Bali. Bali is a grammar specification language in the AHEAD tool suite [Batory et al. 2004], for
which we added reachability checks between references to and declarations of productions and
tokens. In this language, looking up pairs is straightforward with a simple name table. Still, the
entire mechanism to check reachability in the context of a feature models is reused and shared
with the other languages.

— OSGi Manifest + Java. As a demonstration of inter-language typing, we implemented a plug-in
that looks up package references between a manifest file of an OSGi bundle [OSGi Alliance
2009] and the bundle’s implementation with Java. It again checks that the implementation is
reachable from the according declaration in all variants, so that, in this case, no variant of an
OSGi bundle can declare to export a package that it does not contain. So far, we implemented
only checks for the Export-Package declaration as a proof of concept, but this can be extended
easily to other checks between an OSGi manifest and Java or inter-language checks between
other languages.

Together with an industrial partner, we are currently also implementing a product-line–aware type
system for C that is largely backward compatible to the C preprocessor. This type system is devel-
oped outside CIDE, but follows the same mechanisms.

Finally, the mechanism to actually reason about feature models and annotations (to determine
whether AT (a)→ AT (b) holds for all valid variants) also is abstracted behind an interface so that
different reasoning mechanisms can be plugged in. Currently, we have implemented two mecha-
nisms: a very simple one based on set relations (which however supports only very simple feature
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models that can only express dependencies in the form of parent-child relationships in a tree, but no
alternatives) and one for full feature models, originally developed for FeatureIDE [Leich et al. 2005;
Kästner et al. 2009]. In the latter, which we use by default, reasoning is performed by transforming
the feature model and reachability conditions into Boolean satisfiability problems as described by
Batory [2005]; we subsequently solve the problem with the off-the-shelf SAT solver SAT4J.

To summarize, the formalization of CFJ is tailored to Featherweight Java, but the underlying
mechanisms are general and can be transferred to other languages. Currently, the additional reach-
ability checks for every language (and combination of languages in case of inter-language typing)
are be provided manually using plug-ins. Whether these plug-ins can be generated automatically
(e.g., from attribute grammars) is an open research question. Regarding inter-language typing, fur-
ther research is needed to find the right abstractions (e.g., [Apel and Hutchins 2010]) or a suitable
polylingual type system (e.g., [Grechanik et al. 2004]). From a tool perspective, recent advances in
inter-language refactorings in Eclipse can be used as possible starting point [Fuhrer et al. 2007].

8. EVALUATION

In the previous sections, we have designed, formalized, and implemented a product-line–aware type
system. To demonstrate its practicality, we performed a series of case studies to evaluate whether we
can actually find type errors in existing product lines. Specifically, we want to answer the following
questions:

— What are typical shapes of annotations?
— Does type checking detect relevant errors in software product lines?
— What performance can we expect from type checking a software product line (especially since

Boolean satisfiability problems are involved)?

We applied our type checking approach to four case studies. As case studies, we selected Java
programs that implement variability using some form of preprocessor. Since Java does not have a
build in preprocessor, there are not as many projects as in C or C++, but, interestingly, providing
variability is essential in the domain of software for mobile phones, so we found some open source
projects that use the Java ME preprocessor Antenna.15 We selected the following software product
lines (see also Table I):

(1) MobileMedia. MobileMedia is a Java ME application to manipulate photo, music, and video
files on mobile devices. It has been developed at Lancaster University as a product line and has
been used in several studies on comparing conditional compilation with aspect-oriented mecha-
nisms [Figueiredo et al. 2008; Conejero et al. 2009]. The product line has several optional fea-
tures implemented with #ifdef directives, such as support for photos, music, video, SMS transfer,
or favorites. We selected this product line because the code is peer reviewed [Figueiredo et al.
2008] and because the development is well documented in several incremental releases (each
added one or more features), which allowed us to analyze simple as well as more complex ver-
sions. Specifically, we look at two releases: Release 6 with nine features and the latest Release 8
with 14 features (cf. [Figueiredo et al. 2008]).16

(2) Mobile RSS Reader. Mobile RSS Reader is an open source project to implement a portable RSS
reader for mobile phones on the Java ME platform.17 Variability is crucial to support different

