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a b s t r a c t

We consider a network of controllers that observe and control a plant whose dynamics
is determined by a finite set of continuous variables. At any given time a variable evolves
at a constant rate. However, a controller can switch the rates of a designated subset of
the continuous variables. These mode changes are determined by the current values of a
designated subset of the variables that the controller can observe. Each variable’s rate is
controlled by exactly one controller and its value is observed by at most one controller. We
model this setting as a network of hybrid automata and study its discrete time behavior.
We show that the set of global control state sequences displayed by the network is regular.
More importantly, we show that one can succinctly represent this regular language as a
family of communicating finite state automata. We allow the observation of the variables
and the changes in the rates of the variables to incur delays. We also permit the digital
clocks associated with the controllers to evolve at different – but rationally related – rates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We study the discrete time behavior of a plant supervised by a set of controllers. The plant’s state space is determined by
a finite set of continuous variables X evolving at rates determined by the controllers. Each controller can observe a subset
of X. Based on these observations, it can effect changes to the rates of a subset of X. Each variable is controlled—i.e. its rate
can be changed – by exactly one controller and its value is observed by at most one controller. In effect we are assuming
a dedicated actuator and sensor with each variable with the understanding that there may be unobserved variables but no
uncontrolled ones. In addition, we allow the sensing of the value of a variable and effecting a change to the rate of a variable
to incur delays. Finally, we permit the digital clocks associated with controllers to run at different – rationally related –
rates. We use a distributed version of hybrid automata to model this rich setting. We then show that the discrete time
behavior of the resulting network of hybrid automata can be succinctly represented as a family of communicating finite
state automata. A novel feature of our construction is that a large sequential automaton is succinctly represented as a family
of communicating smaller finite state automata which move asynchronously.

In the present study, there is no explicit communication between the controllers. However, therewill be information flow
between them due to the state space of the plant serving as a shared memory. Specifically, the controller pmay observe the
value of a variable xwhich is controlled by another controller q. Since p’s mode changes depend on the variables it observes,
its behavior can be influenced by q via x. We address this issue again in Section 5.

Fig. 1 shows a plant with three controllers. An arc labeled x from the plant to a controller indicates that the controller
can observe the value of x. Thus, the set of variables that controller p observes is {x1, x4}. An arc labeled x from a controller
to the plant signifies that x is actuated (controlled) by the controller. Thus q actuates the set of variables {x3, x4}.
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Fig. 1. A plant interacting with three controllers.

In our model there will be one hybrid automaton corresponding to each controller. Each of these automata will be of
a familiar kind. It will have finite set of modes (control states) and in each mode a variable will be evolving at a constant
rate. Further, the guards governing the mode transitions will be rectangular. Both these restrictions are standard and well-
studied [1–4]. Even with these restrictions, the continuous time behavior of a hybrid automaton can be intractable [5,2] and
hence one usually imposes two orthogonal types of restrictions to ensure tractability. One type of restriction is to require
that the value of a continuous variable should be reset to within a pre-determined range of values whenever the rate of a
variable is altered via amode change [6]. In the settingwhere thehybrid automatonmodels the interactions between adigital
controller and a continuous plant, this restriction is untenable. Hence we follow here the second type of restriction, namely,
that the controllers interactwith the plant only at discrete time points. This is natural since themost common controllers are
digital. They will interact with the plant only at time points determined by the ticks of their clocks. The basic result here is
that the discrete time behavior of the plant–controller combine is a regular language. Further, one can effectively compute
a finite state automaton representing this language [1]. Consequently, a variety of verification and (controller) synthesis
problems can be solved using standard methods. It turns out that this result holds even if there are delays associated with
the sensing of the values of the variables and in actuating rate changes [7]. This ‘‘laziness’’ property makes the model more
realistic in plant–controller settings.

We show that in the present setting where we have a network of hybrid automata, the discrete time behavior of the
network is still a regular language. Admittedly, this can be shown by a brute force extension of the technique developed
in [7]. However, the size of the finite state automaton representing this regular language will be exponential in the number
of variables and controllers. Our main result in this paper is that one can instead represent this language in a modular
way as a family of communicating finite state automata. More importantly, this representation will be more succinct. Its
overall size will be linear in the number of variables and in the number of controllers. It will however be exponential in
the number of variables that a controller can observe and control. In realistic settings one can expect this number to be a
small constant relative to the total number of variables and hence our representation will indeed be succinct. A novel aspect
of our representation is that the finite state automata we obtain will move asynchronously. Hence the progress of time for
the individual automata can be different. But by imposing a simple coordination protocol, similar to that in asynchronous
cellular automata [8], we ensure that the discrepancy in the local times of the automata remains bounded. Further, this
lets us exploit the basic aspects of the theory of Mazurkiewicz traces [8] to prove our main results. A variety of techniques
have been developed by the formal verification community including symbolic representationmethods [9] and partial order
verification methods [10] to cope with the state explosion problem. These can be readily deployed to analyze our succinct
representation of the discrete time behavior of the network of hybrid automata.

In terms of related work, the control systems community has studied in a variety of settings a continuous plant being
controlled by a network of discrete controllers (see for instance [11]). A survey of research on networked control systems
for instance is provided in [12]. The main objective in this line of research is to minimize the impact of distribution and
communication on the control task being implemented rather than on computing a finite state representation of the overall
discrete time behavior of the combined system. Decentralized control has also been extensively studied in the setting of
discrete event systems (see for instance [13]). However, the plant model and the controllers are all assumed to be finite
state machines and thus involve no continuous dynamics.

In the next section we introduce the hybrid automata network model and in Section 3 define its discrete time semantics.
In Section 4 we establish our main result. We do so first in a restricted setting to prevent notational clutter from obscuring
the key ideas. In Section 5 we then sketch how these restrictions can be relaxed. In the concluding section we summarize
and briefly discuss the prospects for future research.

This paper is an improved and expanded version of the conference paper [14]. There it was assumed that each controller
controls only one variable but can observe multiple variables. On the other hand while a variable was controlled by exactly
one controller, it was allowed to be observed by more than one controller.

Here we instead work with a symmetric and more realistic restriction. A controller can control and observe multiple
variables. On the other hand, a variable is controlled by exactly one controller and is observed by at most one controller.
In practice there will be a dedicated sensor for each variable and in this sense the present framework is more realistic. We
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however show later how the case of a variable being observed bymore than one controller can be handled butwith increased
computational cost.

In the setting we consider here, the technical developments leading to the main result are more challenging due to the
laziness property. In fact, we need to develop the main result in the presence of laziness and not add it on as done in [14]. In
addition, we discuss in some detail a formal framework in which there is explicit communication between the controllers.
We also identify the property of a model being well-behaved and show that it is a decidable property. Further we show that
the representation of the discrete time behavior of the subclass of well-behaved models will enjoy a fundamental property.
Finally, here we present more complete proofs; in particular, for the case where the controllers operate at different speeds.

2. Distributed hybrid automata

We associate n continuous variables X = {x1, x2, . . . , xn} with the plant and fixm controllers P = {p1, p2, . . . , pm} and
let p, q range over P .

