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Abstract—In chip design today and for a foreseeable future,
on-chip communication is not only a performance bottleneck
but also a substantial power consumer. This work focuses on
employing dynamic voltage and frequency scaling (DVFS) policies
for networks-on-chip (NoC) and shared, distributed last-level
caches (LLC). In particular, we consider a practical system
architecture where the distributed LLC and the NoC share
a voltage/frequency domain which is separate from the core
domain. This architecture enables controlling the relative speed
between the cores and memory hierarchy without introducing
synchronization delays within the NoC. DVFS for this archi-
tecture is more difficult than individual link/core-based DVFS
since it involves spatially distributed monitoring and control.
We propose an average memory access time (AMAT)-based
monitoring technique and integrate it with DVFS based on PID
control theory. Simulations on PARSEC benchmarks yield a
33% dynamic energy savings with a negligible impact on system
performance.

Index Terms—Multicore, NoC, dynamic power, memory system

I. Introduction
The progress of chip design technology faces two related

challenges: power and on-chip communication [13]. A recent
study by Google [1] shows that, as power-efficiency improves
for server processors, the interconnection network is becoming
a major power consumer in the datacenter. Likewise, on-
chip communication now forms a power bottleneck in chip
multiprocessors (CMPs) given the considerable progress on
processor core power-efficiency. In his speech at Interna-
tional Conference on Computer-Aided Design 2011, Chris
Malachowsky, co-founder of Nvidia, pointed out that the
energy expended delivering data on chip has far exceeded
the energy in computation operations. Dynamic voltage and
frequency scaling (DVFS) is an effective and popular low-
power technique. This paper presents techniques that facilitate
efficient DVFS for NoC (Networks-on-Chip), which is widely
recognized as a scalable approach to on-chip communication.

In this work, we will focus on DVFS for NoCs for CMPs.
Previous work in DVFS for NoCs and CMPs have focused on
per-core or per-router DVFS policies, as shown in Figure 1a.
Unlike much prior work, we consider a realistic scenario
wherein the entire NoC and shared last-level cache (LLC)
forms a single voltage/frequency domain, separate from the
domains of the cores (see Figure 1b). Latency is a critical
characteristic in CMP NoCs [6, 5]. Synchronizing across
clock domains is expensive in cycles per hop; placing many
clock domain crossings in the interconnect makes the design
unscalable by imposing a high cost in latency per hop [18].

Furthermore, we argue placing the shared LLC in one
clock domain across the chip is logical because it is one
large, partitioned structure. Allowing some portions of the
address space to see a penalty in performance due to a given

Network-on-Chip
(NoC)

Tile #0 DVFS Domain

Tile #1 DVFS Domain

Tile #N DVFS Domain

Processor

L1I L1D

L2 Cache

L3 Cache
Partition

Directory

Processor

L1I L1D

L2 Cache

L3 Cache
Partition

Directory

Processor

L1I L1D

L2 Cache

L3 Cache
Partition

Directory

(a) CMP with V/F domains by tile.

Network-on-Chip
(NoC)

Core #N Domain

L3 Cache
Partition

Directory

L3 Cache
Partition

Directory

Processor

L1I L1D

L2 Cache

L3 Cache
Partition

Directory

Core #1 Domain

Processor

L1I L1D

L2 Cache

Core #0 Domain

Processor

L1I L1D

L2 Cache

Uncore DVFS Domain

(b) Separate V/F domain for the uncore and cores.

Fig. 1: Logical CMP diagrams highlighting

Voltage/Frequency domain partitions.

LLC bank being clocked slower relative to other portions
would impact performance determinism and could make the
performance of active threads hostage to the DVFS state of
idle threads. Unlike the individual cores which are running
different threads/programs, the LLC banks have a mostly
homogeneous load due to the interleaving of cache lines in the
system; in this case, the voltage/frequency domain partitioning
like Figure 1a can be inefficient. For example, if one core is
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active and makes many LLC requests while the other cores are
idle, then, according to the partition in Figure 1a, only the V/F
domain for the active core is in high V/F mode. However, this
is not sufficient as its data travels in other domains which are
in low V/F modes. Therefore, Figure 1b is a more reasonable
V/F domain partitioning for a CMP with shared LLC.

DVFS of an entire NoC system is more difficult to manage
than the DVFS in previous works, such as that for each
link [20] or each core [25]. In these cases, voltage/frequency
levels are determined by a single, local observation, (e.g. link
congestion [20] or core workload [25]). In contrast, sharing
V/F level over the entire network, requires information on
the load/activity of many different entities. Therefore, the
challenge is how to tune the single V/F level to satisfy the
need of the entire network, without impacting performance of
the network by flooding it with status information messages.

