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Abstract—This paper proposes a novel approach to jointly
optimize spatial prediction and the choice of the subsequent
transform in video and image compression. Under the assumption
of a separable first-order Gauss-Markov model for the image
signal, it is shown that the optimal Karhunen-Loeve Transform,
given available partial boundary information, is well approxi-
mated by a close relative of the discrete sine transform (DST),
with basis vectors that tend to vanish at the known boundary
and maximize energy at the unknown boundary. The overall
intraframe coding scheme thus switches between this variant of
the DST named asymmetric DST (ADST), and traditional discrete
cosine transform (DCT), depending on prediction direction and
boundary information. The ADST is first compared with DCT in
terms of coding gain under ideal model conditions and is demon-
strated to provide significantly improved compression efficiency.
The proposed adaptive prediction and transform scheme is then
implemented within the H.264/AVC intra-mode framework and
is experimentally shown to significantly outperform the standard
intra coding mode. As an added benefit, it achieves substantial
reduction in blocking artifacts due to the fact that the transform
now adapts to the statistics of block edges. An integer version of
this ADST is also proposed.

Index Terms—Blocking artifact, discrete sine transform (DST),
intra-mode, spatial prediction, spatial transform.

I. INTRODUCTION

T RANSFORM coding is widely adopted in image and
video compression to reduce the inherent spatial redun-

dancy between adjacent pixels. The Karhunen–Loeve transform
(KLT) possesses several optimality properties, e.g., in terms
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of high-resolution quantization (of Gaussians) and full decor-
relation of the transformed samples. Practical considerations,
however, limit the use of KLT. Its dependence on the signal
results in high implementation complexity and added side
information in the bitstream, as well as the absence of fast com-
putation algorithm in general. The discrete cosine transform
(DCT) has long been a popular substitute due to properties such
as good energy compaction [1]. Standard video codecs such
as H.264/AVC [2] implement transform coding within a block
coder framework. Each video frame is partitioned into a grid
of blocks, which may be spatially (intra-mode) or temporally
(inter-mode) predicted, and then transformed via the DCT. The
transform coefficients are quantized and entropy coded. Typical
block sizes vary between 4 4 and 16 16. Such a block
coder framework is motivated by the need to adapt to local
signal characteristics, coding flexibility, and computational
concerns. This paper focuses, in particular, on the intra-mode
in video coding. Note that intra-mode coding does not exploit
temporal redundancies, and thus, the concepts developed herein
are generally applicable to still-image compression.
Although the motivation for employing a block coder is to

separate the video frame into distinct regions, each of which
with its own locally stationary signal statistics, invariably, the
finite number of choices for block sizes and shapes results in
residual correlation between adjacent blocks. In order to achieve
maximum compression efficiency, intra-mode coding exploits
the local anisotropy (for instance, the occurrence of spatial pat-
terns within a frame) via the spatial prediction of each block
from previously encoded neighboring pixels, available at block
boundaries. The DCT has been demonstrated to be a good ap-
proximation for the KLT under certain Markovian assumptions
[1], when there is no spatial prediction from pixels of adjacent
blocks. However, its efficacy after boundary information has
been accounted for is questionable. The statistics of the residual
pixels close to known boundaries can significantly differ from
the ones that are far off; the former might be better predicted
from the boundary than the latter, and thus, one expects a cor-
responding energy variation across pixels in the residual block.
The DCT is agnostic to this phenomenon. In particular, its basis
functions achieve their maximum energy at both ends of the
block. Hence, the DCT is mismatched with the statistics of the
residual obtained after spatial prediction. This, of course, mo-
tivates the question of what practical transform is optimal or
nearly optimal for the residual pixels after spatial prediction.
This paper addresses this issue by considering a joint

