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ABSTRACT 
Road safety is one of the most important emerging applications 
envisioned for Vehicular Ad hoc Networks (VANETs). Generally, 
such applications involve the broadcast of safety messages, 
consisting of beacons transmitting vehicles' state (e.g. position and 
velocity) with a regular period, as well as emergency messages 
warning about unexpected critical events. From the perspective of 
safety, the application performance depends foremost on two 
metrics: for the event-driven warning messages, the probability of 
message reception; and for periodic messages, the variability of 
the inter-reception time (IRT), which ultimately determines the 
freshness of the information received by the driver. In this paper, 
we develop an analytical model to compute the above metrics in 
an urban traffic scenario. Focusing on a road segment linked to a 
signalized junction as a basic building block of urban traffic 
systems, we apply a novel road traffic density model to 
investigate the dynamics of the reliability metrics and characterize 
the region(s) on the road segment according to the achieved safety 
level.  Our numerical study shows that in broadcast mode, the 
hidden terminal effect is the driving factor determining the 
reliability of transmissions. Furthermore, the impact of hidden 
terminals has the greatest effect in road sections where vehicles 
have high velocity, leading to the poorest performance in regions 
where reliable reception is needed the most in order to minimize 
the risk of accidents. 
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Communication 
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Performance, Theory 

Keywords 
Vehicular Traffic Density; Vehicular Ad hoc Networks; Safety 
Applications; 

1. INTRODUCTION 
Vehicular Ad hoc Networks (VANETs) have recently attracted 

significant research and development efforts from different players 
including academia, standards bodies, and industry, leading to the 
emergence of DSRC/WAVE  [1] [2] as a reference standard, 
numerous dissemination/forwarding schemes  [3], and several 
active projects  [4]. Inter-vehicle communications open the door for 

a plethora of applications and services to provide safety and 
comfort through wireless vehicle-to-vehicle communications. 
Comfort applications are expected to improve the passengers’ 
travel experience and optimize traffic efficiency, while the safety 
applications aim at minimizing accident levels. Safety applications 
can be categorized further according to their use of either periodic 
or event-driven messages. The first category has an informative 
nature, as messages are disseminated among vehicles regularly to 
inform drivers about local parameters such as speed and position. 
Event-driven messages, on the other hand, are broadcast by 
vehicles whenever they experience or detect a hazard or otherwise 
notable event. Single hop broadcast is the fundamental mechanism 
of periodic safety message dissemination in VANETs. In case of 
event-driven warning messages, even though broadcast over 
multiple hops may be used, the ultimate message dissemination 
performance depends foremost on the performance of each single 
hop broadcast involved. 

The reliability of message broadcasts in a safety application is key 
to its credibility and ultimate acceptance by the drivers as the end 
users. Depending on the type and purpose of a safety message, a 
subset of parameters describes the reliability of the safety 
application. For event-driven messages, the reliability of the 
safety application is determined by the successful packet reception 
probability and geographical coverage of message dissemination. 
On the other hand, in case of periodic messages, inter-reception 
time (IRT) of messages is a good candidate metric for describing 
the application reliability. The IRT metric incorporates the 
variability of message reception time and packet reception 
probability into a single parameter. Intuitively, from a recipient 
vehicle perspective, a high probability of message reception from 
neighbor vehicles leads to high overall awareness by the recipient 
about its neighborhood. Furthermore, a high frequency message 
reception enhances the information freshness a recipient maintains 
at any time instance, and, in turn, promotes timely reaction to 
undesired events as they occur. Correspondingly, from a sender 
point of view, the higher the chance that the neighbor vehicles 
receive its message successfully and timely, the better the 
achieved safety level will be.    