15Antenna (http://antenna.sourceforge.net/) uses #ifdef directives very similar to the C preprocessor; however,
Antenna’s directives are written in comments. When running Antenna with a given feature set, it comments out all code of
unselected features. The preprocessor is integrated in Java ME extensions of IDEs like Eclipse and NetBeans, in the latter
even with additional syntax highlighting.
16The source code is available online at http://mobilemedia.cvs.sf.net/viewvc/mobilemedia/, of both releases,
we used the code revision from July 9th, 2009.
17http://code.google.com/p/mobile-rss-reader/; Mobile RSS Reader under continuous development, we used
revision 1596 (May 21st, 2009) available at http://mobile-rss-reader.googlecode.com/svn/!svn/bc/1596/
trunk/.
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Table I. Size and features of our case studies

Software product line LOC #FEA #ANN Features

MobileMedia (Rel. 6) 4 600 9 88 PHOTO, MUSIC, SMS, SORTING, COPYMEDIA, FA-
VORITES, 128X149, 132X176, and 176X205

MobileMedia (Rel. 8) 5 700 14 164 PHOTO, MUSIC, VIDEO, SMS, SORTING, COPY-
MEDIA, FAVORITES, PRIVACY, CAPTUREPHOTO,
CAPTUREVIDEO, PLAYVIDEO, 128X149,
132X176, and 176X205

Mobile RSS Reader 20 000 14 1 050 MIDP10, MIDP20, JSR75, JSR238, CLDC11,
SMALLMEM, ITUNES, LOGGING, TEST, TESTUI,
4×COMPATIBILITY

Lampiro 45 000 11 108 MOTOROLA, TLS, COMPRESSION, BXMPP,
SCREENSAVER, UI, GLIDER, BLUDENO, TIMING,
SENDDEBUG, and PLAINSOCKET

Berkeley DB 70 000 42 1 825 TRANSACTIONS, STATISTICS, DELETEDB-
OPERATION, ENVIRONMENTLOCK, FILEHAN-
DLECACHE, . . . (see [Kästner et al. 2007] for a
comprehensive list)

LOC: lines of code (approximated); #FEA: number of features; #ANN: number of annotated code fragments

devices, therefore typical features refer to Java ME libraries: MIDP 1.0, MIDP 2.0, CLDC 1.1,
JSR 75 (file system), and JSR 238 (internationalization). Additional features include support
for devices with small memory capacity, logging and testing features, and several compatibility
features for different RSS formats.

(3) Lampiro. Lampiro is an instant-messaging Java ME client for the XMPP protocol developed
by Bluendo s.r.l., released as open source.18 Several features, such as COMPRESSION, ENCRYP-
TION (TLS), PROFILING and DEBUGGING, or SCREENSAVER, are implemented using #ifdef
directives.

(4) Berkeley DB. Finally, Oracle’s Berkeley DB is an open-source database engine written in Java,
which we decomposed into features in prior work [Kästner et al. 2007; Kästner et al. 2008].19

Berkeley DB is different from the case studies above in two ways. First, it was not originally
developed as a product line, but we later refactored it into features, such as TRANSACTIONS,
STATISTICS, ENVIRONMENTLOCK, or DELETEDBOPERATION. Second, we annotated the code
base with CIDE after having implemented an initial version of our type system. This gives a
different perspective on our type system regarding the development of a new product line by
decomposing a legacy application.

8.1. Shape of annotations

In all case studies, annotations are used often at a fine granularity. While also entire classes and
methods are annotated, most annotations are on statement level. In Mobile RSS Reader and Berkeley
DB, even parameters in method declarations and method invocations were annotated. This fine
granularity is where annotations play to their strength, compared to contemporary modularization
techniques such as components or aspects [Kästner et al. 2008], but also where it is difficult to
enforce reachability conditions manually due to their high number.