The controller p can observe a subset of the plant’s variables denoted Rp and control a subset of the variables denoted
Wp. By ‘‘control’’ we mean that at suitable times, it can effect rate changes to the variables inWp. We requireWp ∩ Wq = ∅

and Rp ∩ Rq = ∅ if p ≠ q. We also require


p Wp = P . Thus each variable will be controlled by exactly one controller and
observed by at most one controller.

The controllers are assumed to be digital. For each p there is a clock with Tp as its period. At each tick of its clock, p
will sense the values of variables in Rp and based on this, possibly effect a mode change. By a mode change we mean the
controller setting new rates to the variables inWp. To highlight the main ideas, we will first assume that all the clocks run at
the same rate (and are perfectly synchronized). We thus fix a suitable granularity of time and assume that Tp = 1 for all p.

R is the set of real numbers and Q is the set of rational numbers. We fix rationals Bmin, Bmax with Bmin < Bmax and assume
that the feasible values of all the variables liewithin the interval [Bmin, Bmax]. By convention, the plantwill get stuckwhenever
the value of a variable falls outside this interval. We have assumed uniform lower and upper bounds for all the variables
merely for convenience.

For X ⊆ X, a rectangular X-guard is a conjunction of inequalities of the form c ≤ x ≤ c ′ where c, c ′ are rationals in
[Bmin, Bmax] and x ∈ X . In case c = Bmin (c ′

= Bmax) we write just x ≤ c ′ (c ≤ x). Let Grd(X) denote the collection of
rectangular guards over X . By an X-valuation, we shall mean a mapping from X to R. An X-valuation will be just called a
valuation. The notion of an X-valuation satisfying a rectangular X-guard is defined in the obvious way. From now onwewill
refer to rectangular guards as just guards.

We will use δR
min, δ

R
max to capture delays incurred in sensing the values of the variables. These delay parameters will be

rationals in [0, 1] with δR
min ≤ δR

max. The interpretation is that the value of x in Rp reported to p at time tk is the value of x
that held at some time in the interval [tk−1 + δR

min, tk−1 + δR
max]. In general, the delay assumption will be that the value of x

reported at tk was measured in some bounded interval before tk which could be even earlier than tk−1. However, to simplify
the notations, we have assumed that this bounded interval lies between tk−1 and tk.

Similarly, we use the delay parameters δW
min, δ

W
max to model delays in actuating changes to the rates of variables. They will

also be rationals in [0, 1] with δW
min ≤ δW

max. The interpretation is if x is in Wp, and p effects a change in the rate of x at tk,
then this change will not kick in immediately but rather at some time in the interval [tk + δW

min, tk + δW
max]. We note that if

x, y ∈ Wp and p effects changes to the rates of both x and y at tk, then the time t at which rate change of x kicks in will be, in
general, different from t ′, the time at which the rate change of y does.

We shall further assume that δW
max ≤ δR

min which will ensure that rate change of variable x signaled at time tk will kick in
before the measurement of value of x reported at time tk+1 takes place. All of these assumptions can be easily relaxed at the
price of increased notational overhead.

The focus of our study will be a Distributed Hybrid Automaton (‘‘DHA’’ for short) of the form ({Ap}p∈P ,δ). For each p, Ap

is a hybrid automaton describing the interactions of the controller p with the plant whileδ is the set of delay parameters.
The automata {Ap} will be structures of the form (Sp, sinp , Rp,Wp, −→p, Initp, ρp) satisfying the following conditions:

• Sp is a finite set of control states (modes).
• sinp ∈ Sp is the initial control state.
• Rp ⊆ X is the set of variables observed by p and Wp is the set of variables controlled by p. In what follows, we let

Varp = Rp ∪ Wp.
• −→p ⊆ Sp × Grd(Rp) × Sp is the transition relation such that if (sp, ϕ, s′p) ∈ −→p then sp ≠ s′p.
• Initp is a map that assigns an interval [dxmin, d

x
max] of initial values to each variable in Varp. We require both dxmin and dxmax

to be rational numbers such that Bmin ≤ dxmin ≤ dxmax ≤ Bmax.
• ρp : Sp × Wp → Q where ρp(s, x) is the rate of evolution of x in Wp when Ap resides in the control state s.
• If x ∈ Varp ∩ Varq with p ≠ q then x ∈ Rp iff x ∈ Wq. Further


p Wp = P .

• Each member of the set of delay parametersδ = {δR
min, δ

R
max, δ

W
min, δ

W
max} is a rational in [0, 1]. Further, δW

min ≤ δW
max ≤

δR
min ≤ δR

max.
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Fig. 2. An example DHA.

Fig. 2 shows a DHA consisting of three automata Ap, Aq, Ar following the usual graphical notations. To reduce clutter,
we have not shown all the guards. We have also not shown the delay parameters.

At time t0 = 0, each xwill have its value lying in the interval [dxmin, d
x
max] and each Ap will be in its initial mode. If x is in

Wp then it will start evolving at rate ρp(sinp , x). No automaton signals a mode change at t0.
Suppose at tk (k > 0) the current values of the variables in X are given by the valuation Vk and Ap is in the control state

sp for each p.
First assume Ap has not signaled a mode change at tk and hence it was in the control state sp at time tk−1 too (or k = 0)

. Then each x in Wp will evolve at rate ρp(sp, x) up to tk+1. Consequently the value of x reported to q with x ∈ Rq will be
Vk(x) + θx · ρp(sp, x) where tk + θx is the time at which its value was measured with θx ∈ [δR

min, δR
max].

Assume next that Ap has signaled a mode change at tk and its mode at tk−1 was s′′p . Then each x in Wp will evolve at rate
ρp(s′′p, x) up to some time point tk + τx with τx in [δW

min, δW
max]. At tk + τx its rate will change to ρp(sp, x) and it will evolve at

this rate up to tk+1. Thus the value of x reported to qwith x ∈ Rq will be Vk(x)+τx ·ρp(s′′p, x)+ (θx −τx) ·ρp(sp, x)with tk +θx

being the time at which the value of x was measured where θx ∈ [δR
min, δR

max]. We note again that τx, θx can be different for
different x’s. At tk+1 the following actions occur instantaneously.

• For each x in X, if x ∈ Rp then Ap will receive the value of xmeasured at some time in [tk + δR
min, tk + δR

max].
• Based on the received observed values of the variables in Rp, Ap will determine if any of the guards associated with the

outgoing transitions at sp is satisfied and hence enabled.
• If an outgoing transition is enabled then the automatonAp may choose one of the enabled transitions andmove to a new

control state, say, s′p. In this case, it will signal a mode change and hence the new rate, namely ρp(s′p, x), for each x ∈ Wp.
• In case, no mode change is effected all the variables inWp will continue to evolve at the rate ρp(sp, x) starting from tk+1.

One could force Ap to make a mode change in case one or more outgoing transitions are enabled by assigning state
invariants to its control states. These invariants will be boolean combinations of atomic assertions of the forms x < c ,
x > c ′ with x ∈ Rp and c, c ′

∈ Q. We would then demand that at tk+1, the automaton Ap can choose to stay in sp only if the
state invariant associated with sp is not violated. Our results will easily go through in the presence of such invariants.