The key factor impacting the reliability metrics mentioned above 
is traffic density. In static wireless networks, due to the 
deterministic distribution of nodes throughout the network area, it 
is straightforward to characterize the traffic behavior and thus 
reliability metrics. On the other hand, in vehicular ad hoc 
networks (as in mobile ad hoc networks in general), characterizing 
reliability involves taking into account dynamic topology changes 
due to vehicles’ mobility, which in turn is affected by microscopic 
and macroscopic traffic parameters  [5] [6] [7]. These parameters 
include, but are not limited to, traffic regulations on junctions and 
road segments, driver behavior, traffic flow, road capacity, etc.  In 
vehicular networks, the analysis of the reliability of a safety 
application is even more complicated than in other mobile ad hoc 
networks, due to the impact of unexpected drivers’ behavior and 
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variable traffic flow on vehicles’ mobility  [7]. Moreover, it is also 
expected that the reliability varies significantly between highway 
and urban VANET scenarios. This is partly due to the fact that 
traffic density is homogeneous under free and stable traffic flow 
regimes, which dominate highways, whereas a mixture of 
different traffic densities can be observed simultaneously in an 
urban scenario as simple as a road segment linked to a signalized 
junction. Moreover, an urban traffic network must be seen as a 
2-dimensional network, compared to a 1-dimensional highway 
network. This makes the dynamics of traffic density more 
complicated in urban scenarios, resulting in more complex 
reliability behavior, especially near junctions. 

In line with the above, we are motivated to apply a traffic density 
model of a simple urban traffic scenario comprising a signalized 
junction and road segments linked to that junction to analytically 
describe the spatial-temporal behavior of safety messages’ 
reliability throughout an urban road segment. In the proposed 
analytical model, the probability of successful message 
transmission associated with both periodic and warning messages 
contending for a shared channel are calculated. Additionally, we 
determine the distribution function corresponding to the IRT of 
beacon messages. In this work we are not interested in the 
per-message channel access delay, as this is in the order of a few 
milliseconds and thus not a key factor impacting the requirements 
of a safety application  [8]. Transmission failures, on the other 
hand, are of high importance, since in the case of periodic 
messages a single transmission failure causes the reception time to 
exceed a beacon interval as large as 100ms  [8]. 

The remainder of this paper is organized as follows. Section  2 
provides an overview of related work. In section  3, we develop a 
general Markovian analytical framework to characterize the 
reliability metrics of safety message broadcast, and apply it with 
an urban traffic density model in section  4. A numerical 
evaluation of the model is presented in section  5, and finally, 
section  6 concludes the paper. 

 

2. Related Work 
Safety message broadcast has been studied by means of 

simulation in a group of works conducted by ElBatt et al.  [8] and 
Torrent-Moreno et al.  [9] [10]. A few common observations that 
apply to these studies are: (i) Either periodic or warning messages 
are addressed, but not both; (ii) In spite of performance evaluation 
under various traffic densities, they do not address the impacts of 
non-uniform and heterogeneous traffic densities attributed to 
urban traffic systems; (iii) Per-packet delay is in the order of a few 
milliseconds, which is satisfactory for most safety applications. 
ElBatt et al. [8] suggested a reliability metric termed packet inter-
reception time, defined as the elapsed time between two 
consecutive successfully received packets by a vehicle. The 
authors conducted extensive simulations to measure successful 
packet delivery and packet inter-reception times under high and 
low traffic densities in a 2-direction highway scenario with 4 lanes 
in each direction. In this paper, we adopt the reliability metrics 
proposed in  [8], develop a general analytical framework for their 
calculation and apply it in the context of an urban scenario. In  [9], 
Torrent-Moreno et al. addressed the failure of transmission 
coordination associated with the IEEE802.11 Distributed 
Coordination function (DCF) and argued that the level of 
coordination failure is intensified by the hidden terminal effect. 
We take into account the fact that the hidden terminal effect is in 