Most annotations were simple and consisted only of a single feature (#ifdef X) or a negated feature
(#ifndef X); however, nesting was quite common (up to level 4 in Mobile RSS Reader). Beyond
single features and nesting, only MobileMedia used some pattern like A∧B or A∨B (the most
complex annotation we found was ‘(MUSIC∧ PHOTO)∨ (MUSIC∧VIDEO)∨ (VIDEO∧ PHOTO)’
in MobileMedia Release 8). Usually it is quite easy to reason about reachability manually and thus

18http://lampiro.bluendo.com/; Lampiro is still under development, we used version 9.6.0 (June 19th, 2009) available
at http://lampiro.googlecode.com/svn/!svn/bc/30/trunk/.
19Specifically, we used Berkeley DB version 2.1.30 available at http://www.oracle.com/technology/software/
products/berkeley-db/je/index.html.
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interpret the errors reported by the type system. Nevertheless, automatically checking reachability
constraints in a type system is helpful due to the sheer number of reachability constraints (up to
72 534 in Lampiro, cf. Tab. II).

In all software product lines that were developed with #ifdef directives originally, we found alter-
native features or alternative implementations depending on whether a feature is selected. Alterna-
tives generally occurred on the level of statements or for setting initial values of constants. In Mobile
RSS Reader, also alternative superclasses were used, so that a class inherits from different classes
depending on whether feature TESTUI is selected. To avoid complexity, we forbid alternative super-
classes (see discussion in Sec. 6.1) and rewrote the corresponding implementation. In general, we
found 3 alternative code fragments in MobileMedia Release 6, 8 in MobileMedia Release 8, 70 in
Mobile RSS Reader, and 10 in Lampiro.

8.2. Detecting Errors

To our surprise, we found inconsistencies or type errors in all case studies except Berkeley DB.
Berkeley DB is not relevant in this context, because it was already developed with CIDE and an
early version of our type system; thus, we already eliminated all type errors in Berkeley DB dur-
ing development. In all other case studies that were developed without a product-line–aware type
system, we checked existing annotations in released source code.

In MobileMedia Release 6 (and Release 8), we found that a variant with SMS but without PHOTO
would not compile. On closer inspection, we found that feature SMS actually depends on PHOTO,
it is only meant to send photos, not music or video. This dependency was neither shown in the
simplified feature model published in [Figueiredo et al. 2008], nor in a feature model provided by
the authors on request, nor was any description about the relationship of features shipped with the
source code. After adding this dependency to the feature model, CIDE indicates that all variants
are well-typed. Detecting such mismatch between feature model and implementation is a typical
example of the strength of product-line–aware type systems.

In Release 8, MobileMedia has five additional features, and annotations are more complex. CIDE
initially indicated several type errors, because we inferred an incorrect feature model from the source
code; we could easily fix this when we received a complete feature model from the authors and
added the constraint between SMS and PHOTO as discussed above. Still, there were two remaining
type errors caused by incorrectly annotated import statements (import statements are not part of
the CFJ or the FJ calculus but are checked in CIDE). While the target class and its references
were correctly annotated, two corresponding import statements were not annotated. This causes a
Java type error in several variants when a removed class is imported (e.g., in variants with SMS
but without CAPTUREPHOTO and without VIDEO, or in variants with COPYMEDIA but without
PHOTO). The type system in CIDE can point out even such seemingly insignificant errors.

Also in Mobile RSS Reader, our type system found inconsistencies: Variants with both MIDP20
and SMALLMEM and variants with TESTUI but without MIDP10 contain type errors. Our do-
main knowledge is not sufficient to judge whether these are undocumented constraints or incor-
rect implementations. As an easy fix, adding the constraints ‘¬(MIDP20 ∧ SMALLMEM)’ and
‘TESTUI⇒MIDP10’ reduces the number of possible variants, but then all variants are well-typed.
It is up to the developers and domain experts to either change the implementation or the feature
model.

Additionally, we found some fragments in Mobile RSS Reader that are never included in any
variant (called dead feature code or zombie features [Tartler et al. 2009]). To include these code
fragments, their annotations would require a feature selection that is not allowed by the feature
model. Although, such dead-feature-code analysis is not part of the type system (dead feature code
is always well-typed regarding reachability constraints), we can easily add a warning to our imple-
mentation to point out dead feature code.