3. The transition system semantics

Through the rest of this section, we fix a distributed hybrid automaton H as described in the previous section with the
associated notations. We shall define the discrete time dynamics of H in terms of the infinite state transition system TSH .
We will often drop the subscript H . States of TS will be termed configurations. A configuration is a triple (α, V , α′) where
α, α′ are maps from P to


p Sp such that α(p), α′(p) ∈ Sp for each p and V a valuation. The idea is that if H is in the

configuration (α, V , α′) at time tk then α(p) is the control state of controller Ap at time tk while V (x) is the actual value of
x at time tk. On the other hand, α′(p) is the control state of Ap at the previous time instant tk−1. As already hinted at, α′ will
be used to determine if a mode change has been signaled by Ap at tk. This will become clearer when we define a transition
relation on the set of configurations.

Let Conf denote the collection of configurations. The set of initial configurations Conf in is given by: (α, V , α′) is in Conf in
iff for each p, α(p) = sinp = α′(p) and for each variable x, V (x) ∈ Initp(x) with x ∈ Wp. A configuration (α, V , α′) is feasible if
for every x, Bmin ≤ V (x) ≤ Bmax. Clearly, every initial configuration is feasible.

We define the transition relation =⇒ ⊆ Conf × Conf as follows.
(α,U, α′) =⇒ (β, V , β ′) iff (α,U, α′) is feasible and β ′(p) = α(p) for each p. Moreover, there exist reals {τx}x∈X in

[δW
min, δ

W
max] and {θx}x∈X in [δR

min, δ
R
max] , which satisfy the following conditions. In stating these conditions we shall assume

that α(p) = sp, α′(p) = s′p and β(p) = ŝp, β ′(p) = ŝ′p for each p.
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• For each x ∈ X, V (x) = U(x) + τx · ρp(s′p, x) + (1 − τx) · ρp(sp, x), where p is such that x ∈ Wp.
Intuitively, tk + τx is the time at which a rate change of x kicks in if it was signaled at tk. In case sp = s′p then there

was no mode change at tk and we will get V (x) = U(x) + ρp(sp, x) which is the value of x obtained by evolving at rate
ρp(sp, x) for one unit of time while starting with U(x) at time tk.

• If sp ≠ ŝp, then there exists a transition (sp, ϕ, ŝp) ∈ −→p, such that the Rp-valuation V ′ given by V ′(x) = V (x) + τx ·

ρp(s′p, x) + (θx − τx) · ρp(sp, x) for each x ∈ Rp, satisfies the guard ϕ.
Intuitively, if at time tk the DHA is in configuration (α,U, α′), then tk + θx is the time at which the value reported at

tk+1 is observed (recall that tk + τx is the time at which the rate change of x kicks in if it had been signaled at tk).

Now we define the transition system TSH to be (RC, Conf in, =⇒RC ) where RC , the set of reachable configurations, is the
least set such that Conf in ⊆ RC . Further, if ξ ∈ RC and ξ =⇒ ξ ′ then ξ ′

∈ RC . Moreover, =⇒RC is the restriction of =⇒ to
RC × RC . Abusing notation, we will often write =⇒ instead of =⇒RC . We note that TS will be an infinite state system unless
Initp(xp) is a singleton set for every p and that δW

min = δW
max, δ

R
min = δR

max.
We will say that H is well-behaved if every reachable configuration of TSH is feasible. Well-behaved DHAs constitute a

natural and important subclass. In Section 4 we will show that it is decidable whether a DHA is well-behaved. We will also
show that our representation of the discrete time behavior of a DHA enjoys a strong property if the DHA is well-behaved.

A run of H is a finite sequence of configurations ξ0ξ1 . . . ξk such that ξ0 ∈ Conf in and ξi =⇒ ξi+1 for 0 ≤ i < k.
A global control state is a map s from P to


p Sp such that s(p) ∈ Sp for each p. The global control state induced by the

configuration ξ is denoted as st(ξ) and it is the state s satisfying s(p) = α(p) for each p, where ξ = (α, V , α′).
The control state sequence induced by the run σ = ξ0ξ1 . . . ξk is denoted st(σ ) and it is the sequence

st(ξ0)st(ξ1) . . . st(ξk). We let L(H) denote the set of control state sequences of H .
Based on the results in [7], it is easy to show that L(H) is regular and a finite state automaton representing this language

can be effectively constructed. However, the size of this finite state automaton in terms of its number of states, will be
exponential in the number of controllers and in the number of variables. Our main result in this paper is that this state
explosion problem in the representation of L(H) can be avoided. We show that L(H) can be succinctly represented as a
family of finite state automata. This family can be effectively constructed and its overall size will be linear in the number
of variables and the number of controllers but exponential in (the maximum of) |Varp|. As pointed out earlier, |Varp| will
often be much smaller than |X| and |P |. One can also associate actions with the transitions of Ap, define a language of
action sequences, show that the resulting language is regular and construct a family of finite state automata representing
this language. Consequently, one can effectively tackle a variety of verification and controller synthesis problems related to
the discrete time behavior of H .

4. The representation result

In this section, we establish ourmain result, namely, the language of control state sequences of a DHA can be represented
succinctly as a family of finite state automata. For doing so, we fix a distributed hybrid automaton H with the associated
notations. The finite state automata we construct will communicate with each other in themanner of asynchronous cellular
automata [8]. However our presentation will be self-contained.

4.1. The communication graph structure

Through the rest of this section, we set Υ = P ∪ X and let η, η′ range over Υ .
We will construct a family of automata {Bη}η∈Υ (hereafter the subscript is dropped). We will then define B, the product

of {Bη} in a standard way. B will contain a richer set of behaviors L(H). Through a simple (automata-theoretic) operation
we then restrict B to a finite state automaton that accepts precisely L(H). We emphasize again that the analysis of many
local and global properties can be carried out using the succinct representation {Bη} without having to construct B.

The moves of Bp will depend on its current state and on the current states of the automata in {Bx}x∈Varp (recall that
Varp = Rp ∪ Wp). On the other hand, the moves of the automaton Bx will depend on its current state and on the current
states of Bp and Bq with x ∈ Wp, x ∈ Rq. We note that p and q are uniquely determined for each x.

The flow of information between the automata in {Bη} is conveniently represented by the communication graph of H
denoted CGH . As before, we will often drop the subscript H . We define CG = (Υ , A) where A = {(p, x) | x ∈ Wp} ∪ {(x, p) |

x ∈ Rp}. Thus CG will be bipartite with arcs going from variable nodes to controller nodes and from controller nodes to
variable nodes.

Fig. 3(i) displays the communication graph of the DHA in Fig. 2. We have used circles to denote the variables and boxes
to denote the controllers merely to emphasize the bipartite nature of the communication graph. For the present the reader
should ignore Fig. 3(ii) and not attach any significance to the Petri net like graphical notations chosen for representing a
communication graph.