optimization of the spatial prediction and the subsequent trans-
formation. Under the assumption of a separable first-order
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Gauss–Markov model for the image pixels, prediction error
statistics are computed based only on the available, i.e., already
encoded (and reconstructed), boundaries. The mathematical
analysis shows that the KLT of such intra-predicted residuals
is efficiently approximated by a relative of the well-known
discrete sine transform (DST) with appropriate frequencies
and phase shifts. Unlike the DCT, this variant of the DST
is composed of basis functions that diminish at the known
block boundary, while retaining high energy at the unknown
boundary. Due to such asymmetric structure of the basis
functions, we refer to it as asymmetric DST (ADST). The
proposed transform has significantly superior performance
compared with the DCT in terms of coding gain as demon-
strated by the simulations presented later in the context of
ideal model scenarios. Motivated by this theory, a hybrid
transform coding scheme is proposed, which allows choosing
from the proposed ADST and the traditional DCT, depending
on the quality and the availability of boundary information.
Simulations demonstrate that the proposed hybrid transform
coding scheme consistently achieves remarkable bit savings
at the same peak signal-to-noise ratio (PSNR). Note that the
intra-mode in H.264/AVC, which utilizes spatial prediction
followed by the DCT, has been shown to provide better rate-dis-
tortion performance than wavelet-based Motion-JPEG2000 at
low-to-medium frame/image resolutions [e.g., Common Inter-
mediate Format (CIF) and Quarter CIF (QCIF)] [3]. Hence,
the proposed block-based hybrid transform coding scheme is
of significant benefit to still-image coding as well. A low-com-
plexity integer version of the proposed ADST is also presented,
which enables the direct deployment of the proposed hybrid
transform coding scheme in conjunction with the integer DCT
(Int-DCT) of the H.264/AVC standard.
A well-known shortcoming in image/video coding is the

blocking effect; since the basis vectors of the DCT achieve
their maximum energy at block edges, the incoherence in
the quantization noise of adjacent blocks is magnified and
exacerbates the notorious “blocking effect.” Typically, this
issue is addressed by post-filtering (deblocking) at the decoder
to smooth the block boundaries, i.e., a process that can result
in information loss, such as the undesirable blurring of sharp
details. The proposed ADST provides the added benefit of al-
leviating this problem; its basis functions vanish at block edges
with known boundaries, thus obviating the need for deblocking
these edges. Simulation results exemplify this property of the
proposed approach.
Highly relevant literature includes [4], where a first-order

Gauss–Markov model was assumed for the images and it was
shown that the image can be decomposed into a boundary re-
sponse and a residual process given the closed boundary infor-
mation. The boundary response is an interpolation of the block
content from its boundary data, whereas the residual process
is the interpolation error. Jain [4], [5] showed that the KLT of
the residual process is exactly the DST when all boundaries are
available, under the assumed Gauss–Markov model. However,
in practice, blocks are sequentially coded, which implies that,
when coding a particular block, available information is limited
to only few (and not all) of its boundaries. Meiri and Yudile-
vich [6] attempted to solve this by first encoding the edges of

the block, which border unknown boundaries. The remaining
pixels of the block are now all enclosed within known bound-
aries and are encoded with a “pinned sine transform.” However,
the separate coding procedure required for block edges comes
at a cost to coding efficiency. In the late 80s, it was experi-
mentally observed that, under certain conditions, there exists
some similarity in basis functions between the KLT of extrap-
olative prediction residual and a variant of the DST [7]. Alter-
natively, various transform combinations have been proposed
in the literature. For instance, in [8], sine and cosine transforms
are alternately used on image blocks to efficiently exploit inter
block redundancy. Directional cosine transforms to capture the
texture of block content have been proposed in [9]. More re-
cently, mode-dependent directional transforms (MDDTs) have
been proposed in [10], wherein different vertical and horizontal
transforms are applied to each of the nine modes (of block size
4 4 and 8 8) in H.264/AVC intra-prediction. Unlike the pro-
posed approach here, where a single ADST and the traditional
DCT are used in combination based on the prediction context,
the MDDTs are individually designed for each prediction mode
based on training data of intra-prediction residuals in that mode
and thus require the storage of 18 transformmatrices at either di-
mension. Another class of transform coding schemes motivated
by the need to reduce blockiness employs overlapped trans-
forms, e.g., [11] and [12], to exploit inter block correlation. A
recent related approach is [13] where intra coding is performed
with the transform block enlarged to include available boundary
pixels from previously encoded blocks.
The approach we develop in this paper is derived within the

general setting adopted for intra coding in current standards
where prediction from boundaries is followed by the transform
coding of the prediction residual. We derive the optimal trans-
form for the prediction residuals under Markovian assumptions,
show that it is signal independent and has fast implementation,
and demonstrate its application to practical image/video com-
pression. Some of our preliminary results were presented in
[14].
The rest of this paper is organized as follows: Section II

presents a mathematical analysis for spatial prediction
and residual transform coding in video/image compres-
sion. Section III describes the proposed hybrid transform
coding scheme and outlines the implementation details in the
H.264/AVC intra coding framework. An integer version of
the proposed transform coding scheme is then provided in
Section IV.