Finally, in Lampiro, we already had difficulties to create a single Java version of the source
code with all features (for backward compatibility). We found that feature SCREENSAVER is dead
(since the first revision in the project’s repository) and must never be selected: Its implementation
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79 // #ifndef GLIDER
80 setTitle("Lampiro");
81 Image logo = Image.createImage("/icons/lampiro_icon.png");
82 UILabel ul = new UILabel("Loading Lampiro...");
83 // #endif
84 UILabel up = new UILabel(logo);
85 up.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
86 uvl.insert(up, 1, logo.getHeight()+10, UILayout.CONSTRAINT_PIXELS);
87
88 ul.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
89 uvl.insert(ul, 2, UIConfig.font_body.getHeight(), UILayout.CONSTRAINT_PIXELS);

Fig. 12. Code excerpt from Lampiro (SplashScreen.java) with type errors when accessing local variables logo and ul in
lines 84, 86, and 89 in variants with GLIDER.

Table II. Performance statistics of our case studies

Software product line tVar (sec) tSPL (sec) #Variants #Checks #SATP #USATP

MobileMedia (rel. 6) 0.2 1.3 144 5 714 1 924 39
MobileMedia (rel. 8) 0.3 1.8 2 784 7 359 3 569 111
Mobile RSS Reader 0.6 8.3 2 048 35 094 10 684 127
Lampiro 2.0 19.0 2 048 72 534 780 26
Berkeley DB 2.6 21.0 3.6 billion 70 316 19 517 324
tVar: time to compile a single variant; tSPL: time to evaluate all reachability checks; #Variants:
approximate number of potential variants; #Checks: number of performed reachability checks;
#SATP: number of SAT problems solved; #USATP: number of unique SAT problems solved

calls methods that do not exist, introduces duplicate methods, contains both missing and duplicate
import declarations. Similarly, feature GLIDER is dead; it is obvious from code fragments as shown
in Figure 12 that it makes no sense selecting this feature. Since GLIDER was only introduced in the
last revision in the repository; we assume that it is an incomplete part of an upcoming feature. Our
type system in CIDE points to these problems immediately. It forces developers to document in the
feature model that certain features are incomplete and must not be selected.

All in all, we did not expect to find many errors, because all product lines released their code, and
because the number of features is still manageable small. We were surprised to find small incon-
sistencies or type errors in every product line that was annotated with #ifdef directives. In all cases
these were only minor problems (undocumented dependencies, forgotten annotation on an import
statement, dead feature code), nothing significant and all easy to fix. Nevertheless, this shows how
easy subtle errors can be introduced into well-developed product lines and how product-line–aware
type systems can help to maintain consistency and fully document all implementation-relevant de-
pendencies between features. In Berkeley DB, our type system helped to achieve consistency across
the entire development process.

8.3. Performance

Finally, to provide some intuition about the complexity and performance of type checking a software
product line, we measured the time to compile a single variant (tVar) and the time to check all reach-
ability constraints in the software product line (tSPL).20 Additionally, we estimated the number of
variants to illustrate what it would mean to check every variant in isolation. Our current implemen-
tation of the type system is about ten times slower than Eclipse’s industrial-strength compiler, that
means type checking the entire product line takes as long as type checking ten variants (a fraction
of the number of possible variants). Detailed results for all case studies are shown in Table II.

The slowdown is mostly caused by our algorithm to locate the pairs for reachability checks for
method invocation, field access, type reference, and others, as described in the calculus. There are

20We measured all times on a standard 2.66 GHz lab PC with 4 GB RAM, Windows Vista, Sun Java VM 1.6.0.03, and
Eclipse 3.5.
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up to such 72 534 pairs in our case studies as shown in Table II. To enable quick incremental type
checking on changes to the source code, to annotations, or to the feature model, we also store
all checks for future reevaluation. We assume that an optimized implementation can significantly
speed up this process. In contrast, the time needed to actually solve SAT problems is marginal. Many
checks (60–98 %) can be skipped without consulting an SAT solver either (a) because neither code
element is annotated or (b) because both are annotated with the identical feature expression. For the
remaining checks, the results for unique feature combinations can be cached, so that, in our case
studies, only some hundred unique SAT problems remain to be solved. Solving all SAT problems
requires less than 50 ms for each product line.