Two crucial components of a DVFS system are the perfor-
mance monitor, and the controller which computes the output
V/F level according to observed performance. Compared to
previous works [20, 25], our challenge is developing online
monitoring techniques. That is, how to efficiently and reliably
monitor the overall network performance, which is obviously
more complex than a single core or link. If many places are
monitored, then how to collect the monitoring results to the
central power controller with low overhead?

In this paper we address these questions. The key contribu-
tions of this work are as follows:

• We introduce several new uncore status metrics to predict
the impact of DVFS policy on system performance.

• We propose a novel, extremely low overhead, uncore
status monitoring technique. This technique is composed
of the following: 1) Per-node metric sampling, 2) Passive
in-network status encoding, no extra packets needed, 3)
Metric extrapolation to properly scale value weights.

• We introduce an uncore DVFS policy based upon PID
(Proportional-Integral-Derivative) control.

Results for our technique on the PARSEC suite show that we
achieve a 33% dynamic energy reduction while limiting the
system’s average memory access time (AMAT) increase to 5%,
and overall system performance penalty to ∼ 2.5%.

II. Background and Related Work
This section introduces the basics of shared, distributed,

last-level caches and their NoC interconnect in CMPs (col-
lectively the “uncore”). We then introduce the basic concepts
in NoC performance monitoring and discuss the power and
performance constraints on the uncore. Finally we discuss
power management using DVFS in the uncore.

A. CMP Uncore Basics
Typical CMPs are composed of a set of cores, consisting

of the processor and private lower level caches (level-1 and
sometimes level-2), along with an “uncore”. The uncore por-
tion of the die refers to all the integrated subsystems on the
chip except the cores. More precisely, the LLC, the routers
and links of NoC, integrated memory controller, integrated
I/O controller etc. constitute the uncore. In other words, the
uncore enables communication between the processing cores,
and with the LLC, off-chip memory, I/O devices, graphics
core and accelerators, if any. Therefore, any miss in the local
caches of a core will result in an uncore request. Finding the
location of the requested cache line, transferring the cache line
to the core or the memory controller as well as controlling
the global state of the cache line are all managed by the

uncore. In modern LLCs, the banks of the LLC are partitioned
and distributed such that a portion of the LLC is co-located
with each core. This LLC arrangement has the advantage
of improving performance over the prior, monolithic cache
designs.

In our baseline design, we assume coherence between the
private caches in the cores is maintained via a distributed
directory cache in the uncore. The NoC interconnecting the
uncore and the cores primarily carries memory system traffic.
Particularly, the NoC carries lower-level cache spills and fills,
lower-level cache coherence messages, and LLC cache spills
and fills. We assume that LLC cache set indices are spread
about the partitions of the LLC in a round robin fashion,
to ensure that each partition receives approximately the same
amount of traffic and no single partition becomes a hotspot.

B. Uncore Power and Performance Implications
The uncore consumes a significant fraction of the whole

chip power due to the relatively large proportion of the chip
area it consumes. Dynamic power dissipation for CMOS
circuits is given by

P = α · C · V 2 · f (1)

Although the activity factor (α) for the uncore is not neces-
sarily high, its total area and capacitance (C) can be large.
Similarly the leakage power, a growing problem in future
VLSI process technologies, is also proportional to the area of
uncore. Equation (1) also includes two interrelated components
– the voltage squared (V 2) and frequency (f ). For a given
design, increasing the voltage makes transistors to switch
faster, allowing the chip to operate at a higher frequency.
Conversely, lowering the voltage forces a decrease of the
clock frequency to meet timing constraints. Dynamic voltage
and frequency scaling (DVFS), is a well-known technique
which leverages this relationship to lower dynamic power
consumption. Lowering the voltage has a quadratic effect on
the dynamic power of the circuit being lowered, though this
comes at the cost of some performance due to the required
decrease in frequency. By lowering the voltage and frequency
to match but not exceed the demands of the application, a
good DVFS policy can achieve substantial power savings.

Achieving power savings through DVFS in the cores is a
comparatively simple problem, considering that the informa-
tion needed to select an appropriate voltage and frequency
are available in a localized place, the CPU core itself (e.g.
from performance counters within that core). Determining an
appropriate DVFS state for the uncore is a significantly more
difficult problem. Because the uncore consists of the LLC and
network, the relative criticality of the uncore’s performance
to the performance of the system is highly dependent on the
application’s demand for LLC data and inter-thread commu-
nication. Applications which are mostly L1 cache resident
place little performance pressure on the uncore and the uncore
can safely run at a relatively low frequency, while those with
frequent L2 cache misses place high demands on the uncore
and require the uncore to run at a high frequency.