II. JOINT SPATIAL PREDICTION AND RESIDUAL
TRANSFORM CODING

This section describes the mathematical theory behind the
proposed approach in the context of prediction of a 1-D vector
from one of its boundary points. The optimal transform (KLT)
for coding the prediction residual vector is considered, which,
under suitable approximations, yields the ADST that we re-
ferred to in Section I. We then consider the effect of predic-
tion from a “noisy” boundary since, in practice, only the re-
constructed version of the boundary is available to the decoder
(and not its original or exact value). Finally, the proposed ADST
is compared with the traditional DCT in terms of coding gain
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under assumedmodel conditions. The simplified exposition pre-
sented here then motivates the hybrid coding approach for 2-D
video/image blocks presented in Section III.

A. One-Dimensional Derivation

Consider a zero-mean unit-variance first-order
Gauss–Markov sequence, i.e.,

(1)

where is the correlation coefficient and is a white Gaussian
noise process with variance . Let
denote the random vector to be encoded given as the avail-
able (one-sided) boundary. Superscript denotes the matrix
transposition. Recursion (1) translates into the following set of
equations:

...

(2)

or in compact notation

(3)

where

...
...

...
...

...

(4)

and and capture the
boundary information and the innovation process, respectively.
It can be shown that is invertible, and thus

(5)

where superscript 1 indicates the matrix inversion. As ex-
pected, the “boundary response” or prediction in (5) sat-
isfies

(6)

The prediction residual, i.e.,

(7)

is to be compressed and transmitted, whichmotivates the deriva-
tion of its KLT. The autocorrelation matrix of is given by

(8)

Thus, the KLT for is a unitary matrix that diagonalizes
and, hence, also the more convenient matrix:

...
...

...
...

...

(9)

Although is Toeplitz, note that the element at the bottom
right corner is different from all the other elements on the prin-
cipal diagonal, i.e., it is not . This irregularity complicates
an analytic derivation of the eigenvalues and eigenvectors of .
As a subterfuge, we approximate with

...
...

...
...

...

(10)
which is obtained by replacing the bottom-right corner element
with . The approximation clearly holds for ,
which is indeed a common approximation for image signals.
Now, the unitary matrix that diagonalizes and, hence,
an approximation for the required KLT of , has been shown,
in another context, to be the following relative of the common
DST [15]:

(11)

where are the frequency and time indexes
of the transform kernel, respectively. Needless to say, the con-
stant matrix is independent of the statistics of innovation
and can be used as an approximation for the KLT when full in-
formation on boundary is available.
Note that the rows of (i.e., the basis functions of the

transform) take smaller values in the beginning (closer to
the known boundary) and larger values toward the end. For
instance, consider the row with (i.e., the basis function
with the lowest frequency). In the case where , the
first sample is ,
whereas the last sample takes the maximum value

. We thus
refer to matrix/transform as the ADST.

B. Effect of Quantization Noise on the Optimal Transform

The prior derivation of the ADST followed from the KLT of
, whose definition assumes the exact knowledge of boundary
. In practice, however, only a distorted version of this

boundary is available (due to quantization). For instance, in the
context of block-based video coding, we have access only to
reconstructed pixels of neighboring blocks. We thus consider
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here the case when the boundary is available as the distorted
value, i.e.,

(12)

where is a zero-mean perturbation of the actual boundary .
Note that this model covers as special case the instance where
no boundary information is available. We now rewrite the first
equation in (2) as

(13)

where , and (5) as

(14)

with and .
We denote by the prediction residual when the

boundary is distorted. As before, we require the KLT of ,
which diagonalizes the corresponding autocorrelation matrix

. Note that

(15)

where . The aforementioned follows from the fact
that is independent of innovations , since itself is inde-
pendent of . Thus

(16)

where

...
...

...
... (17)

The KLT of is thus a unitary matrix that diagonalizes .
We now consider two separate cases.

Case 1—Small distortion: Suppose that ,
which is usually the case when the quantizer resolution is
medium or high. The top-left corner element in thus
approaches . Furthermore, when , we can
reapply the earlier subterfuge to the bottom-right corner
element and replace it with . Then, simply
becomes of (10), and the required diagonalizing matrix,
i.e., the transform, is once again the ADST matrix .
Case 2—Large distortion: The other extreme is when
no boundary information is available or the energy of
the quantization noise is high. In this case, we have

. The top-left corner element of is then

(18)

and can be approximated as when . Thus,
can be approximated as

...
...

...
... (19)

whose KLT can be shown to be the conventional DCT [1]
(see Appendix A), which we henceforth denote by .
This also implies that the DCT is the optimal transform in
the case where no boundary information is available, and
the transform is directly applied to the pixels instead of the
residuals.