This shows that, although reachability checks are required in all typing judgments, they can be
executed with reasonable performance that is acceptable for practical development. Our current
implementation slows down type checking by a factor of ten, which means that for every product
line with more than ten potential variants, it is faster to check the entire product line during domain
engineering than to check every variant in isolation during application engineering. Type checking
is still reasonably fast that it can be executed in the background during development to find errors
as early as possible.

9. RELATED WORK

Type checking product lines

The idea of type checking an entire software product lines (instead of individual variants) emerged
from research on generative programming.

First, in an influential approach, Huang et al. [2005] ensure that Java code generated by their tool
SafeGen is well-typed. Though their tool is used for metaprogramming in general, not as product-
line technology, the basic idea is similar to our theorem generation preserves typing. Since there
is no need for backward compatibility, alternative features are supported natively. Using first-order
logics and theorem provers, they check whether generators written in their confined metalanguage
(with selection and iteration operators) produce well-typed output for arbitrary Java input. How-
ever, checks cover only some of Java’s typing rules, i.e., there is no guarantee that the output is
well-typed. In recent work, they introduced a newer metaprogramming language MorphJ with sim-
ilar constructs that supports modular type checking and has been proven type sound [Huang and
Smaragdakis 2010].

The work on checking the generation mechanism instead of individual input programs in Safe-
Gen influenced Czarnecki and Pietroszek [2006] to check an entire product line instead of individual
variants. Specifically, they target product lines of UML models in their tool fmp2rsm and guarantee
well-formedness for all variants. In earlier work, Czarnecki and Antkiewicz [2005] implemented a
tool environment to develop a product line of UML models, very similar to CIDE: they extended
an existing UML editor such that a user can annotate presence conditions to UML elements like
classes or associations; a variant of the UML model is generated by removing elements of which
the annotation evaluates to false for a feature selection. In this environment, also backward com-
patibility to the existing UML editor was implicit. Czarnecki and Pietroszek [2006] then describe a
mechanism for this tool environment to check that all variants conform to certain well-formedness
rules of UML – e.g., ‘an association in UML class diagrams connects exactly two elements’. These
well-formedness rules are similar to typing rules in programming languages and can be specified
in UML’s metamodel formally (and machine readable) using constraints written in the Object Con-
straint Language (OCL). Their tool transforms presence conditions, the feature model, and OCL
constraints into a propositional formula, which can be solved by an off-the-shelf SAT solver in
a single step. Error messages are reconstructed from the SAT solver’s result. Well-formedness can
only be guaranteed against those constraints that have been specified (machine-readable) with OCL.
For UML those must be first inferred from the informal, textual UML specification, which is sim-
ilar to how Java’s typing rules must be inferred from the textual Java Language Specification. The
authors do not discuss completeness of their inferred OCL constraints. The metaexpression solution
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for alternative features was first described for their tool [Czarnecki and Antkiewicz 2005]; however,
metaexpressions have not (yet) been considered in their well-formedness checks [Czarnecki and
Pietroszek 2006].

Beyond annotations on existing languages, there have been approaches to type check product
lines written in specialized architectures or with specialized languages using constructs such as
aspects, class refinements, or mixins. These approaches generate variants by composing code mod-
ules. In some sense, feature annotations and feature composition are two sides of the same coin:
one removes code from a common base (sometimes called negative variability), the other merges
already separated code (positive variability) [Kästner et al. 2008]. Both approaches can be used
(also in combination) to implement product lines. Refactoring between implementations based on
annotations and based on composition is usually possible [Kästner et al. 2009]; hence, within the
boundaries caused by alternative features, it is also possible to use a composition-based type system
indirectly for annotation-based implementations and vice versa.