turn influenced by traffic density and distribution, and study the 
impact of hidden terminals on safety message reliability under a 
road network’s heterogeneous traffic distribution. Torrent-Moreno 
et al.  [10] studied the effects of broadcast storm on the channel. 
To alleviate the effects, they proposed an adaptive mechanism 
using transmission power adjustment and tuning of beacon 
transmission intervals. Yousefi et al.  [11] studied the delivery 
ratio and delay of beacon messages with varying packet 
transmission intervals and packet sizes. Their simulation 
methodology considered 1-hop broadcast in a stationary large 
highway scenario and fixed transmission range. According to their 
simulation results, packet delay was in the order of a few 
milliseconds, which generally does not constitute a bottleneck for 
safety applications. They also showed that the packet reception 
rate decreases significantly when increasing the distance of the 
receiver from the transmitter, a phenomenon previously observed 
in  [8].  
Beyond the simulation studies mentioned above that are specific 
to vehicular environments, many analytical models have been 
proposed in the literature to address the performance and 
reliability of IEEE 802.11 DCF. For the most part, the proposed 
approaches are variations of the Markov-based performance 
evaluation method presented by Bianchi  [12] and Cali et al.  [13]; 
for instance, the implications of an error prone channel was 
modeled in  [14], while retransmission retries and seizing 
phenomenon were taken into account in  [15] and  [16], 
respectively. This framework was extended to IEEE 802.11e QoS 
differentiation by Engelstad et al.  [17], who also investigated the 
channel and application layer performance metrics with respect to 
non-saturation traffic. In  [18], Lyakhov et al. studied the 
performance of IEEE 802.11 networks operating in broadcast 
mode. They assumed Poisson packet arrival and applied Markov 
chains to analytically express the mean notification time of 
broadcast packets. Ma et al.  [19] studied saturation throughput, 
delay, and packet delivery rate while taking into consideration the 
impact of backoff counter freezing in a scenario termed 
Continuous Freeze Process (CFP). Apart from the above 
investigative works, efforts have also been made to enhance IEEE 
802.11 MAC with respect to the specific requirements of 
VANETs applications. Recently, Bononi et al.  [29] proposed an 
improvement to IEEE 802.11 MAC to support reliable and fast 
multi-hop broadcast using a dynamic virtual backbone infra-
structure.   

Most relevant to our work in this paper are studies performed on 
safety message broadcast within the DSRC framework. Ma et al.  
studied different aspects of safety message broadcast in a series of 
works. They investigated saturation throughput and packet 
delivery ratio in  [20] and saturation delay in  [21]. In a recent 
work  [22], Ma et al. analyzed the broadcast performance of safety 
messages. They considered the impacts of an error-prone realistic 
channel, hidden terminals, and mobility issues in deriving 
performance metrics. In their analytical models, they assumed a 
1-D highway scenario with vehicles placed on the road according 
to a Poisson point process with a predetermined density. In  [23], 
Vinel et al. modeled IEEE 802.11p VANET as a D/M/1 queuing 
system and roughly estimated the mean beacon transmission delay 
and the beacon reception probability. Vinel et al.  also studied the 
successful beacon reception probability in  [24] and  [25] under 
saturated and unsaturated beacon rates. The common features of 
the above works are: (i) Beacon messages are treated as random 
arrivals, and fail to incorporate the periodic nature of beacon 
messages and consequently fail to characterize the distribution of 
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channel contention and transmission attempt, it enters the post 

backoff stage of length equal to beaconing period ߙ ൌ
ூ್
ఙ

, where ܫ௕ 

and ߪ are the beacon period and time slot duration, respectively. 

With probability 
ଵ

ௐ್
, a backoff state ሺܾ	, ݇ሻ is selected and channel 

contention starts. The probability of a transmission attempt is 
equivalent to the probability that the backoff process enters state 
ሺܾ	, 0ሻ. 

To this end we solve the Markov chain shown in Figure 1 to 
calculate the probability that a vehicle transmits a beacon in a 
generic time slot, denoted by ߬௕. It is easy to verify that the chain 
steady-state transition and normalization conditions result in: 

௕,௞ݏ  ൌ
ௐ್ି௞

ௐ್
݇										,଴	௕ݏ ∈ ሺ0	, ௕ܹ െ 1ሻ (1) 

௙,௞ݏ  ൌ ݇																			,଴	௕ݏ ∈ ሺ0	, ௕ܹ െ 1ሻ (2) 

 ∑ ,௞	௕ݏ
௪ೝିଵ
௞ୀ଴ ൅ ∑ ,௞	௙ݏ

௪ೝିଵ
௞ୀ଴ ൌ 1 (3) 

and solving for ݏ௕	,଴ (equivalent to the probability of transmission 
attempt ߬௕), we obtain: 

 ߬௕ ൌ ,଴	௕ݏ ൌ 	
ଶ

ௐ್ାଵାଶఈ
 (4) 