C. Quantitative Analysis Comparing the ADST and the DCT
to the KLT

The previous discussion argued that the ADST or the DCT
closely approximate the KLT under limiting conditions on the
correlation coefficient or the quality of boundary information
indicated by .We now quantitatively compare the performance
of the DCT and the proposed ADST against that of the KLT (of
or ) in terms of coding gains [16] under the assumed signal

model, at different values of and .
First, consider the case when there is no boundary distortion.

Let the prediction residual be transformed to

(20)

with an unitary matrix . The objective of the en-
coder is to distribute a fixed number of bits to the different el-
ements of such that the average distortion is minimized. This
bit-allocation problem is addressed by the well-known water
filling algorithm (see, e.g., [16]). Under assumptions such as a
Gaussian source, a high-quantizer resolution, a negligible quan-
tizer overload, and with non-integer bit-allocation allowed, it
can be shown that the minimum distortion (mean squared error)
obtainable is proportional to the geometric mean of the trans-
form domain sample variances , i.e.,

(21)

where, for Gaussian source, the proportionality coefficient is
independent of transform . These variances can be obtained
as the diagonal elements of the autocorrelation matrix of , i.e.,

(22)

where we have used (8) and (9). The coding gain in decibels of
any transform is now defined as

(23)

Here, is the identity matrix, and hence, is the
distortion resulting from the direct quantization of the untrans-
formed vector . The coding gain thus provides a compar-
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Fig. 1. Theoretical coding gains of the ADST and the DCT relative to the
KLT, all applied to the prediction residuals (given the exact knowledge of the
boundary), plotted versus the inter-pixel correlation coefficient. The block di-
mension is 4 4.

ison of the average distortion incurred with and without trans-
formation . Note that, for any given (including the ADST,
the DCT, and the KLT of ), computing and, hence,
does not require making any approximations for . However,
when is the KLT of , is a diagonal matrix (with diag-
onal elements equal to the eigenvalues of ), the transform
coefficients are uncorrelated, and the coding gain reaches its
maximum.
Fig. 1 compares the ADST and the DCT in terms of their

coding gains, relative to the KLT; specifically, it depicts
and versus the correlation coefficient . Note

that, although the derivation of the ADST, i.e., , assumed that
, it, in fact, approximates the KLT closely even at other

values of the correlation coefficient , when the boundary is ex-
actly known, i.e., without any distortion. The maximum gap be-
tween theADST and theKLT or themaximum loss of optimality
is less than 0.05 dB (and occurs at ). In comparison,
the DCT poorly performs (by about 0.56 dB) for the practically
relevant case of high correlation . At low correlation

, the autocorrelation matrix of the prediction residual,
i.e., , and, hence, any unitary matrix, including the
ADST and the DCT, will function as a KLT. The block length
used in obtaining the results of Fig. 1 was , but similar
behavior can be observed at higher values of . We emphasize
that these theoretical coding gains are obtained with respect to
the prediction residuals, which are to be transmitted instead of
the original samples.
We now consider the case where the boundary is distorted,

i.e., when the vector to be transformed is . The KLT in this
case is defined via matrix of (17), and similar to (22), the
coding gain of transform is obtained from the diagonal ele-
ments of . Note that coding gains will now be a func-
tion of the boundary distortion , which, in practice, is a result
of the quantization of the transformed coefficients. In order to
enhance the relevance of the discussion that follows, we first
describe a mapping from to the quantization parameter (QP)
commonly used in the context of video compression to control
the bitrate/reconstruction quality, so that the performance of the
ADST and the DCT can be directly compared via coding gains
at different QP values. Since the transforms considered are uni-
tary, assuming a uniform high rate quantizer, the variance of
boundary distortion can be shown to be , where is

Fig. 2. Theoretical coding gains of ADST and DCT relative to the KLT plotted
versus QP. The inter-pixel correlation coefficient is 0.95.

the quantizer step size associated with the QP value . Let the
image pixels (luminance components) be modeled as Gaussian
with a mean of 128 and a variance of ,
where is the inverse error function.1 However, note
that, so far, the discussion assumed the unit variance for the
source samples (see description of (1) in Section II-A). We
therefore normalize the image pixel model to the unit variance,
and hence, the “normalized” variance of the boundary dis-
tortion maps to the true distortion as follows:

(24)

The aforementioned mapping is used to compare the perfor-
mance of the ADST and the DCT relative to the KLT at different
values of the boundary distortion indicated in terms of the QP.
Fig. 2 provides such a comparison at the inter-pixel correlation
of . The following observations can be made:
1) At low values of QP (i.e., reliable block boundary), as dis-
cussed in Section II-B, the ADST outperforms the DCT
and performs close to the KLT.