For purposes of studying uncore DVFS polices, we decom-
pose the problem into three major components. First, because
the uncore consists of two very different components, the
LLC and NoC, it is unclear what performance metrics are
appropriate as an input to the DVFS policy. Second, because
the uncore is distributed across the chip, a mechanism must
be developed to monitor the status of the uncore performance
metrics and inform the DVFS policy. Finally third, once the
inputs have been defined and arrive at the DVFS controller,
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an appropriate policy must be developed. We explore these
components in the remainder of this section.

C. Uncore Performance Metrics
Network communication traffic load and performance can

be described via several potential networks metrics. In this
section we explore some potentially suitable indicators that
may predict network load.

Queue Occupancy and Crossbar Demand: Routers typ-
ically have queues, or input FIFOs for temporary storage
of data. The occupancy level of a queue naturally indicates
local congestion. Hence, queue occupancy has been widely
used in adaptive routing [4, 10] and DVFS for individual
links [20, 15, 17]. The overall congestion status of a network
can be estimated by monitoring queue occupancy of all routers.

A different and slightly overlapping metric for congestion
is crossbar demand, which is the number of active requests
to an output of a router [4]. Many requests to an output
imply a convergent traffic patten, which is likely to become
a bottleneck. While queue occupancy measures the degree
of downstream congestion, crossbar demand indicates local
congestion. In either case, estimating the performance of the
network as a whole requires monitoring many if not all routers.

Average Per-Hop Latency (APHL): While queue occu-
pancy and crossbar demand reflect network congestion, packet
latency is a direct measure of network performance. Packet
latency is defined by the time span from a packet request
being made to the arrival to its destination. Although low
packet latency is obviously preferred, it is not directly obvious
what should be the absolute goal in packet latency. Different
types of workload can be expected to produce different average
hop-counts and average packet lengths and hence different
nominal packet latencies. For the convenience of a normalized
comparison, we suggest average per-hop latency (APHL),
which is the average latency a flit incurs as it traverses each
router along its path through the NoC. For any specific system,
there is an unique minimum latency for one hop which is
determined by the link delay plus the router pipeline latency.
By removing distance traveled and serialization latency, APHL
gives a traffic pattern independent metric of network load. As
such, APHL’s deviance from a given NoC’s inherent minimum
per-hop latency serves as a clear target for the DVFS tuning.

Average Memory Access Time (AMAT): While the previ-
ous metrics merely provide the information of current network
congestion, we also propose average memory access time
(AMAT) as a metric which provides not only the current
network status but also the demand for its performance. When
a cache miss occurs on the private caches, the NoC is used
to fetch the missing cache line from LLC. Thus, NoC perfor-
mance translates to memory operation latency. Experimentally
we determined that for small AMAT increases, IPC (instruc-
tions per cycle) of the cores decreases approximately linearly
with AMAT with a slope of .5. Consequently, AMAT provides
a good index of required uncore performance. Equation (2)
shows a simplified uncore AMAT formula:

AMAT = HitRate(private)× Latency(private)

+ (1−HitRate(private))× Latency(uncore)
(2)

where HitRate(private) is the aggregate hit rate on the
private caches (L1 and L2) and Latency(private) is the
average access time on those caches. Latency(uncore) is the
average access time to the shared LLC (ie. access time to the
L3 slice on a remote tile), plus the latency of the memory
controller if the required cache block is missing in LLC.
For simplicity we assume Latency(uncore) linear with the

Fig. 2: AMAT with respect to uncore clock period.

clock period (1/f ) of the uncore, such that Figure 2 shows a
representation of AMAT.

Figure 2 shows two extreme cases. f0 depicts the AMAT
with respect to the clock period when HitRate(private) = 0,
while f1 shows the AMAT when HitRate(private) = 1. f0
represents the case the most of the memory access results
in the private cache miss such that the missing block must
be transferred over the network. In this case, the AMAT is
highly dependent on the uncore performance, hence decreasing
the uncore frequency via DVFS has a strong negative impact
on system performance and should be avoided. On the other
hand, f1 represents the case where all memory accesses are
served by the private caches. In such a case, decreasing
uncore frequency has no impact on system behavior, hence
should be done to achieve power savings with little impact
on performance. Thus, it is desirable for the DVFS controller
to account for AMAT in deciding whether increasing the
frequency is worth the increased power or not.