The Markov chain corresponding to the backoff process of event-
driven messages is shown in Figure 2. This is a simplified model 
of Engelstad et al.  [17], customized for broadcast transmission 
mode.  Here, ሺ݂	, ݇ሻ are post backoff states during which the 
queue is empty and the node has to wait for a new message to 
arrive. ሺ݁	, ݇ሻ represent backoff states where there exists a 
message for transmission. In this case, with probability ߩ, the 
backoff process is immediately invoked by entering one of the 
backoff states ሺ݁	, ݇ሻ chosen randomly. With probability 1 െ  the ߩ
node enters a post backoff stage. While being in a state ሺ݂	, ݇ሻ, if a 
new message arrives with probability ߩ∗ (different from ߩ) and 
the channel is sensed idle, the contention process is immediately 
triggered by directly entering the state ሺ݁	, ݇ െ 1ሻ in the backoff 
stage. If the channel is sensed busy, the countdown process is 
blocked, otherwise a transition to state ሺ݂	, ݇ െ 1ሻ takes place.  

Applying steady-state conditions recursively through the chain, it 
is easy to show that: 

,௞	௙ݏ  ൌ
ଵିఘ

ௐ೐
∙
ଵିሺଵିఘ∗ሻೈ೐షೖ

ଵି௣್
∙
௦೐	,బ
ఘ∗
						݇ ∈ ሺ1	, ௘ܹ െ 1ሻ (5)  

,଴	௙ݏ  ൌ
ଵିఘ

ௐ೐
∙ ଵିሺଵିఘ

∗ሻೈ೐

ሺఘ∗ሻమ
∙   ,଴ (6)	௘ݏ

,௞	௘ݏ  ൌ
ሺௐ೐ି௞ሻ

ௐ೐∙ሺଵି௣್ሻ
∙ ,଴	௘ݏ ൅

ሺௐ೐ି௞ሻ∙ఘ∗∙௣್
ௐ೐∙ሺଵି௣್ሻ

∙ ,௞	௙ݏ െ   ,௞ (7)	௙ݏ

and the normalization condition implies 

 ∑ ሺݏ௘	,௞ ൅ ,௞	௙ݏ
ௐ೐ିଵ
௞ୀ଴ ሻ ൌ 1. (8)  

Using (5)-(8), ܾ௘	,଴ and thus the probability of event-driven 
message transmission ߬௘ in a generic time slot we obtain: 
ଵ

ఛ೐
ൌ 1 ൅

ௐ೐ିଵ

ସሺଵି௣್ሻ
൅

௣್
ሺଵି௣್ሻమ

∙
ଵିఘ

ௐ೐
మ ∙  

ఘ∗మௐ೐ሺௐ೐ିଵሻାሺଵିఘ∗ሻೈ೐ሺଶఘ∗ௐ೐ିଶఘ∗ାଶሻାଶሺఘ∗ିଵሻ

ఘ∗మ
൅ ଵିఘ

ௐ೐
∙ ଵିሺଵିఘ

∗ሻೈ೐

ఘ∗మ
	 (9)   

 

3.2.1 Probability of busy channel (݌௕ ) 
The probability of sensing a channel busy event is equivalent to 
the probability that at least one vehicle is transmitting a message, 
either a beacon or an event-driven message. This probability can 
be expressed as: 

௕݌  ൌ 1 െ ቀሺ1 െ ߬௕ሻ ∙ ሺ1 െ ߬௘ሻቁ
ேೝ

  (10) 

where ߬௕ and ߬௘ are the probabilities of transmission attempts 
corresponding to beacon and event-driven messages, described by 
(4) and (9), respectively. ௥ܰ is the number of vehicles in the 
transmission range (ܴ) of the vehicle under investigation. For 
uniform traffic distribution (highway scenario) with density ߚ, 
௥ܰ ൌ  ,For non-uniform traffic distribution (urban scenario) .ܴߚ2

we later give an expression for calculating ௥ܰ using the density 
functions proposed in section  4.  

 

3.2.2 Probability of successful transmission (݌௦ሻ 
Without loss of generality, we address the probability of 
successful transmission separately for beacon and event driven 
messages while the mutual impacts are taken into consideration. 
Denote by ݌௦௕ and ݌௦௘, the probability of successful transmission of 
beacon and event-driven messages, respectively. To obtain these 
probabilities, we account for simultaneous transmissions in the 
transmission range of a vehicle and transmission(s) from hidden 
nodes within the hidden area of the sender vehicle. Intuitively, ݌௦௕ 
and ݌௦௘ are equivalent to the probabilities that exactly one node 
attempts transmission and no hidden node transmits a message 
which overlaps in time with the transmission performed by the 
sender vehicle. Consequently: 

௦௕݌  ൌ ߬௕ ∙ ሺ1 െ ߬௕ െ ߬௘ሻ
ேೝିଵାே෩೓∙

೅೓
್

೛್೅ೞ
್శሺభష೛್ሻ഑ (11)  

௦௘݌  ൌ ߬௘. ሺ1 െ ߬௕ െ ߬௘ሻ
ேೝିଵାே෩೓.