Some compositional approaches can check feature modules in isolation, so only their combina-
tion into variants need to be checked; separate checking is possible for architectures with separately
compiled components or plug-ins, as well as for several specialized languages, e.g., [Ossher and
Tarr 2000; McDirmid et al. 2001; Warth et al. 2006; Chae and Blume 2008; Hutchins 2009; Bettini
et al. 2010; Apel and Hutchins 2010]. In some scenarios, architectures are possible, in which all
features are independent plug-ins that can be combined without type conflicts [Chae and Blume
2008]. In many languages, by analyzing module interfaces, we could derive dependencies that de-
scribe which modules can be combined together; we could either use such dependencies to extract
an (implementation-specific) feature model [She et al. 2011] or consider these dependencies them-
selves as feature model. Nevertheless, in the product-line community, feature models often describe
domain knowledge beyond just implementation dependencies. Thus, we typically need an extra step
to checking actual variability in the implementation against the intended variability described in the
feature model [Metzger et al. 2007; Thaker et al. 2007].

The first approach of type checking all valid variants (intended variability) of a product line
implemented by feature composition was safe composition by Thaker et al. [2007]. They analyze
language semantics of Jak [Batory et al. 2004], a Java dialect that supports mixin-style class re-
finements (including native support for alternative features). To check types, they identify six con-
straints that need to be satisfied, which their tool maps to propositional formulas and checks with
an SAT solver. One constraint deals with references to fields and methods (roughly correspond-
ing to T-FIELD and T-INVK), two deal with abstract classes and interfaces (no correspondence in
Featherweight Java), and three deal with specific constructs of the Jak composition mechanism (no
correspondence in Featherweight Java). Their checks are not claimed or even proved complete, and
in fact – compared to CFJ – checks that ensure the presence of types uses in signatures are missing,
e.g., (M.1), (M.3). In recent work, an extension of safe composition was eventually also formalized
and proved type-sound with a machine-checked model by providing an algorithm to reduce it to
Lightweight Java [Delaware et al. 2009].

In a parallel line of research, we have formalized a calculus Feature Featherweight Java (FFJ) for
class refinement and module composition [Apel et al. 2008] and extended it toward checking entire
product lines as FFJPL [Apel et al. 2010]. In this work, we entirely drop backward compatibility
since the host language with its composition semantics is already incompatible to Java and there is
no sophisticated tool support, yet. Instead, we aimed at flexibility so that even alternative classes
with different supertypes, or alternative fields with different types and alternative methods with dif-
ferent return types are possible. Compared to CFJ the formalization is much more complex, because
a term in the product line may have different types and even the subtype relation may change in dif-
ferent variants depending on the feature selection. In the worst case, type checking has exponential
complexity. CFJ and FFJ tackle type checking software product lines for different implementation
mechanisms and from different perspectives: CFJ targets at annotations and tool support focusing
on developers while FFJ targets module composition and explores maximum flexibility.
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Conditional language constructs

Independent of product-line research, the programming language community developed several type
systems that support type conditions on methods or other language constructs. So, invoking a con-
ditional method is only well-typed when the condition is satisfied in the context of the invocation.
Conditional language constructs are discussed in the context of parametric polymorphism. For ex-
ample, in a collection class, such as List, clients should only be allowed to invoke a method print
if the class is parametrized with a type that can be printed; a collection should only implement the
interface Printable if the type parameter implements this interface as well. Conditional language
constructs have been explored in object-oriented languages at least since CLU [Liskov et al. 1981]
and have been studied, for example, in extensions to Cecil [Litvinov 1998], Java [Myers et al. 1997;
Huang et al. 2007], and C# [Emir et al. 2006]. In all these languages, type constraints are structural
constraints (parameter X contains method Y) or subtyping constraints (parameter X is a subtype/su-
pertype of Y).