D. Uncore Status Monitoring
In the prior work, network status information has been pre-

dominately used locally, particularly for adaptive routing [10,
24, 22, 21], and for localized DVFS policies [20, 15, 17]. Gratz
et al. [4] and Ma et al. [12] propose small, light-weight status
information networks to provide deeper visibility into the NoC
and hence enable better adaptive routing decisions. In these
cases, the performance metric obtained from the local router
is assumed to provide enough information to enable local de-
cisions, such as which output port to send a packet to, or what
DVFS setting for a given router. These techniques, however,
provide a limited view of the status of the network as a whole,
either decreasing exponentially with distance [4] or limited to
one bit of data per node in only the orthogonal directions [12].
There are some other monitoring techniques to inform DVFS
policy in NoCs. Yin et al. [26] propose dedicated links and
virtual channels for collecting and monitoring system status
information; this approach is expensive in terms of design time
to create a dedicated interface, power for these links and area
for the logic associated. Rahimi et al. [17] propose to monitor
network performance based on link utilization; this approach is
reasonable for fine-grained, local link DVFS control but does
not scale to a full-chip shared resource.

Ideally for global decisions, one would like continuous
monitoring of uncore status, whether per-packet statistics to
calculate APHL, or per-core memory statistics to calculate
average AMAT. Such complete, active monitoring entails a
calculation overhead at every tile, which includes counting
starting/arrival time of packets, calculating the average, etc.
Moreover, the status obtained at each tile must be regularly
sent to the central power controller to set DVFS policy,
consequently causing increased traffic and congestion.
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To avoid increasing traffic and congestion within the pri-
mary NoC we propose to leverage unused space in the
header flits of existing packets to “piggyback” network status
information. This approach has the advantage of being scalable
to larger networks because no extra networks or links must be
designed. Furthermore, it is passive, ie. it does not perturb the
network with extra status packets. A potential disadvantage
to this approach is the non-determinism of status message
delivery. As we will show, however, this does not significantly
degrade the accuracy of this approach.

E. Prior Work in NoC and CMP DVFS
Several groups have explored DVFS in NoCs and/or CMPs.

Shang et al. wrote a pioneering work in the use of DVFS
for NoCs [20]. They perform DVFS for individual links in
NoC. DVFS has also been studied for individual routers [14].
Son et al. explored DVFS for specific application NoCs [23].
In other previous works [15, 7, 17], the voltage/frequency
domains within the NoC are assumed to be associated with
individual cores processor cores. In each of these works, the
DVFS policy is determined by local information. DVFS is also
widely studied for processor cores or CMPs. A simple ap-
proach is rule-based DVFS [8] that changes voltage/frequency
level when monitored performance crosses certain threshold.
Rule-based method is improved by including hysteresis [19].
Control theoretic techniques are proposed in [25, 15]. Jung
and Pedram proposed a learning-based approach [9].

In this paper, we address DVFS for the uncore as a whole.
We will demonstrate that there is a large opportunity for
uncore power saving with an accurate but low cost monitoring
technique to fetch network information, meanwhile using a
simple but effective control algorithm to adjust uncore voltage
and frequency based on the monitoring result.

III. AMAT-Based DVFS Policy Description
We propose to estimate current AMAT to provide feedback

to the DVFS controller. Each tile keeps track of its status
information and a monitor collects the information for AMAT
computation. To minimize hardware overhead, we use the
existing NoC infrastructure to convey the information, to avoid
increasing traffic and congestion, we leverage unused space in
the header flits and employ passive monitoring rather than
any active system. We propose a single monitor for our 4×4
network; experimental results show this is sufficient for this
size network. We assume the uncore contains a Power Control
Unit (PCU), which is a dedicated small processor for chip
power management as in Intel’s Nehalem architecture [11].

A. Data Collection
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Fig. 3: Header flit bit fields.

In our proposed technique, each tile maintains statistics on
its private, lower-level cache’s behavior necessary to compute
AMAT. These statistics must be sent to the a central, mon-
itoring node for overall AMAT estimation and DVFS policy
generation. Rather than injecting more packets into the system,

increasing traffic and congestion, each tile “piggybacks” its
status information into every packet injected into the network.
Under the assumption of 128-bit wide links, and 64-byte
cache blocks, we find there are ∼ 64 unused bits in the
header flit or single flit packets. We leverage these unused
bits to encode the status information as shown in Figure 3.
Here, Time Stamp denotes the time the packet is generated.
HitRate(L1) and HitRate(L2) show the hit rate of L1 and
L2 caches during the time window. No.ofUncoreRequest
and Sum(RL) correspond to the number of L2 requests sent
into the Uncore and the sum request latency during the time
window, respectively. The Sum(RL) is the accumulated time
span required for L2 requests into the uncore, and includes
the access time of the L3, cache coherence resolution time
and main memory access time on L3 misses. The additional
hardware cost to maintain this status information is discussed
in Section III-D.