Bp will keep track of the control state of Ap at tk as well as its control state at tk−1. Using this, it can infer the rates of the
variables inWp during the interval [tk, tk+1]. On the other hand, Bx will track the value of x at time tk as well as the observed
value of x reported at time tk. Since Bx is required to be finite state, we will quantize R into finitely many sub-intervals and
represent a value of a continuous variable by the sub-interval it lies in.
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Fig. 3.

4.2. The quantization of the value space

We quantize R to ensure that each automaton in our family is finite state. Let ∆ be the largest rational which integrally
divides every rational in the set {1, δR

min, δ
R
max, δ

W
min, δ

W
max}. Let Ω be the least set of rational numbers given by:

• Bmin, Bmax ∈ Ω .
• Suppose Initp(x) = [dxmin, d

x
max]. Then dxmin, d

x
max ∈ Ω .

• ρp(s, x) · ∆ is in Ω for every p and every s in Sp and every x in Wp.
• Suppose (sp, ϕ, s′p) ∈ −→p and c appears in ϕ. Then c ∈ Ω .

Now let Γ be the largest rational which integrally divides every number in Ω . Let Nmin and Nmax be integers such that
Bmin = Nmin · Γ and Bmax = Nmax · Γ . We then partition R into finitely many intervals (−∞, Nmin · Γ ), {Nmin · Γ },
(Nmin · Γ , (Nmin + 1) · Γ ) , {(Nmin + 1) · Γ }, . . ., ((Nmax − 1) · Γ , Nmax · Γ ), {Nmax · Γ }, (Nmax · Γ , ∞). Note that for
convenience we denote the interval [v, v] as simply {v}.

Let I be the collection of these open intervals and closed singleton intervals. Clearly, I is a finite set. Now we define the
map ∥·∥ : R → I via: ∥v∥ = I iff v ∈ I . Next suppose X ⊆ X and V is an X-valuation. Then ∥V∥ is the map ∥V∥ : X → I
given by: ∥V∥ (x) = ∥V (x)∥ for each x.

4.3. The construction of the family of local automata

The following technical lemma will play a key role in ensuring that our quantization leads to a family of finite state
automata with the desired properties. We set RT p = {ρp(sp, x) | sp ∈ Sp, x ∈ Wp} for each p and use this notation in the
lemma and elsewhere.

Lemma 1. The following assertions hold:

(i) Suppose X ⊆ X. Let ϕ be an X-guard which appears in H and U, V be X-valuations such that ∥U∥ = ∥V∥. Then U satisfies
ϕ iff V satisfies ϕ.

(ii) Suppose X ⊆ X. Given a collection of X-indexed intervals {Ix}x∈X where Ix ∈ I, one can effectively check whether there exists
an X-valuation U such that U(x) ∈ Ix for each x and U satisfies ϕ.

(iii) Let u, v ∈ R with ∥u∥ = ∥v∥. Then u ∈ [Bmin, Bmax] iff v ∈ [Bmin, Bmax].
(iv) Let r, r ′

∈ RT p and I, J ∈ I. For u inR, letΦr,r ′,I,J(u) be the predicate: there exist reals τ in [δW
min, δW

max] and θ in [δR
min, δR

max]

such that u + τ · r ′
+ (1 − τ) · r is in I and u + τ · r ′

+ (θ − τ) · r is in J .
Then for u, v with ∥u∥ = ∥v∥ and u ∈ [Bmin, Bmax], it will be the case thatΦr,r ′,I,J(u) holds iffΦr,r ′,I,J(v) holds. Moreover,

given r, r ′, I, J and an interval M in I, one can effectively determine whether there exists u in M such that Φr,r ′,I,J(u) holds.

Proof. Let ϕ =


x∈X cx ≤ x ≤ c ′
x. Consider x ∈ X . Let ∥U∥ (x) = ∥U∥ (x) = Ix and suppose Ix = (j · Γ , (j + 1) · Γ ) with

Nmin ≤ j < Nmax. Since cx and c ′
x are integral multiples of Γ , it follows that cx ≤ U(x) ≤ c ′

x (and cx ≤ V (x) ≤ c ′
x) iff Ix is

contained in [cx, c ′
x]. The same observation can be established in a similar but simpler way for the cases that Ix is a singleton

interval or lies outside [Bmin, Bmax]. From these arguments, it is clear that U satisfies ϕ iff V satisfies ϕ. This establishes the
first two parts of the lemma.

Part (iii) follows from the definitions.
The proof of (iv) is the heart of the matter and is more involved. Consider first the case where I, J are both open intervals.

A basic fact in the first order theory of reals is that the sentence ∃z ∈ R


i∈Ind ai < z < bi, where Ind is a finite index set and
each ai, bi are sentences not involving z, is equivalent to a sentence of the form


i,j∈Ind ai < bj in which z does not appear.

This follows from the Fourier–Motzkin quantifier elimination procedure [15]. Using this and the definition of Γ , one can
deduce that Φr,r ′,I,J(u) is in fact equivalent to the assertion that u lies in an interval whose end points are integral multiples
of Γ (where these end points will depend on r, r ′, I, J). The claim can then be established by considering the cases whether
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∥u∥ is a singleton closed interval or is an open interval. The cases where I or J or both are closed singleton intervals can be
similarly handled. �

We now turn to the construction of the collection of automata {Bη}. We first recall that a move in TS at tk+1 consists of
(i) the value of each x at tk+1 being determined from the value at tk based on (a) its rate of evolution at time tk−1 (b) the time
at which a possible rate change induced at tk kicks in (c) its rate of evolution at tk (ii) the controller p reading the observed
values of each xp ∈ Rp at tk+1 and determining if there is to be mode change; if so, choosing a new control state and the
corresponding new rates of evolution for the variables in Wp. Clearly the observed value of x depends on the time at which
the possible rate change induced by tk kicks in and the time at which measurement of x takes place. Such a move in TS will
be simulated by {Bη} in two stages.

For explaining this and for later use we define the neighbors of a node η denoted Nbr(η) in the communication graph. It
is given by, Nbr(η) = {η′

| (η′, η) ∈ A} ∪ {η′′
| (η, η′′) ∈ A}.

For a variable x, note that Nbr(x) = {p, q} for the unique p, q with x ∈ Wp, x ∈ Rq. The automaton Bx will read – but not
alter – the current states of automata {Bp, Bq}. Using this information, it will simultaneously update the actual quantized
value of x and the quantized observed value of x. It will do so by using its current quantized value, the rate of its evolution
prescribed by the current mode of p and previous mode of p as recorded by Bp (where x ∈ Wp), and by ‘‘guessing’’ the
time at which the possible rate change of x has kicked in and the time at which measurement of x has taken place in the just
concluded time interval. Due to delays in actuating and sensing, theremay bemore than one choice of current and quantized
observed value of x. On the other hand, if q ≠ p, then the information that automaton Bx read from Bq will be used only for
proper coordination as will become evident below.

For a controller p, note that Nbr(p) = Rp ∪ Wp. The automaton Bp will read – but not alter – the states of the automata
{Bx}x∈Nbr(p) to obtain the quantized observed values of the variables x ∈ Rp and determine the new control state. Again, in
case y ∈ Nbr(p) but y /∈ Rp, then state of the automaton By is read only for proper coordination.