Conditional methods with type constraints and CFJ are related, because both restrict the access
to methods in some variants (#ifdef vs. condition on type parameter) and both statically ensure that
all variants are well-typed. So, in some sense, we could replace #ifdef directives on statements by
conditions on type parameters and instead of generating a variant by removing code, we could in-
stantiate the program with a suitable type parameter. However, there are four important differences:

· Code removal vs. multiple instances. Our work addresses conditional compilation in the context
of product lines, such that code is actually removed in a generation step. In contrast, all languages
with conditional methods we are aware of do not generate variants but check that a present method
is never called when the condition on the type parameter evaluates to false. Type conditions have
the benefit that different instances of a class with different configurations may be used in the same
program, but they does not remove code and thus does not reduce binary size as sometimes desired
in product-line development, especially for embedded systems [Beuche et al. 1999; Lohmann et al.
2006; Rosenmüller et al. 2009].
· Expressiveness of conditions. Compared to a full feature model, the expressiveness of type condi-

tions is restricted. In languages with structural constraints, they can express part-of relationships;
in language with subtyping constraints, they can express simple parent-child relationships (similar
to our initial ‘set relations’ implementation, see Sec. 7). Most type conditions have the benefit that
reasoning can be performed without a SAT solver; however, more expressive feature constraints
are needed in product-line practice (see Sec. 8), such as alternative features, negated features
(¬A), or propositional expressions (e.g., A∨¬B∧C).
· Granularity. Annotations and type conditions provide different levels of granularity. In contem-

porary languages with type conditions, typically conditions can only be placed on methods (and
sometimes fields and supertypes); type conditions aim primarily at providing flexible libraries. In
contrast, #ifdef directives and annotations in CFJ and CIDE are more flexible and can annotate
entire classes, individual statements, or even method parameters, which is typically not needed in
libraries. Our work targets at variability in applications and product lines, in which also the behav-
ior of an individual method may change depending on the feature selection. Of the four examples
in Section 3, only the first can be implemented and checked with type conditions of contemporary
languages.
· Backward compatibility. Finally, to add type conditions to Cecil, Java, or C#, all approaches intro-

duce new language constructs. In contrast, we aim explicitly at backward compatibility to reuse
the existing tool infrastructure.

These differences are mostly design decisions for a specific language. It is possible to develop con-
ditional language constructs that are similar to CFJ (backward compatible, at finer granularity, with
more expressive conditions) or product-line–aware type systems with characteristics of conditional
language constructs. However, so far the product-line community and the programming language
community pursued different goals (product-line development by code removal, backward compat-
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ibility, flexible annotations, and alternative implementations vs. expressive type system for libraries
and multiple instances), which lead to different design decisions. With contemporary conditional
compilation constructs, our case studies would be very difficult to implement. We argue that both ap-
proaches are complementary and may eventually converge. In this context, we contribute a different
perspective with different design decisions and their trade-offs for conditional language constructs.

10. CONCLUSION

We have formally discussed a type system for an entire software product line that is implemented
with annotations on a common code base. Instead of checking all – possibly millions – of variants
that can be generated from a product line in isolation, we check the product line itself and guarantee
that all variants generated from a well-typed product line are well-typed. We have shown that CFJ
can be modeled in a backward compatible fashion on top of FJ, extending only the typing rules and
auxiliary functions with local checks on annotations.

The formalization was motivated by our product-line tool CIDE for Java and other languages.
Though, CFJ (or FJ) covers only a small excerpt from the Java specification, the formalization pro-
vides several insights on how to design a product-line–aware type system, such as the concept of
reachability conditions, the theorem generation preserves typing, and the design decision of back-
ward compatibility. With the small scope it also allowed to explore the implementation of alternative
features with metaexpressions in detail.

In four case studies, we have shown that type checking an entire software product line is feasi-
ble, useful, and reasonably fast. With our implementation in CIDE, we even found inconsistencies
(undocumented dependencies, forgotten annotations on an import statements, dead feature code) in
all analyzed product lines that were developed with #ifdef directives. With a product-line–aware
type system, we detect such problems already early during product-line development, instead of
late when problematic variant with a specific feature combination is eventually compiled. Although
these product lines contain hundreds of annotations, sometimes with at a fine level of granularity or
with complex or nested feature expressions, we can efficiently automate reachability checking.

In future work, we intend to explore paths toward extensions for other code and non-code lan-
guages and their interactions (inter-language typing). Furthermore, we intend to apply verification
and validation tools to entire product lines to find also semantic errors. Our long term goal is to pro-
vide a language-independent product-line tool that counteracts the inherent complexity of product
lines by detecting possible errors as early as possible.
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