Fig. 4: NoC layout; the monitor resides at tile 6

Figure 4 shows an NoC layout illustrating our monitoring
technique. Instead of adding monitors to each tile, we employ
a single monitor that collects the data from the whole network.
We chose tile 6 as the location of the monitor intuitively
because a central location provides the best vantage point to
passively collect the desired statistics (an assumption experi-
mentally verified). In addition, the monitor tile should be near
the PCU so that the overhead of interconnect between the
monitor tile and the PCU is negligible. The monitor grabs
status information from all passing packets (e.g. a packet
traveling from tile 4 to tile 7) or packets bound to tile 6 (e.g.
a packet from tile 13 to tile 6). Data collection is passive,
a potential downside of this approach is non-determinism of
message delivery, as we will discuss in the next section.

B. Overall AMAT Computation
Once a packet arrives at the monitor, the source node’s status

information, encoded in the packet’s header, is handed over
to the PCU (Power Control Unit). The PCU is in charge of
computing AMAT on the packet’s arrival. The AMAT for each
tile is computed as per Equation 3 based on the information
gathered.

AMAT = HitRate(L1)×AccessT ime(L1)

+ (1−HitRate(L1))× Latency(L2)

Latency(L2) = HitRate(L2)×AccessT ime(L2)

+ (1−HitRate(L2))× Latency(uncore)

Latency(uncore) = (Sum(RL))/(No. of Uncore Request)

(3)

Note that Eq. 3 is a more detailed version of Eq. 2,
where HitRate(private) and Latency(private) are decom-
posed into their constituent L1 and L2 components. The
AccessT ime values are constants for a given L1 and L2
cache design and hence need not be sent in the header.
Also note, the Sum(RL) the sum of round trip time for
Uncore requests, including NoC latency, L3 access time, cache
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coherency latency, as well as main memory latency when L3
misses occur.

Our DVFS policy requires the overall, chip-wide AMAT
as an input. This overall AMAT is computed for every time
window of 50000 cycles. To calculate overall AMAT, we use
a weighted average of the per-node AMAT, with respect to
the number of memory instructions issued by that tile during
the window. Upon packet arrival or traversal of the monitor
tile, the PCU calculates the AMAT for the source tile of the
packet and stores it in a table with 16 entries; one for each tile.
Memory instruction count is also stored in the table. At the end
of each time window, the PCU, using the memory instruction
counts as weights, computes the weighted average of AMAT
across all tiles as the overall AMAT. At the end of every
time window, all entries are reset to 0; entries not updated are
excluded from overall AMAT computation. Figure 5 depicts
this process. The graph shows the AMATs of T ilei and
T ilej , in a two tile system. The cross marks on the time line
denote packet arrivals, and the circles are the AMAT for the
corresponding tile to be stored in the table. The numbers above
the circles denote the memory instruction count. The triangles
are the final AMAT values used in overall AMAT calculation.
In “Window 1”, T ilei sends two packets, but the data from
the first packet is discarded as the second one overrides it.
At the end of this window, the PCU first calculates the per-
tile AMAT for T ilei and T ilej of 80 and 65 respectively
from the status information in the final packet from each. It
then determines there are 120 memory instructions in T ilei
and 60 in T ilej , and these values are used in the weighted
average overall AMAT thus (80× 120+65× 60)/(120+60).
In “Window 2”, the PCU receives no packet from T ilei thus
the overall AMAT is computed only from AMATj and it is
120. The system clock is also reset at the end of time window,
thus if a packet’s time stamp is later than the current system
time, the packet is discarded as it is from the previous window.

Fig. 5: Overall AMAT Computation

We refer the above method as “Naı̈ve” as it calculates
AMAT without accounting for packet arrival time. Unfortu-
nately, this passive monitoring method does not guarantee
that each tile’s statistics are current. As the final value is
evaluated at the end of each time window, it is better to have
a packet from a tile near the end of the window. For example,
at “Window 3” in Figure 5, AMATi and AMATj have the
same weight as the numbers of memory instructions carried
over are the same. However, in the end of the time window, it is
very likely that T ilei eventually has more memory instructions
than T ilej since the count had been determined much earlier.