To coordinate the moves of automata in {Bη}, each state of Bx and of Bp will also maintain a parity bit. Initially, every
automaton will be in its initial state with parity 0. The automaton Bx can make a move only when its parity is the same
as that of Bp for every p ∈ Nbr(x). It will flip its parity whenever it makes a move. On the other hand, Bp will make a
move only when its parity is different from that of Bx for every x ∈ Nbr(p). It will also flip its parity whenever it makes
a move. The automata will move asynchronously. Hence at any given time, different automata in {Bη} may have made
different number of moves and have different views on howmuch global time has passed. Our construction will ensure that
automata belonging to the same connected component of the communication graph of H will be out of synch by only a
bounded amount.

By convention,Bx gets stuck if the quantized value of x it is maintaining falls outside [Bmin, Bmax]. OnceBx gets stuck, any
Bp with p ∈ Nbr(x)will also get stuck. Due to our construction every automaton that lies in the same connected component
of the communication graph will then get stuck within a bounded amount of time.

We will first describe the states of the automata in {Bη}. A state of Bx will be of the form (I, J, β), where I ∈ I is the
quantized interval in which the current value of x lies, J ∈ I is the quantized interval in which the observed value of x lies,
and β ∈ {0, 1} is a parity bit. We let Λx be the set of states of Bx. Thus Λx = I × I × {0, 1}. The set of initial states of Bx
denoted Λin

x is {(∥v∥ , ∥v∥ , 0) | v ∈ Initp(x)} with x ∈ Wp.
A state of Bp will be of the form (sp, s′p, β) where sp ∈ Sp is the current state of Ap, s′p the control state of Ap at the

previous time instant, and β ∈ {0, 1} is the parity bit. We let Λp be the set of states of Bp. Thus Λp = Sp × Sp × {0, 1}. The
set of initial states of Bp denoted Λin

p is a singleton set and consists of (sinp , sinp , 0). Clearly Λη is a finite set for every η.
To define the transition relations, we will make use of the notion of Q -states. Suppose Q ⊆ Υ . Then a Q -state is a map

which assigns to every element η in Q a state in Λη . Let ΛQ be the set of Q -states. If Q = {η} is a singleton, we will say
η-state instead of {η}-state.

The transition relation of eachBx, denoted x, is a subset ofΛx×ΛNbr(x)×Λx defined as follows. SupposeNbr(x) = {p, q}
with x ∈ Wp and x ∈ Rq. Let λx = (I, J, β) and λ̂x = (Î, Ĵ, β̂) be x-states. Let z be a Nbr(x)-state with z(p) = (sp, s′p, βp) and
z(q) = (sq, s′q, βq). Then (λx, z, λ̂x) ∈ x iff the following conditions are satisfied:

• β = βp = βq, and β̂ = 1 − β .
• I is contained in [Bmin, Bmax].
• There exist a value u in I which satisfies the following: there exist reals τx in [δW

min, δW
max], θx in [δW

min, δW
max], such that

u + τx · ρp(s′p, x) + (1 − τx) · ρp(sp, x) is in Î , and u + τx · ρp(s′p, x) + (θx − τx) · ρp(sp, x) is in Ĵ .

Note that the condition asserted on u is precisely the predicate Φr,r ′,Î,Ĵ(u) in part (iv) of Lemma 1 with r = ρp(sp, x) and
r ′

= ρp(s′p, x). Hence the following proposition can be easily shown to hold:

Proposition 2. The transition relation x is well-defined and can be effectively computed.

Note the first clause in the definition of x ensures that Bx can make a move only when its parity is the same as that of
Bp and of Bq where Nbr(x) = {p, q}. Further, Bx flips its parity at the end of the move. The second condition dictates the
current quantized value of x to be within the feasible value range. The last condition ensures that the quantized value of x
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and the quantized observed value of x are updated according to the rates dictated by the current control state of p and the
control state of p at the previous time instant.

The transition relation p ofBp, is the subset ofΛp×ΛNbr(p)×Λp defined as follows. Letλp = (s, s′, β) and λ̂p = (ŝ, ŝ′, β̂)

be p-states and z be a Nbr(p)-state. Assume z(x) = (Ix, Jx, βx) for every x in Nbr(p). Then (λp, z, λ̂p) ∈ p iff the following
conditions are satisfied:

• β ≠ βx for each x, and β̂ = 1 − β .
• ŝ′ = s.
• Ix is contained in [Bmin, Bmax] for each x.
• Either there exists a transition (s, ϕ, ŝ) of the hybrid automaton Ap such that ϕ is satisfied by some Nbr(p)-valuation V

with V (x) ∈ Jx for each x, or s = ŝ.

Again, it is easy to argue that this transition relation is well-defined and can be effectively computed. The last condition
asserts that the current control state of Bp is updated according to the (quantized) values of variables that p observes. This
completes the construction of the family of automata {Bη}.

4.4. The product of the family of local automata

We next define B, the product (parallel composition) of {Bη}. To repeat, B is only needed to establish that {Bη}

recognizes L(H). Verification problems concerning L(H) are to be addressed in terms of {Bη} using the variety of currently
available methods for tackling the state explosion problem.

Anticipating later needs, it will be convenient to associate action labels with the transitions of B. We set Σx =

I × I × {x} × I × I for each x. The letter (I, J, x, Î, Ĵ) will be used to label a transition of B in which Bx makes a move from
(I, J, β) to (Î, Ĵ, 1− β) where β ∈ {0, 1}. For each p, we define Σp = Sp × Sp × {p} × Sp × Sp. The letter (s, s′, p, ŝ, ŝ′) will be
used to record amove ofBp from (s, s′, β) to (ŝ, ŝ′, 1−β)where β ∈ {0, 1}. We setΣ =


η∈Υ Ση and let e, e′ range overΣ .

We now define B = (Λ, Λin, ↩→) via:

• Λ is the set of Υ -states.
• Λin is the set of initial states and is given by: z ∈ Λin iff z(η) ∈ Λin

η for every η ∈ Υ .
• ↩→ ⊆ Λ × Σ × Λ is the transition relation and is the least set which satisfies the following.

1. Suppose (λx, uQ , λ̂x) is a transition of Bx with Q = Nbr(x). Let z, ẑ ∈ Λ such that z(x) = λx, z(p) = uQ (p) for each
p ∈ Nbr(x), ẑ(x) = λ̂x, and moreover z(η) = ẑ(η) for each η ∈ Υ with η ≠ x. Let λx = (I, J, β), λ̂x = (Î, Ĵ, β̂). Then
(z, e, ẑ) ∈ ↩→ where e = (I, J, x, Î, Ĵ).

2. Suppose (λp, uQ , λ̂p) is a transition of Bp with Q = Nbr(p). Let z, ẑ ∈ W such that z(p) = λp, z(x) = uQ (x) for each
x ∈ Nbr(p), ẑ(p) = λ̂p, and moreover z(η) = ẑ(η) for each η ∈ Υ with η ≠ p. Let λp = (s, s′, β), λ̂p = (ŝ, ŝ′, β̂). Then
(z, e, ẑ) ∈ ↩→ where e = (s, s′, p, ŝ, ŝ′).