2) At high values of QP (e.g., ), the pixel boundary
is very distorted and unsuitable for prediction. In this case,
the DCT performs better than the ADST.

3) Typically, in image and video coding, QP values of prac-
tical interest range between 20 and 40. As evident from
Fig. 2, the ADST should be the transform of choice in these
cases when intra prediction is employed.

III. HYBRID TRANSFORM CODING SCHEME

We extended the theory proposed so far in the framework
of 1-D sources to the case of 2-D sources, such as images.
H.264/AVC intra coding predicts the block adaptively using its
(upper and/or left) boundary pixels and performs a DCT sepa-
rately on the vertical and horizontal directions, i.e., the block of
pixels is assumed to conform to a 2-D separable model. The
previous simulations with a 1-D Gauss–Markov model indi-
cate that, for typical quantization levels, the ADST can pro-
vide better coding performance than the DCT when the pixel
boundary is available along a particular direction. Therefore, we
herein jointly optimize the choice of the transform in conjunc-
tion with the adaptive spatial prediction of the standard and refer
to this paradigm as the hybrid transform coding scheme.

1This choice of parameters effectively requires that the CDF increases by
0.99, when pixel value goes from 0 to 255.
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A. Hybrid Transform Coding With a 2-D Separable Model

Let denote the pixel in the th row and the th column of
a video frame or image. The first-order Gauss–Markov model of
(1) is extended to two dimensions via the following separable
model for pixels2:

(25)

where, as in Section II-A, the source samples are assumed
to have zero mean and unit variance. The innovations are in-
dependent identically distributed (i.i.d.) Gaussian random vari-
ables. Note that the aforementioned model results in the fol-
lowing inter pixel correlation:

(26)

Now, consider an block of pixels, i.e., , containing
pixels , with . We can rewrite (25) for
block via the compact notation, i.e.,

(27)

where is defined by (4) and is the innovation matrix with
elements , . By expanding , it can
be shown that matrix contains non-zero elements only in the
first row and the first column, with

(28)

In other words, contains the boundary information from
two sides of (i.e., for the top and left boundaries of the block).
With this mathematical framework in place, we now describe
the proposed hybrid transform coding scheme to encode block
.
1) Prediction and Transform in the Vertical Direction: Let us

consider the th column in the image, denoted as .
By (25), , where

(29)

The pixels are Gaussian random variables, and hence, so are
variables . Furthermore

for any integer . Therefore, are indeed i.i.d. Gaussian
random variables. Hence, the sequence effectively follows
a 1-D Gauss–Markov model akin to (1), with innovations given
by . Thus, the arguments for optimal prediction and trans-
form for 1-D vectors developed in Section II hold for individual
image columns.

Case 1—Top boundary is available: When the top
boundary of is available, (6) is employed to pre-
dict the th column of as (recall that

). The ADST can now be applied on the resulting
column of residual pixels. This

2For simplicity, a constant inter pixel correlation coefficient is assumed in
our model. We note that a more complicated model with spatially adaptive is
expected to further improve the overall coding performance.

process (individually) applied to the columns results in
the following matrix of transform coefficients:

where is the th row in matrix . Now, consider
the perpendicular direction, i.e., the rows in . The th
row is denoted as

(30)

If the left boundary of block is also available, the left
boundary of the row is . Let

...
(31)

where we have used (25) and (29). Since innovations
are Gaussian random variables, so is . For any integer

...
...

(32)

Therefore, are i.i.d. Hence, sequence
conforms to (1).

Case 2—Top boundary is unavailable: When the
top-boundary information is unavailable, no predic-
tion can be performed in the vertical direction, and the
transformation is to be directly applied on the pixels. As
previously discussed in Case 1, every column in fol-
lows the 1-D AR model, and thus, the optimal transform,
as suggested in Section II-B, is the DCT. The transform
coefficients of the column vectors are now

where is the th column in and
is the th row in . Now, consider the th row in ,

denoted as

(33)

with boundary sample , when the left-boundary
is available. Let

...
(34)

Again, as in (32), it can be shown that are i.i.d. Gaussian
random variables and, thus, sequence
follow the AR model in (1).
2) Prediction and Transform in the Horizontal Direction:

Note that, irrespective of the availability of the top boundary,
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the results in Cases 1 and 2 of Section III-A1 show that the el-
ements of each row of the block obtained by transforming the
columns of follow the 1-D AR model. Thus, the conclusions
in Section II can be again applied to each individual row of this
block of transformed columns.