Thus, we introduce a method of linear extrapolation to correct
this bias. We assume that the number of memory instructions
linearly increases in a time window. With the fact that the
memory instruction count is 0 at the beginning of a time
window, we can estimate the count in the end of it using
a sampled count at any location of the window. We use the
“Time Stamp” in the packet to define the relative location
within the time window, and that needs to be stored in the
table. By this “extrapolation”, in “Window 3”, the effective
memory instruction count of T ilei becomes 400 while that of
T ilej becomes 133. Finally, the overall AMAT becomes 45
while in “Naı̈ve” it is 40.

Figure 6 compares the performances of the “Naı̈ve” and
“Extrapolation” methods. The figure shows the correlation
between actual and computed overall AMATs for monitor tiles,
tile0-tile15 (tiles numbered as shown in Figure 4). Generally,
higher correlations across all tiles indicates a given method
provides a better estimate of overall AMAT. For Canneal we
see that “extrapolation” generally results in a more accurate
overall AMAT than “Naı̈ve.” For Vips, much higher correlation
is achieved by “extrapolation” method. Vips’s traffic pattern
is more highly skewed and hence requires “extrapolation” to
produce reasonable results. Note that in both cases tile6 shows
the highest correlation among the tiles, thus we select tile6
as our monitor tile which also matches our assumption that
central location provides better visibility.
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Fig. 6: Overall AMAT from each tile’s perspective

C. PID-Based DVFS Policy and Stability Analysis
We choose to implement a DVFS control scheme based

on PID (Proportional-Integral-Derivative) control. Compared
to rule-based approaches [8, 19], PID control can easily
adapt to various application scenarios. Its computation cost
is significantly less than learning-based methods [9]. It has
been applied for DVFS in processor cores [25]. Moreover, it
has theoretic grounds for stability analysis.

The block diagram of PID control system is shown in
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Fig. 7: PID system diagram.

Figure 7. The controller takes two inputs: the reference AMAT
and monitored AMAT. The reference AMAT is the control
target and can be obtained from empirical data. The control
output is updated once per control interval (same as time
window for AMAT monitoring). The difference between the
two inputs is the error function ej = AMATref − AMATj

where AMATj is the AMAT observed at control interval j.
The controller calculates the control output u according to

uj = uj−1 +KI · ej +KP · (ej − ej−1) (4)

where KI and KP are constant coefficients. Note we only
implement the Proportional (P) and Integral (I) terms in our
controller, as this is simpler and often more robust than includ-
ing the Derivative (D) term [25]. Control output u is converted
to a V/F setting for the uncore system. In general, AMAT is
a nonlinear function with respect to uncore frequency f . We
perform a transformation of u = 1/f such that AMAT is
approximately a linear function of u.
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Fig. 8: AMAT versus uncore frequency.

In order to analyze the stability of this control system, we
need to obtain an analytical form of the system function.
Figure 8 shows simulation results of AMAT versus uncore
frequency (f ). Then, by curve fitting, we can obtain an
approximated expression

AMAT =
η

f
+ β (5)

where η and β are two fitting coefficients. Although the
values of η and β are specific for each application, the
subsequent analysis is general, as long as the AMAT (f)
relation conforms to Equation (5). We performed many other
simulations and all results follow similar trend as Figure 8.

By performing z-transform, we can get system transfer
function as

AMAT (z) =
(KP +KI) · η · z −KP · η

(1 +KP · η +KI · η) · z − (1 +KP · η) (6)

The characteristic equation for this system is

(1 +KP · η +KI · η) · z − (1 +KP · η) = 0 (7)

According to control theory [3], the system is stable if and
only if the root of the above equation is inside the unit circle
of the z-plane. In our case, this requires that z = (1 +KP ·

TABLE I: Simulation setup

Parameter Values

Core Frequency 1GHz
#processing cores 16

L1 data cache 2-way 32Kb, 1 core cycle latency
L2 cache 8-way 256Kb, 13 core cycle latency

L3 cache (LLC)
16-way, 2MB/bank, 32MB/total,

15 uncore cycle latency
Directory cache MESI, 4 uncore cycle latency

Memory access latency 100 core cycles

NoC
4× 4 2D mesh,

X-Y DOR, 2VCs/port 4flits deep

Voltage/Frequency
10 levels, voltage: 0.5V–1V,
frequency: 250MHz–1GHz

η)/(1+KP ·η+KI ·η) is within the unit circle. To satisfy this
condition, we simply need to find PID coefficient KP ,KI > 0.

When ρL1,miss ·ρL2,miss = 0 (where ρ means rate), AMAT
is not affected by f and the above closed-loop based analysis
does not hold. However, the chance of ρL1,miss ·ρL2,miss = 0
in practice is very small. Even when it happens, the monitored
AMAT is very low and the controlled frequency gradually
decreases to its minimum. Therefore, the system is still stable.