Thus B is a finite state automaton which captures the global interleaved behavior of {Bη}. It should be clear to the
informed reader that {Bη} interact like asynchronous cellular automata [8].

We will first define the behavior of B in terms of its firing sequences. Then we will identify the subset of complete firing
sequences. Every complete firing sequence will induce in a canonical way a control state sequence of H . We will then argue
that this induced set of control sequences is precisely L(H).

FSB ⊆ Σ⋆ will denote the set of firing sequences of B. As usual we will often drop the subscript B. This set is defined
inductively. In doing so, we will also inductively define an extended version of ↩→. By abuse of notation this extension will
also be denoted as ↩→. We will also often write z

e
↩→ ẑ instead of (z, e, ẑ) ∈ ↩→.

• The null sequence ϵ is in FS. And z
ϵ

↩→ z for each z ∈ Λin.
• Suppose σ ∈ FS and z in

σ
↩→ z where z in ∈ Λin. If z

e
↩→ ẑ where e ∈ Σ , then σ e ∈ FS and z in

σ e
↩→ ẑ.

We let #(σ , η) denote the number of times letters inΣη appear in the firing sequence σ . This represents the total number
of times the automaton Bη has moved during the execution of σ .

Next we define the firing sequence σ to be complete iff #(σ , η) = #(σ , η′) for every η, η′
∈ Υ . Thus σ is complete iff

every automaton Bη has made equal number of moves during the execution of σ .
Using the definitions of {Bη} and B it is tedious but straightforward to establish the following result for the case where

the communication graph is connected. The more general case will be disposed off in the later part of this section.

Proposition 3. (i) Let σ be a firing sequence and x ∈ Nbr(p). Then #(σ , p) ≤ #(σ , x) ≤ 1 + #(σ , p).
(ii) Suppose the communication graph CG is connected. Then there exists a non-negative integer K which depends only on CG

such that for every firing sequence σ and every η, η′, |#(σ , η) − #(σ , η′)| ≤ K .
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Note that the second part of the proposition bounds the amount by which the automata in {Bη} can get away from each
other. The proof of Proposition 3 basically exploits the fact that a parity of an automaton in {Bη} can flip twice only if all its
neighboring automata have flipped their parities at least once.

We can now extract a control state sequence from a complete firing sequence. To this end, let σ be a complete firing
sequence and h = #(σ , η) for some η. By the definition of a complete firing sequence, h does not depend on the choice of
η. We now define s0s1 . . . sh to be the control state sequence induced by σ as follows.

For each p and for each j ∈ {0, 1, . . . , h} fix a prefixπ
p
j of σ such that #(π

p
j , p) = j. Let z inj

π
p
j

↩→ zpj for each sequencewhere
z inj ∈ Λin. Then for 0 ≤ j ≤ h, sj is the global control state given by: sj(p) = zpj (p) for each p.

According to our definition there is a great deal of choice when it comes to fixing the prefixes π
p
j . Using the definition of

B, it is easy to argue however that all the different choices will lead to the same control state sequence. We let L(B) denote
the set of control state sequences induced by the set of complete firing sequences ofB. Ourmain result is that L(H) = L(B).

For proving this result, it will be convenient to use Mazurkiewicz traces [8] to group firing sequences into equivalence
classes. We recall that a Mazurkiewicz trace alphabet is a pair (Θ, IΘ) where Θ is a finite alphabet and IΘ ⊆ Θ × Θ is
an irreflexive and symmetric independence relation. DΘ = Θ × Θ − IΘ is the dependence relation and is reflexive and
symmetric.

We first observe that there is a natural dependence relation DΣ ⊆ Σ × Σ by: e DΣ f iff one of the following holds:

(i) e = f .
(ii) Let e = (I, J, x, Î, Ĵ), f = (s, s′, p, ŝ, ŝ′). Then (x, p) ∈ A or (p, x) ∈ A.
(iii) Let e = (s, s′, p, ŝ, ŝ′), f = (I, J, x, Î, Ĵ). Then (p, x) ∈ A or (x, p) ∈ A.

We set the independence relation IΣ to beΣ×Σ−DΣ . TheMazurkiewicz trace alphabet (Σ, IΣ ) induces the equivalence
relation ≈ ⊆ Σ⋆

× Σ⋆ given by: Suppose σ ee′σ ′, σ e′eσ ′ are in Σ⋆ such that e IΣ e′. Then σ ee′σ ′
≈ σ e′eσ ′.

As usual, we let [σ ]≈ denote the ≈-equivalence class containing σ and often drop the subscript ≈. Using our definitions
and basic Mazurkiewicz trace theory, one can easily establish the following facts.

Proposition 4. (i) Suppose σ is a firing sequence. Then [σ ] ⊆ FS.
(ii) Suppose σ and σ ′ are firing sequences. Then σ is complete iff σ ′ is complete.
(iii) Suppose σ ≈ σ ′ and σ is complete. Then the control state sequence induced by σ is the same as the one induced by σ ′.
(iv) Recall that X = {x1, x2, . . . , xn}, P = {p1, p2, . . . , pm}. Let σ be a complete firing sequence and #(σ , eη) = h for some η

with h > 0. Then there exists σ̂ ∈ [σ ] such that σ̂ = π1π2 . . . πh, where each πj is of the form ex1ex2 . . . exnep1ep2 . . . epm
with eη ∈ Ση for each η.

4.5. The main result

We are now ready to prove the main result.

Theorem 5. Let H , B be as described above. Then L(H) = L(B) and L(H) is regular.

Proof. First, we show that L(H) ⊆ L(B). Let ŝ0ŝ1 . . . ŝk ∈ L(H) be a control state sequence induced by the run σ =

ξ0ξ1 . . . ξk of H . We shall construct a complete firing sequence π of B such that the control state sequence induced by π is
ŝ0ŝ1 . . . ŝk.

The proof proceeds by induction on k. The base case k = 0 is clear. So assume inductively that there is a complete firing
sequenceπ such that the control state sequence induced by σ = ξ0ξ1 . . . ξk is identical to the control state sequence induced
by π . Let z in ∈ Λin and z ∈ Λ be states of B such that z in

π
↩→ z, and for each x, the value of x in configuration ξ0 lies in

the interval indicated by the first component of z in(x). Further assume (and this is easily verified for the base case) that in
configuration ξk the value of each x lies in the interval indicated by the first component of z(x).

Now suppose ξk =⇒ ξk+1. In each Bx, we choose the transition that will update the current quantized value of x and the
quantized observed value of x using the rates of x prescribed by the current and previous control states of p as obtained from
Bp with x ∈ Wp. Suppose this move takes Bx from (I, J, β) to (Î, Ĵ, β̂). Then by Lemma 1 and the induction hypothesis,
we have that in configuration ξk+1, the value of x lies in Î . Thus we can extend π via π ′

= πex1ex2 . . . exn (recall that

X = {x1, x2, . . . , xn}), such that ex ∈ Σx for each x. And for some suitable z ′
∈ Λ, we have z in

π ′

↩→ z ′. Moreover z ′ has
the property that in configuration ξk+1, the value of each x lies in the interval indicated by first component of z ′(x). It is also
easy to show that π ′ is indeed a firing sequence.