೅೓
೐

೛್೅ೞ
೐శሺభష೛್ሻ഑ (12)  

In (11) and (12), ෩ܰ௛ is the average per vehicle hidden terminal 
effect on vehicles within the transmission range of a sender 
vehicle. For uniform traffic distribution with density ߚ, ෩ܰ௛ ൌ  .ܴߚ
For non-uniform traffic distribution, the hidden terminal nodes 
fall within the ranges ሺݔ௩ െ 2ܴ	, ௩ݔ െ ܴሻ and ሺݔ௩ ൅ ܴ	, ௩ݔ ൅ 2ܴሻ  
on the left and right side of a candidate sender vehicle positioned 
at ݔ௩; we describe the calculation of ෩ܰ௛ in greater detail in 
section  4. 

௛ܶ in (11) and (12) is the period during which a transmission from 
a vehicle may overlap with the transmission from a hidden node; 
hence, ௛ܶ

௥ ൌ 2 ௦ܶ
௕ and ௛ܶ

௘ ൌ 2 ௦ܶ
௘ , where ௦ܶ

௕ and ௦ܶ
௘ are packet 

transmission time corresponding to beacon and event-driven 
messages, respectively. The subscript ݏ in ௦ܶ

௕ and ௦ܶ
௘ is introduced 

to distinguish between duration of a successful message 
transmission and duration of a message collision. The ratios 

೓்
್

௣್ ೞ்
್ାሺଵି௣್ሻఙ

 and ೓்
೐

௣್ ೞ்
೐ାሺଵି௣್ሻఙ

 in (11) and (12) are introduced due 

to the fact that if a node in the hidden area of the sender vehicle 
starts transmission, the channel will be sensed busy by the 
remaining vehicles in the hidden area who thus remain silent. 

  

3.2.3 Calculating ߩ∗ and ߩ  
In the proposed Markov model for event-driven messages, ρ∗ is 
the conditional probability for a new event-driven message to 
arrive in the queue within a generic slot time, given that at the 
beginning of the slot the queue was empty. Note that a generic 
slot can have different lengths due to blocking of the backoff 
process due to the channel being busy. If the channel is idle (with 
probability 1 െ  If .(nominal slot duration) ߪ ௕), the slot length is݌
a successful beacon or event-driven message transmission occurs 
on the channel with probability ௦ܲ

௕ and ௦ܲ
௘, the corresponding 
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 is the lower bound traffic density associated with ܣ .(22)
stable/free flow traffic state; ܭ௝ is the upper bound traffic density 
associated with jam traffic density (if ܣ ൌ 0 then ܭ௝ is called the 
carrying capacity); ܤ is the growth rate of traffic density from 
lower bound (ܣ) to upper bound (ܭ௝); ܯ is the reflection point of 
the logistic curve; ݈௛௝ is the average jam headway distance which 
is a known parameter; ݍ is traffic arrival in vehicles/hour. ܸ is the 
speed limit of the road segment; ܴௗ is average deceleration of a 

vehicle; ݀௕ ൌ
௏మ

ଶோ೏
 is the distance it takes for a vehicle with 

average deceleration and velocity ܸ to fully stop; ܭଵ and ܭଶ 
denote the traffic densities corresponding to the start and end 
position of the braking distance; ݈ is the number of lanes in a 
multi-lane road segment;  ܦ௥௔௧௘ in (22) is the queue discharge rate 
and is described as: 
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where ܽ is the average acceleration of a vehicle and ݐ′ is the 
relative time instant with respect to the start of the green phase.  