D. Implementation Overhead
The DVFS controller needs a modest amount of hardware

support. At each tile, one counter is needed to frame the
control interval, in our case 50000 cycles, so 16 bits is
sufficient. To track each tile’s memory operation status the
following additional registers are required by each tile: One
20-bit register for L1 hit count, one 12-bit register for L2
hit count, one 12-bit register is required to count the number
of L2 misses and one 20-bit register to sum up all of the L2
miss latencies. These registers are updated at the completion of
memory instructions, and reset as the time windows end. These
registers are used to compute HitRate(L1) and HitRate(L2)
prior to encoding in the header flit, this latency is hidden
by the packet generation delay. Both AMAT computation and
the PID algorithm are composed of a few simple arithmetic
calculations, which can be easily handled by the PCU. The
PCU has sufficient storage to accommodate the data collected.
We assume the PCU is co-located with the monitor tile, if this
is not the case the monitor will need additional registers for
the temporary storage of collected data prior to sending it to
the PCU. Therefore, the overall hardware overhead is 80 bits
per tile plus a possible 64 bits at the monitor tile.

IV. Evaluation
In this section we first discuss our methodology and then

compare the performance of our proposed technique and
several variation versus baseline.

A. Experiment Setup
The testbed architecture in our experiment is a 16-tile

CMP as shown in Figure 1(b). Each tile is composed of
a processing core with 2-levels of private cache, a network
interface (NI) and a partition of the shared L3 cache (LLC). Ta-
ble I summarizes our experimental configurations and param-
eters. We use M5 full system simulator to generate PARSEC
shared-memory multi-processor benchmark memory system
traces [2]. Each trace contains up to 250 million memory oper-
ations. These traces are run through a memory hierarchy (L1-
L2-LLC+directory) and network simulator based upon Ocin-
tsim [16]. Although trace-driven, open-loop, NoC simulation
can introduce error, we expect that for the small changes in
AMAT experienced, these errors are minimal. Uncore DVFS is
emulated by varying packet injection rate (e.g. slowing down
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uncore frequency by a half emulates doubling the injection
rate). Please note that uncore DVFS does not affect off-chip
memory access time. We assume that memory access time is
constant with respect to core frequency. We explored several
options for the DVFS control interval between 10000 clock
cycles to 100000 clock cycles. In this work present results
assuming an interval of 50000 clocks cycles as it provides
more than sufficient time to collect traffic information as well
as being short enough to capture fine-grain program phase
behavior.

In this work we focus on the dynamic energy reduction due
to DVFS based off impact on the dynamic power equation
(Eq. 1), because dynamic power currently dominates in mod-
ern process technologies. DVFS should also provide benefit
for static energy consumption though the absolute amount is
highly dependent on particular process technology, we plan to
explore this in future work.

B. Power and Performance Comparisons
Figure 9 compares the dynamic energy savings and per-

formance degradation of our proposed approach (labeled Est.
AMAT+PID) versus baseline without DVFS, along with four
variations which we discuss in the following subsections.
The figure shows our PID technique, informed by estimated
AMAT provides an average savings of 33% while reducing the
performance of the uncore (measured by impact on absolute
AMAT) by 5.3%. We empirically determined that AMAT
increases of 5% tend to decrease processor performance (IPC)
by < 2.5%. Blackscholes shows the best benefit, with a
73% reduction in energy, while Canneal shows the least
reduction in energy at 1%. Both benchmarks show negligible
performance impact. In Blackscholes the uncore is not critical
to performance, because the L1 and L2 hit rates are high, so
voltage and frequency (V/F) can be dropped without impacting
performance. Canneal, however, has a relatively lower L1
and L2 hit rate and thus the uncore’s performance is more
critical to application performance. In both cases our algorithm
preserves our performance goal of <5% AMAT loss.

PID-Based vs. Rule-Based DVFS: Figure 9 also shows
the results for a simple, naı̈ve, rule based approach for DVFS
policy (labeled Rule-Based). In this approach, V/Fs are associ-
ated with specific ranges of AMAT (e.g. if monitored AMAT
is a then uncore frequency level is set to b). The advantage
to this technique would be that it eschews the overheads of
the PID controller, however, its static nature ignores time-
varying dynamics of the system. While rule-based DVFS
obtains similar energy reduction as PID-based DVFS, it is
unable to adapt as well and performance decreases by 10%
compared to the 5% by PID-based DVFS.