Next we consider Ap for some p and let sp,ŝp be respectively the first components of ξk and ξk+1. Note that in going
from configuration ξk to ξk+1, the change of mode of Ap from sp to ŝp (in case sp ≠ ŝp) can be mimicked by a suitable
move in Bp. Suppose this move takes Bp from (sp, s′p, β) to (ŝp, ŝ′p, β̂), then again, using the definitions, Lemma 1 and the
induction hypothesis one can ensure that the chosen move is such that in configuration ξk+1, the current control state of p
is ŝp and the previous control state of p is sp (which is the same as ŝ′p). We now extend π ′ to π ′′

= π ′ep1ep2 . . . epm (recall
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that P = {p1, p2, . . . , pm}), such that ep ∈ Σp for each p. Further we can find a suitable z ′′
∈ Λ with z in

π ′′

↩→ z ′′ such that
in configuration ξk+1, the current and previous control states of p agree with the first and second components of z ′′(p) for
every p. Note that in going from z ′ to z ′′ in B, none of {Bx} makes a move. Thus, following the property observed on z ′, one
concludes that in configuration ξk+1, the value of each x lies in the interval indicated by the first component of z ′′(x). It is
now easy to verify that π ′′ is a complete firing sequence and that the control state sequence it induces is identical to the one
induced by σξk+1.

To show inclusion in the other direction, let σ be a complete firing sequence of B. To start with, assume that σ =

ex1 . . . exnep1 . . . epm so that σ is simulating just the first move made by H . The special form of σ we are assuming is justified
by Proposition 4.

Suppose further that z in
σ

↩→ z where z in ∈ Λin and z ∈ Λ. Then by repeating the arguments developed in the first half of
this proof, we can find an initial configuration ξ0 and a configuration ξ1 such that the following conditions hold:

• For every x ∈ X, the value of x in ξ0 lies in Ix, where z in(x) = (Ix, Ix, 0) for every x.
• For every x ∈ X, the value of x in ξ1 lies in Îx where z(x) = (Îx, Ĵx, 1) for every x.
• For each p, in configuration ξ1, the current and previous control states of p agree respectively with the first and second

components of z(p).

By repeated applications of Proposition 4(iv) we now have the required inclusion.
Lastly, we argue that L(H) is regular. This already follows from results of [7]. Instead, here one can also construct a finite

state automaton that runs alongside B and checks whether the firing sequence that has been generated so far is complete.
If the communication graph is connected, then due to the bound K established in Proposition 3, only a finite amount of
information will have to be maintained to check this and hence this automaton can be constructed. This establishes that the
language of complete firing sequences is regular and hence L(B) is also regular. �

The case where the communication graph is not connected can be dealt with by observing that the behavior of B can
be decomposed into behaviors of automata in each connected component. In particular, every action label arising from a
connected component will be independent of every action label belonging to any other connected component. Using this
observation and some notational overhead, it is easy to establish Theorem 5 for the case of multiple connected components.

Recall that a DHA is well-behaved iff every reachable configuration of its transition system is feasible. It is easy to see that
the global control states of B can be augmented with the finitely quantized values of the variables. The resulting automaton
will still be finite state and effectively computable. This leads to:

Proposition 6. It is decidable whether a DHA is well-behaved.

Next let H be a well-behaved DHA. Then our representation of its discrete time behavior enjoys the following basic
property.

Proposition 7. Every σ in L(B) is the prefix of a complete firing sequence.

Consequently, for well-behaved DHAs, there is no need to ‘‘filter’’ the behavior of B.
As observed above, the global control states can be augmented with the finitely quantized values of the variables and

the resulting language will still be regular. Consequently one can also reason – in terms of intervals of values – about the
quantitative behavior of the plant.

4.6. The marked graph representation of communication graphs

A useful fact is that the communication graph CG = (Υ , A) can be viewed as the underlying graph of amarked graph [16].
As the name suggests amarked graph is a directed graph togetherwith an initial marking. Themarking denotes a distributed
state and is a function which assigns a non-negative integer to each arc. IfM is a marking and a is an arc then one says that
a carries M(a) tokens at M .

A node can fire at themarkingM iff all its input arcs carry at least one token atM .When a node fires, one token is removed
from each of its input edges and one token is added to each of its output edges and this will result in a new marking. The
reachable markings are the ones that are reached, starting from the initial marking through repeated node firings.

In the present setting both the variable nodes and controller nodes can fire when enabled. Further, the initial marking is
the one which places exactly one token on edges of the form (p, x) where x ∈ Wp. All other edges are left unmarked.

By augmenting A with all the complementary arcs (i.e. add the arc (η, η′) if (η′, η) is in A) and augmenting the initial
marking suitably, one can obtain a live and safe marked graph [16]. By ‘‘live’’, we mean that for every node, starting from
any reachablemarking,we can reach amarking atwhich the node becomes enabled. By ‘‘safe’’ wemean that at any reachable
marking an arc will carry at most one token.

Following these ideas, the connected graph shown in Fig. 3(i) will give rise to the live and safe marked graph shown in
Fig. 3(ii). The dotted arcs are the ‘‘complement’’ arcs that have been added to the communication graph. The initial marking
is indicated by the tokens placed on some of the arcs. The firing of the node η in thismarked graphwill correspond to amove
of the automaton Bη . In this sense, the firing sequences of this marked graph will be an abstraction of the firing sequences
of B.
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Live and safe marked graphs have a rich and well-understood theory which can be exploited to study the behavior of
B. For instance, we note that at the initial marking of the marked graph shown in Fig. 3(ii), every variable node is enabled.
Further, if (η, η′) is an arc in this marked graph then the firings of η and η′ will have to alternate. One can also use the acyclic
path carrying a maximal number of tokens, namely the path px2qx3rx1 to determine that K = 3 for this system where K is
the constant asserted in Proposition 3(ii). More importantly, the marked graph representation can be the basis for devising
partial order based reduction methods including finite unfoldings [17] to efficiently verify the behavior of B.

5. Extensions

We next discuss how the main result can be extended to more general settings.

5.1. Multi-speed clocks

Theorem 5 goes through even when the controllers are driven by clocks running at different but rationally related
frequencies. To bring this out, we associate with each controller Ap a positive rational number Tp called its period. Ap
receives at each k · Tp, the observed values of the variables in Rp and updates – if possible and if it chooses to do so – the
rates of variables in Wp. As before we introduce delay parameters δ̂ = {δW

min, δ
W
max, δ

R
min, δ

R
max} which are rationals in [0, 1]

with δW
min ≤ δW

max ≤ δR
min ≤ δR

max. The interpretation is that at each k · Tp, the observed value of each x in Rp received by p is
the value of x that held at some time in [((k−1)+ δR

min) · Tp, ((k−1)+ δR
max) · Tp]. And the rate change of x inWp induced by

a mode change of pwill kick in at some time in [(k+ δW
min) · Tp, (k+ δW

max) · Tp]. Note that the delay in sensing a variable x is
with regard to the period of p for which x ∈ Rp. As before, we have introduced uniform delay parameters only for notational
convenience.