 

4.1 Number of Nodes in Transmission Range 
 and Average Number of Hidden Nodes (࢘ࡺ)
  (ࢎ෩ࡺ	)
The number of vehicles within the transmission range of a vehicle 
at position ݔ௩ at time instant ݐ is determined by calculating the 
integral over the density function ܭሺݔ,  ሻ described by (21) andݐ
(22), corresponding to red and green phases of the traffic light 
cycle: 

 ௥ܰ ൌ ׬ ,ݔሺܭ ሻݐ
୫୧୬ 	ሺ௅೘ೌೣ,௫ೡାோሻ

୫ୟ୶ 	ሺ௅೘೔೙	,௫ೡିோሻ
∙   (23) ݔ݀

where ܮ௠௜௡ and ܮ௠௔௫ are the coordinates of the start and end 
positions of the road segment under consideration, and ݔ௩ is the 
position of the vehicle.  

To determine 	N෩h, we consider the fact that due to the non-
uniform traffic distribution, the average per-vehicle number of 
hidden nodes affecting packet reception is no longer simply half 
the total number of hidden nodes in the hidden terminal region, as 
it is in the uniform case. To that end, focusing on the transmission 
range of the sender vehicle, denote by ݔ௠௥  the median position 
such that half of the total number of vehicles to the right of the 
sender within its transmission range is located to each side of ݔ௠௥ ; 
similarly, define ݔ௠௟  to be the median point of vehicles to the left 
of the sender. In other words, if ݔ௩ is the position of the sender 
vehicle, then, ݔ௠ is the point on the road segment that minimizes 
the following objective function: 

௠ݔ  
ሺ௥,௟ሻ ൌ argmin௫ ቀ

ேೣ
ே
െ ଵ

ଶ
ቁ .ݏ			 ݔ|	ݐ െ |௩ݔ ൑ ܴ (24) 

where ௫ܰ ൌ ׬ ,ݔሺܭ ሻݐ
୫୧୬ 	ሺ௅೘ೌೣ,௫ೡା௫ሻ

௫ೡ
∙  and ݔ݀

ܰ ൌ ׬ ,ݔሺܭ ሻݐ
୫୧୬ 	ሺ௅೘ೌೣ,௫ೡାோሻ
௫ೡ

∙ ௠௥ݔ are used for calculating ݔ݀ , 

while ௫ܰ ൌ ׬ ,ݔሺܭ ሻݐ
୶౬
୫ୟ୶ 	ሺ୐ౣ౟౤	,୶౬ି୶ሻ

∙  and ݔ݀

ܰ ൌ ׬ ,ݔሺܭ ሻݐ
௫ೡ
୫ୟ୶ 	ሺ௅೘೔೙	,௫ೡିோሻ

∙  are used for the calculation of ݔ݀

௠௟ݔ . 

To calculate ݔ௠
ሺ௥,௟ሻ described by (24), we propose a simple 

algorithm as follows. 

 

Algorithm 1: median position to the right (left) of a sender 

Input: ܭሺݔ,  ܴ ,௠௔௫ܮ ,௠௜௡ܮ ,௩ݔ ,ሻݐ

Initialize:  assign a small positive value (൑ 1) to ∆ݔ 

௠௥ݔ                  ← ௠௟ݔ)  ௩ݔ ←   (௩ݔ

                 ௥ܰ௜௚௛௧ ← ׬ ,ݔሺܭ ሻݐ
୫୧୬ 	ሺ௅೘ೌೣ,௫ೡାோሻ

௫ೡ
∙  ݔ݀

                ቀ ௟ܰ௘௙௧ ← ׬ ,ݔሺܭ ሻݐ
௫ೡ
୫ୟ୶ 	ሺ௅೘೔೙	,௫ೡିோሻ

∙  ቁݔ݀

1: loop 

௠௥ݔ :2 ← ௠௥ݔ ൅ ௠௟ݔ)  ݔ∆ ← ௠௟ݔ െ   ሻݔ∆

3: ܰ௫೘ೝ ← ׬ ,ݔሺܭ ሻݐ
୫୧୬ 	ሺ௅೘ೌೣ,௫ೡା௫೘ೝ ሻ

௫ೡ
∙   ,ݔ݀

    ቀܰ௫೘೗
← ׬ ,ݔሺܭ ሻݐ

୶౬
୫ୟ୶ 	൫୐ౣ౟౤	,୶౬ି௫೘

೗ ൯ ∙  ቁݔ݀

4: until ฬ
ேೣ೘

ೝ

ேೝ೔೒೓೟
െ ଵ

ଶ
ฬ ൑ ൬ฬ  ߝ

ே
ೣ೘
೗

ே೗೐೑೟
െ ଵ

ଶ
ฬ ൑  ൰ߝ

5: return ݔ௠௥ ௠௟ݔ)  ) 

 

 in Algorithm 1 is a very small number and the expressions in ߝ
parentheses correspond to ݔ௠௟ . 