Case 1—Left boundary is available: The prediction for
is , where is com-

puted as indicated in either Case 1 or 2 of Section III-A1.
The residuals can now be transformed by the application
of the ADST on each row and can be then encoded.
Case 2—Left boundary is unavailable: The DCT is directly
applied on to the row vectors. No prediction is employed.

In summary, the hybrid transform coding scheme accom-
plishes the 2-D transformation of a block of pixels as two
sequential 1-D transforms separately performed on rows and
columns. The choice of 1-D transform for each direction is
dependent on the corresponding prediction boundary condition.
1 Vertical transform: Employ the ADST if the top boundary
is used for prediction; use the DCT if the top boundary is
unavailable.

2 Horizontal transform: Employ the ADST if the left
boundary is used for prediction; use the DCT if the left
boundary is unavailable.

B. Implementation in H.264/AVC

We now discuss the implementation of the aforementioned
hybrid transform coding scheme in the framework of the H.264/
AVC. The standard intra coder defines nine candidate prediction
modes, each of which corresponding to a particular spatial pre-
diction direction. Among these, Vertical (Mode 0), Horizontal
(Mode 1), and direct-current (DC) (Mode 2) modes are the most
frequently used. We focus on these three modes to illustrate the
basic principles and demonstrate the efficacy of the approach.
Implementation for remaining directional modes can be derived
along similar lines.
The standard DC mode is illustrated in Fig. 3(a) for the 4

4 block of pixels denoted . All the 16 pixels share the
same prediction, which is the mean of the boundary pixels ,

, and . The standard encoder follows up this predic-
tion with a DCT in both vertical and horizontal directions. Note
that the DCmode implies that both the upper and left boundaries
of the block are available for prediction. The proposed hybrid
transform coding scheme, when incorporated into H.264/AVC,
modifies the DCmode as follows: the columns are first predicted
as described in Section III-A and the residues are then trans-
formed via the ADST. The same process is repeated on rows of
the block of transformed columns.
The standard Vertical mode shown in Fig. 3(b) only uses the

top boundary for prediction, while the left boundary is assumed
unavailable. The standard encoder then sequentially applies the
DCT in vertical and horizontal directions. In contrast, when
the proposed hybrid transform coding scheme is incorporated
into H.264/AVC, the Vertical mode is modified as follows: the
columns of prediction residuals are first transformed with the
ADST, and subsequently, the DCT is applied in the horizontal
direction. In a similarly modified Horizontal mode, the ADST
is applied to the rows, and the DCT is applied to the columns.
Note that our derivations through Section III-A of the hy-

brid transform coding scheme assumed zero-mean source sam-
ples. In practice, however, the image signal has a local mean

Fig. 3. Examples of intra-prediction mode. (a) DC mode, both upper and
left boundaries ( , , and ) are used for prediction. (b) Vertical
mode, only the upper pixels ( ) are considered as effective boundary for
prediction.

value that varies across regions. Hence, when operating on a
block, it is necessary to remove its local mean, from both the
boundary and the original blocks of pixels to be coded. The hy-
brid transform coding scheme operates on these mean-removed
samples. The mean value is then added back to the pixels during
reconstruction at the decoder. In our implementation, the mean
is simply calculated as the average of reconstructed pixels in
the available boundaries of the block. This method obviates the
need to transmit the mean in the bitstream.

C. Entropy Coding

Here, we discuss some practical issues that arise in the
implementation of the proposed hybrid transform within the
H.246/AVC intra mode. The entropy coders in H.264/AVC,
i.e., typically context-adaptive binary arithmetic coding or con-
text-adaptive variable-length coding, are based on run-length
coding. Specifically, the coder first orders the quantized trans-
form coefficients (indexes) of a 2-D block in a 1-D sequence,
at the decreasing order of expected magnitude. A number
of model-based lookup tables are then applied to efficiently
encode the non-zero indexes and the length of the tailing
zeros. The efficacy of such entropy coder schemes relies on
the fact that nonzero indexes are concentrated in the front end
of the sequence. A zigzag scanning fashion [2] is employed
in the standard since the lower frequency coefficients in both
dimensions tend to have higher energy. Our experiments with
the hybrid transform coder show that the same zigzag sequence
is still applicable to the modified DC mode but does not hold
for the modified Vertical and Horizontal modes. A similar ob-
servation has been reported in [10], where MDDTs are applied
to the prediction error. We note that this phenomenon tends
to be accentuated in our proposed hybrid transform scheme,
which optimally exploits the true statistical characteristics of
the residual.
To experimentally illustrate this point, we encoded the lumi-

nance component of 20 frames of the carphone sequence in Intra
mode at QP and computed the average of the absolute
values of quantized transform coefficients across blocks of size
4 4 for which the encoder selected the modified Horizontal
mode. The following matrix of average values was obtained:

(35)
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Fig. 4. Scanning order in hybrid transform coding scheme. (a) Horizontal
mode; scan columns sequentially from left to right. (b) Vertical mode; scan
rows sequentially from top to bottom.

This observation is consistent with our proposal of a scanning
order, as shown in Fig. 4(a), for the Horizontal mode, which
results in a coefficient sequence with decreasing order of the
expected coefficient magnitude, thus enhancing the efficiency
of the entropy coder. In a similar vein, we use the scanning order
shown in Fig. 4(b) for the Vertical mode.

IV. INTEGER HYBRID TRANSFORM

A low-complexity version of the DCT, called the Int-DCT,
has been proposed in [17] and adopted by the H.264/AVC stan-
dard [2]. The scheme employs an integer transform with orthog-
onal (instead of orthonormal) bases and embeds the normaliza-
tion in the quantization of each coefficient, thus requiring calcu-
lations with simple integer arithmetic and significantly reducing
the complexity. The overall effective integer transform is a
close element-wise approximation to the DCT . Specifically

(36)

where is a diagonal matrix and is the transform ma-
trix used in H.264/AVC. For a given quantization step size ,
the encoder can perform the transform and the quantization of
vector , and the output after quantization is given as

(37)

where denotes element-wise multiplication, denotes the
rounding function, and is the “all 1’s” column vector of
entries. Since all elements in are integers, the transfor-

mation only requires additions and shifts. The resulting coeffi-
cients are quantized with weighted step sizes that incorporate
the normalization factor . The efficacy of the Int-DCT has
been reported in [17]. The Int-DCT is directly used instead of
the floating-point DCT in H.264/AVC to avoid drift issues due
to the floating-point arithmetic and for the ease of implementa-
tion of Int-DCT via adders and shifts.

Fig. 5. Theoretical coding gains of the ADST/Int-ADST and the DCT/Int-
DCT, all applied to the prediction residuals (given exact knowledge of the
boundary), plotted versus the inter pixel correlation coefficient. The block
dimension is 4 4.

Analogous to the Int-DCT, we now propose an integer version
of the proposed ADST, namely, the Int-ADST. The floating-
point sine transform is repeated herein as

(38)

whose elements are, in general, irrational numbers. The Int-DST
approximates as follows:

(39)

When applied to vector , the Int-DST can be implemented
as follows:

(40)

Again, all the elements in are integers; thus, computing
only requires addition and shift operations. We evaluate

the coding performance of relative to the KLT and compare
it with the original ADST and DCT/Int-DCT at different
values of inter pixel correlation in Fig. 5. The performance of
the Int-ADST is very close to that of the ADST and the KLT, and
it substantially outperforms the DCT/Int-DCT at high values of
. The maximum gap between coding gains of the Int-ADST
and the ADST is about 0.02 and 0.05 dB between the Int-ADST
and the KLT.

V. SIMULATION RESULTS

The proposed hybrid transform coding scheme is imple-
mented within the H.264/AVC Intra framework. All the nine
prediction modes are enabled, among which the DC, Vertical,



1882 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

Fig. 6. Coding performance on carphone at the QCIF resolution. The pro-
posed hybrid transform coding scheme (ADST/DCT) and its integer version
(Int-ADST/Int-DCT) are compared with H.264 Intra coding using the DCT and
the Int-DCT.