Monitoring AMAT vs. APHL: APHL (Average Per-Hop
Latency) is a simple, direct measure of network performance
discussed in Section II-C. Figure 9 also shows results for
PID informed by the APHL metric (labeled APHL+PID).
In some cases, like Blackscholes, the power savings from
APHL-based DVFS is much less than that of AMAT-based.
In such applications, the packet injection rate is not high
but constantly above zero-load. Thus, the network is often
moderately busy and APHL-based DVFS will not lower V/F
level. On the other hand, the L1 and L2 miss rates in these
cases are low and therefore moderate increase of APHL does
not have significant impact to system performance. AMAT-
based DVFS is able to capture such opportunities for energy
savings. In other cases, such as Canneal, APHL-based DVFS
is overly aggressive, causing > 50% performance degradation.

This phenomenon is due to the static APHL target of three
uncore cycles. When traffic load is not high, lowering uncore
frequency may still maintain an APHL close to 3 uncore
cycles, however, the network latency in core cycles increases
due to the frequency ratio change. This dramatically affects
performance when L1 or L2 miss rates are high. Monitoring
APHL in core cycles, however, is impractical because of the
difficulty in finding appropriate PID reference levels without
knowing the dynamically changing network latency relative
to system performance. Overall, APHL-based DVFS achieves
about the same power savings of about 30% as AMAT-
based DVFS, but degradation performance significantly more
at about 16%.

Sampled AMAT vs. Perfect Knowledge of AMAT: The
AMAT monitoring technique we propose uses a single tile
to collect information from its own packets and passing-
by traffic. Compared to monitoring all tiles for complete
knowledge of AMAT, our technique has much lower overhead,
however, this comes at the potential cost of some inaccuracy in
AMAT estimation due to incomplete knowledge. Figure 9 also
shows results for PID DVFS based upon perfect knowledge
of the system AMAT each time window (labeled Perfect
AMAT+PID). The figure shows estimating AMAT produces
results quite close to perfect knowledge. Overall, the difference
in energy savings and performance is < 1%.

Power-Performance Tradeoff: The tradeoff between power
savings and AMAT degradation can be easily adjusted by
tuning the AMATref to the PID system (see Figure 7). In Est.
AMAT+PID we set AMATref to 2, empirically determined
to reach our goal of < 5% performance degradation. Figure 9
shows results for increasing AMATref to 4.2 to achieve a
more aggressive power savings (labeled Ag. Est. AMAT+PID).
As expected, the aggressive PID yields increased energy
savings of 44% as well as a greater AMAT degradation of
13%. This comparison confirms that the power-performance
tradeoff can be easily managed by our approach. In future
research, we will develop techniques that make AMATref

adaptable to different applications at runtime.

C. Analysis
Here we provide some simulation details to aid developing

an intuition on the behavior of our approach. In Figure 10,
we show a snapshot of the uncore frequency over time of our
Est. AMAT+PID system versus an “Ideal” DVFS policy. The
Ideal policy is an unrealistic case where every benchmark is
simulated once for each V/F setting and the lowest V/F are
chosen for each time window which meet the performance
goal of < 5% performance loss. Generally Est. AMAT+PID
follows the Ideal policy very closely. Where variance occurs,
the estimated method is generally more conservative. Initially,
both frequencies are high due to high cache miss rate during
initialization. After two millions of clock cycles, the lower
level caches are filled and the frequency is lowered, reflecting
the lower performance criticality of the uncore. There are some
frequency spikes arising from occasional traffic spikes due to
application phase changes. Surprisingly, the Est. AMAT+PID
policy is able to track the performance needs of the uncore
quite well even during these spikes.

V. Conclusions and Future Work
In this work, we propose a DVFS policy for a CMP’s un-

core. This policy leverages an uncore performance monitoring
based upon AMAT estimation. This technique is integrated
with a PID-based DVFS control system. In simulation on
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(b) Performance degradation

Fig. 9: Energy and performance impact for PARSEC benchmarks. Our proposed method is “Est. AMAT + PID”.
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Fig. 10: Simulation snapshot of Blackscholes showing DVFS

frequency over time, Est. AMAT+PID vs. Ideal.

PARSEC benchmarks, the proposed approach achieves 33%
NoC and LLC dynamic power reduction, with only 5% degra-
dation on AMAT, correlated to a ∼ 2.5% system performance
drop. We show that the technique has low computation and
communication overheads and is practical to implement.

In future research, we will validate this approach on multi-
application benchmarks and architectures with significantly
more cores. While we believe that future VLSI technology
will allow rapid DVFS changes, such as analyzed here, in
the future we will explore how latency in Voltage/Frequency
changes could impact our results.
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