Correspondingly, the average per-vehicle number of hidden nodes 
in the right and left direction of the sender is determined as: 

N෩௛
௥ ൌ ׬ ,ݔሺܭ ݔሻ݀ݐ

୫୧୬ 	ሺ௅೘ೌೣ,௫ೡାோା௫೘ೝ ሻ

୫୧୬ 	ሺ௅೘ೌೣ,௫ೡାோሻ
  (25) 

N෩୦
୪ ൌ ׬ ,ݔሺܭ ݔሻ݀ݐ

୫ୟ୶ሺ୐ౣ౟౤	,୶౬ିୖሻ
୫ୟ୶ሺ୐ౣ౟౤	,୶౬ିୖି௫೘

೗ ሻ   (26) 

where N෩௛
௥  and N෩௛

௟  are the average number of hidden terminals in 
right and left directions of the sender, respectively.    

Using N෩௛
௥  and N෩௛

௟ , the average per vehicle terminal nodes can be 
expressed as: 

  	N෩h ൌ N෩௛ߚ
௥ ൅ ሺ1 െ ሻN෩௛ߚ

௟   (27) 

where 0 ൑ ߚ ൑ 1 is a weighting factor and can be determined 
based on the direction relative to the sender the reception 
probability of safety message broadcast is considered.  In a 
forward collision warning application (FCW), message reception 
is not important for vehicles driving ahead of a sender vehicle, 
thus ߚ ൌ 0. On the other hand, in a lane change assistance 
application, reception in both direction are equally important and 
thus ߚ ൌ 0.5. 

  

5. Numerical Results 
We numerically study the reliability model derived in section  3 
within two directions. First, the numerical results of the model are 
derived for an 8-lane highway scenario and are validated using the 
results of Elbatt et al.  [8] simulation work. Second, the results of 
the model are derived for a 3-lane urban scenario illustrated in 
Figure 3. Traffic and network parameters corresponding to these 
scenarios are specified in Table 1. Traffic flow associated with the 
urban scenario is set to a near-saturation level and determined 
according to the capacity of the junction; as explained in  [26], this 
traffic flow setting corresponds to an ideal signalized junction, 
and facilitates predictions for under-saturated and over-saturated 
traffic conditions near a signalized junction.  

 



 

5.1 Model Validation 
As the scenario simulated in [8] only considers periodic beacons, 
we set the probability of transmission of event-driven messages to 
zero to align our model with this scenario. In the scenario, the 
number of vehicles within the transmission range (i.e. N୰)  of a 
candidate sender in high and low density cases are 358 and 38, 
respectively. The average per-vehicle number of hidden nodes 
(	N෩h) calculated using (27) are 179 and 18 for high and low 
densities. As the traffic is uniformly distributed, 	N෩h is simply half 
the number of vehicles in the entire hidden terminal area of a 
node. The numerical results corresponding to [8] are shown in 
Figure 4. According to Figure 4(a), the probability of successful 
reception in the dense traffic case decreases with increasing 
distance from the sender. This can be justified by the fact that for 
nodes farther from the sender, the number of hidden terminals 
increases, leading to a higher number of collisions.  The mean 
reception probability achieved by the model and simulations are 
0.65 and 0.72, respectively, and the mean difference between the 
model and simulation results is 8% with standard deviation 4%. 
The results corresponding to the probability of successful 
reception in the low density case are depicted in Figure 4(b). Due 
to the light traffic density, the impacts of simultaneous 
transmissions and hidden terminal nodes are negligible. The mean 
reception probability achieved by the model and simulations are 
0.96 and 0.98, respectively, and the mean difference is 2% with 
standard deviation 0.9%. 