TABLE I
RELATIVE BIT SAVINGS OF THE ADST/DCT IN COMPARISON WITH DCT AT

CERTAIN OPERATING POINT SEQUENCES AT THE QCIF RESOLUTION

and Horizontal modes are modified, as proposed in Section III.
To encode a block, every prediction mode (with the associated
transform) is tested, and the decision is made by rate-distortion
optimization.
For quantitative comparison, the first ten frames of carphone

at QCIF resolution are encoded in Intra mode using the proposed
hybrid transform coding scheme, the conventional DCT, and
their integer versions, respectively. The coding performance is
shown in Fig. 6. Clearly, the proposed approach provides better
compression efficiency than DCT, particularly at medium-to-
high quantizer resolution. When quantization is coarse (i.e., the
bitrate is low), the boundary distortion is significant, and the
DCT approaches the performance of the ADST, as discussed in
Section II-C.When the integer version of either transform is em-
ployed in the encoder, the same performance as its floating-point
counterpart is observed. We have, in fact, established that the
performance of the integer versions is generally hardly distin-
guishable from the floating-point version of the same transform.
Hence, from now on, to avoid unnecessary clutter in the presen-
tation of the remainder of the experiments, we will only show
results for the original floating-point transforms. More simula-
tion results of test sequences at the QCIF resolution are shown in
Table I, where the operating points are chosen as 42, 38, and 34
dB of PSNR, and the coding performance is evaluated in terms
of relative bit savings. The coding performance in the context
of sequences at the CIF resolution is demonstrated in Fig. 7 and
Table II.
Competing transforms in image coding are compared in

terms of compression performance, complexity, and perceptual
quality [18]. We next focus on the perceptual comparison. The
decoded frames of carphone at the QCIF resolution using the

Fig. 7. Coding performance on harbor at the CIF resolution. The proposed
hybrid transform coding scheme (ADST/DCT) is compared with H.264/AVC
Intra using the DCT.

TABLE II
RELATIVE BIT SAVINGS OF THE ADST/DCT IN COMPARISON WITH DCT AT

CERTAIN OPERATING POINT SEQUENCES AT THE CIF RESOLUTION

proposed codec and H.264/AVC Intra coder at 0.3 bits/pixel
are shown in Fig. 8. The basis vectors of the DCT maximize
their energy distribution at both ends; hence, the discontinuity
at block boundaries due to quantization effects (commonly
referred to as blockiness) are magnified [see Fig. 8(c)]. Al-
though the deblocking filter, which is, in general, a low-pass
filter applied across the block boundary, can mitigate such
blockiness, it also tends to compromise the sharp curves, e.g.,
the face area in Fig. 8(d). In contrast with the DCT, the basis
vectors of the proposed ADST minimize their energy distribu-
tion as they approach the prediction boundary and maximize
it at the other end. Hence, they provide smooth transition to
neighboring blocks, without recourse to an artificial deblocking
filter. Therefore, the proposed hybrid transform coding scheme
provides consistent reconstruction and preserves more details,
as shown in Fig. 8(b).

VI. CONCLUSION

In this paper, we have described a new compression scheme
for image and intra coding in video, which is based on a hybrid
transform coding scheme in conjunction with the intra predic-
tion from available block boundaries. A new sine transform,
i.e., the ADST, has been analytically derived for the predic-
tion residuals in the context of intra coding. The proposed
scheme switches between the sine transform and the standard
DCT depending on the available boundary information, and
the resulting hybrid transform coding has been implemented
within the H.264/AVC intra mode. An integer low-complexity
version of the proposed sine transform has been also derived,
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Fig. 8. Perceptual comparison of reconstructions of carphone Frame 2 at the
QCIF resolution. (b) The proposed hybrid transform coding scheme is compared
with (a) the original frame and (c) H.264/AVC Intra (d) without deblocking
filter.

which can be directly implemented within the H.264/AVC
system and avoids any drift due to the floating-point operation.
The theoretical analysis of the coding gain shows that the
proposed ADST has a performance that is very close to the
KLT and substantially outperforms the conventional DCT for
intra coding. The proposed transform scheme also efficiently
exploits inter block correlations, thereby reducing the blocking
effect. Simulation results demonstrate that the hybrid transform
coding scheme outperforms the H.264/AVC intra-mode both
perceptually and quantitatively.

APPENDIX A
PROOF OF CASE 2 IN SECTION II-B

Claim: The KLT for in (19) is DCT given by

(41)

where are the frequency and time indexes
of the transform kernel, respectively, and

.

The eigenvalue associated with the th eigenvector is

Proof: To verify this statement, let us consider a vector quan-
tity that measures by how much we deviate from the eigen-
value/eigenvector condition, i.e.,

(42)

where denotes the identity matrix. The first entry of is

The last entry of can be computed as

Since

the last entry of is zero. The remaining th element, where
, is computed as

Hence, all the entries of are zero, i.e., , which
implies that . Indeed, is the eigenvector of
, and is the eigenvalue associated with , for all

. Therefore, DCT is the KLT for in (19).
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