Let ∆ be the largest rational which integrally divides every rational in {c · Tp | p ∈ P , c ∈ {1}∪ δ̂}. Then the dynamics of
the plant and the controllers can be captured by a transition system in which ∆ units of time will pass between successive
moves. For each p, one keeps amodulo Tp/∆ counter. This counter will be incremented after each passage of∆ units of time.
A transition in Ap will be taken only when its counter is zero.

For each x ∈ Rp, its observed value is the actual value that held when the value of the counter of p is between δR
min · Tp/∆

and δR
max · Tp/∆. Thus one guesses non-deterministically in which ∆-size interval x has been observed, and calculates the

observed value depending on the time instant at which x was measured. The observed value is then kept until it is used in
evaluating a guard when the counter of p reaches zero. Similarly, for each x ∈ Wp, its rate change will kick in when the value
of the counter of p is between δW

min · Tp/∆ and δW
max · Tp/∆. Thus, one guesses non-deterministically at which ∆-size interval

the rate change of x kicks in and updates the actual value of x depending on the time instant in this interval that the rate
change kicks in.

Thus a configuration will now track the values held by the Tp/∆ counters too. A transition from one configuration to
another will first let ∆ units of time pass followed by updating the actual and observed values of each x, increasing the
counter value by 1. This will be followed by possible mode transitions provided the corresponding counter values are 0 and
the chosen guards are is satisfied. The details are tedious but straightforward and can be easily derived from the transition
system semantics presented in Section 3.

As in Section 4, one can construct a network of finite state automata {Bη}η∈P∪X such that L(H) = L(B). The key
difference is that each move of Bη would correspond to the passage of just ∆ time units. The moves of the automata {Bη}

will be coordinated using a parity bit protocol as in Section 4.
A state of Bp will keep track of the control states at k ·Tp, (k−1) ·Tp, as well as a modulo Tp/∆ counter. The control states

kept track by Bp will be updated only when its counter value of Bp reaches zero.
A state of Bx will track the quantized value of x at k · Tp and the quantized observed value reported at k · Tp, and also

whether it has switched to the rate prescribed by the control state of Bp at k · Tp. Suppose x is controlled by Ap. Then it will
read the counter of p. When this counter value lies between δW

min ·Tp/∆ and δW
max ·Tp/∆,Bx will non-deterministically switch

to the rate prescribed by the control state of Bp at k · Tp. Similarly, if x is sensed by Aq, then by tracking the counter of q, Bx
will update its quantized observed value. Only when the counter of Bq reaches zero, automaton Bq will use the quantized
observed value of Bx in evaluating a guard associated with a transition of Aq.

Again the details are straightforward and the proof that the product of this network of automata accepts L(H) can be
established as in Section 4.

5.2. Communication between controllers

As observed earlier, there is implicit information flow between the controllers since variable controlled by one controller
may be sensed by another one. We can in fact extend the model by specifying explicit point-to-point communication
channels between the controllers.

We assume a finite communication alphabet, and allow the controllers to transmit messages via point-to-point channels
(p, q) with p ≠ q. Transitions of Ap are now augmented with the sending and receiving of a specific message. To capture
delays in message transmissions we introduce parameters ϑmin, ϑmax which are positive rationals. The interpretation is that
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a message sent at k · Tp by p on the channel (p, q) will reach q at some time in [k · Tp + ϑmin, k · Tp + ϑmax]. This message
may be consumed by Aq only at the discrete time instants of the form k′

· Tq.
We assume that if twomessages sent out by p both arrive before Aq consumes any one of them, then the message which

reaches q later will overwrite the one which reaches q earlier. It then follows that at any time, the number of messages in
transit from p to q is bounded by ⌈ϑmax/Tp⌉. As in Section 4 we can construct a network of automata that accepts L(H).
The family of automata {Bη}η∈P∪X, will be augmented with one automaton Cpq for each point-to-point channel (p, q). The
communication graphwill be expandedwith nodes of the form (p, q) corresponding to the channels and there will be an arc
from p to (p, q) as well as from (p, q) to q. We choose∆ so that it also integrally divides ϑmin, ϑmax. A channel automatonCpq
will not keep track of the exact duration that a message has been in transit, but only in which ∆-size interval this duration
lies. Using this expanded network of finite state automata, Theorem 5 can then be established. At present we have not
worked out the details for the case where there is bounded buffering of messages at the receiver’s side.

5.3. Variables observed by more than one controller

In practice, it is realistic to assume that each variable is observed – with the help of a sensor – by only one controller.
If necessary, this information can be communicated to other controllers. However, in theory, one can permit more than
multiple controllers to independently observe a variable. Interestingly, our resultswill still go through butwith an additional
computational price. In particular, if x is observed by a collection of controllers Q , then the automaton Bx will also need to
track the observed quantized values of x as measured by every p ∈ Q . And these values have to be updated simultaneously
because they all depend on the time at which the rate change of x kicks in. Thus, in computing the transitions of Bx, one has
to enumerate all possible ways of updating simultaneously these quantized values. To do so one must add a single time of
rate change and for each p in Q one measurement time. Consequently, the number of states of Bx as well as the complexity
of computing transitions of Bx will be additionally exponential in the size of |Q |.

5.4. Finite precision

We have assumed that variables can be measured with perfect precision and that the guards are rectangular. Following
the techniques in [18], our results can be extended to a setting where the variables are assumed be measured with finite
precision but the guards are allowed to be polynomial constraints. The key observation is that the finite precision condition
allows one to transform polynomial guards (in fact computable guards) into rectangular guards on the actual values of
variables as detailed in [18].

6. Conclusion

We have studied here a network of hybrid automata capturing the interactions between a plant and its distributed set
of controllers. We have shown that the discrete time behavior of this model is not only regular but that it can be succinctly
represented as a network of finite state automata.We have also described how ourmain result can be extended in a number
of interesting ways.

The casewhere the rate of a continuous variable is specified as dx
dt ∈ [c, c ′

] for rational constants c , c ′ is worth considering
next. We conjecture that our main result will through in this setting but the details need to be worked out. The case where
exponential rates are allowed via differential equations of the form dx

dt = c · x(t) is harder. Even if each controller actuates
just one variable, it is not clear how to quantize the value space. Hence we are unable to venture a conjecture in this setting.

An important extension from a practical point of view would be to explicitly model the computations carried out by the
controllers. In such an extension, for determining the mode transitions, each controller will execute a task to compute the
control law based on the values received from the plant as well as internal variables. Further, the controllers will exchange
the results of these computations through a shared bus. Due to resource-bounds there will be a complex interplay between
the continuous behavior of the plant and the discrete behavior of the controllers. Specifically, theworst case execution times
of the tasks and end-to-end delays in the communications between the controllers will impact on controlled behavior of
the plant. On the other hand, safety and quality-of-service requirements placed on the plant will require the computational
platform to meet stringent performance requirements. It will be particularly interesting to study this interplay between the
plant dynamics and the performance of the computational platform in a Time-Triggered Architecture setting [19].
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