We applied the mean probabilities of successful reception 
measured by Elbatt et al. and calculated by the model to measure 
the distribution of IRT in high and low density scenarios. Figure 
4(c) represents the complementary cumulative probability as a 
function of the IRT. The results show that in the low density case, 
a message is almost always received in less than 200ms. On the 
other hand, in the high density case, this increases to 400ms for 
some messages. Furthermore, in the low density case, the 
probability that the inter-reception time for a message to be above 
100ms is quite small. This means that the vast majority of 
messages arrive in time. The mean difference between results 
achieved by the model and simulations in high and low density 
scenarios are 1% and 0.02%, respectively. We thus conclude that 
the proposed model fits very well with the simulation results of 
Elbatt et al [8].  

Table 1. Simulation Parameters 

 

 

 

Traffic 
Parameters 

Elbatt et 
al. [8] 

 Scenario 

High density: 1920 vehicles/mile 

Low density: 208 vehicles/mile 

 

 

 

Urban 
Scenario 

Road length =1 km 

Duration of red phase =50 s 

Traffic flow =2740 vehicles/hour 

Speed limit =20 m/s 

Jam traffic headway distance =   6 m 

 

 

 

 

Transmission range R =150 m 

Packet length =100 bytes 

Signal bandwidth = 10 MHz 

Channel Data Rate = 6 Mbit/s 

DSRC 
Parameters 

Slot time (ߪ)=ߤ 13s 

Propagation delay = 1 ߤs 

Preamble length = 40 ߤs 

Contention window size ௕ܹ = 32  

Contention window size ௘ܹ = 16  

Arrival rate λ =1 message/s (event-driven msg.) 

Beacon period ( ௕ܶሻ ൌ  ݏ݉	100

  

5.2 Urban Scenario Performance 
Our results for the urban scenario are shown in Figures 5 and 6. 
Figure 5(a) shows traffic density in vehicles/meter along the road 
segment during a red phase, and Figure 5(b) depicts the average 
per-vehicle number of hidden nodes potentially affecting a vehicle 
on the road segment. Figure 6 depicts the complementary 
cumulative probability as a function of IRT. Observe that, by 
increasing the queue length at the junction, the average per 
vehicle terminal node increases at positions behind the queue. A 
maximum number of hidden nodes is observed at positions 301-
334 with magnitude 37 at time 50 sec (end of the red phase). In 
addition to the magnitude increase with time, the area with high 
number of hidden nodes also widens and expands to distances 
farther from the junction. As the queue length grows larger than ܴ 
(transmission range), the average per vehicle terminal nodes also 
increases in positions close to the junction. This is shown by the 
rising curve near the junction from time instant 40 sec to 50 sec. 

It follows from Figure 5(c) that the probability of successful 
transmission of a vehicle is significantly dependent on the average 
per vehicle number of hidden nodes. Comparing figures 5(b) and 
5(c) reveals that in areas with large number of hidden nodes, the 
probability of successful transmission is low. In positions 301-334 
and at time instant 50 sec, for instance, the average successful 
transmission probability is 0.86, which is the lowest among all 
positions at the same time instant. In addition, we observe that the 
density of vehicles within the transmission range of a sender has a 
very small impact on the probability of successful transmission. 
At time instance 50 sec, the highest number of vehicles within 
transmission range of a sender is 104, which is observed at 
position 150m. The number of hidden nodes seen at this position 
is a small number 3. Correspondingly, the probability of 
successful transmission is 0.95 at this position, which stresses the 
fact that the hidden terminal effect is the predominant driving 
factor determining the achievable successful transmission rate. 

We continue the numerical study with the distribution of IRT 
shown in Figure 6. For three IRT values 100ms, 300ms, and 1s, 
we calculated the probability of inter-reception time using (19) 
and depicted the results in Figure 6(a), 6(b), and 6(c) respectively. 
Again, the worst-case IRT probabilities occur at positions 
301-334m with average magnitudes 0.13, 0.002, and 1 ൈ 10ିଽ 
corresponding to 100ms, 300ms, and 1s, respectively. 

Our results above were given for the red phase of a traffic light. 
During the green phase, in the first few seconds of the phase, the 
probability of unsuccessful transmission and probability of high 
inter-reception time are exacerbated due to a slow initial discharge 
rate of the queue, thus more positions will experience a high 
average per-vehicle hidden terminal level. Afterwards, with 
increasing acceleration, the queue discharges faster and the 
reliability metrics improve. 
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